FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Carls, MG Holland, L Irvine, GV Mann, DH Lindeberg, M AF Carls, Mark G. Holland, Larry Irvine, Gail V. Mann, Daniel H. Lindeberg, Mandy TI PETROLEUM BIOMARKERS AS TRACERS OF EXXON VALDEZ OIL SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Biomarker; Exxon Valdez oil; Forensic ID PRINCE-WILLIAM-SOUND; SUBTIDAL SEDIMENTS; NORTHERN GULF; MUSSEL BEDS; ALASKA; SPILL; PERSISTENCE; BEACHES; HYDROCARBONS; EMBAYMENTS AB Over the past quarter century, petroleum biomarkers have persisted in sequestered Exxon Valdez oil in Prince William Sound and the Gulf of Alaska (USA), and hence the oil has remained identifiable. These biomarkers are molecular fossils derived from biochemicals in previously living organisms. Novel pattern matching indicated the presence of Alaska North Slope crude oil (ANSCO) over the entire observation period at most sites (7 of 9) and distinguished this source from several other potential sources. The presence of ANSCO was confirmed with Nordtest forensics, demonstrating the veracity of the new method. The principal advantage of the new method is that it provides sample-specific identification, whereas the Nordtest approach is based on multisample statistics. Biomarkers were conserved relative to other constituents, and thus concentrations (per g oil) in initial beach samples were greater than those in fresh oil because they were lost more slowly than more labile oil constituents such as straight-chain alkanes and aromatic hydrocarbons. However, biomarker concentrations consistently declined thereafter (1989-2014), although loss varied substantially among and within sites. Isoprenoid loss was substantially greater than tricyclic triterpane, hopane, and sterane loss. (C) 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is aUS government work and as such, is in the public domain in the United States of America. C1 [Carls, Mark G.; Holland, Larry; Lindeberg, Mandy] Natl Marine Fisheries Serv, Auke Bay Labs, Juneau, AK 99802 USA. [Carls, Mark G.; Holland, Larry; Lindeberg, Mandy] NOAA, Juneau, AK 99802 USA. [Irvine, Gail V.] US Geol Survey, Alaska Sci Ctr, Anchorage, AK USA. [Mann, Daniel H.] Univ Alaska, Sch Nat Resources, Geog Program, Fairbanks, AK 99701 USA. RP Carls, MG (reprint author), Natl Marine Fisheries Serv, Auke Bay Labs, Juneau, AK 99802 USA.; Carls, MG (reprint author), NOAA, Juneau, AK 99802 USA. EM mark.carls@noaa.gov NR 25 TC 1 Z9 1 U1 15 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD NOV PY 2016 VL 35 IS 11 BP 2683 EP 2690 DI 10.1002/etc.3454 PG 8 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA EA2XU UT WOS:000386461000006 PM 27067268 ER PT J AU Cammarano, D Rotter, RP Asseng, S Ewert, F Wallach, D Martre, P Hatfield, JL Jones, JW Rosenzweig, C Ruane, AC Boote, KJ Thorburn, PJ Kersebaum, KC Aggarwal, PK Angulo, C Basso, B Bertuzzi, P Biernath, C Brisson, N Challinor, AJ Doltra, J Gayler, S Goldberg, R Heng, L Hooker, J Hunt, LA Ingwersen, J Izaurralde, RC Muller, C Kumar, SN Nendel, C O'Leary, GJ Olesen, JE Osborne, TM Palosuo, T Priesack, E Ripoche, D Semenov, MA Shcherbak, I Steduto, P Stockle, CO Stratonovitch, P Streck, T Supit, I Tao, F Travasso, M Waha, K White, JW Wolf, J AF Cammarano, Davide Rotter, Reimund P. Asseng, Senthold Ewert, Frank Wallach, Daniel Martre, Pierre Hatfield, Jerry L. Jones, James W. Rosenzweig, Cynthia Ruane, Alex C. Boote, Kenneth J. Thorburn, Peter J. Kersebaum, Kurt Christian Aggarwal, Pramod K. Angulo, Carlos Basso, Bruno Bertuzzi, Patrick Biernath, Christian Brisson, Nadine Challinor, Andrew J. Doltra, Jordi Gayler, Sebastian Goldberg, Richie Heng, Lee Hooker, Josh Hunt, Leslie A. Ingwersen, Joachim Izaurralde, Roberto C. Mueller, Christoph Kumar, Soora Naresh Nendel, Claas O'Leary, Garry J. Olesen, Jorgen E. Osborne, Tom M. Palosuo, Taru Priesack, Eckart Ripoche, Dominique Semenov, Mikhail A. Shcherbak, Iurii Steduto, Pasquale Stockle, Claudio O. Stratonovitch, Pierre Streck, Thilo Supit, Iwan Tao, Fulu Travasso, Maria Waha, Katharina White, Jeffrey W. Wolf, Joost TI Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2 SO FIELD CROPS RESEARCH LA English DT Article DE Multi-model simulation; Transpiration efficiency; Water use; Uncertainty; Sensitivity ID CLIMATE-CHANGE; USE EFFICIENCY; CROP YIELD; POTENTIAL EVAPOTRANSPIRATION; ATMOSPHERIC CO2; FOOD SECURITY; ELEVATED CO2; IMPACTS; PRODUCTIVITY; MODELS AB Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (T-eff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50% of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cammarano, Davide; Asseng, Senthold; Jones, James W.; Boote, Kenneth J.] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA. [Rotter, Reimund P.; Palosuo, Taru; Tao, Fulu] Nat Resources Inst Finland Luke, FI-00790 Helsinki, Finland. [Ewert, Frank; Angulo, Carlos] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, D-53115 Bonn, Germany. [Wallach, Daniel] INRA, Agrosyst & Dev Terr UMR1248, F-31326 Castanet Tolosan, France. [Martre, Pierre] INRA, Genet Divers & Ecophysiol Cereals GDEC UMR1095, F-63100 Clermont Ferrand, France. [Martre, Pierre] Univ Blaise Pascal, GDEC UMR1095, F-63170 Clermont Ferrand, France. [Hatfield, Jerry L.] Natl Lab Agr & Environm, Ames, IA 50011 USA. [Rosenzweig, Cynthia; Ruane, Alex C.; Goldberg, Richie] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Thorburn, Peter J.] CSIRO, Ecosyst Sci, Dutton Pk, Qld 4102, Australia. [Kersebaum, Kurt Christian; Nendel, Claas] Leibniz Ctr Agr Landscape Res, Inst Landscape Syst Anal, D-15374 Muncheberg, Germany. [Aggarwal, Pramod K.] CIMMYT, CGIAR Res Program Climate Change Agr & Food Secur, New Delhi 110012, India. [Basso, Bruno] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA. [Basso, Bruno] Michigan State Univ, Kellogg Biol Stn, E Lansing, MI 48824 USA. [Bertuzzi, Patrick; Ripoche, Dominique] INRA, AgroClim US1116, F-84914 Avignon, France. [Biernath, Christian; Priesack, Eckart] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Soil Ecol, D-85764 Neuherberg, Germany. [Brisson, Nadine] INRA, Agron UMR0211, F-78750 Thiverval Grignon, France. [Brisson, Nadine] AgroParisTech, Agron UMR0211, F-78750 Thiverval Grignon, France. [Challinor, Andrew J.] Univ Leeds, Inst Climate & Atmospher Sci, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Challinor, Andrew J.] CIAT, CGIAR ESSP Program Climate Change Agr & Food Secu, Cali 6713, Colombia. [Doltra, Jordi] Cantabrian Agr Res & Training Ctr CIFA, Muriedas 39600, Spain. [Gayler, Sebastian] Univ Tubingen, Water & Earth Syst Sci Competence Cluster, D-72074 Tubingen, Germany. [Heng, Lee] IAEA, A-1400 Vienna, Austria. [Hooker, Josh] Univ Reading, Sch Agr Policy & Dev, Reading RG6 6AR, Berks, England. [Hooker, Josh] Joint Res Ctr, Via Enrico Fermi 2749, I-21027 Ispra, Italy. [Hunt, Leslie A.] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada. [Ingwersen, Joachim; Streck, Thilo] Univ Hohenheim, Inst Soil Sci & Land Evaluat, D-70599 Stuttgart, Germany. [Izaurralde, Roberto C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Izaurralde, Roberto C.] Texas A&M Univ, Texas A&M AgriLife Res & Extens Ctr, Temple, TX 76502 USA. [Mueller, Christoph; Waha, Katharina] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany. [Kumar, Soora Naresh] Indian Agr Res Inst, Ctr Environm Sci & Climate Resilient Agr, New Delhi 110012, India. [O'Leary, Garry J.] Dept Econ Dev Jobs Transport & Resources, Landscape & Water Sci, Horsham, Vic 3400, Australia. [Olesen, Jorgen E.] Aarhus Univ, Dept Agroecol, DK-8830 Tjele, Denmark. [Osborne, Tom M.] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci, Reading RG6 6BB, Berks, England. [Semenov, Mikhail A.; Stratonovitch, Pierre] Rothamsted Res, Computat & Syst Biol Dept, Harpenden AL5 2JQ, Herts, England. [Steduto, Pasquale] Food & Agr Org United Nations FAO, Rome, Italy. [Shcherbak, Iurii; Stockle, Claudio O.] Washington State Univ, Biol Syst Engn, Pullman, WA 99164 USA. [Supit, Iwan] Wageningen Univ, Water Syt & Global Change Grp, NL-6700 AP Wageningen, Netherlands. [Tao, Fulu] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China. [Travasso, Maria] INTA CIRN, Inst Climate & Water, RA-1712 Castelar, Argentina. [White, Jeffrey W.] USDA ARS, ALARC, Maricopa, AZ USA. [Wolf, Joost] Wageningen Univ, Plant Prod Syst, NL-6700 AA Wageningen 37, Netherlands. [Rotter, Reimund P.] Univ Gottingen, Dept Crop Sci, Gottingen, Germany. [Ewert, Frank] Leibniz Ctr Agr Landscape Res ZALF, D-15374 Muncheberg, Germany. [Cammarano, Davide] James Hutton Inst, Dundee DD2 5DA, Scotland. [Martre, Pierre] INRA, Montpellier SupAgro, Lab Ecophysiol Plantes Stress Environm UMR759, F-34060 Montpellier, France. [Waha, Katharina] CSIRO, Agr, 306 Carmody Rd, St Lucia, Qld 4067, Australia. RP Cammarano, D (reprint author), Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA.; Cammarano, D (reprint author), James Hutton Inst, Dundee DD2 5DA, Scotland. EM Davide.Cammarano@hutton.ac.uk RI Palosuo, Taru/B-9593-2012; Thorburn, Peter/A-6884-2011; Doltra, Jordi/C-2106-2015; Challinor, Andrew/C-4992-2008 OI Palosuo, Taru/0000-0003-4322-3450; Challinor, Andrew/0000-0002-8551-6617 FU Ministry of Science, Research and Arts of Baden-Wurttemberg [AZ Zu 33-721.3-2]; Helmholtz Center for Environmental Research, Leipzig; European FACCE MACSUR project through the Finnish Ministry of Agriculture and Forestry; INRA Environment and Agronomy Division; framework of JPI FACCE MACSUR project through the INRA Metaprogram on the Adaptation of Agriculture and Forests to Climate Change; German Federal Office for Agriculture and Food; FACCE MACSUR [2812ERA147]; COST [ES1106]; KULUNDA [01LL0905L]; FACCE MACSUR through the German Federal Ministry of Education and Research (BMBF) [031A103B]; project of Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA) from National Institute for Food and Agriculture [2011-68002-30191] FX We thank the anonymous referees for the valuable comments and suggestions that helped improve the manuscript. S.G. was supported by a grant from the Ministry of Science, Research and Arts of Baden-Wurttemberg (AZ Zu 33-721.3-2) and the Helmholtz Center for Environmental Research, Leipzig (UFZ); R.P.R., T.P. and F.T. were supported by funds from the European FACCE MACSUR project through the Finnish Ministry of Agriculture and Forestry; P.M., P.B., N.B. and D.R. were supported by INRA Environment and Agronomy Division and by the funding within the framework of JPI FACCE MACSUR project through the INRA Metaprogram on the Adaptation of Agriculture and Forests to Climate Change; K.C.K. and C.N. received support from the German Federal Office for Agriculture and Food with FACCE MACSUR (2812ERA147) and from COST ES1106; C.M. acknowledges financial support from the KULUNDA project (01LL0905L) and the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (BMBF); C.O.S. was supported by the project of Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA) funded through award #2011-68002-30191 from the National Institute for Food and Agriculture. This work has been carried out under the framework of the Agricultural Model Inter comparison and Improvment Project (AgMIP). NR 67 TC 2 Z9 2 U1 49 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4290 EI 1872-6852 J9 FIELD CROP RES JI Field Crop. Res. PD NOV PY 2016 VL 198 BP 80 EP 92 DI 10.1016/j.fcr.2016.08.015 PG 13 WC Agronomy SC Agriculture GA EA2FX UT WOS:000386409300009 ER PT J AU Hong, YL Liu, GS Li, JLF AF Hong, Yulan Liu, Guosheng Li, J. -L. F. TI Assessing the Radiative Effects of Global Ice Clouds Based on CloudSat and CALIPSO Measurements SO JOURNAL OF CLIMATE LA English DT Article ID CIRRUS CLOUDS; OPTICAL-PROPERTIES; SOFTWARE PACKAGE; WATER-CONTENT; SCATTERING; CLIMATE; RETRIEVAL; PRODUCTS; LIDAR; PARAMETERIZATION AB Although it is well established that cirrus warms Earth, the radiative effect of the entire spectrum of ice clouds is not well understood. In this study, the role of all ice clouds in Earth's radiation budget is investigated by performing radiative transfer modeling using ice cloud properties retrieved from CloudSat and CALIPSO measurements as inputs. Results show that, for the 2008 period, the warming effect (similar to 21.8 +/- 5.4 W m(-2)) induced by ice clouds trapping longwave radiation exceeds their cooling effect (similar to-16.7 +/- 1.7 W m(-2)) caused by shortwave reflection, resulting in a net warming effect (similar to 5.1 +/- 3.8 W m(-2)) globally on the earthatmosphere system. The net warming is over 15 W m(-2) in the tropical deep convective regions, whereas cooling occurs in the midlatitudes, which is less than 10 W m(-2) in magnitude. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, whereas warming occurs all year-round in the tropics. Ice cloud optical depth t is shown to be an important factor in determining the sign and magnitude of the net radiative effect. Ice clouds with tau < 4.6 display a warming effect with the largest contributions from those with tau approximate to 1.0. In addition, ice clouds cause vertically differential heating and cooling of the atmosphere, particularly with strong heating in the upper troposphere over the tropics. At Earth's surface, ice clouds produce a cooling effect no matter how small the tau value is. C1 [Hong, Yulan; Liu, Guosheng] Florida State Univ, Dept Earth Ocean & Atmospher Sci, 1017 Acad Way,319 Love Bldg, Tallahassee, FL 32306 USA. [Li, J. -L. F.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Hong, YL (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, 1017 Acad Way,319 Love Bldg, Tallahassee, FL 32306 USA. EM yh12c@my.fsu.edu RI Liu, Guosheng/D-3479-2011 OI Liu, Guosheng/0000-0001-7899-6125 FU NASA [NNX13AQ39G, NNX13AG34G]; Jet Propulsion Laboratory, California Institute of Technology [NNH12ZDA001N-CCST]; NASA FX This study has been supported by NASA Grants NNX13AQ39G and NNX13AG34G. We thank three anonymous reviewers for their helpful comments. We thank members of the DARDAR project who provide the DARDAR data. We also acknowledge the members of the CloudSat Data Processing Center who provide CloudSat products, including 2C-ICE, 2B-FLXHR-LIDAR, 2B-CWC-RO, ECMWF-AUX, and 2C-RAIN-PROFILE. The CloudSat data were obtained online (http://www.cloudsat.cira.colostate.edu/). CALIPSO data were obtained online from the ASDC (https://eosweb.larc.nasa.gov/project/calipso/calipso_table). MOD43B3 data were downloaded from archives at NASA (http://modis-atmos.gsfc.nasa.gov/ALBEDO/index.html). Sea ice concentration was obtained from the National Snow and Ice Data Center (https://nsidc.org/data/seaice/index.html). CERES SSF1deg is available online (http://ceres.larc.nasa.gov/products.php?product=SSF1deg-lite). The contribution by J.-L. F. Li to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under contracts of ATMOS COMP 2013 (NNH12ZDA001N-CCST) with NASA. NR 58 TC 1 Z9 1 U1 14 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2016 VL 29 IS 21 BP 7651 EP 7674 DI 10.1175/JCLI-D-15-0799.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ9OH UT WOS:000386205900006 ER PT J AU Collow, ABM Miller, MA AF Collow, Allison B. Marquardt Miller, Mark A. TI The Seasonal Cycle of the Radiation Budget and Cloud Radiative Effect in the Amazon Rain Forest of Brazil SO JOURNAL OF CLIMATE LA English DT Article ID SINGLE SCATTERING ALBEDO; SOLAR-RADIATION; ENERGY; FLUX; CLIMATE; CERES; METHODOLOGY; ABSORPTION; PRODUCTS; AEROSOLS AB Changes in the climate system of the Amazon rain forest of Brazil can impact factors that influence the radiation budget such as clouds, atmospheric moisture, and the surface albedo. This study examines the relationships between clouds and radiation in this region using surface observations from the first year of the deployment of the Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 1 (AMF1) in Manacapuru, Brazil, and satellite measurements from the Clouds and the Earth's Radiant Energy System (CERES). The seasonal cycles of the radiation budget and cloud radiative effects (CREs) are evaluated at the top of the atmosphere (TOA), at the surface, and within the atmospheric column using these observations and are placed into a regional context using the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Water vapor and clouds are abundant throughout the year, even though slight decreases are observed in the dry season. The column water vapor load is large enough that the longwave radiative flux divergence is nearly constant throughout the year. Clouds produce a significant shortwave CRE at the surface and TOA, exceeding 200 W m(-2) during the wet season. Discrepancies, especially in column shortwave radiative absorption, between the observations and MERRA-2 are demonstrated that warrant additional analysis of the microphysical and macrophysical cloud properties in MERRA-2. More trustworthy fields in the MERRA-2 product suggest that the expansive nearby river system impacts the regional radiation budget and thereby renders AMF1 observations potentially biased relative to regions farther removed from rivers within the Amazon rain forest. C1 [Collow, Allison B. Marquardt] Univ Space Res Assoc, Columbia, MD USA. [Collow, Allison B. Marquardt] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. [Collow, Allison B. Marquardt; Miller, Mark A.] Rutgers State Univ, Inst Earth Ocean & Atmospher Sci, New Brunswick, NJ USA. RP Collow, ABM (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM allison.collow@nasa.gov FU U.S. Department of Energy's Atmospheric System Research program [DE-FG02-08ER64531]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; National Aeronautics and Space Administration FX This work is supported by the U.S. Department of Energy's Atmospheric System Research program Award DE-FG02-08ER64531. We appreciate the efforts of Mike Bosilovich for assisting with accessing data from MERRA-2 and Dr. Andrea Molod and two anonymous reviewers for their thoughtful comments. Data used in this study were obtained from the Atmospheric Radiation Measurement Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division (available at http://www.archive.arm.gov/armlogin/login.jsp) and the National Aeronautics and Space Administration (available at http://daac.gsfc.nasa.gov/datareleases/merra_2_data_release for MERRA-2 and https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degSelection.jsp for CERES). NR 38 TC 1 Z9 1 U1 7 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2016 VL 29 IS 21 BP 7703 EP 7722 DI 10.1175/JCLI-D-16-0089.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ9OH UT WOS:000386205900008 ER PT J AU Schubert, S Chang, YH Wang, HL Koster, R Suarez, M AF Schubert, Siegfried Chang, Yehui Wang, Hailan Koster, Randal Suarez, Max TI A Modeling Study of the Causes and Predictability of the Spring 2011 Extreme US Weather Activity SO JOURNAL OF CLIMATE LA English DT Article ID NORTHERN-HEMISPHERE; CIRCULATION; PATTERNS; CONVECTION; COMPONENTS; DROUGHT; SYSTEM; WAVES AB This study examines the causes and predictability of the spring 2011 U.S. extreme weather using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and Goddard Earth Observing System Model, version 5, (GEOS-5) atmospheric general circulation model simulations. The focus is on assessing the impact on precipitation of sea surface temperature (SST) anomalies, land conditions, and large-scale atmospheric modes of variability. A key result is that the April record-breaking precipitation in the Ohio River valley was primarily the result of the unforced development of a positive North Atlantic Oscillation (NAO)-like mode of variability with unusually large amplitude, limiting the predictability of the precipitation in that region at 1-month leads. SST forcing (La Nina conditions) contributed to the broader continental-scale pattern of precipitation anomalies, producing drying in the southern plains and weak wet anomalies in the northeast, while the impact of realistic initial North American land conditions was to enhance precipitation in the upper Midwest and produce deficits in the Southeast. It was further found that 1) the 1 March atmospheric initial condition was the primary source of the ensemble mean precipitation response over the eastern United States in April (well beyond the limit of weather predictability), suggesting an influence on the initial state of the previous SST forcing and/or tropospheric-stratospheric coupling linked to an unusually persistent and cold polar vortex; and 2) stationary wave model experiments suggest that the SST-forced base state for April enhanced the amplitude of the NAO response compared to that of the climatological state, though the impact is modest and can be of either sign. C1 [Schubert, Siegfried; Chang, Yehui; Wang, Hailan; Koster, Randal; Suarez, Max] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Chang, Yehui] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Wang, Hailan] Sci Syst & Applicat Inc, Lanham, MD USA. RP Schubert, S (reprint author), NASA, GSFC, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM siegfried.d.schubert@nasa.gov FU NASA Modeling, Analysis, and Prediction (MAP) Program [NNH12ZDA001N] FX Support for this work was provided by the NASA Modeling, Analysis, and Prediction (MAP) Program (NASA Research Announcement NNH12ZDA001N). We wish to thank the editor and two anonymous reviewers for their valuable comments that helped to substantially improve the paper. NR 39 TC 0 Z9 0 U1 6 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2016 VL 29 IS 21 BP 7869 EP 7887 DI 10.1175/JCLI-D-15-0673.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ9OH UT WOS:000386205900017 ER PT J AU Naud, CM Booth, JF Del Genio, AD AF Naud, Catherine M. Booth, James F. Del Genio, Anthony D. TI The Relationship between Boundary Layer Stability and Cloud Cover in the Post-Cold-Frontal Region SO JOURNAL OF CLIMATE LA English DT Article ID SOUTHERN-OCEAN; CLIMATE MODEL; AIR OUTBREAKS; ERA-INTERIM; MODIS; CYCLONES; SYSTEM; HEMISPHERES; SATELLITE; WEATHER AB Using NASA Aqua MODIS and AIRS data, the relationship between low-level cloud cover (cloud top below the 700-hPa level) and boundary layer stability is explored in post-cold-frontal conditions. A linear relationship is found between seasonal cloud cover and two separate measures of inversion strength, the lower-tropospheric stability (LTS) and the estimated inversion strength (EIS), for two specific regions in the North Atlantic and Pacific in quiescent and weakly subsiding conditions. The relationship barely changes when considering dynamically active and subsiding post-cold-frontal conditions for the same regions. To explore the generality of this result and increase sample size, cold-front-centered composites of cloud cover and stability are constructed. The Northern and Southern Hemisphere seasonal cloud cover and stability distributions in the post-cold-frontal regions are then compared. A fairly good correlation between cloud cover and EIS is found in both hemispheres across all seasons, suggesting that a linear relationship between cloud cover and inversion strength proposed for quiescent conditions exists also in more dynamically active subsiding post-cold-frontal conditions. However, for a given season and hemisphere, the correlation between cloud cover and EIS degrades in post-cold-frontal regions, especially in the Northern Hemisphere. At these scales, other large-scale factors tend to correlate better with cloud cover. C1 [Naud, Catherine M.] Columbia Univ, Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. [Naud, Catherine M.; Del Genio, Anthony D.] NASA GISS, New York, NY USA. [Booth, James F.] CUNY City Coll, Earth & Atmospher Sci, New York, NY 10031 USA. RP Naud, CM (reprint author), Columbia Univ, Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. EM cn2140@columbia.edu FU NASA [NNX11AH22G, NNX13AQ33G]; NOAA [NA15OAR4310094]; CloudSat/CALIPSO Science Team RTOP FX The collection 5.1 MYD06 files were obtained from the level 1 Atmosphere Archive and Distribution System at the Goddard Space Flight Center. The AIRS-AMSU L2 Standard Product files and MERRA output files were obtained from the Goddard Earth Sciences Data and Information Services Center. The AMSR-E L2B ocean products were obtained from the National Snowand Ice Data Center. The Warren et al. (1988) cloud atlas climatology is available online (http://www.atmos.washington.edu/CloudMap/). ERA-Interim files are available through the European Centre for Medium-Range Weather Forecasts website. The MCMS dataset, documentation, and algorithm are available online (http://gcss-dime.giss.nasa.gov/mcms/). We thank Mike Bauer for the ERA-Interim-based dataset. CMN was funded by NASA's Science of Terra and Aqua Grant NNX11AH22G, NOAA's MAPP program Grant NA15OAR4310094, and NASA CloudSat Science Team Recompete Grant NNX13AQ33G. JFB was partially funded by NOAA's MAPP program Grant NA15OAR4310094. ADD was funded by a CloudSat/CALIPSO Science Team RTOP. We thank three anonymous reviewers and the editor who helped significantly improve this manuscript. NR 38 TC 0 Z9 0 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2016 VL 29 IS 22 BP 8129 EP 8149 DI 10.1175/JCLI-D-15-0700.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ9OI UT WOS:000386206100012 ER PT J AU Mousing, EA Richardson, K Bendtsen, J Cetinic, I Perry, MJ AF Mousing, Erik Askov Richardson, Katherine Bendtsen, Jorgen Cetinic, Ivona Perry, Mary Jane TI Evidence of small-scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean SO JOURNAL OF ECOLOGY LA English DT Article DE beta-diversity; community composition; determinants of plant community diversity and structure; dispersal; niche; phytoplankton; richness; spatiotemporal heterogeneity; submesoscale fronts ID SPECIES RICHNESS; COMMUNITY STRUCTURE; FOOD WEBS; PATTERNS; FOREST; BIODIVERSITY; BIOGEOGRAPHY; BLOOM; MICROORGANISMS; CONVECTION AB Phytoplankton assemblages in the open ocean are usually assumed to be mixed on local scales unless large semi-permanent density discontinuities separating water masses are present. Recent modelling studies have, however, suggested that ephemeral submesoscale oceanographic features leading to only subtle density discontinuities may be important for controlling phytoplankton alpha- and beta-diversity patterns. Until now, no empirical evidence has been presented to support this hypothesis. Using hydrographic and taxonomic composition data collected near Iceland during the period of the 2008 spring bloom, we show that the distribution of phytoplankton alpha- and beta-diversity was related to submesoscale heterogeneity in oceanographic conditions. Distinct phytoplankton communities as well as differences in richness were identified on either side of a front delimiting surface waters of slightly different (0.03) salinities. Alpha-diversity was significantly higher on the high salinity side of the front compared to the low salinity side. This difference was primarily driven by the presence of several large diatom species in the high salinity region, especially of the genus Chaetoceros which dominated the biomass here. By investigating beta-diversity in relation to environmental and spatiotemporal variables, we show that the regional distribution of phytoplankton taxa was influenced by both different environmental conditions on either side of the front and dispersal limitation across the front. Changes in beta-diversity were primarily driven by turnover rather than nestedness and were apparently controlled by different processes in each region.Synthesis. This study shows that small-scale and ephemeral density discontinuities created by submesoscale frontal dynamics can play a major role in structuring patterns of phytoplankton diversity. Evidence is presented that they can generate changes in environmental conditions (leading to environmental filtering) and act as physical (dispersal) barriers for phytoplankton transport. The study suggests that dispersal barriers are potentially of much greater importance for phytoplankton diversity at local scales than currently recognized and indicates that drivers of marine phytoplankton diversity are similar to those structuring diversity of land plants. C1 [Mousing, Erik Askov; Richardson, Katherine] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Macroecol Evolut & Climate, Univ Pk 15,DK, DK-2100 Copenhagen, Denmark. [Bendtsen, Jorgen] ClimateLab, Symbion Sci Pk, Copenhagen, Denmark. [Cetinic, Ivona] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Cetinic, Ivona] Univ Space Res Assoc, GESTAR, Columbia, MD USA. [Perry, Mary Jane] Univ Maine, Darling Marine Ctr, Sch Marine Sci, Walpole, ME 04573 USA. RP Mousing, EA (reprint author), Univ Copenhagen, Nat Hist Museum Denmark, Ctr Macroecol Evolut & Climate, Univ Pk 15,DK, DK-2100 Copenhagen, Denmark. EM eamousing@snm.ku.dk RI Richardson, Katherine/D-7592-2014; publicationpage, cmec/B-4405-2017; OI Richardson, Katherine/0000-0003-3785-2787; Mousing, Erik Askov/0000-0003-1663-2507 FU Danish National Research Foundation [DNRF96]; Danish Research Council for Nature and Universe; US NSF [OCE0628379, OCE0628107]; US NASA [NNX08AL92G] FX E.A.M., J.B. and K.R. acknowledge the Danish National Research Foundation for funding the Center for Macroecology, Evolution and Climate (DNRF96). This work was supported by the Danish Research Council for Nature and Universe (KR) and US NSF OCE0628379, OCE0628107 and US NASA NNX08AL92G (MJP). NR 86 TC 0 Z9 0 U1 27 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-0477 EI 1365-2745 J9 J ECOL JI J. Ecol. PD NOV PY 2016 VL 104 IS 6 BP 1682 EP 1695 DI 10.1111/1365-2745.12634 PG 14 WC Plant Sciences; Ecology SC Plant Sciences; Environmental Sciences & Ecology GA DZ5PY UT WOS:000385915200017 ER PT J AU Stanford, BK AF Stanford, Bret K. TI Static and Dynamic Aeroelastic Tailoring with Variable-Camber Control SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID FLUTTER SUPPRESSION; DESIGN OPTIMIZATION; LIFTING SURFACES; COMPOSITE WINGS; SYSTEMS; CONSTRAINTS AB This paper examines the use of a variable-camber continuous trailing-edge flap system for aeroservoelastic optimization of a transport wing box, the Common Research Model. Along with patch-level structural wing-box design variables, the quasi-steady and unsteady motions of the flap system are used as design variables, for maneuver load alleviation, cruise fuel burn reduction, and active flutter suppression. The resulting system is able to minimize structural weight and/or fuel burn while satisfying constraints upon elastic stresses, panel buckling, actuator hinge moments, flutter margins, actuator work, and control cost metrics. Limitations to this success are imposed by including load cases where the actuation system is not active (open-loop) in the optimization process. Large open-loop safety factors, for either maneuver loads or flutter, dilute the importance of the closed-loop actuation mechanism, whereas small open-loop safety factors may produce an overly flexible wing, prone to failure. Similar tradeoffs between system performance and actuator work constraints are provided. A final theme of the paper explores aeroelastic performance penalties that may arise if the shapes available to the variable-camber actuation system are limited (i.e., if certain control segments are linked together). C1 [Stanford, Bret K.] NASA, Langley Res Ctr, Aeroelast Branch, Hampton, VA 23681 USA. RP Stanford, BK (reprint author), NASA, Langley Res Ctr, Aeroelast Branch, Hampton, VA 23681 USA. EM bret.k.stanford@nasa.gov FU NASA's Advanced Air Transport Technologies program FX This work is funded by NASA's Advanced Air Transport Technologies program. Thanks to Joaquim Martins and Gaetan Kenway of the University of Michigan for providing the uCRM model. NR 44 TC 0 Z9 0 U1 4 U2 4 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD NOV PY 2016 VL 39 IS 11 BP 2522 EP 2534 DI 10.2514/1.G000413 PG 13 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EA1DH UT WOS:000386332200005 ER PT J AU de Dilectis, F Mortari, D Zanetti, R AF de Dilectis, Francesco Mortari, Daniele Zanetti, Renato TI Bezier Description of Space Trajectories SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article C1 [de Dilectis, Francesco] Texas A&M Univ, Aerosp Engn, 301B Reed McDonald, College Stn, TX 77843 USA. [Mortari, Daniele] Texas A&M Univ, Aerosp Engn, 746C HR Bright Bldg, College Stn, TX 77843 USA. [Zanetti, Renato] NASA, Johnson Space Ctr, Aerosci & Flight Mech Div, EG6,2101 NASA Pkwy, Houston, TX 77058 USA. RP de Dilectis, F (reprint author), Texas A&M Univ, Aerosp Engn, 301B Reed McDonald, College Stn, TX 77843 USA. EM f.de.dilectis@neo.tamu.edu; mortari@tamu.edu NR 3 TC 0 Z9 0 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD NOV PY 2016 VL 39 IS 11 BP 2535 EP + DI 10.2514/1.G000719 PG 5 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EA1DH UT WOS:000386332200006 ER PT J AU Suhir, E Ghaffarian, R AF Suhir, E. Ghaffarian, R. TI Column-grid-array (CGA) versus ball-grid-array (BGA): board-level drop test and the expected dynamic stress in the solder material SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article ID BIMETAL THERMOSTATS AB Board level drop test is considered with an objective to develop a physically meaningful analytical predictive model for the evaluation of the expected impact-induced dynamic stresses in the solder material. Ball-grid-array (BGA) and column-grid-array (CGA) designs are addressed. Intuitively it is felt that while the application of the CGA technology to relieve thermal stresses in the solder material might be quite effective (owing to the greater interfacial compliance of the CGA in comparison with the BGA), the situation might be quite different when the PCB/package experiences dynamic loading. This is because the mass of the CGA joints exceeds considerably that of the BGA interconnections and the corresponding inertia forces might be substantially larger in the case of a CGA design. The numerical example carried out for rather arbitrary, but realistic, input data has indicated that the dynamic stresses in the solder material of the CGA design are even higher than the stresses in the BGA interconnections. This means particularly that the physically meaningful drop height in board-level tests should be thoroughly selected and that this height should be different, for BGA and CGA designs. C1 [Suhir, E.] Portland State Univ, Portland, OR 97207 USA. [Suhir, E.] ERS Co, 727 Alvina Ct, Los Altos, CA 94024 USA. [Ghaffarian, R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Suhir, E (reprint author), Portland State Univ, Portland, OR 97207 USA.; Suhir, E (reprint author), ERS Co, 727 Alvina Ct, Los Altos, CA 94024 USA. EM suhire@aol.com; reza.ghaffarian@jpl.nasa.gov NR 16 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 EI 1573-482X J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD NOV PY 2016 VL 27 IS 11 BP 11572 EP 11582 DI 10.1007/s10854-016-5288-5 PG 11 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA EA1QN UT WOS:000386367000058 ER PT J AU Fan, JW Wang, Y Rosenfeld, D Liu, XH AF Fan, Jiwen Wang, Yuan Rosenfeld, Daniel Liu, Xiaohong TI Review of Aerosol-Cloud Interactions: Mechanisms, Significance, and Challenges SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Review ID DEEP CONVECTIVE CLOUDS; MARINE BOUNDARY-LAYER; ASIAN SUMMER MONSOON; MIXED-PHASE CLOUDS; SAHARAN AIR LAYER; MESOSCALE CELLULAR CONVECTION; HETEROGENEOUS ICE FORMATION; SPECTRAL BIN MICROPHYSICS; GENERAL-CIRCULATION MODEL; SYSTEM-RESOLVING MODEL AB Over the past decade, the number of studies that investigate aerosol-cloud interactions has increased considerably. Although tremendous progress has been made to improve the understanding of basic physical mechanisms of aerosol-cloud interactions and reduce their uncertainties in climate forcing, there is still poor understanding of 1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, 2) the feedbacks between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and 3) the significance of cloud-aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoretical studies and important mechanisms on aerosol-cloud interactions and discusses the significances of aerosol impacts on radiative forcing and precipitation extremes associated with different cloud systems. The authors summarize the main obstacles preventing the science from making a leap-for example, the lack of concurrent profile measurements of cloud dynamics, microphysics, and aerosols over a wide region on the observation side and the large variability of cloud microphysics parameterizations resulting in a large spread of modeling results on the modeling side. Therefore, large efforts are needed to escalate understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties and cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed. C1 [Fan, Jiwen] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-24, Richland, WA 99352 USA. [Wang, Yuan] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rosenfeld, Daniel] Hebrew Univ Jerusalem, Inst Earth Sci, Jerusalem, Israel. [Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. RP Fan, JW (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM jiwen.fan@pnnl.gov RI Liu, Xiaohong/E-9304-2011; Fan, Jiwen/E-9138-2011 OI Liu, Xiaohong/0000-0002-3994-5955; FU U.S. Department of Energy (DOE) Atmospheric System Research (ASR) Program [200180]; DOE by Battelle Memorial Institute [DE-AC06-76RLO1830]; NASA [ROSES14-ACMAP]; U.S. DOE ASR Program [DE-SC0014239] FX This study was supported by the U.S. Department of Energy (DOE) Atmospheric System Research (ASR) Program (Grant 200180). The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. Yuan Wang's contribution to this work was sponsored by NASA ROSES14-ACMAP and was carried at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. X. Liu acknowledges the funding support from the U.S. DOE ASR Program (Grant DE-SC0014239). The authors appreciate Drs. Bob Houze, Jerome Fast, and Steve Ghan at PNNL for their review and helpful comments to improve the paper prior to submission. NR 292 TC 1 Z9 1 U1 61 U2 61 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2016 VL 73 IS 11 BP 4221 EP 4252 DI 10.1175/JAS-D-16-0037.1 PG 32 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ6YD UT WOS:000386007800001 ER PT J AU Jongeward, AR Li, ZQ He, H Xiong, XX AF Jongeward, Andrew R. Li, Zhanqing He, Hao Xiong, Xiaoxiong TI Natural and Anthropogenic Aerosol Trends from Satellite and Surface Observations and Model Simulations over the North Atlantic Ocean from 2002 to 2012 SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID LONG-TERM TREND; OPTICAL-THICKNESS; UNITED-STATES; AIR-QUALITY; DUST AEROSOLS; GOCART MODEL; GLOBAL-MODEL; PM2.5 MASS; MODIS; POLLUTION AB Aerosols contribute to Earth's radiative budget both directly and indirectly, and large uncertainties remain in quantifying aerosol effects on climate. Variability in aerosol distribution and properties, as might result from changing emissions and transport processes, must be characterized. In this study, variations in aerosol loading across the eastern seaboard of the United States and the North Atlantic Ocean during 2002 to 2012 are analyzed to examine the impacts of anthropogenic emission control measures using monthly mean data from MODIS, AERONET, and IMPROVE observations and Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulation. MODIS observes a statistically significant negative trend in aerosol optical depth (AOD) over the midlatitudes (-0.030 decade(-1)). Correlation analyses with surface AOD from AERONET sites in the upwind region combined with trend analysis from GOCART component AOD confirm that the observed decrease in the midlatitudes is chiefly associated with anthropogenic aerosols that exhibit significant negative trends from the eastern U.S. coast extending over the western North Atlantic. Additional analysis of IMPROVE surface PM2.5 observations demonstrates statistically significant negative trends in the anthropogenic components with decreasing mass concentrations over the eastern United States. Finally, a seasonal analysis of observational datasets is performed. The negative trend seen by MODIS is strongest during spring (MAM) and summer (JJA) months. This is supported by AERONET seasonal trends and is identified from IMPROVE seasonal trends as resulting from ammonium sulfate decreases during these seasons. C1 [Jongeward, Andrew R.; Li, Zhanqing; He, Hao] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Jongeward, Andrew R.; Li, Zhanqing; He, Hao] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Li, Zhanqing] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China. [Li, Zhanqing] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA. RP Li, ZQ (reprint author), Beijing Normal Univ, GCESS, Jingshi Sci & Technol Bldg B,Coll Rd South, Beijing 100875, Peoples R China.; Li, ZQ (reprint author), Beijing Normal Univ, ESPRE, Jingshi Sci & Technol Bldg B,Coll Rd South, Beijing 100875, Peoples R China. EM zhanqingli@msn.com RI Li, Zhanqing/F-4424-2010 OI Li, Zhanqing/0000-0001-6737-382X FU U.S. EPA; National Park Service; NSF [AGS1534670]; NSFC [91544217]; MOST [2013CB955804] FX The authors would like to acknowledge Dr. Rob Levy of the MODIS Aerosol Team for valuable discussions as well as Dr. Mian Chin for providing access to the high-resolution GOCART simulation used presently. MERRA atmospheric reanalysis data were acquired from NASA's Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We also thank the Principal Investigators of the AERONET network for maintaining and allowing access to their data. Finally, IMPROVE is a collaborative association of state, tribal, and federal agencies and international partners. The U.S. EPA is the primary funding source, with contracting and research support from the National Park Service. The Air Quality Group at the University of California, Davis, is the central analytical laboratory, with ion analysis provided by Research Triangle Institute, and carbon analysis provided by Desert Research Institute. The authors also thank two anonymous reviewers for their helpful comments. This research is supported by the grants of NSF (AGS1534670), NSFC (91544217), and MOST (2013CB955804). NR 52 TC 0 Z9 0 U1 10 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2016 VL 73 IS 11 BP 4469 EP 4485 DI 10.1175/JAS-D-15-0308.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ6YD UT WOS:000386007800012 ER PT J AU Loveland, TR Irons, JR AF Loveland, Thomas R. Irons, James R. TI Landsat 8: The plans, the reality, and the legacy SO REMOTE SENSING OF ENVIRONMENT LA English DT Article ID DATA CONTINUITY MISSION; THERMAL INFRARED-SENSOR; ON-ORBIT; RADIOMETRIC CALIBRATION; PERFORMANCE; OLI; DESIGN; TIRS AB Landsat 8, originally known as the Landsat Data Continuity Mission (LDCM), is a National Aeronautics and Space Administration (NASA)-U.S. Geological Survey (USGS) partnership that continues the legacy of continuous moderate resolution observations started in 1972. The conception of LDCM to the reality of Landsat 8 followed an arduous path extending over nearly 13 years, but the successful launch on February 11, 2013 ensures the continuity of the unparalleled Landsat record. The USGS took over mission operations on May 30, 2013 and renamed LCDM to Landsat 8. Access to Landsat 8 data was opened to users worldwide. Three years following launch we evaluate the science and applications impact of Landsat 8. With a mission objective to enable the detection and characterization of global land changes at a scale where differentiation between natural and human-induced causes of change is possible, LDCM promised incremental technical improvements in capabilities needed for Landsat scientific and applications investigations. Results show that with Landsat 8, we are acquiring more data than ever before, the radiometric and geometric quality of data are generally technically superior to data acquired by past Landsat missions, and the new measurements, e.g., the coastal aerosol and cirrus bands, are opening new opportunities. Collectively, these improvements are sparking the growth of science and applications opportunities. Equally important, with Landsat 7 still operational, we have returned to global imaging on an 8-day cycle, a capability that ended when Landsat 5 ceased operational Earth imaging in November 2011. As a result, the Landsat program is on secure footings and planning is underway to extend the record for another 20 or more years. Published by Elsevier Inc. C1 [Loveland, Thomas R.] US Geol Survey, EROS Ctr, Sioux Falls, SD 57198 USA. [Irons, James R.] NASA, Div Earth Sci, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Loveland, TR (reprint author), US Geol Survey, EROS Ctr, Sioux Falls, SD 57198 USA. EM Loveland@usgs.gov OI Loveland, Thomas/0000-0003-3114-6646 FU USGS Land Remote Sensing Program FX We thank the many Landsat data users that have contributed to the health of the Landsat program. We especially thank those that contributed abstracts and manuscripts for consideration of this special issue. The members of the USGS-NASA Landsat Science Team played a significant role in the development of this special issue and in advancing the use and impact of Landsat. Finally, we acknowledge NASA for their long commitment to continuing and improving Landsat capabilities and USGS for uncompromising stewardship of the entire Landsat record. The USGS Land Remote Sensing Program is recognized for sponsoring this Landsat 8 special issue. NR 21 TC 2 Z9 2 U1 26 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2016 VL 185 SI SI BP 1 EP 6 DI 10.1016/j.rse.2016.07.03 PG 6 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA EA1AY UT WOS:000386321900001 ER PT J AU Mishra, N Helder, D Barsi, J Markham, B AF Mishra, Nischal Helder, Dennis Barsi, Julia Markham, Brian TI Continuous calibration improvement in solar reflective bands: Landsat 5 through Landsat 8 SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Landsat; Operation land imager (OLI); Enhanced thematic mapper plus (ETM plus ); Thematic mapper (TM); Radiometric calibration ID RADIOMETRIC CALIBRATION; THEMATIC MAPPER; IMAGER; PERFORMANCE; STABILITY; DESERT; SITES AB Launched in February 2013, the Operational Land Imager (OLI) on-board Landsat 8 continues to perform exceedingly well and provides high quality science data globally. Several design enhancements have been made in the OLI instrument relative to prior Landsat instruments: pushbroom imaging which provides substantially improved Signal-to-Noise Ratio (SNR), spectral bandpasses refinement to avoid atmospheric absorption features, 12 bit data resolution to provide a larger dynamic range that limits the saturation level and increases SNR, a set of well-designed onboard calibrators to monitor the stability of the sensor. Some of these changes, such as refinements in spectral bandpasses compared to earlier Landsats and a well-designed on-board calibrator have a direct impact on the improved radiometric calibration performance of the instrument from both the stability of the response and the ability to track the changes. The on-board calibrator lamps and diffusers indicate that the instrument drift is generally <0.1% per year across the bands. The refined bandpasses of the OLI indicate that temporal uncertainty of better than 0.5% is possible when the instrument is trended over vicarious targets such as Pseudo Invariant Calibration Sites (PICS), a level of precision that was never achieved with the earlier Landsat instruments. With three years of data available, the stability measurements indicated by on-board calibrators and PICS agree to 0.5%, which is much better compared to the earlier Landsats, which is very encouraging and bodes well for the future Landsat missions too. (C) 2016 Elsevier Inc. All rights reserved. C1 [Mishra, Nischal; Helder, Dennis] SDSU, Engn Off Res, Brookings, SD 57007 USA. [Barsi, Julia] Sci Syst & Applicat Inc, NASA GSFC, Code 618, Greenbelt, MD 20771 USA. [Markham, Brian] NASA GSFC, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA. RP Mishra, N (reprint author), SDSU, Engn Off Res, Brookings, SD 57007 USA. EM Nischal.Mishra@sdstate.edu; Dennis.Helder@sdstate.edu; julia.barsi@nasa.gov; Brian.L.Markham@nasa.gov FU NASA grant [NNX15AP36A]; USGS EROS grant [G14AC00370] FX The authors would like to thank the Landsat Calibration/Validation Team at South Dakota State University, USGS EROS Data Center and NASA Goddard Space Flight Center for their advice and feedback on this journal article. We are also grateful to the reviewers and editors for their valuable comments and edits in this article. This work was supported by NASA grant NNX15AP36A, by USGS EROS grant G14AC00370. NR 18 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2016 VL 185 SI SI BP 7 EP 15 DI 10.1016/j.rse.2016.07.032 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA EA1AY UT WOS:000386321900002 ER PT J AU Vermote, E Justice, C Claverie, M Franch, B AF Vermote, Eric Justice, Chris Claverie, Martin Franch, Belen TI Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product SO REMOTE SENSING OF ENVIRONMENT LA English DT Article ID RADIATIVE-TRANSFER CODE; ATMOSPHERIC CORRECTION; VECTOR VERSION; SATELLITE DATA; MODIS; AEROSOL; VALIDATION; RETRIEVAL; ALBEDO; 6S AB The surface reflectance, i.e., satellite derived top of atmosphere (TOA) reflectance corrected for the temporally, spatially and spectrally varying scattering and absorbing effects of atmospheric gases and aerosols, is needed to monitor the land surface reliably. For this reason, the surface reflectance, and not TOA reflectance, is used to generate the greater majority of global land products, for example, from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Even if atmospheric effects are minimized by sensor design, atmospheric effects are still challenging to correct. In particular, the strong impact of aerosols in the visible and near infrared spectral range can be difficult to correct, because they can be highly discrete in space and time (e.g., smoke plumes) and because of the complex scattering and absorbing properties of aerosols that vary spectrally and with aerosol size, shape, chemistry and density. This paper presents the Landsat 8 Operational Land Imager (OLI) atmospheric correction algorithm that has been developed using the Second Simulation of the Satellite Signal in the Solar Spectrum Vectorial (6SV) model, refined to take advantage of the narrow OLI spectral bands (compared to Thematic Mapper/Enhanced Thematic Mapper (TM/ETM +)), improved radiometric resolution and signal-to-noise. In addition, the algorithm uses the new OLI Coastal aerosol band (0.433-0.450 mu m), which is particularly helpful for retrieving aerosol properties, as it covers shorter wavelengths than the conventional Landsat, TM and ETM + blue bands. A cloud and cloud shadow mask has also been developed using the "cirrus" band (1.360-1.390 pm) available on OLI, and the thermal infrared bands from the Thermal Infrared Sensor (TIRS) instrument. The performance of the surface reflectance product from OLI is analyzed over the Aerosol Robotic Network (AERONET) sites using accurate atmospheric correction (based on in situ measurements of the atmospheric properties), by comparison with the MODIS Bidirectional Reflectance Distribution Function (BRDF) adjusted surface reflectance product and by comparison of OLI derived broadband albedo from United States Surface Radiation Budget Network (US SURFRAD) measurements. The results presented clearly show an improvement of Landsat 8 surface reflectance product over the ad-hoc Landsat 5/7 LEDAPS product. Published by Elsevier Inc. C1 [Vermote, Eric; Claverie, Martin; Franch, Belen] NASA GSFC, Code 619, Greenbelt, MD 20771 USA. [Justice, Chris; Claverie, Martin; Franch, Belen] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. RP Vermote, E (reprint author), NASA GSFC, Code 619, Greenbelt, MD 20771 USA. EM eric.f.vermote@nasa.gov FU NASA grant [NNX12AP82G] FX This work was supported by NASA grant NNX12AP82G. NR 37 TC 6 Z9 6 U1 20 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2016 VL 185 SI SI BP 46 EP 56 DI 10.1016/j.rse.2016.04.008 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA EA1AY UT WOS:000386321900005 ER PT J AU Roy, DP Kovalskyy, V Zhang, HK Vermote, EF Yan, L Kumar, SS Egorov, A AF Roy, D. P. Kovalskyy, V. Zhang, H. K. Vermote, E. F. Yan, L. Kumar, S. S. Egorov, A. TI Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Landsat; Continuity; Reflectance; Ndvi; OLI; ETM ID CONTERMINOUS UNITED-STATES; ORBIT GEOMETRIC CALIBRATION; PLUS ATMOSPHERIC CORRECTION; CLOUD-COVER ASSESSMENT; GLOBAL CHANGE RESEARCH; TERM ACQUISITION PLAN; NDVI TIME-SERIES; SURFACE REFLECTANCE; RADIOMETRIC CALIBRATION; SATELLITE SENSORS AB At over 40 years, the Landsat satellites provide the longest temporal record of space-based land surface observations, and the successful. 2013 launch of the Landsat-8 is continuing this legacy. Ideally, the Landsat data record should be consistent over the Landsat sensor series. The Landsat-8 Operational Land Imager (OLI) has improved calibration, signal to noise characteristics, higher 12-bit radiometric resolution, and spectrally narrower wavebands than the previous Landsat-7 Enhanced Thematic Mapper (ETM+). Reflective wavelength differences between the two Landsat sensors depend also on the surface reflectance and atmospheric state which are difficult to model comprehensively. The orbit and sensing geometries of the Landsat-8 OLI and Landsat-7 ETM+ provide swath edge overlapping paths sensed only one day apart. The overlap regions are sensed in alternating backscatter and forward scattering orientations so Landsat bi-directional reflectance effects are evident but approximately balanced between the two sensors when large amounts of time series data are considered. Taking advantage of this configuration a total of 59 million 30 m corresponding sensor observations extracted from 6317 Landsat-7 ETM + and Landsat-8 OLI images acquired over three winter and three summer months for all the conterminous United States (CONUS) are compared. Results considering different stages of cloud and saturation filtering, and filtering to reduce one day surface state differences, demonstrate the importance of appropriate per-pixel data screening. Top of atmosphere (TOA) and atmospherically corrected surface reflectance for the spectrally corresponding visible, near infrared and shortwave infrared bands, and derived normalized difference vegetation index (NDVI), are compared and their differences quantified. On average the OLI TOA reflectance is greater than the ETM + TOA reflectance for all bands, with greatest differences in the near-infrared (NIR) and the shortwave infrared bands due to the quite different spectral response functions between the sensors. The atmospheric correction reduces the mean difference in the NIR and shortwave infrared but increases the mean difference in the visible bands. Regardless of whether TOA or surface reflectance are used to generate NDVI, on average, for vegetated soil and vegetation surfaces (0 NDVI 1), the OLI NDVI is greater than the ETM + NDVI. Statistical functions to transform between the comparable sensor bands and sensor NDVI values are presented so that the user community may apply them in their own research to improve temporal continuity between the Landsat-7 ETM + and Landsat-8 OLI sensor data. The transformation functions were developed using ordinary least squares (OLS) regression and were fit quite reliably (r(2) values > 0.7 for the reflectance data and >0.9 for the NDVI data, p-values < 0.0001). (C) 2015 The Authors. Published by Elsevier Inc. C1 [Roy, D. P.; Kovalskyy, V.; Zhang, H. K.; Yan, L.; Kumar, S. S.; Egorov, A.] South Dakota State Univ, Geospatial Sci Ctr Excellence, Brookings, SD 57007 USA. [Vermote, E. F.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD 20771 USA. RP Roy, DP (reprint author), South Dakota State Univ, Geospatial Sci Ctr Excellence, Brookings, SD 57007 USA. OI Kumar, Sanath S./0000-0003-4067-4926 FU U.S. Geological Survey (USGS) [G12PC00069]; NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) program [NNX13AJ24A]; U.S. Department of Interior FX This research was funded by the U.S. Department of Interior, U.S. Geological Survey (USGS), under grant G12PC00069 and also by the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) program under Cooperative Agreement NNX13AJ24A. The U.S. Landsat project management and staff at USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, are thanked for provision of the Landsat data used in this study. The anonymous reviewers are thanked for their comments which helped to improve this paper. NR 88 TC 5 Z9 5 U1 13 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2016 VL 185 SI SI BP 57 EP 70 DI 10.1016/j.rse.2015.12.024 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA EA1AY UT WOS:000386321900006 ER PT J AU Wang, ZS Erb, AM Schaaf, CB Sun, QS Liu, Y Yang, Y Shuai, YM Casey, KA Roman, MO AF Wang, Zhuosen Erb, Angela M. Schaaf, Crystal B. Sun, Qingsong Liu, Yan Yang, Yun Shuai, Yanmin Casey, Kimberly A. Roman, Miguel O. TI Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Landsat-8 snow albedo; Post-fire recovery; Albedo heterogeneity and dynamics ID LAND-COVER DATABASE; BURN SEVERITY; INTERIOR ALASKA; BLACK SPRUCE; SURFACE REFLECTANCE; ENERGY-EXCHANGE; PRODUCT MCD43A; CLIMATE-CHANGE; CLOUD SHADOW; IN-SITU AB Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (<100 m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high-burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500 m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems. (C) 2016 Elsevier Inc. All rights reserved. C1 [Wang, Zhuosen; Casey, Kimberly A.; Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Shuai, Yanmin] Univ Massachusetts, Sch Environm, Boston, MA 02125 USA. [Wang, Zhuosen] Goddard Space Flight Ctr, Greenbelt, MD USA. [Yang, Yun] ARS, USDA, Beltsville, MD USA. [Casey, Kimberly A.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Wang, ZS (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Erb, AM (reprint author), Univ Massachusetts, Sch Environm, Boston, MA 02125 USA. EM zhuosen.wang@nasa.gov; Angela.Erb001@umb.edu OI Sun, Qingsong/0000-0002-7710-2123 FU NASA [NNX14A173G]; USGS [G12PC00072]; Office of Science (BER), US Department of Energy through the Ameriflux Management Project FX This research was supported by NASA awards NNX14A173G and USGS award G12PC00072. The MODIS data were obtained from the NASA Distributed Active Archive Centers (DAACs). The Landsat data were obtained from the USGS Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA). Field albedo measurements were downloaded from NOAA SURFRAD. We gratefully acknowledge Dr. Adrian Rocha from University of Notre Dame for providing ground albedo measurements at the Imnavait site, Dr. David Y. Hollinger from USDA Forest Service Northern Research Station, Durham, NH, USA for providing ground albedo measurements at the Howland West site and Dr. Kimberly Novick and Dr. Benjamin Sulman from Indiana University for providing ground albedo measurements at the Morgan Monroe State Forest site which was supported primarily by the Office of Science (BER), US Department of Energy through the Ameriflux Management Project. NR 91 TC 0 Z9 0 U1 16 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2016 VL 185 SI SI BP 71 EP 83 DI 10.1016/j.rse.2016.02.059 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA EA1AY UT WOS:000386321900007 ER PT J AU Fahnestock, M Scambos, T Moon, T Gardner, A Haran, T Klinger, M AF Fahnestock, Mark Scambos, Ted Moon, Twila Gardner, Alex Haran, Terry Klinger, Marin TI Rapid large-area mapping of ice flow using Landsat 8 SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Landsat; Ice flow; Greenland; Antarctica; Remote sensing; Glaciers ID GREENLAND OUTLET GLACIER; SURFACE-VELOCITY; FEATURE TRACKING; NORTHWEST CANADA; SATELLITE IMAGES; WEST ANTARCTICA; ON-ORBIT; EVOLUTION; STREAM; 21ST-CENTURY AB We report on the maturation of optical satellite-image-based ice velocity mapping over the ice sheets and large glacierized areas, enabled by the high radiometric resolution and internal geometric accuracy of Landsat 8's Operational Land Imager (OLI). Detailed large-area single-season mosaics and time-series maps of ice flow were created using data spanning June 2013 to June 2015. The 12-bit radiometric quantization and 15-m pixel scale resolution of OLI band 8 enable displacement tracking of subtle snow-drift patterns on ice sheet surfaces at similar to 1 m precision. Ice sheet and snowfield snow-drift features persist for typically 16 to 64 days, and up to 432 days, depending primarily on snow accumulation rates. This results in spatially continuous mapping of ice flow, extending the mapping capability beyond crevassed areas. Our method uses image chip cross-correlation and sub-pixel peak-fitting in matching Landsat path/row pairs. High-pass filtering is applied to the imagery to enhance local surface texture. The current high image acquisition rates of Landsat 8 (725 scenes per day globally) reduces the impact of high cloudiness in polar and mountain terrain and allows rapid compilation of large areas, or dense temporal coverage of seasonal ice flow variations. The results rival the coverage and accuracy of interferometric Synthetic Aperture Radar (InSAR) mapping. (C) 2015 The Authors. Published by Elsevier Inc. C1 [Fahnestock, Mark] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Scambos, Ted; Moon, Twila; Haran, Terry; Klinger, Marin] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80303 USA. [Moon, Twila] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. [Gardner, Alex] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Fahnestock, M (reprint author), Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA.; Scambos, T (reprint author), Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80303 USA. EM mark.fahnestock@mac.com; teds@nsidc.org OI Gardner, Alex/0000-0002-8394-8889 FU NASA [NNX14AR77G, NNX15AC70G, NNX10AI42G]; USGS [G12P00066]; Cooperative Institute for Research in Environmental Science (CIRES) Visiting Post-Doctoral Fellow at the University of Colorado, Boulder; NASA's Cryosphere program FX This work was supported by NASA Grants NNX14AR77G and NNX15AC70G to M. Fahnestock and NNX10Al42G (supplement) to T. Scambos, as well as USGS Contract G12P00066 to T. Scambos (supporting T. Haran and M. Klinger). T. Moon was supported as a Cooperative Institute for Research in Environmental Science (CIRES) Visiting Post-Doctoral Fellow at the University of Colorado, Boulder for July 2014 - June 2015. Funding for A. Gardner's effort was supported by NASA's Cryosphere program. We thank A. Pope for the graphic in Fig. 1, produced using Google Earth Engine. NR 46 TC 2 Z9 2 U1 21 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2016 VL 185 SI SI BP 84 EP 94 DI 10.1016/j.rse.2015.11.023 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA EA1AY UT WOS:000386321900008 ER PT J AU Wulder, MA White, JC Loveland, TR Woodcock, CE Belward, AS Cohen, WB Fosnight, EA Shaw, J Masek, JG Roy, DP AF Wulder, Michael A. White, Joanne C. Loveland, Thomas R. Woodcock, Curtis E. Belward, Alan S. Cohen, Warren B. Fosnight, Eugene A. Shaw, Jerad Masek, Jeffrey G. Roy, David P. TI The global Landsat archive: Status, consolidation, and direction SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Landsat Global Archive Consolidation; LGAC; Satellite; Monitoring; Landsat ID TERM ACQUISITION PLAN; COVER; RESOLUTION; MISSION; IMAGERY; AVAILABILITY; CONTINUITY; SATELLITE; ACCESS; RECORD AB New and previously unimaginable Landsat applications have been fostered by a policy change in 2008 that made analysis-ready Landsat data free and open access. Since 1972, Landsat has been collecting images of the Earth, with the early years of the program constrained by onboard satellite and ground systems, as well as limitations across the range of required computing, networking, and storage capabilities. Rather than robust on-satellite storage for transmission via high bandwidth downlink to a centralized storage and distribution facility as with Landsat-8, a network of receiving stations, one operated by the U.S. government, the other operated by a community of International Cooperators (ICs), were utilized. ICs paid a fee for the right to receive and distribute Landsat data and over time, more Landsat data was held outside the archive of the United State Geological Survey (USGS) than was held inside, much of it unique. Recognizing the critical value of these data, the USGS began a Landsat Global Archive Consolidation (LGAC) initiative in 2010 to bring these data into a single, universally accessible, centralized global archive, housed at the Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota. The primary LGAC goals are to inventory the data held by ICs, acquire the data, and ingest and apply standard ground station processing to generate an LIT analysis-ready product. As of January 1, 2015 there were 5,532,454 images in the USGS archive. LGAC has contributed approximately 3.2 million of those images, more than doubling the original USGS archive holdings. Moreover, an additional 23 million images have been identified to date through the LGAC initiative and are in the process of being added to the archive. The impact of LGAC is significant and, in terms of images in the collection, analogous to that of having had two additional Landsat-5 missions. As a result of LGAC, there are regions of the globe that now have markedly improved Landsat data coverage, resulting in an enhanced capacity for mapping, monitoring change, and capturing historic conditions. Although future missions can be planned and implemented, the past cannot be revisited, undetscoring the value and enhanced significance of historical Landsat data and the LGAC initiative. The aim of this paper is to report the current status of the global USGS Landsat archive, document the existing and anticipated contributions of LGAC to the archive, and characterize the current acquisitions of Landsat-7 and Landsat-8. Landsat-8 is adding data to the archive at an unprecedented rate as nearly all terrestrial images are now collected. We also offer key lessons learned so far from the LGAC initiative, plus insights regarding other critical elements of the Landsat program looking forward, such as acquisition, continuity, temporal revisit, and the importance of continuing to operationalize the Landsat program. Crown Copyright (C) 2015 Published by Elsevier Inc All rights reserved. C1 [Wulder, Michael A.; White, Joanne C.] Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, 506 West Burnside Rd, Victoria, BC V8Z 1M5, Canada. [Loveland, Thomas R.; Fosnight, Eugene A.] US Geol Survey, Earth Resources Observat & Sci EROS Ctr, 47914 252nd St, Sioux Falls, SD 57198 USA. [Woodcock, Curtis E.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Belward, Alan S.] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, I-20133 Milan, VA, Italy. [Cohen, Warren B.] US Forest Serv, Forestry Sci Lab, USDA, Corvallis, OR 97331 USA. [Shaw, Jerad] Stinger Ghaffarian Technol, Earth Resources Observat & Sci EROS Ctr, 47914 252nd St, Sioux Falls, SD 57198 USA. [Masek, Jeffrey G.] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Roy, David P.] South Dakota State Univ, Geospatial Sci Ctr Excellence, Brookings, SD 57007 USA. RP Wulder, MA (reprint author), Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, 506 West Burnside Rd, Victoria, BC V8Z 1M5, Canada. EM mike.wulder@canada.ca OI White, Joanne/0000-0003-4674-0373; Wulder, Michael/0000-0002-6942-1896 FU Canadian Space Agency (CSA) Government Related Initiatives Program (GRIP); Canadian Forest Service (CFS) of Natural Resources Canada FX This communication has been made possible and enriched by the ongoing discussions and deliberations of the USGS/NASA Landsat Science Team (https://landsat.usgs.gov/science_Landsat_Science_Team.php). The participation of Wulder and White was supported as part of the "National Terrestrial Ecosystem Monitoring System (NTEMS): Timely and detailed national cross-sector monitoring for Canada" project jointly funded by the Canadian Space Agency (CSA) Government Related Initiatives Program (GRIP) and the Canadian Forest Service (CFS) of Natural Resources Canada. We greatly appreciate the time committed and the insightful comments made by three anonymous reviewers that helped us to improve the manuscript. NR 46 TC 11 Z9 11 U1 10 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2016 VL 185 SI SI BP 271 EP 283 DI 10.1016/j.rse.2015.11.032 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA EA1AY UT WOS:000386321900023 ER PT J AU Islam, T Srivastava, PK Dai, Q AF Islam, Tanvir Srivastava, Prashant K. Dai, Qiang TI High-resolution WRF simulation of cloud properties over the super typhoon Haiyan: physics parameterizations and comparison against MODIS SO THEORETICAL AND APPLIED CLIMATOLOGY LA English DT Article ID BULK MICROPHYSICS PARAMETERIZATION; ATMOSPHERIC BOUNDARY-LAYER; PART I; MODEL; ICE; IMPLEMENTATION; PRECIPITATION; SENSITIVITY; ALGORITHMS; TURBULENCE AB Numerical weather prediction (NWP) models can complement the satellite technology in simulating the cloud properties, especially in extreme storm events, when gathering new data becomes more than essential for accurate weather forecasting. In this study, we investigate the capability of the Weather Research and Forecasting (WRF) model to realistically simulate some important cloud properties in high-resolution grids, such as cloud phase (e.g., liquid or ice) and cloud water path. The sensitivity of different combinations of physics parameterizations to the simulated cloud fields is studied. The experiment is conducted on a super typhoon event by configuring the WRF model in two domains, with two-way nesting, allowing bidirectional information exchange between the parent and the nest. In order to do the assessment, the simulated cloud fields are compared against MODIS-derived cloud properties from one overpass scene. While the simulations have been able to capture the spatial distribution of cloud properties reasonably well, produced cloud quantities such as ice water path has been significantly overestimated when compared to the MODIS optical cloud information. The microphysics parameterizations are found to be more sensitive than the planetary boundary layer (PBL) parameterizations. C1 [Islam, Tanvir] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. [Srivastava, Prashant K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Dai, Qiang] Univ Bristol, Dept Civil Engn, Bristol, Avon, England. RP Islam, T (reprint author), CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. EM tanvir.islam@jpl.nasa.gov OI Islam, Tanvir/0000-0003-2429-3074 NR 27 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-798X EI 1434-4483 J9 THEOR APPL CLIMATOL JI Theor. Appl. Climatol. PD NOV PY 2016 VL 126 IS 3-4 BP 427 EP 435 DI 10.1007/s00704-015-1575-y PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ7UF UT WOS:000386071900002 ER PT J AU Farrell, WM Hurley, DM Poston, MJ Zimmerman, MI Orlando, TM Hibbitts, CA Killen, RM AF Farrell, W. M. Hurley, D. M. Poston, M. J. Zimmerman, M. I. Orlando, T. M. Hibbitts, C. A. Killen, R. M. TI The gas-surface interaction of a human-occupied spacecraft with a near-Earth object SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Asteroid; Water; Orion ID LUNAR; WATER AB NASA's asteroid redirect mission (ARM) will feature an encounter of the human-occupied Orion spacecraft with a portion of a near-Earth asteroid (NEA) previously placed in orbit about the Moon by a capture spacecraft. Applying a shuttle analog, we suggest that the Orion spacecraft should have a dominant local water exosphere, and that molecules from this exosphere can adsorb onto the NEA. The amount of adsorbed water is a function of the defect content of the NEA surface, with retention of shuttle-like water levels on the asteroid at 10(15) H2O's/m(2) for space weathered regolith at T similar to 300 K. Published by Elsevier Ltd on behalf of COSPAR. This is an open access article under the CC BY-NC-ND license. C1 [Farrell, W. M.; Killen, R. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hurley, D. M.; Zimmerman, M. I.; Hibbitts, C. A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Poston, M. J.] CALTECH, Pasadena, CA 91125 USA. [Orlando, T. M.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Farrell, WM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM william.m.farrell@nasa.gov RI Farrell, William/I-4865-2013; OI Poston, Michael/0000-0001-5113-1017 FU Solar System Exploration Research Virtual Institute (SSERVI) FX We gratefully recognize the support provided by the Solar System Exploration Research Virtual Institute (SSERVI) both funding and encouraging this work. NR 13 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 1 PY 2016 VL 58 IS 9 BP 1648 EP 1653 DI 10.1016/j.asr.2016.08.031 PG 6 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DY9RW UT WOS:000385473800005 ER PT J AU Sturrock, PA Steinitz, G Fischbach, E Parkhomov, A Scargle, JD AF Sturrock, P. A. Steinitz, G. Fischbach, E. Parkhomov, A. Scargle, J. D. TI Analysis of beta-decay data acquired at the Physikalisch-Technische Bundesanstalt: Evidence of a solar influence SO ASTROPARTICLE PHYSICS LA English DT Article DE Nuclear decays, Neutrinos; Sun ID R-MODE OSCILLATIONS; RADON SIGNALS; SPACED DATA; HALF-LIFE; SPACECRAFT; EFFICIENCY; ISRAEL; RATES AB According to an article entitled Disproof of solar influence on the decay rates of 90Sr/90Y by Kossert and Nahle of the Physikalisch-Technische Bundesanstalt (PTB) [1], the PTB measurements show no evidence of variability. We show that, on the contrary, those measurements reveal strong evidence of variability, including an oscillation at 11 year(-1) that is suggestive of an influence of internal solar rotation. An analysis of radon beta-decay data acquired at the Geological Survey of Israel (GSI) Laboratory for the same time interval yields strong confirmation of this oscillation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Sturrock, P. A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Sturrock, P. A.] Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. [Steinitz, G.] Geol Survey Israel, IL-95501 Jerusalem, Israel. [Fischbach, E.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Parkhomov, A.] Lomonosov Moscow State Univ, Inst Time Nat Explorat, Moscow, Russia. [Scargle, J. D.] NASA Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. RP Sturrock, PA (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.; Sturrock, PA (reprint author), Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. EM sturrock@stanford.edu NR 31 TC 2 Z9 2 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD NOV PY 2016 VL 84 BP 8 EP 14 DI 10.1016/j.astropartphys.2016.07.005 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DZ1MG UT WOS:000385601900002 ER PT J AU Confalonieri, R Bregaglio, S Adam, M Ruget, F Li, T Hasegawa, T Yin, XY Zhu, Y Boote, K Buis, S Fumoto, T Gaydon, D Lafarge, T Marcaida, M Nakagawa, H Ruane, AC Singh, B Singh, U Tang, L Tao, FL Fugice, J Yoshida, H Zhang, Z Wilson, LT Baker, J Yang, YB Masutomi, Y Wallach, D Acutis, M Bouman, B AF Confalonieri, Roberto Bregaglio, Simone Adam, Myriam Ruget, Francoise Li, Tao Hasegawa, Toshihiro Yin, Xinyou Zhu, Yan Boote, Kenneth Buis, Samuel Fumoto, Tamon Gaydon, Donald Lafarge, Tanguy Marcaida, Manuel Nakagawa, Hiroshi Ruane, Alex C. Singh, Balwinder Singh, Upendra Tang, Liang Tao, Fulu Fugice, Job Yoshida, Hiroe Zhang, Zhao Wilson, Lloyd T. Baker, Jeff Yang, Yubin Masutomi, Yuji Wallach, Daniel Acutis, Marco Bouman, Bas TI A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Model classification; Model parameterisation; Model ensemble; Model structure; Rice; Uncertainty ID CROP MODELS; SENSITIVITY-ANALYSIS; CLIMATE-CHANGE; CALIBRATION; YIELD; WHEAT; UNCERTAINTY; WATER; PLASTICITY; EVOLUTION AB For most biophysical domains, differences in model structures are seldom quantified. Here, we used a taxonomy-based approach to characterise thirteen rice models. Classification keys and binary attributes for each key were identified, and models were categorised into five clusters using a binary similarity measure and the unweighted pair-group method with arithmetic mean. Principal component analysis was performed on model outputs at four sites. Results indicated that (i) differences in structure often resulted in similar predictions and (ii) similar structures can lead to large differences in model outputs. User subjectivity during calibration may have hidden expected relationships between model structure and behaviour. This explanation, if confirmed, highlights the need for shared protocols to reduce the degrees of freedom during calibration, and to limit, in turn, the risk that user subjectivity influences model performance. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Confalonieri, Roberto; Bregaglio, Simone; Acutis, Marco] Univ Milan, Cassandra Lab, I-20122 Milan, Italy. [Adam, Myriam; Lafarge, Tanguy] CIRAD, UMR AGAP, F-34398 Montpellier, France. [Ruget, Francoise; Buis, Samuel] INRA, EMMAH UMR1114, F-84914 Avignon, France. [Li, Tao; Marcaida, Manuel; Bouman, Bas] Int Rice Res Inst, Los Banos, Philippines. [Hasegawa, Toshihiro; Fumoto, Tamon] Natl Inst Agroenvironm Sci, Tsukuba, Ibaraki, Japan. [Yin, Xinyou] Wageningen Univ, Ctr Crop Syst Anal, NL-6700 AP Wageningen, Netherlands. [Zhu, Yan; Tang, Liang] Nanjing Agr Univ, Natl Engn & Technol Ctr Informat Agr, Jiangsu Key Lab Informat Agr, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Nanjing, Jiangsu, Peoples R China. [Boote, Kenneth] Univ Florida, Gainesville, FL USA. [Gaydon, Donald] CSIRO Agr & Food, Brisbane, Qld, Australia. [Nakagawa, Hiroshi; Yoshida, Hiroe] Natl Agr & Food Res Org, Tsukuba, Ibaraki, Japan. [Ruane, Alex C.] NASA, Goddard Inst Space Studies, New York, NY USA. [Singh, Upendra; Fugice, Job] Int Fertilizer Dev Ctr, Muscle Shoals, AL 35662 USA. [Tao, Fulu] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100864, Peoples R China. [Zhang, Zhao] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Wilson, Lloyd T.; Yang, Yubin] Texas A&M AgriLife Res & Extens Ctr, Beaumont, TX USA. [Baker, Jeff] ARS, USDA, Big Spring, TX USA. [Masutomi, Yuji] Ibaraki Univ, Coll Agr, Mito, Ibaraki, Japan. [Wallach, Daniel] INRA, UMR1248, Agrosyst & Dev Terr, F-31326 Castanet Tolosan, France. [Singh, Balwinder] CIMMYT, CG Block,NASC Complex, New Delhi 110012, India. [Tao, Fulu] Nat Resources Inst Finland Luke, Vantaa 01301, Finland. [Li, Tao] AgMIP Rice Team, Tsukuba, Ibaraki, Japan. RP Confalonieri, R (reprint author), Univ Milan, Cassandra Lab, I-20122 Milan, Italy. EM roberto.confalonieri@unimi.it RI Gaydon, Donald /F-4608-2012; OI Wallach, Daniel/0000-0003-3500-8179; Hasegawa, Toshihiro/0000-0001-8501-5612; , Balwinder-Singh/0000-0002-6715-2207 FU National Science Foundation of China [31561143003]; Academy of Finland, PLUMES project [277403]; MAFF; Global Environment Research of MOE, Japan [S-10-2]; National High Tech Research and Development Program of China [2013AA100404]; EC-FP7 [613817] FX FT is supported by the National Science Foundation of China (31561143003) and the Academy of Finland, PLUMES project (277403). TH's participation was supported by MAFF and the Global Environment Research (S-10-2) of MOE, Japan. YZ's work was supported by the National High Tech Research and Development Program of China (2013AA100404). RC was partly supported by EC-FP7 under Grant Agreement No. 613817 (MODEXTREME). Nanjing Agricultural University, International Rice Research Institute, Ministry of Agriculture, Forestry and Fisheries and Ministry of the Environment of Japan, and Cassandra lab. of the University of Milan supported the annual research planning meetings of the AgMIP Rice Team. USDA is an equal opportunity provider and employer. NR 56 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD NOV PY 2016 VL 85 BP 332 EP 341 DI 10.1016/j.envsoft.2016.09.007 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA DZ1JX UT WOS:000385595800024 ER PT J AU Blankenship, CB Case, JL Zavodsky, BT Crosson, WL AF Blankenship, Clay B. Case, Jonathan L. Zavodsky, Bradley T. Crosson, William L. TI Assimilation of SMOS Retrievals in the Land Information System SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Data assimilation; Kalman filters; land surface; microwave radiometry; passive microwave remote sensing; soil moisture ID SURFACE SOIL-MOISTURE; BRIGHTNESS TEMPERATURE; AIRBORNE CAMPAIGN; WESTERN DENMARK; TRANSFER MODEL; UNITED-STATES; NEAR-SURFACE; GLOBAL-SCALE; PRECIPITATION; VALIDATION AB The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in roughly the upper 5 cm with a 30-50-km resolution and a mission accuracy requirement of 0.04 cm(3)/cm(-3). These observations can be used to improve land surface model (LSM) soil moisture states through data assimilation (DA). In this paper, SMOS soil moisture retrievals are assimilated into the Noah LSM via an Ensemble Kalman Filter within the National Aeronautics and Space Administration Land Information System. Bias correction is implemented using cumulative distribution function (cdf) matching, with points aggregated by either land cover or soil type to reduce the sampling error in generating the cdfs. An experiment was run for the warm season of 2011 to test SMOS DA and to compare assimilation methods. Verification of soil moisture analyses in the 0-10-cm upper layer and the 0-1-m root zone was conducted using in situ measurements from several observing networks in central and southeastern United States. This experiment showed that SMOS DA significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10-cm layer. Time series at specific stations demonstrates the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared with using a simple uniform correction curve. C1 [Blankenship, Clay B.; Crosson, William L.] Univ Space Res Assoc, Space Technol Inst, Huntsville, AL 35805 USA. [Case, Jonathan L.] ENSCO Inc, Huntsville, AL 35805 USA. [Zavodsky, Bradley T.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. RP Blankenship, CB (reprint author), Univ Space Res Assoc, Space Technol Inst, Huntsville, AL 35805 USA. EM clay.blankenship@nasa.gov FU NASA Science Mission Directorate FX This work was supported by the NASA Science Mission Directorate. NR 86 TC 0 Z9 0 U1 12 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD NOV PY 2016 VL 54 IS 11 BP 6320 EP 6332 DI 10.1109/TGRS.2016.2579604 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DY6AP UT WOS:000385188200006 ER PT J AU Kholtygin, AF Mishchenko, MI AF Kholtygin, Alexander F. Mishchenko, Michael I. TI Preface: Viktor V. Sobolev and his scientific legacy SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Editorial Material C1 [Kholtygin, Alexander F.] St Petersburg State Univ, Chair Astron, 28 Univ Prospect, St Petersburg 198504, Russia. [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. RP Kholtygin, AF (reprint author), St Petersburg State Univ, Chair Astron, 28 Univ Prospect, St Petersburg 198504, Russia. EM afkholtygin@gmail.com; michael.i.mishchenko@nasa.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2016 VL 183 SI SI BP 1 EP 3 DI 10.1016/j.jqsrt.2016.04.022 PG 3 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DY7SL UT WOS:000385329500001 ER PT J AU Hioki, S Yang, P Kattawar, GW Hu, YX AF Hioki, Souichiro Yang, Ping Kattawar, George W. Hu, Yongxiang TI Truncation of the scattering phase matrix for vector radiative transfer simulation SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT International Conference on Radiation Mechanisms of Astrophysical Objects - Classics Today CY SEP 21-25, 2015 CL Saint Petersburg, RUSSIA SP St Petersburg State Univ DE Truncation; Phase matrix; Vector radiative transfer ID TRANSFER EQUATION; DELTA-FIT; APPROXIMATION; SIMILARITY AB This short communication interprets the delta-fit technique in a context of similarity transformation and the correction to the source function, and derives the analogous form of the method to be applied for the scattering phase matrix. To adapt the delta-fit method to vector radiative transfer, the mathematically exact form of the similarity principle is used in the theoretical development. Some examples of relevant radiative transfer simulations are also presented for atmospheric ice particles. The performance of the adopted delta-fit method is comparable to the delta-M method with single scattering correction except for worse delta-fit performance for polarized radiance calculations in forward directions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Hioki, Souichiro; Yang, Ping; Kattawar, George W.] Texas A&M Univ, College Stn, TX 77843 USA. [Hu, Yongxiang] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. RP Hioki, S (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM s.hioki@tamu.edu RI Yang, Ping/B-4590-2011; Hu, Yongxiang/K-4426-2012; OI Hioki, Souichiro/0000-0001-6307-1832 NR 15 TC 1 Z9 1 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2016 VL 183 SI SI BP 70 EP 77 DI 10.1016/j.jqsrt.2016.06.011 PG 8 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DY7SL UT WOS:000385329500006 ER PT J AU Mishchenko, MI Geogdzhayev, IV Yang, P AF Mishchenko, Michael I. Geogdzhayev, Igor V. Yang, Ping TI Expansion of tabulated scattering matrices in generalized spherical functions SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT International Conference on Radiation Mechanisms of Astrophysical Objects - Classics Today CY SEP 21-25, 2015 CL Saint Petersburg, RUSSIA SP St Petersburg State Univ DE Electromagnetic scattering; Polarization; Scattering matrix; Generalized spherical functions; Radiative transfer; Stokes parameters ID VECTOR RADIATIVE-TRANSFER; DISCRETE-DIPOLE APPROXIMATION; INVARIANT IMBEDDING METHOD; NONSPHERICAL ICE CRYSTALS; LIGHT-SCATTERING; T-MATRIX; POLARIZED-LIGHT; TRANSFER MODELS; MIE SCATTERING; BIDIRECTIONAL REFLECTANCE AB An efficient way to solve the vector radiative transfer equation for plane-parallel turbid media is to Fourier-decompose it in azimuth. This methodology is typically based on the analytical computation of the Fourier components of the phase matrix and is predicated on the knowledge of the coefficients appearing in the expansion of the normalized scattering matrix in generalized spherical functions. Quite often the expansion coefficients have to be determined from tabulated values of the scattering matrix obtained from measurements or calculated by solving the Maxwell equations. In such cases one needs an efficient and accurate computer procedure converting a tabulated scattering matrix into the corresponding set of expansion coefficients. This short communication summarizes the theoretical basis of this procedure and serves as the user guide to a simple public domain FORTRAN program. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Geogdzhayev, Igor V.] Columbia Univ, NASA GISS, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM michael.i.mishchenko@nasa.gov RI Yang, Ping/B-4590-2011 NR 80 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2016 VL 183 SI SI BP 78 EP 84 DI 10.1016/j.jqsrt.2016.05.015 PG 7 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DY7SL UT WOS:000385329500007 ER PT J AU Mishchenko, MI Dlugach, JM AF Mishchenko, Michael I. Dlugach, Janna M. TI Scattering of Gaussian beams by disordered particulate media SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT International Conference on Radiation Mechanisms of Astrophysical Objects - Classics Today CY SEP 21-25, 2015 CL Saint Petersburg, RUSSIA SP St Petersburg State Univ DE Electromagnetic scattering; Multi-particle groups; Gaussian beams; Speckles; Diffuse scattering patterns; Radiative transfer theory ID MULTIPLE-SCATTERING; RADIATIVE-TRANSFER; T-MATRIX; PARTICLES; ENSEMBLES; SPHERES AB A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Dlugach, Janna M.] Natl Acad Sci Ukraine, Main Astron Observ, 27 Zabolotny Str, UA-03680 Kiev, Ukraine. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM michael.i.mishchenko@nasa.gov NR 32 TC 0 Z9 0 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2016 VL 183 SI SI BP 85 EP 89 DI 10.1016/j.jqsrt.2016.04.016 PG 5 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DY7SL UT WOS:000385329500008 ER PT J AU Cui, H Grazhdankin, DV Xiao, SH Peek, S Rogov, VI Bykova, NV Sievers, NE Liu, XM Kaufman, AJ AF Cui, Huan Grazhdankin, Dmitriy V. Xiao, Shuhai Peek, Sara Rogov, Vladimir I. Bykova, Natalia V. Sievers, Natalie E. Liu, Xiao-Ming Kaufman, Alan J. TI Redox-dependent distribution of early macro-organisms: Evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE Chemostratigraphy; Redox condition; Early macro-organism distribution; Carbon and sulfur cycles; Oceanic euxinia; Superheavy pyrite ID CARBONATE-ASSOCIATED SULFATE; PRECAMBRIAN-CAMBRIAN BOUNDARY; SULFUR ISOTOPE FRACTIONATION; PROTEROZOIC OCEAN CHEMISTRY; LOW MARINE SULFATE; SULTANATE-OF-OMAN; SOUTH CHINA SEA; DOUSHANTUO FORMATION; ATMOSPHERIC OXYGEN; YANGTZE PLATFORM AB The Ediacaran Period witnessed the first appearance of macroscopic animal life in Earth's history. However, the biogeochemical context for the stratigraphic occurrence of early metazoans is largely uncertain, in part due to the dearth of integrated paleobiological and chemostratigraphic datasets. In this study, a comprehensive geochemical analysis was conducted on the fossiliferous Khatyspyt Formation in Arctic Siberia, in order to gain insights into the Ediacaran paleoenvironments. This study was designed to specifically address the relationship between paleoredox conditions and Ediacaran fossil occurrences in the Khatyspyt Formation. Our data reveal a dramatic shift in pyrite sulfur isotope compositions (delta S-34(pyrite)) from ca. -20 parts per thousand to ca. 55 parts per thousand, and this shift is intriguingly associated with the first occurrence of Ediacara-type macrofossils at the studied section, suggesting a possible link between seawater redox conditions and distribution of early macroscopic organisms. Based on multiple lines of sedimentological and geochemical evidence, we propose that the development of oceanic euxinia - which may be widespread in the continental margins due to enhanced oxidative weathering in the terminal Ediacaran Period may have locally prohibited the colonization of Ediacara-type organisms and resulted in low delta S-34(pyrite) values in the lower Khatyspyt Formation. In the middle and upper Khatyspyt Formation, progressive secular transition from euxinic to non-euxinic and more habitable conditions may have allowed for the colonization of Ediacara-type and other macro-organisms. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cui, Huan] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Cui, Huan] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Cui, Huan; Peek, Sara; Sievers, Natalie E.; Kaufman, Alan J.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Cui, Huan; Peek, Sara; Sievers, Natalie E.; Kaufman, Alan J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Grazhdankin, Dmitriy V.; Rogov, Vladimir I.] Russian Acad Sci, Siberian Branch, Trofimuk Inst Petr Geol & Geophys, Novosibirsk 630090, Russia. [Grazhdankin, Dmitriy V.] Novosibirsk State Univ, Dept Geol & Geophys, Novosibirsk 630090, Russia. [Xiao, Shuhai; Bykova, Natalia V.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Liu, Xiao-Ming] Univ N Carolina, Dept Geol Sci, Chapel Hill, NC 27599 USA. [Peek, Sara] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Sievers, Natalie E.] Stanford Univ, Dept Geol Sci, Sch Earth Energy & Environm Sci, Stanford, CA 94305 USA. RP Cui, H (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.; Cui, H (reprint author), Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. EM Huan.Cui@Wisc.EDU RI Xiao, Shuhai/A-2190-2009; Grazhdankin, Dmitriy/A-4060-2008; OI Xiao, Shuhai/0000-0003-4655-2663; Grazhdankin, Dmitriy/0000-0003-0797-1347; Cui, Huan/0000-0003-0705-3423 FU NASA Exobiology grant [NNX12AR91G, NNX15AL27G]; NSF Sedimentary Geology and Paleontology grant [EAR0844270, EAR1528553]; Carnegie Institution of Washington Postdoctoral Fellowship; Russian Science Foundation [14-17-00409]; Committee of the National Geographic Society for Research and Exploration [8227-07, 8637-09, 9031-11]; NASA Astrobiology Institute FX This research is funded by the NASA Exobiology grant (NNX12AR91G to AJK and NNX15AL27G to SX), the NSF Sedimentary Geology and Paleontology grant (EAR0844270 to AJK; EAR1528553 to SX), the Carnegie Institution of Washington Postdoctoral Fellowship to XML. Part of the stratigraphic, sedimentological and paleoecological studies of the Khatyspyt Formation was supported by the Russian Science Foundation (grant 14-17-00409 to DVG) and the Committee of the National Geographic Society for Research and Exploration (grants 8227-07, 8637-09, 9031-11 to DVG). HC acknowledges the NASA Astrobiology Institute for support. NR 193 TC 1 Z9 1 U1 17 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 EI 1872-616X J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD NOV 1 PY 2016 VL 461 BP 122 EP 139 DI 10.1016/j.palaeo.2016.08.015 PG 18 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA DZ1LM UT WOS:000385599900011 ER PT J AU Zhou, CM Guan, CG Cui, H Ouyang, Q Wang, W AF Zhou, Chuanming Guan, Chengguo Cui, Huan Ouyang, Qing Wang, Wei TI Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE Anaerobic oxidation of methane; Microbial sulfate reduction; Cold seep deposits; Carbon cycle; Sulfur cycle; Carbon isotope chemostratigraphy ID LOW MARINE SULFATE; ANAEROBIC OXIDATION; ISOTOPIC COMPOSITION; HYDROCARBON SEEPS; GEOLOGICAL RECORD; SECULAR VARIATION; JOHNNIE FORMATION; ROCK INTERACTION; ORGANIC-MATTER; DEEP BIOSPHERE AB Authigenic carbonate associated with anaerobic oxidation of methane (AOM), usually via microbial sulfate reduction (MSR) or ferric iron reduction, is generally characterized by extremely low delta C-13 values (<-30 parts per thousand, VPDB). This has been used as one of the major diagnostic features for the recognition of hydrocarbon seep carbonate in the geological past. Previous reports on Precambrian authigenic carbonates are rare, limiting our understanding of the effects of their deposition on the Earth's carbon isotopic mass balance. In this study, mainly based on petrographic features and pronounced negative delta C-13 values as low as -38.1 parts per thousand, we discovered authigenic calcite cement immediately above the cap dolostone in the basal Ediacaran Doushantuo Formation in the Jiulongwan section, Yangtze Gorges area, South China. Our observations not only provide direct evidence for the involvement of AOM during carbonate precipitation in the early Ediacaran (similar to 635 Ma), but also suggest that the seawater sulfate concentrations in the early Ediacaran may have been higher than previously thought. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zhou, Chuanming; Guan, Chengguo; Ouyang, Qing; Wang, Wei] Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Nanjing 210008, Peoples R China. [Cui, Huan] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Cui, Huan] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Ouyang, Qing] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. RP Zhou, CM (reprint author), Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Nanjing 210008, Peoples R China. EM cmzhou@nigpas.ac.cn RI Zhou, Chuanming/E-5313-2010; OI Cui, Huan/0000-0003-0705-3423 FU Ministry of Science and Technology of China [2013CB835005]; Chinese Academy of Sciences [KZZD-EW-02] FX This work was supported by the Ministry of Science and Technology of China (2013CB835005) and Chinese Academy of Sciences (KZZD-EW-02). We thank Chen Xiaoming and Wu Yuping for assistance in carbon and sulfur isotope measurements. H.C. thanks the NASA Astrobiology Institute in UW-Madison for support. We are grateful to Thomas Algeo, Linda Kah and an anonymous reviewer for their constructive comments. NR 102 TC 2 Z9 2 U1 27 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 EI 1872-616X J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD NOV 1 PY 2016 VL 461 BP 145 EP 155 DI 10.1016/j.palaeo.2016.08.017 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA DZ1LM UT WOS:000385599900013 ER PT J AU Monson, RK Neice, AA Trahan, NA Shiach, I McCorkel, JT Moore, DJP AF Monson, Russell K. Neice, Amberly A. Trahan, Nicole A. Shiach, Ian McCorkel, Joel T. Moore, David J. P. TI Interactions between temperature and intercellular CO2 concentration in controlling leaf isoprene emission rates SO PLANT CELL AND ENVIRONMENT LA English DT Article DE abiotic; hot; model; ozone; photosynthesis; stress; terpene; thermotolerance ID HYBRID ASPEN; TERRESTRIAL ECOSYSTEMS; TROPOSPHERIC CHEMISTRY; CARBON-DIOXIDE; PHOTON FLUX; LEAVES; PHOTOSYNTHESIS; PLANTS; LIGHT; GROWTH AB Plant isoprene emissions have been linked to several reaction pathways involved in atmospheric photochemistry. Evidence exists from a limited set of past observations that isoprene emission rate (I-s) decreases as a function of increasing atmospheric CO2 concentration, and that increased temperature suppresses the CO2 effect. We studied interactions between intercellular CO2 concentration (C-i) and temperature as they affect I-s in field-grown hybrid poplar trees in one of the warmest climates on earth - the Sonoran Desert of the southwestern United States. We observed an unexpected midsummer downregulation of I-s despite the persistence of relatively high temperatures. High temperature suppression of the I-s:C-i relation occurred at all times during the growing season, but sensitivity of I-s to increased C-i was greatest during the midsummer period when I-s was lowest. We interpret the seasonal downregulation of I-s and increased sensitivity of I-s to C-i as being caused by weather changes associated with the onset of a regional monsoon system. Our observations on the temperature suppression of the I-s:C-i relation are best explained by the existence of a small pool of chloroplastic inorganic phosphate, balanced by several large, connected metabolic fluxes, which together, determine the C-i and temperature dependencies of phosphoenolpyruvate import into the chloroplast. Isoprene emissions from leaves are known to influence the oxidative capacity of the lower atmosphere and contribute to the formation of organic aerosol particles. Our research shows that isoprene emissions are inhibited by elevated atmospheric CO2 concentration, and that warmer leaf temperatures reduce the CO2 inhibition. The influence of warmer leaf temperatures is proposed to be because of modifications of the chloroplast inorganic phosphate balance and concomitant potential to import phosphoenolpyruvate into the chloroplast from the cytosol, which is required for isoprene biosynthesis. C1 [Monson, Russell K.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Monson, Russell K.] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. [Neice, Amberly A.] Hiram Coll, Dept Biol, Hiram, OH 44234 USA. [Trahan, Nicole A.; Shiach, Ian; Moore, David J. P.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. [McCorkel, Joel T.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. RP Monson, RK (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA.; Monson, RK (reprint author), Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. EM russmonson@email.arizona.edu FU Arizona Technology Research Initiative Fund (TRIF); Research Experiences for Undergraduates (REU) grant FX This work was supported by a grant from the Arizona Technology Research Initiative Fund (TRIF), and the Research Experiences for Undergraduates (REU) grant to the University of Arizona, Biosphere 2 programme. The authors are grateful to Professor Tom Sharkey, Michigan State University, for comments on early draft portions of the manuscript, and two anonymous reviewers who provided valuable comments to improve the manuscript. The authors have no conflicts of interest to declare with regard to this publication. NR 52 TC 0 Z9 0 U1 18 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD NOV PY 2016 VL 39 IS 11 BP 2404 EP 2413 DI 10.1111/pce.12787 PG 10 WC Plant Sciences SC Plant Sciences GA DZ4QA UT WOS:000385842400006 PM 27352095 ER PT J AU Singh, MK Gautam, R Gatebe, CK Poudyal, R AF Singh, Manoj K. Gautam, Ritesh Gatebe, Charles K. Poudyal, Rajesh TI PolarBRDF: A general purpose Python package for visualization and quantitative analysis of multi-angular remote sensing measurements SO COMPUTERS & GEOSCIENCES LA English DT Article DE BRDF; Remote Sensing; False Color Imagery; Polar plot; Python ID AIRBORNE SPECTRAL MEASUREMENTS; SURFACE-ATMOSPHERE ANISOTROPY; RADIATIVE FLUX ESTIMATION; ENERGY SYSTEM INSTRUMENT; BIDIRECTIONAL REFLECTANCE; DISTRIBUTION MODELS; PART I; CLOUDS; METHODOLOGY; SATELLITE AB The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Singh, Manoj K.; Gautam, Ritesh] Indian Inst Technol, Ctr Studies Resources Engn, Bombay 400076, Maharashtra, India. [Gautam, Ritesh] Indian Inst Technol, Interdisciplinary Program Climate Studies, Bombay 400076, Maharashtra, India. [Gatebe, Charles K.] Univ Space Res Assoc, Columbia, MD 21046 USA. [Gatebe, Charles K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Poudyal, Rajesh] Sci Syst & Applicat Inc, Lanham, MD USA. RP Singh, MK; Gautam, R (reprint author), Indian Inst Technol, Ctr Studies Resources Engn, Bombay 400076, Maharashtra, India.; Gatebe, CK (reprint author), Univ Space Res Assoc, Columbia, MD 21046 USA.; Gautam, R (reprint author), Indian Inst Technol, Ctr Studies Resources Engn, Bombay 400076, Maharashtra, India. EM manojks@iitb.ac.in; rgautam@iitb.ac.in; charles.k.gatebe@nasa.gov FU Science Mission Directorate of the National Aeronautics and Space Administration under the Radiation Sciences program (Atmospheric Composition Campaign Data Analysis and Modeling Program, ACCDAM) FX Presently, the PolarBRDF software is available at http://home pages.iitb.ac.in/similar to manojks/, after review of the manuscript is completed, the package will be publicly made available at http://car.gsfc.nasa.gov/. We greatly appreciate the comments and suggestions by the two anonymous reviewers which helped improve an earlier version of the manuscript. This research effort is supported by the Science Mission Directorate of the National Aeronautics and Space Administration under the Radiation Sciences program (Atmospheric Composition Campaign Data Analysis and Modeling Program, ACCDAM), managed by Hal Maring. NR 31 TC 1 Z9 1 U1 11 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD NOV PY 2016 VL 96 BP 173 EP 180 DI 10.1016/j.cageo.2016.08.015 PG 8 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA DY1LA UT WOS:000384855300016 ER PT J AU Larour, E Schlegel, N AF Larour, E. Schlegel, N. TI On ISSM and leveraging the Cloud towards faster quantification of the uncertainty in ice-sheet mass balance projections SO COMPUTERS & GEOSCIENCES LA English DT Article DE Polar; Ice sheet; Modeling; Cloud; Uncertainty quantification ID NORTHEAST GREENLAND; MODEL; FLOW; SENSITIVITY; CREEP AB With the Amazon EC2 Cloud becoming available as a viable platform for parallel computing, Earth System Models are increasingly interested in leveraging its capabilities towards improving climate projections. In particular, faced with long wait periods on high-end clusters, the elasticity of the Cloud presents a unique opportunity of potentially "infinite" availability of small-sized clusters running on high-performance instances. Among specific applications of this new paradigm, we show here how uncertainty quantification in climate projections of polar ice sheets (Antarctica and Greenland) can be significantly accelerated using the Cloud. Indeed, small-sized clusters are very efficient at delivering sensitivity and sampling analysis, core tools of uncertainty quantification. We demonstrate how this approach was used to carry out an extensive analysis of ice-flow projections on one of the largest basins in Greenland, the North-East Greenland Glacier, using the Ice Sheet System Model, the public-domain NASA-funded ice-flow modeling software. We show how errors in the projections were accurately quantified using Monte-Carlo sampling analysis on the EC2 Cloud, and how a judicious mix of high-end parallel computing and Cloud use can best leverage existing infrastructures, and significantly accelerate delivery of potentially ground-breaking climate projections, and in particular, enable uncertainty quantification that were previously impossible to achieve. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Larour, E.; Schlegel, N.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr MS 300-323, Pasadena, CA 91109 USA. [Schlegel, N.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, 607 Charles E Young Dr East,Young Hall,Room 4242, Los Angeles, CA 90095 USA. RP Larour, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr MS 300-323, Pasadena, CA 91109 USA. EM eric.larour@jpl.nasa.gov FU NASA's Cryosphere Sciences Program; Modeling, Analysis and Prediction Program; President's and Director's Fund FX This work was supported by grants from NASA's Cryosphere Sciences Program as well as funding from the Modeling, Analysis and Prediction Program and funding from the President's and Director's Fund Program. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and at the University of California at Los Angeles, Joint Institute for Regional Earth System Science and Engineering. We also want to thank JPL's Office of the Chief Information Office for facilitating access to the EC2 Cloud, in particular, Tom Soderstrom (Chief Technology and Innovation Officer) and Jonathan Chiang. Finally, we want to thank Dr. Khawaja Shams (formerly at JPL at the time of this work, now VP of Engineering at Elemental Technologies) for his invaluable help and insights on the Amazon EC2 Cloud. NR 40 TC 0 Z9 0 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD NOV PY 2016 VL 96 BP 193 EP 201 DI 10.1016/j.cageo.2016.08.007 PG 9 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA DY1LA UT WOS:000384855300018 ER PT J AU Hossain, K Hoglund, L Phinney, LC Golding, TD Wicks, G Khoshakhlagh, A Ting, DZY Soibel, A Gunapala, SD AF Hossain, K. Hoeglund, L. Phinney, L. C. Golding, T. D. Wicks, G. Khoshakhlagh, A. Ting, D. Z. -Y. Soibel, A. Gunapala, S. D. TI Hydrogenation Defect Passivation for Improved Minority Carrier Lifetime in Midwavelength Ga-Free InAs/InAsSb Superlattices SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Hydrogenation; strain layer superlattice; type-II SLS; carrier lifetime; defect passivation; Ga-free; InAs; InAsSb AB Two hydrogenation techniques were used to passivate defects in InAs/InAsSb superlattices: UV-photon assisted hydrogenation with and without DC bias enhancement. The effects of the hydrogenation on the minority carrier lifetime were studied using photoluminescence and optical modulation response. An increase of the minority carrier lifetime from 1.8 mu s to 3.3 mu s with hydrogenation using both methods was observed; however, the processing time shortened from 24 h to 90 min when using the DC bias enhancement. The largest increase in carrier lifetime corresponded to a deuterium density of 9 x 10(14) atoms/cm(2), as measured by nuclear reaction analysis. C1 [Hossain, K.; Phinney, L. C.; Golding, T. D.; Wicks, G.] Amethyst Res Inc, 123 Case Circle, Ardmore, OK 73401 USA. [Hoeglund, L.; Khoshakhlagh, A.; Ting, D. Z. -Y.; Soibel, A.; Gunapala, S. D.] CALTECH, Jet Prop Lab, Ctr Infrared Photodetectors, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Hossain, K (reprint author), Amethyst Res Inc, 123 Case Circle, Ardmore, OK 73401 USA. EM khalid@unt.edu FU National Aeronautics and Space Administration FX The authors are grateful for the support and encouragement of Drs. Meimei Tidrow and Sumith Bandara of Night Vision and Electronic Sensors Directorate RDER-NVD. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 8 TC 0 Z9 0 U1 11 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD NOV PY 2016 VL 45 IS 11 BP 5626 EP 5629 DI 10.1007/s11664-016-4617-z PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DY3UT UT WOS:000385021300018 ER PT J AU Holgate, TC Bennett, R Hammel, T Caillat, T Keyser, S Sievers, B AF Holgate, Tim C. Bennett, Russell Hammel, Tom Caillat, Thierry Keyser, Steve Sievers, Bob TI Increasing the Efficiency of the Multi-mission Radioisotope Thermoelectric Generator (vol 44, pg 1814, 2015) SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Correction C1 [Holgate, Tim C.; Bennett, Russell; Hammel, Tom; Keyser, Steve; Sievers, Bob] TESI, Hunt Valley, MD 21031 USA. [Caillat, Thierry] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Holgate, TC (reprint author), TESI, Hunt Valley, MD 21031 USA. EM Tim.holgate@teledyne.com NR 1 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD NOV PY 2016 VL 45 IS 11 BP 6044 EP 6044 DI 10.1007/s11664-016-4776-y PG 1 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DY3UT UT WOS:000385021300069 ER PT J AU Benham, K Hodyss, R Fernandez, FM Orlando, TM AF Benham, Kevin Hodyss, Robert Fernandez, Facundo M. Orlando, Thomas M. TI Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Laser-induced acoustic desorption; Atmospheric pressure photoionization; Microplasma; Microhollow cathode discharge; Low-polarity analytes ID IONIZATION-MASS-SPECTROMETRY; ORGANIC-MOLECULES; DISCHARGE PLASMAS; EXCIMER EMISSION; LYMAN-ALPHA; GAS-PHASE; ENERGY; IONS; FRAGMENTATION; CHOLESTEROL AB We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-alpha (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include alpha-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. C1 [Benham, Kevin; Fernandez, Facundo M.; Orlando, Thomas M.] Georgia Inst Technol, Sch Chem & Biochem, 901 Atlantic Dr NW, Atlanta, GA 30332 USA. [Hodyss, Robert] CALTECH, Jet Prop Lab, Cryogen Chem Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Orlando, Thomas M.] Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA. RP Orlando, TM (reprint author), Georgia Inst Technol, Sch Chem & Biochem, 901 Atlantic Dr NW, Atlanta, GA 30332 USA.; Orlando, TM (reprint author), Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA. EM thomas.orlando@chemistry.gatech.edu FU NSF [CHE-1504217]; NASA Astrobiology Program under NSF Center for Chemical Evolution [CHE-1504217]; Jet Propulsion Laboratory-Georgia Institute of Technology Strategic University Research Partnership (JPL-GIT SURP) grant FX This work was jointly supported by NSF and the NASA Astrobiology Program, under the NSF Center for Chemical Evolution, CHE-1504217. Work at JPL on VUV detection was supported by a joint Jet Propulsion Laboratory-Georgia Institute of Technology Strategic University Research Partnership (JPL-GIT SURP) grant. NR 42 TC 1 Z9 1 U1 10 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD NOV PY 2016 VL 27 IS 11 BP 1805 EP 1812 DI 10.1007/s13361-016-1467-0 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA DY5RC UT WOS:000385158400012 PM 27624160 ER PT J AU Kourdis, PD Bellan, J AF Kourdis, Panayotis D. Bellan, Josette TI Highly Reduced Species Mechanisms for iso-Cetane Using the Local Self-Similarity Tabulation Method SO INTERNATIONAL JOURNAL OF CHEMICAL KINETICS LA English DT Article ID CHEMICAL-KINETICS; REDUCTION; MANIFOLDS; OXIDATION; CHEMISTRY; PRESSURE; STATE AB We utilize the local self-similarity tabulation method to drastically downsize the number of species involved in a detailed kinetic mechanism of iso-cetane. Reduced-species mechanisms of 20 and 15 species are constructed, out of the 1114 species involved in the detailed mechanism, with a focus on high-pressure combustion. The performance of the two reduced mechanisms are compared to the detailed one for a lean (phi = 0.5), stoichiometric (phi = 1.0), and rich (phi = 1.5) iso-cetane/air mixture at initial temperatures of 900 and 1100 K and constant pressures of 20 and 40 bar. Good to very good agreement between the detailed kinetic mechanism and the two highly reduced species mechanisms are demonstrated. C1 [Kourdis, Panayotis D.; Bellan, Josette] CALTECH, Pasadena, CA 91125 USA. [Bellan, Josette] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Kourdis, Panayotis D.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. RP Bellan, J (reprint author), CALTECH, Pasadena, CA 91125 USA.; Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Josette.Bellan@jpl.nasa.gov FU U.S. Army Research Office FX This work was performed at the California Institute of Technology and the Jet Propulsion Laboratory Division of the California Institute of Technology and was sponsored by the U.S. Army Research Office, with Dr. Ralph Anthenien as contract monitor. Supercomputing time from the DoD HPCMP Open Research Systems and NASA (ARMD program) is gratefully acknowledged. NR 17 TC 1 Z9 1 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0538-8066 EI 1097-4601 J9 INT J CHEM KINET JI Int. J. Chem. Kinet. PD NOV PY 2016 VL 48 IS 11 BP 739 EP 752 DI 10.1002/kin.21029 PG 14 WC Chemistry, Physical SC Chemistry GA DX9AP UT WOS:000384685300009 ER PT J AU Fuller, L Lopez-Rodriguez, E Packham, C Ramos-Almeida, C Alonso-Herrero, A Levenson, NA Radomski, J Ichikawa, K Garcia-Bernete, I Gonzalez-Martin, O Diaz-Santos, T Martinez-Paredes, M AF Fuller, L. Lopez-Rodriguez, E. Packham, C. Ramos-Almeida, C. Alonso-Herrero, A. Levenson, N. A. Radomski, J. Ichikawa, K. Garcia-Bernete, I. Gonzalez-Martin, O. Diaz-Santos, T. Martinez-Paredes, M. TI Investigating the dusty torus of Seyfert galaxies using SOFIA/FORCAST photometry SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: nuclei; galaxies: Seyfert ID ACTIVE GALACTIC NUCLEI; SPECTRAL ENERGY-DISTRIBUTIONS; INFRARED-EMISSION; MIDINFRARED EMISSION; X-RAY; NEARBY GALAXIES; LINE REGION; THICK TORI; AGN TORI; NGC 2992 AB We present 31.5 mu m imaging photometry of 11 nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We tentatively detect extended 31 mu m emission for the first time in our sample. In combination with this new data set, subarcsecond resolution 1-18 mu m imaging and 7.5-13 mu m spectroscopic observations were used to compute the nuclear spectral energy distribution (SED) of each galaxy. We found that the turnover of the torus emission does not occur at wavelengths <= 31.5 mu m, which we interpret as a lower-limit for the wavelength of peak emission. We used CLUMPY torus models to fit the nuclear infrared (IR) SED and infer trends in the physical parameters of the AGN torus for the galaxies in the sample. Including the 31.5 mu m nuclear flux in the SED (1) reduces the number of clumpy torus models compatible with the data, and (2) modifies the model output for the outer radial extent of the torus for 10 of the 11 objects. Specifically, six (60 per cent) objects show a decrease in radial extent while four (40 per cent) show an increase. We find torus outer radii ranging from <1 to 8.4 pc. C1 [Fuller, L.; Packham, C.; Alonso-Herrero, A.] Univ Texas San Antonio, Dept Phys & Astron, One UTSA Circle, San Antonio, TX 78249 USA. [Lopez-Rodriguez, E.] Univ Texas Austin, Dept Astron, 2515 Speedway,Stop C1402, Austin, TX 78712 USA. [Lopez-Rodriguez, E.] Univ Texas Austin, McDonald Observ, 2515 Speedway,Stop C1402, Austin, TX 78712 USA. [Packham, C.; Ichikawa, K.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Ramos-Almeida, C.; Garcia-Bernete, I.] Inst Astrofis Canarias, Calle Via Lactea S-N, E-38205 Tenerife, Spain. [Ramos-Almeida, C.; Garcia-Bernete, I.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Alonso-Herrero, A.] CSIC INTA, Ctr Astrobil CAB, ESAC Campus, E-28692 Madrid, Spain. [Alonso-Herrero, A.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Levenson, N. A.] Gemini Observ, Casilla 603, La Serena, Chile. [Radomski, J.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gonzalez-Martin, O.; Martinez-Paredes, M.] UNAM, Inst Radioastron & Astrofis IRyA, 3-72 Xangari,8701, Morelia, Michoacan, Mexico. [Diaz-Santos, T.] Univ Diego Portales, Nucleo Astron, Fac Ingn, Av Ejercito Libertador 441, Santiago, Chile. RP Fuller, L (reprint author), Univ Texas San Antonio, Dept Phys & Astron, One UTSA Circle, San Antonio, TX 78249 USA. EM lindsay.fuller@utsa.edu RI Alonso-Herrero, Almudena/H-1426-2015 OI Alonso-Herrero, Almudena/0000-0001-6794-2519 FU NASA [NAS2-97001, 002_35, 04_0048]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]; University of Texas at San Antonio; Ramon y Cajal Fellowship [RYC-2014-15779]; Spanish Plan Nacional de Astronomia y Astrofisica [AYA2012-3144]; FEDER program; JSPS [40756293]; Gemini Observatory; Instituto de Astrofisica de Canarias through Fundacion La Caixa; ALMA-CONICYT [31130005]; FONDECYT [1151239]; [NSF-0904421]; [AYA2015-64346-C2-1-P] FX This work is based on observations made with the NASA/DLR SOFIA. SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Financial support for this work was provided by NASA through award 002_35 and 04_0048 issued by USRA. ELR and CP acknowledge support from the University of Texas at San Antonio. CP acknowledges support from NSF-0904421 grant. CRA is supported by a Ramon y Cajal Fellowship (RYC-2014-15779). AA-H acknowledges financial support from the Spanish Plan Nacional de Astronomia y Astrofisica under grants AYA2012-3144, which is partly funded by the FEDER program, and AYA2015-64346-C2-1-P. KI acknowledges support from JSPS Grant-in-Aid for Scientific Research (grant number 40756293). NAL is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, and the United States of America. IGB acknowledges financial support from the Instituto de Astrofisica de Canarias through Fundacion La Caixa. TD-S acknowledges support from ALMA-CONICYT project 31130005 and FONDECYT 1151239. We would also like to acknowledge the contributions of Miguel Charcos-Llorens. NR 75 TC 2 Z9 2 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2016 VL 462 IS 3 BP 2618 EP 2630 DI 10.1093/mnras/stw1780 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XU UT WOS:000384676000024 ER PT J AU Matsuura, M Sargent, B Swinyard, B Yates, J Royer, P Barlow, MJ Boyer, M Decin, L Khouri, T Meixner, M van Loon, JT Woods, PM AF Matsuura, Mikako Sargent, B. Swinyard, Bruce Yates, Jeremy Royer, P. Barlow, M. J. Boyer, Martha Decin, L. Khouri, Theo Meixner, Margaret van Loon, Jacco Th. Woods, Paul M. TI The mass-loss rates of red supergiants at low metallicity: detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: AGB and post-AGB; circumstellar matter; stars: massive; stars: mass-loss; ISM: molecules; Magellanic Clouds ID ASYMPTOTIC GIANT BRANCH; VY-CANIS-MAJORIS; HERSCHEL-SPIRE INSTRUMENT; EVOLVED STARS; AGB STARS; CIRCUMSTELLAR DUST; RADIATIVE-TRANSFER; SUPERNOVA REMNANT; LINE-PROFILES; EFFECTIVE TEMPERATURE AB Using the PACS and SPIRE spectrometers on-board the Herschel Space Observatory, we obtained spectra of two red supergiants (RSGs) in the Large MagellanicCloud (LMC). Multiple rotational CO emission lines (J = 6-5 to 15-14) and 15 H2O lines were detected from IRAS 05280-6910, and one CO line was detected from WOH G64. This is the first time that CO rotational lines have been detected from evolved stars in the LMC. Their CO line intensities are as strong as those of the Galactic RSG, VY CMa. Modelling the CO lines and the spectral energy distribution results in an estimated mass-loss rate for IRAS 05280-6910 of 3 x 10(-4) M-circle dot yr(-1). The model assumes a gas-to-dust ratio and a CO-to-H-2 abundance ratio is estimated from the Galactic values scaled by the LMC metallicity ([Fe/H] similar to -0.3), i.e. that the CO-to-dust ratio is constant for Galactic and LMC metallicities within the uncertainties of the model. The key factor determining the CO line intensities and the mass-loss rate found to be the stellar luminosity. C1 [Matsuura, Mikako; Swinyard, Bruce; Yates, Jeremy; Barlow, M. J.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Matsuura, Mikako] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Sargent, B.] Rochester Inst Technol, Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA. [Sargent, B.] Rochester Inst Technol, Lab Multiwavelength Astrophys, 54 Lomb Mem Dr, Rochester, NY 14623 USA. [Swinyard, Bruce] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Royer, P.; Decin, L.] Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-2401 Leuven, Belgium. [Boyer, Martha] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Decin, L.; Khouri, Theo] Univ Amsterdam, Astron Inst Anton Pannekoek, POB 94249, NL-1090 GE Amsterdam, Netherlands. [Khouri, Theo] Chalmers, Dept Radio & Space Sci, Onsala Space Observ, SE-43992 Onsala, Sweden. [Meixner, Margaret] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Meixner, Margaret] Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr 3400 N Charles St, Baltimore, MD 21218 USA. [van Loon, Jacco Th.] Keele Univ, Lennard Jones Labs, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Woods, Paul M.] Queens Univ, Sch Math & Phys, Astrophys Res Ctr, Univ Rd, Belfast BT7 1NN, Antrim, North Ireland. RP Matsuura, M (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.; Matsuura, M (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales.; Sargent, B (reprint author), Rochester Inst Technol, Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA.; Sargent, B (reprint author), Rochester Inst Technol, Lab Multiwavelength Astrophys, 54 Lomb Mem Dr, Rochester, NY 14623 USA. EM mikako@star.ucl.ac.uk; sargent@stsci.edu RI Barlow, Michael/A-5638-2009 OI Barlow, Michael/0000-0002-3875-1171 FU STFC Ernest Rutherford fellowship; NASA Astrophysics Data Analysis Program [NNX13AD54G]; NASA/JPL grant [NNN12AA01C]; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); UKSA (UK); NASA (USA); ESO [179.B-2003] FX We would like to thank Dr S. Srinivasan for useful inputs on chi2 analysis on DUSTY fitting. MM is supported by the STFC Ernest Rutherford fellowship. M. Meixner and BS acknowledge funding from the NASA Astrophysics Data Analysis Program grant NNX13AD54G and from the NASA/JPL grant NNN12AA01C. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC and UKSA (UK); and NASA (USA). The VISTA magnitude is based on observations collected at the European Organization for Astronomical Research in the Southern hemisphere under ESO programme(s) 179.B-2003. NR 100 TC 1 Z9 1 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2016 VL 462 IS 3 BP 2995 EP 3005 DI 10.1093/mnras/stw1853 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XU UT WOS:000384676000050 ER PT J AU Chiaro, G Salvetti, D La Mura, G Giroletti, M Thompson, DJ Bastieri, D AF Chiaro, G. Salvetti, D. La Mura, G. Giroletti, M. Thompson, D. J. Bastieri, D. TI Blazar flaring patterns (B-FlaP) classifying blazar candidate of uncertain type in the third Fermi-LAT catalogue by artificial neural networks SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; galaxies: active; BL Lacertae objects: general; gamma-rays: galaxies; radio continuum: galaxies ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; SKY SURVEY; CLASSIFICATION; ALGORITHMS; ASTRONOMY; RANKING AB The Fermi-Large Area Telescope (LAT) is currently the most important facility for investigating the GeV gamma-ray sky. With Fermi-LAT, more than three thousand gamma-ray sources have been discovered so far. 1144 (similar to 40 per cent) of the sources are active galaxies of the blazar class, and 573 (similar to 20 per cent) are listed as blazar candidate of uncertain type (BCU), or sources without a conclusive classification. We use the empirical cumulative distribution functions and the artificial neural networks for a fast method of screening and classification for BCUs based on data collected at gamma-ray energies only, when rigorous multiwavelength analysis is not available. Based on our method, we classify 342 BCUs as BL Lacs and 154 as flat-spectrum radio quasars, while 77 objects remain uncertain. Moreover, radio analysis and direct observations in ground-based optical observatories are used as counterparts to the statistical classifications to validate the method. This approach is of interest because of the increasing number of unclassified sources in Fermi catalogues and because blazars and in particular their subclass high synchrotron peak objects are the main targets of atmospheric Cherenkov telescopes. C1 [Chiaro, G.; La Mura, G.; Bastieri, D.] Univ Padua, Dip Fis & Astron G Galilei, I-35131 Padua, Italy. [Salvetti, D.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Giroletti, M.] INAF, Inst Radioastron, I-40129 Bologna, Italy. [Thompson, D. J.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Chiaro, G (reprint author), Univ Padua, Dip Fis & Astron G Galilei, I-35131 Padua, Italy.; Salvetti, D (reprint author), INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. EM chiaro@pd.infn.it; salvetti@iasf-milano.inaf.it FU European Commission [607452] FX Support for science analysis during the operations phase is gratefully acknowledged from the Fermi-LAT collaboration for making the 3FGL results available in such a useful form, the Institute of Space Astrophysics and Cosmic Physics of Milano-Italy (IASF INAF), and the Radioastronomy Institute INAF in Bologna Italy. Part of this work is based on observations collected at Copernico (or/and Schmidt) telescope(s) (Asiago, Italy) of the INAF-Osservatorio Astronomico di Padova. DS acknowledges support through EXTraS, funded from the European Commission Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607452. NR 30 TC 2 Z9 2 U1 8 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2016 VL 462 IS 3 BP 3180 EP 3195 DI 10.1093/mnras/stw1830 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XU UT WOS:000384676000063 ER PT J AU Gull, TR Madura, TI Teodoro, M Clementel, N Corcoran, M Damineli, A Groh, JH Hamaguchi, K Hillier, DJ Moffat, AFJ Richardson, ND Weigelt, G Lindler, D Feggans, K AF Gull, Theodore R. Madura, Thomas I. Teodoro, Mairan Clementel, Nicola Corcoran, Michael Damineli, Augusto Groh, Jose H. Hamaguchi, Kenji Hillier, D. John Moffat, Anthony F. J. Richardson, Noel D. Weigelt, Gerd Lindler, Don Feggans, Keith TI The fossil wind structures of Eta Carinae: changes across one 5.54-yr cycle SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: atmospheres; stars: individual: (Eta Carinae); stars: mass-loss; supergiants; stars: variables: general ID 3D RADIATIVE-TRANSFER; TELESCOPE IMAGING SPECTROGRAPH; 2014.6 SPECTROSCOPIC EVENT; BINARY COLLIDING WINDS; LONG-PERIOD BINARY; HE-II LAMBDA-4686; TRANSFER SIMULATIONS; IONIZATION STRUCTURE; PERIASTRON PASSAGE; ORBITAL PARAMETERS AB Eta Carinae, the closest, active, massive binary containing a highly unstable Luminous Blue Variable, exhibits expanding, compressed wind shells, seen in emission, that are spatially and spectrally resolved by Hubble Space Telescope/Space Telescope Imaging Spectrograph. Starting in 2009 June, these structures were mapped across its 5.54-yr, highly elliptical, binary orbit to follow temporal changes in the light of [Fe III] 4659 angstrom and [Fe II] 4815 angstrom. The emissions trace portions of fossil wind shells, that were formed by wind-wind interactions across each cycle. Over the high-ionization state, dense arcs, photoionized by far-ultraviolet radiation from the hot secondary, are seen in [Fe III]. Other arcs, ionized by mid-ultraviolet radiation from the primary star, are seen in [Fe II]. The [Fe III] structures tend to be interior to [Fe II] structures that trace extensive, less disturbed primary wind. During the brief periastron passage when the secondary plunges deep into the primary's extremely dense wind, on the far side of primary star, high-ionization [Fe III] structures fade and reappear in [Fe II]. Multiple fossil wind structures were traced across the 5.7-yr monitoring interval. The strong similarity of the expanding [Fe II] shells suggests that the wind and photoionization properties of the massive binary have not changed substantially from one orbit to the next over the past several orbital cycles. These observations trace structures that can be used to test 3D hydrodynamical and radiative-transfer models of massive, interacting winds. They also provide a baseline for following future changes in eta Car, especially of its winds and photoionization properties. C1 [Gull, Theodore R.; Madura, Thomas I.; Teodoro, Mairan; Corcoran, Michael; Hamaguchi, Kenji; Lindler, Don] Goddard Space Flight Ctr, Astrophys Sci Div, Code 660, Greenbelt, MD 20771 USA. [Madura, Thomas I.; Teodoro, Mairan; Corcoran, Michael] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 20146 USA. [Clementel, Nicola] South African Astron Observ, POB 9, ZA-7935 Observatory, South Africa. [Damineli, Augusto] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Rua Matao 1226,Cidade Univ, BR-05508900 Sao Paulo, Brazil. [Groh, Jose H.] Univ Dublin, Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland. [Hamaguchi, Kenji] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Hillier, D. John] Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA. [Hillier, D. John] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA. [Moffat, Anthony F. J.] Univ Montreal, Dept phys, CP 6128 Succ A, Montreal, PQ H3C 3J7, Canada. [Moffat, Anthony F. J.] Univ Montreal, Ctr Rech Astrophys Quebec, CP 6128 Succ A, Montreal, PQ H3C 3J7, Canada. [Richardson, Noel D.] Univ Toledo, Dept Phys & Astron, Ritter Observ, Toledo, OH 43606 USA. [Weigelt, Gerd] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Lindler, Don; Feggans, Keith] Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA. [Feggans, Keith] Goddard Space Flight Ctr, Heliophys Sci Div, Code 670, Greenbelt, MD 20771 USA. RP Gull, TR; Madura, TI (reprint author), Goddard Space Flight Ctr, Astrophys Sci Div, Code 660, Greenbelt, MD 20771 USA.; Madura, TI (reprint author), Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 20146 USA. EM Ted.Gull@nasa.gov; tmadura@udel.edu RI Damineli, Augusto/P-8829-2016; OI Damineli, Augusto/0000-0002-7978-2994; Richardson, Noel/0000-0002-2806-9339 FU Space Telescope Science Institute [12013, 12750, 12508, 13054, 13395]; NASA [NAS5-26555]; NASA; STScI [12013, 12750, 12508, 13054]; FAPESP; NSERC (Canada); FQRNT (Quebec); University of Toledo; Helen Luedtke Brooks endowed Professorship FX This paper was based on observations made with the NASA/ESA HST. Support for Program numbers 12013, 12750, 12508, 13054 and 13395 was provided through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. TIM was supported by the NASA Postdoctoral Fellowship Program. TRG, TIM and MT received support from STScI grants 12013, 12750, 12508 and 13054 through 2015 June. TRG also thanks Gerd Weigelt and the Max Planck Institute for Radioastronomy for delightful stays in the fall of 2015 and spring of 2016. AD acknowledges the continuing financial support from FAPESP. AFJM is grateful for financial support from NSERC (Canada) and FQRNT (Quebec). NDR acknowledges postdoctoral support by the University of Toledo and by the Helen Luedtke Brooks endowed Professorship. We gratefully thank Ms Beth Perriello (STScI) for the extraordinary support scheduling visits at critical intervals that led to the success of this very challenging series of observing programs. We thank anonymous referee for helpful editorial comments. And most importantly, we thank the Eta Car Bunch, a truly innovative group extended across many locations but focused on one massive binary! NR 70 TC 1 Z9 1 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2016 VL 462 IS 3 BP 3196 EP 3220 DI 10.1093/mnras/stw1829 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XU UT WOS:000384676000064 ER PT J AU Cassady, K Koppelmans, V Reuter-Lorenz, P De Dios, Y Gadd, N Wood, S Castenada, RR Kofman, I Bloomberg, J Mulavara, A Seidler, R AF Cassady, Kaitlin Koppelmans, Vincent Reuter-Lorenz, Patricia De Dios, Yiri Gadd, Nichole Wood, Scott Castenada, Roy Riascos Kofman, Igor Bloomberg, Jacob Mulavara, Ajitkumar Seidler, Rachael TI Effects of a spaceflight analog environment on brain connectivity and behavior SO NEUROIMAGE LA English DT Article DE Bed rest; Spaceflight analog; Microgravity; Brain function ID RESTING-STATE FMRI; LONG-DURATION SPACEFLIGHT; FUNCTIONAL CONNECTIVITY; MOTOR CORTEX; SPACE-FLIGHT; BED REST; VESTIBULAR SYSTEM; HUMAN CEREBELLUM; SELF-MOTION; MULTIMODAL INTEGRATION AB Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question of whether microgravity affects other central nervous system functions such as brain network organization and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to an established spaceflight analog on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. These bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Resting state functional magnetic resonance imaging (rs-fMRI) and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. To assess potential confounding effects due to scanning interval or task practice, we also acquired rs-fMRI and behavioral measurements from 14 control participants at four time points. 70 days of head-down tilt (HDT) bed rest resulted in significant changes in the functional connectivity of motor, somatosensory, and vestibular areas of the brain. Moreover, several of these network alterations were significantly associated with changes in sensorimotor and spatial working memory performance, which suggests that neuroplasticity mechanisms may facilitate adaptation to the microgravity analog environment. The findings from this study provide novel insights into the underlying neural mechanisms and operational risks of spaceflight analog-related changes in sensorimotor performance. (C) 2016 Elsevier Inc. All rights reserved. C1 [Cassady, Kaitlin; Reuter-Lorenz, Patricia; Seidler, Rachael] Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA. [Koppelmans, Vincent; Seidler, Rachael] Univ Michigan, Sch Kinesiol, Ann Arbor, MI USA. [De Dios, Yiri; Gadd, Nichole; Kofman, Igor] Wyle Sci Technol & Engn Grp, Houston, TX USA. [Wood, Scott] Azusa Pacific Univ, Dept Psychol, Azusa, CA USA. [Castenada, Roy Riascos] Univ Texas Hlth Sci Ctr Houston, Houston, TX 77030 USA. [Bloomberg, Jacob; Mulavara, Ajitkumar] NASA, Johnson Space Ctr, Houston, TX USA. [Mulavara, Ajitkumar] Univ Space Res Assoc, Houston, TX USA. [Seidler, Rachael] Univ Michigan, Grad Program Neurosci, Ann Arbor, MI 48109 USA. RP Seidler, R (reprint author), Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA. EM rseidler@umich.edu FU National Space Biomedical Research Institute [NASA NCC 9-58, MA02701, PF04101]; National Aeronautics and Space Administration (NASA) [NNX11AR02G]; NASA Flight Analogs Project; National Institutes of Health; National Center for Advancing Translational Sciences [1UL1RR029876-01] FX This work was supported by grants from the National Space Biomedical Research Institute (NASA NCC 9-58, MA02701, and PF04101), from the National Aeronautics and Space Administration (NASA; NNX11AR02G) and NASA Flight Analogs Project, and the National Institutes of Health, and National Center for Advancing Translational Sciences, 1UL1RR029876-01. NR 85 TC 1 Z9 1 U1 16 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 EI 1095-9572 J9 NEUROIMAGE JI Neuroimage PD NOV PY 2016 VL 141 BP 18 EP 30 DI 10.1016/j.neuroimage.2016.07.029 PG 13 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA DX0SF UT WOS:000384074500003 PM 27423254 ER PT J AU Pavlov, DA Williams, JG Suvorkin, VV AF Pavlov, Dmitry A. Williams, James G. Suvorkin, Vladimir V. TI Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE Lunar laser ranging; Lunar physical libration; Tidal variations of geopotential ID LUNAR; EPM; ERA AB The aim of this work is to combine the model of orbital and rotational motion of the Moon developed for DE430 with up-to-date astronomical, geodynamical, and geo- and selenophysical models. The parameters of the orbit and physical libration are determined in this work from lunar laser ranging (LLR) observations made at different observatories in 1970-2013. Parameters of other models are taken from solutions that were obtained independently from LLR. A new implementation of the DE430 lunar model, including the liquid core equations, was done within the EPM ephemeris. The postfit residuals of LLR observations make evident that the terrestrial models and solutions recommended by the IERS Conventions are compatible with the lunar theory. That includes: EGM2008 gravitational potential with conventional corrections and variations from solid and ocean tides; displacement of stations due to solid and ocean loading tides; and precession-nutation model. Usage of these models in the solution for LLR observations has allowed us to reduce the number of parameters to be fit. The fixed model of tidal variations of the geopotential has resulted in a lesser value of Moon's extra eccentricity rate, as compared to the original DE430 model with two fit parameters. A mixed model of lunar gravitational potential was used, with some coefficients determined from LLR observations, and other taken from the GL660b solution obtained from the GRAIL spacecraft mission. Solutions obtain accurate positions for the ranging stations and the five retroreflectors. Station motion is derived for sites with long data spans. Dissipation is detected at the lunar fluid core-solid mantle boundary demonstrating that a fluid core is present. Tidal dissipation is strong at both Earth and Moon. Consequently, the lunar semimajor axis is expanding by 38.20 mm/yr, the tidal acceleration in mean longitude is , and the eccentricity is increasing by each year. C1 [Pavlov, Dmitry A.; Suvorkin, Vladimir V.] RAS, Inst Appl Astron, Kutuzov Embankment 10, St Petersburg 191187, Russia. [Williams, James G.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Pavlov, DA (reprint author), RAS, Inst Appl Astron, Kutuzov Embankment 10, St Petersburg 191187, Russia. EM dpavlov@ipa.nw.ru NR 40 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 EI 1572-9478 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD NOV PY 2016 VL 126 IS 1-3 SI SI BP 61 EP 88 DI 10.1007/s10569-016-9712-1 PG 28 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA DW2SR UT WOS:000383492600003 ER PT J AU Williams, JG Boggs, DH AF Williams, James G. Boggs, Dale H. TI Secular tidal changes in lunar orbit and Earth rotation SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE Tides; Lunar orbit; Earth rotation; Tidal acceleration; Tidal dissipation; Moon; Lunar laser ranging (LLR) ID MOON SYSTEM; PRECESSION; DISSIPATION; EVOLUTION; EPHEMERIS; ACCELERATION; EXPRESSIONS; PARAMETERS; ELP-2000; FRICTION AB Small tidal forces in the Earth-Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = cent, da/dt = 38.30 +/- 0.08 mm/year, and di/dt = -0.5 +/- 0.1 as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives /year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = /year. For total dn/dt, there is 1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is /cent or 87.5 s/cent for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 as/year. For evolution during past times of slow recession, the eccentricity rate can be negative. C1 [Williams, James G.; Boggs, Dale H.] CALTECH, Jet Prop Lab, MS 238-600, Pasadena, CA 91109 USA. RP Williams, JG (reprint author), CALTECH, Jet Prop Lab, MS 238-600, Pasadena, CA 91109 USA. EM James.G.Williams@jpl.nasa.gov NR 60 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 EI 1572-9478 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD NOV PY 2016 VL 126 IS 1-3 SI SI BP 89 EP 129 DI 10.1007/s10569-016-9702-3 PG 41 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA DW2SR UT WOS:000383492600004 ER PT J AU Perez-Sierra, AM Pons, J Santamarta, R Karaman, I Noebe, RD AF Perez-Sierra, A. M. Pons, J. Santamarta, R. Karaman, I. Noebe, R. D. TI Stability of a Ni-rich Ni-Ti-Zr high temperature shape memory alloy upon low temperature aging and thermal cycling SO SCRIPTA MATERIALIA LA English DT Article DE Martensitic phase transformations; Shape memory alloys; Precipitation; Aging; Phase instability ID MICROSTRUCTURE; TRANSFORMATION; BEHAVIOR; PRECIPITATION AB The thermal stability of Ni50.3Ti29.7Zr20 with aging in austenite at 250 degrees C has been studied for three distinctive microstructures obtained after selected thermal treatments: precipitate free and containing two different sizes and densities of H-phase nanoprecipitates. The martensitic transformation is suppressed after 1-3 weeks aging, depending on the initial microstructure, due to a B2 phase instability in the form of short range atomic reordering within the Ti + Zr sublattice, considered to be precursor to the H-phase precipitation. Thermal cycling leads to notable changes in the transformation temperatures, which strongly depends on the starting microstructure. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Perez-Sierra, A. M.; Pons, J.; Santamarta, R.] Univ Illes Balears, Dept Fis, Ctra Valldemossa,Km 7-5, E-07122 Palma De Mallorca, Spain. [Karaman, I.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Noebe, R. D.] NASA, Struct & Mat Div, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Pons, J (reprint author), Univ Illes Balears, Dept Fis, Ctra Valldemossa,Km 7-5, E-07122 Palma De Mallorca, Spain. EM jaume.pons@uib.es FU Spanish MINECO; FEDER [MAT2014-56116-C4-1-R]; FPI grant [BES-2012-053863]; NASA Transformative Aeronautics Concepts Program (TACP), Transformational Tools & Technologies Project; US Air Force Office of Scientific Research [FA9550-15-1-0287]; US National Science Foundation [CMMI 1534534, DMR08-44082]; International Materials Institute for Multifunctional Materials for Energy Conversion (IIMEC) at Texas AM University FX Partial financial support from the Spanish MINECO and FEDER under project MAT2014-56116-C4-1-R and FPI grant BES-2012-053863 are acknowledged. RDN gratefully acknowledges support from the NASA Transformative Aeronautics Concepts Program (TACP), Transformational Tools & Technologies Project. Partial support was also provided by the US Air Force Office of Scientific Research, under Grant no. FA9550-15-1-0287, the US National Science Foundation under Grant no. CMMI 1534534, and under Grant no. DMR08-44082, which supports the International Materials Institute for Multifunctional Materials for Energy Conversion (IIMEC) at Texas A&M University. NR 30 TC 1 Z9 1 U1 17 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2016 VL 124 BP 47 EP 50 DI 10.1016/j.scriptamat.2016.06.029 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DV9WZ UT WOS:000383294200011 ER PT J AU Wiesner, VL Vempati, UK Bansal, NP AF Wiesner, Valerie L. Vempati, Udaya K. Bansal, Narottam P. TI High temperature viscosity of calcium-magnesium-aluminosilicate glass from synthetic sand SO SCRIPTA MATERIALIA LA English DT Article DE CMAS; Glass; Viscosity ID THERMAL-BARRIER COATINGS; CERAMIC-MATRIX COMPOSITES; CMAS GLASS; MODEL; DELAMINATION; CALCULATE; SYSTEMS AB Viscosity of a calcium-magnesium-aluminosilicate (CMAS) glass, melted from a synthetic sand with composition replicating that of air-breathing turbine engine deposits, was experimentally measured between 1215 degrees C and 1520 degrees C using a rotating spindle viscometer. Chemical composition of the CMAS glass before and after viscosity measurements was nominally 23.3CaO-6AMg0-3.1Al(2)O(3)-62.5SiO(2)-4.1Na(2)O-0.5K(2)O-0.04Fe(2)O(3) (mol.%) as determined using inductively coupled plasma atomic emission spectroscopy. Experimental viscosity values were compared with those estimated from composition-based calculators of Giordano et al., Fluegel and FactSage software. Although none of these models exactly predicted viscosity values, those determined by Fluegel and FactSage models were found to more closely match experimental viscosity of the CMAS glass. Published by Elsevier Ltd. C1 [Wiesner, Valerie L.; Bansal, Narottam P.] NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA. [Vempati, Udaya K.] Owens Brockway Glass Container Inc, Perrysburg, OH 43551 USA. RP Wiesner, VL (reprint author), NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA. EM valerie.l.wiesner@nasa.gov FU NASA FX This research was supported by NASA's Transformative Tools and Technologies (TTT) Project within the Transformative Aeronautics Concept Program (TACP). The authors are grateful to Dr. Daniel Swiler of Owens-Brockway Glass Container Inc. for his coordination of viscosity testing, as well as to Dr. Bryan Harder, Dr. Nathan Jacobson and Dr. Arthur Pelton for helpful discussion. NR 21 TC 1 Z9 1 U1 10 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2016 VL 124 BP 189 EP 192 DI 10.1016/j.scriptamat.2016.07.020 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DV9WZ UT WOS:000383294200043 ER PT J AU Lomeli, MJM Wakefield, WW AF Lomeli, Mark J. M. Wakefield, W. Waldo TI Evaluation of a sorting grid bycatch reduction device for the selective flatfish bottom trawl in the US West Coast fishery SO FISHERIES RESEARCH LA English DT Article DE Bycatch reduction device; Selective flatfish trawl; Recapture net; Flatfishes; Roundfishes; Pacific halibut ID SIZE SELECTION; ROCKFISH; MESH; CODENDS; DESIGN; NUMBER; MAINE; GULF AB The U.S. West Coast limited entry groundfish trawl fishery is managed under an individual fishing quota program. For many fishermen targeting flatfishes in this fishery, catches of rockfishes (Sebastes spp.), sablefish (Anoplopoma fimbria), and Pacific halibut (Hippoglossus stenolepis) can be a concern because quota is limited relative to flatfish quotas. Thus, approaches to minimize bycatch of limiting species are important to the economic viability of the fishery. In this study, we examined the size-selection characteristics of a flexible sorting grid bycatch reduction device (designed to retain flatfishes while reducing catches of rockfishes, sablefish, and Pacific halibut) using a recapture net. The mean codend retention of target flatfishes (five species evaluated) ranged from 68.1% to 92.3%. Combined, the mean flatfish retention was 85.6%. Codend catches of shelf rockfishes, slope rockfishes, sablefish, and Pacific halibut were reduced by 80.3%, 64.0%, 97.0%, and 90.3% by weight, respectively. Significant differences in selectivity parameters between flatfishes, rockfishes, sablefish, and Pacific halibut were observed. Over fishing grounds where fishermen need a more selective trawl to harvest flatfishes, the experimental gear tested could provide fishermen a technique to reduce catches of non-target species. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lomeli, Mark J. M.] Pacific States Marine Fisheries Commiss, 2032 SE OSU Dr, Newport, OR 97365 USA. [Wakefield, W. Waldo] NOAA, Fishery Resource Anal & Monitoring Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2032 SE OSU Dr, Newport, OR 97365 USA. RP Lomeli, MJM (reprint author), Pacific States Marine Fisheries Commiss, 2032 SE OSU Dr, Newport, OR 97365 USA. EM mlomeli@psmfc.org FU NOAA National Marine Fisheries Service Bycatch Reduction Engineering Program [NA13NMF4720276] FX We would like to thank the captain and crew of the F/V Miss Sue, and Matthew Yergey, Toby Mitchell, and Andrew Conger for their at-sea assistance with this research. We also thank the reviewers who contributed to this manuscript. Funding for this study was provided by NOAA National Marine Fisheries Service Bycatch Reduction Engineering Program (Contract No. NA13NMF4720276). NR 23 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD NOV PY 2016 VL 183 BP 294 EP 303 DI 10.1016/j.fishres.2016.06.011 PG 10 WC Fisheries SC Fisheries GA DV0HW UT WOS:000382599600030 ER PT J AU Dietrich, J Eder, K Thompson, D Buchanan, R Skalski, J McMichael, G Fryer, D Loge, F AF Dietrich, Joseph Eder, Kai Thompson, Donald Buchanan, Rebecca Skalski, John McMichael, Geoffrey Fryer, Derek Loge, Frank TI Survival and transit of in-river and transported yearling Chinook salmon in the lower Columbia River and estuary SO FISHERIES RESEARCH LA English DT Article DE Columbia River estuary; Salmon; Acoustic telemetry; Barge transportation; Survival ID INTEGRATED TRANSPONDER TAGS; JUVENILE SALMONIDS; SNAKE RIVER; DELAYED MORTALITY; SEAWARD MIGRATION; HYDROPOWER SYSTEM; AVIAN PREDATION; PLUME USA; STEELHEAD; RATES AB The lower Columbia River and estuary (LRE) is a critically important environment for outmigrating salmonids, yet uncertainties remain about the survival and behavior of barged and in-river migrating fish. Although studies have used telemetry to monitor Chinook salmon movement and survival through the LRE, comparisons between outmigration years are confounded by differences in tag technologies, array locations, and experimental designs. In the present study, multiple releases of barged and in-river Snake River spring/summer Chinook salmon were implanted with acoustic tags and monitored at multiple locations between Lower Granite Dam on the Snake River (695 km from the mouth of the Columbia River) to within 3 km of the Pacific Ocean. LRE survival estimates and transit rates of barged fish significantly varied throughout the outmigration season. The transit rates of in-river fish also varied, but without a corresponding seasonal difference in LRE survival estimates. Early release groups of barged salmon were slower and had lower survival in the LRE than in-river salmon. Estuary arrival timing and the magnitude of transit rates may contribute to significant differences in LRE mortality between in-river and barged juvenile salmon. Survival in the Lower River reaches was stable and exceeded 0.90 for both barged and in-river fish, while survival decreased markedly in the Estuary. Differential distributions of arrival to the LRE, transit rates, and survival suggest that the outmigration experience is not homogenous for barged and in-river yearling Snake River Chinook salmon, and that previous outmigration experience of threatened and endangered salmon should be considered in future management decisions and recovery plans. (C) 2016 Elsevier B.V. All rights reserved. C1 [Dietrich, Joseph] Natl Marine Fisheries Serv, Environm & Fisheries Sci Div, Northwest Fisheries Sci Ctr, NOAA, 2032 SE OSU Dr, Newport, OR 97365 USA. [Eder, Kai; Thompson, Donald; Loge, Frank] Univ Calif Davis, Dept Civil & Environm Engn, One Shields Ave, Davis, CA 95616 USA. [Buchanan, Rebecca; Skalski, John] Univ Washington, Sch Aquat & Fishery Sci, 1325 Fourth Ave,Suite 1820, Seattle, WA 98101 USA. [McMichael, Geoffrey] Pacific Northwest Natl Lab, Ecol Grp, POB 999,MSK6-85, Richland, WA 99352 USA. [Fryer, Derek] US Army Corps Engineers, 201 N 3rd Ave, Walla Walla, WA 99362 USA. RP Loge, F (reprint author), Univ Calif Davis, Dept Civil & Environm Engn, One Shields Ave, Davis, CA 95616 USA. EM kai.eder@csus.edu; geoff@mainstemfish.com; fjloge@ucdavis.edu OI Skalski, John/0000-0002-7070-2505 FU US Army Corps of Engineers (USACE); Walla Walla District [W912EF-08-D-0007] FX This project was funded by the US Army Corps of Engineers (USACE), Walla Walla District, Contract Number W912EF-08-D-0007, Delivery Order 1. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the supporting agency. Surgery training, tagging assistance at Lower Granite Dam, collection and analysis of JSATS data, and reporting assistance were provided by Katherine Deters, Jessica Carter, and a host of others from the Pacific Northwest National Laboratory. Programming of the PIT-tag separation-by-code functions was provided by Dave Marvin, Pacific States Marine Fisheries Commission. Assistance in fish collection and facilities were provided, in part, by Kent Blevins (USACE), Mike Halter (USACE), Doug Marsh and Neil Paasch (National Oceanic and Atmospheric Administration [NOAA]), Fred Mensik and Sean Rapp (Smolt Monitoring Program) at Lower Granite Dam. Finally, thank you to Andrew Holguin (U.C. Davis) for generating the GIS maps of our study areas. NR 57 TC 0 Z9 0 U1 34 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD NOV PY 2016 VL 183 BP 435 EP 446 DI 10.1016/j.fishres.2016.07.005 PG 12 WC Fisheries SC Fisheries GA DV0HW UT WOS:000382599600045 ER PT J AU Dichmont, CM Deng, RA Punt, AE Brodziak, J Chang, YJ Cope, JM Ianelli, JN Legault, CM Methot, RD Porch, CE Prager, MH Shertzer, KW AF Dichmont, Catherine M. Deng, Roy A. Punt, Andre E. Brodziak, Jon Chang, Yi-Jay Cope, Jason M. Ianelli, James N. Legault, Christopher M. Methot, Richard D., Jr. Porch, Clay E. Prager, Michael H. Shertzer, Kyle W. TI A review of stock assessment packages in the United States SO FISHERIES RESEARCH LA English DT Review DE Fishing mortality; Reference points; Stock assessment; Population dynamics ID POPULATION-DYNAMICS MODELS; SURPLUS-PRODUCTION-MODEL; DATA-LIMITED SITUATIONS; AT-AGE DATA; STRUCTURED MODELS; FISHING MORTALITY; FISHERIES DATA; SIMULATED DATA; SOUTH-AFRICA; MULTIFAN-CL AB Stock assessments provide scientific advice in support of fisheries decision making. Ideally, assessments involve fitting population dynamics models to fishery and monitoring data to provide estimates of time trajectories of biomass and fishing mortality in absolute terms and relative to biological reference points such as B-MSY and F-MSY, along with measures of uncertainty. Some stock assessments are conducted using software developed for a specific stock or group of stocks. However, increasingly, stock assessments are being conducted using packages developed for application to several taxa and across multiple regions. We review the range of packages used to conduct assessments of fish and invertebrate stocks in the United States because these assessments tend to have common goals, and need to provide similar outputs for decision making. Sixteen packages are considered, five based on surplus production models, one based on a delay-difference model, and the remainder based on age-structured models. Most of the packages are freely available for use by analysts in the US and around the world, have been evaluated using simulations, and can form the basis for forecasts. The packages differ in their ease of use and the types of data inputs they can use. This paper highlights the benefits of stock assessment packages in terms of allowing analysts to explore many assessment configurations and facilitating the peer-review of assessments. It also highlights the disadvantages associated with the use of packages for conducting assessments. Packages with the most options and greatest flexibility are the most difficult to use, and see the greatest development of auxiliary tools to facilitate their use. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved. C1 [Dichmont, Catherine M.; Deng, Roy A.] CSIRO Oceans & Atmosphere Flagship, Ecosci Precinct, Dutton Park, Qld 4750, Australia. [Punt, Andre E.] CSIRO Oceans & Atmosphere Flagship, Hobart, Tas 7001, Australia. [Punt, Andre E.] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. [Brodziak, Jon] Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96818 USA. [Chang, Yi-Jay] Univ Hawaii, NOAA Fisheries, Joint Inst Marine & Atmospher Res, Honolulu, HI USA. [Cope, Jason M.; Methot, Richard D., Jr.] Natl Marine Fisheries Serv, Northwest Fisheries Sci Ctr, 2725 Montlake Blvd East, Seattle, WA 98112 USA. [Ianelli, James N.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Legault, Christopher M.] Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, 166 Water St, Woods Hole, MA 02543 USA. [Porch, Clay E.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, 75 Virginia Beach Dr, Miami, FL 33149 USA. [Prager, Michael H.] Prager Consulting, 2124 SE Grant St, Portland, OR 97214 USA. [Shertzer, Kyle W.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, 101 Pivers Isl Rd, Beaufort, NC 28516 USA. RP Punt, AE (reprint author), CSIRO Oceans & Atmosphere, Hobart, Tas 7001, Australia. EM aepunt@uw.edu OI Chang, Yi-Jay/0000-0002-7472-4672 FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative agreement [NA100AR4320148, 2016-01-31]; Fisheries Research and Development Corporation; CSIRO FX The authors would like to thank Nick Davies, Beth Babcock (U. Miami), Murdoch McAllister (UBC), Paul Nitschke (NOAA, NEFSC), Erik Williams (NOAA, SEFSC), and E.J. Dick (NOAA, SWFSC) for their input to the survey undertaken to develop this paper. Melissa Haltuch (NOAA, NWFSC) and Mike Wilberg (University of Maryland) are thanked for comments on an earlier version of this paper. CMD, RAD, and AEP were funded by the Fisheries Research and Development Corporation and CSIRO. Paul Crone (SWFSC) and Richard McGarvey (SARDI) are thanked for their comments on an earlier version of the paper. AEP was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative agreement No. NA100AR4320148, Contribution No. 2016-01-31. NR 134 TC 2 Z9 2 U1 17 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD NOV PY 2016 VL 183 BP 447 EP 460 DI 10.1016/j.fishres.2016.07.001 PG 14 WC Fisheries SC Fisheries GA DV0HW UT WOS:000382599600046 ER PT J AU Frankland, VL James, AD Sanchez, JDC Mangan, TP Willacy, K Poppe, AR Plane, JMC AF Frankland, Victoria L. James, Alexander D. Sanchez, Juan Diego Carrillo Mangan, Thomas P. Willacy, Karen Poppe, Andrew R. Plane, John M. C. TI Uptake of acetylene on cosmic dust and production of benzene in Titan's atmosphere SO ICARUS LA English DT Article DE Titan, atmosphere; Kuiper belt; Interplanetary dust ID TRANSFORM MASS-SPECTROMETRY; PHOTOCHEMICAL MODEL; HAZE FORMATION; COUPLING PHOTOCHEMISTRY; LOW-TEMPERATURE; GRAIN SURFACES; SOLAR-SYSTEM; PD(111); KINETICS; CYCLOTRIMERIZATION AB A low-temperature flow tube and ultra-high vacuum apparatus were used to explore the uptake and heterogeneous chemistry of acetylene (C2H2) on cosmic dust analogues over the temperature range encountered in Titan's atmosphere below 600 km. The uptake coefficient, gamma, was measured at 181 K to be (1.6 +/- 0.4) x 10(-4), (1.9 +/- 0.4) x 10(-4) and (1.5 +/- 0.4) x 10(-4) for the uptake of C2H2 on Mg2SiO4, MgFeSiO4 and Fe2SiO4, respectively, indicating that gamma is independent of Mg or Fe active sites. The uptake of C2H2 was also measured on SiO2 and SiC as analogues for meteoric smoke particles in Titan's atmosphere, but was found to be below the detection limit (gamma < 6 x 10(-8) and <4 x 10(-7), respectively). The rate of cyclo-trimerization of C2H2 to C6H6 was found to be 2.6 x 10(-5) exp(-741/7) s(-1), with an uncertainty ranging from +/- 27 % at 115 K to +/- 49 % at 181 K. A chemical ablation model was used to show that the bulk of cosmic dust particles (radius 0.02-10 mu m) entering Titan's atmosphere do not ablate (< 1% mass loss through sputtering), thereby providing a significant surface for heterogeneous chemistry. A 10 model of dust sedimentation shows that the production of C6H6 via uptake of C2H2 on cosmic dust, followed by cyclo-trimerization and desorption, is probably competitive with gas-phase production of C6H6 between 80 and 120 km. (C) 2016 Elsevier Inc. All rights reserved. C1 [Frankland, Victoria L.; James, Alexander D.; Sanchez, Juan Diego Carrillo; Mangan, Thomas P.; Plane, John M. C.] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England. [Willacy, Karen] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Poppe, Andrew R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Plane, JMC (reprint author), Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England. EM j.m.c.plane@leeds.ac.uk RI Plane, John/C-7444-2015 OI Plane, John/0000-0003-3648-6893 FU Leverhulme Trust [F/00 122/BB - PETALS]; European Research Council [291332 - CODITA]; Science and Technology Facilities Council [ST/L000628/1]; NASA Astrobiology Institute, Titan as a Prebiotic Chemical System; NASA Planetary Atmospheres program [NNX13AG55G] FX This work was supported by funding from the Leverhulme Trust (grant F/00 122/BB - PETALS), the European Research Council (project number 291332 - CODITA) and the Science and Technology Facilities Council (grant ST/L000628/1). The authors acknowledge Rebecca Mills for her work on calibrating the C2H2 beam flux for the UHV work, and thank Dr Wuhu Feng (National Centre for Atmospheric Science and University of Leeds) for supplying output from the Caltech/JPL 1D Titan model. K.W.'s work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration and was supported by funding from the NASA Astrobiology Institute, Titan as a Prebiotic Chemical System. A.R.P. was supported by the NASA Planetary Atmospheres program, grant #NNX13AG55G. NR 79 TC 0 Z9 0 U1 18 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2016 VL 278 BP 88 EP 99 DI 10.1016/j.icarus.2016.06.007 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT1ML UT WOS:000381246700008 ER PT J AU Guzewich, SD Toigo, AD Waugh, DW AF Guzewich, Scott D. Toigo, A. D. Waugh, D. W. TI The effect of dust on the martian polar vortices SO ICARUS LA English DT Article DE Mars, atmosphere; Atmospheres, dynamics; Meteorology ID GENERAL-CIRCULATION MODEL; ZONAL-MEAN CIRCULATION; MIDDLE-ATMOSPHERE; POTENTIAL VORTICITY; MARS; SIMULATION; STORMS; DYNAMICS; ORIGIN; CLOUDS AB The influence of atmospheric dust on the dynamics and stability of the martian polar vortices is examined, through analysis of Mars Climate Sounder observations and MarsWRF general circulation model simulations. We show that regional and global dust storms produce "transient vortex warming" events that partially or fully disrupt the northern winter polar vortex for brief periods. Increased atmospheric dust heating alters the Hadley circulation and shifts the downwelling branch of the circulation poleward, leading to a disruption of the polar vortex for a period of days to weeks. Through our simulations, we find this effect is dependent on the atmospheric heating rate, which can be changed by increasing the amount of dust in the atmosphere or by altering the dust optical properties (e.g., single scattering albedo). Despite this, our simulations show that some level of atmospheric dust is necessary to produce a distinct northern hemisphere winter polar vortex. (C) 2016 Elsevier Inc. All rights reserved. C1 [Guzewich, Scott D.] NASA GSFC, CRESST, Greenbelt, MD 20771 USA. [Guzewich, Scott D.] NASA GSFC, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Guzewich, Scott D.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA. [Toigo, A. D.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Waugh, D. W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, 301 Olin Hall,3400 N Charles St, Baltimore, MD 21218 USA. RP Guzewich, SD (reprint author), NASA GSFC, CRESST, Greenbelt, MD 20771 USA.; Guzewich, SD (reprint author), NASA GSFC, Planetary Syst Lab, Greenbelt, MD 20771 USA. EM sguzewich@gmail.com OI Guzewich, Scott/0000-0003-1149-7385 FU NASA Mars Fundamental Research Program [NNX14AG53G] FX The authors gratefully recognize funding from the NASA Mars Fundamental Research Program through Grant NNX14AG53G and thank Daniel Mitchell and Luca Montabone for sharing code for calculating Ertel's Potential Vorticity. We thank two anonymous reviewers for their helpful comments, which have improved this manuscript. NR 45 TC 2 Z9 2 U1 12 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2016 VL 278 BP 100 EP 118 DI 10.1016/j.icarus.2016.06.009 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT1ML UT WOS:000381246700009 ER PT J AU Fletcher, LN Greathouse, TK Orton, GS Sinclair, JA Giles, RS Irwin, PGJ Encrenaz, T AF Fletcher, Leigh N. Greathouse, T. K. Orton, G. S. Sinclair, J. A. Giles, R. S. Irwin, P. G. J. Encrenaz, T. TI Mid-infrared mapping of Jupiter's temperatures, aerosol opacity and chemical distributions with IRTF/TEXES SO ICARUS LA English DT Article DE Jupiter; Atmospheres; composition; Atmospheres; dynamics ID GREAT-RED-SPOT; ROTOTRANSLATIONAL ABSORPTION-SPECTRA; POTENTIAL-VORTICITY DYNAMICS; PARA-HYDROGEN FRACTION; NORTH EQUATORIAL BELT; 5-MICRON HOT-SPOTS; PROBE ENTRY SITE; CLOUD STRUCTURE; ATMOSPHERIC COMPOSITION; THERMAL STRUCTURE AB Global maps of Jupiter's atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 mu m mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF). Image cubes from December 2014 in eight spectral channels, with spectral resolutions of R similar to'2000-12, 000 and spatial resolutions of 2-4 degrees latitude, are inverted to generate 3D maps of tropospheric and stratospheric temperatures, 2D maps of upper tropospheric aerosols, phosphine and ammonia, and 2D maps of stratospheric ethane and acetylene. The results are compared to a re-analysis of Cassini Composite Infrared Spectrometer (CIRS) observations acquired during Cassini's closest approach to Jupiter in December 2000, demonstrating that this new archive of ground-based mapping spectroscopy can match and surpass the quality of previous investigations, and will permit future studies of Jupiter's evolving atmosphere. The visibility of cool zones and warm belts varies from channel to channel, suggesting complex vertical variations from the radiatively-controlled upper troposphere to the convective mid -troposphere. We identify mid-infrared signatures of Jupiter's 5-mu m hotspots via simultaneous M, N and Q-band observations, which are interpreted as temperature and ammonia variations in the northern Equatorial Zone and on the edge of the North Equatorial Belt (NEB). Equatorial plumes enriched in NH3 gas are located south-east of NH3-desiccated 'hotspots' on the edge of the NEB. Comparison of the hotspot locations in several channels across the 5-20 mu m range indicate that these anomalous regions tilt westward with altitude. Aerosols and PH3 are both enriched at the equator but are not co-located with the NH3 plumes. The equatorial temperature minimum and PH3/aerosol maxima have varied in amplitude over time, possibly as a result of periodic equatorial brightenings and the fresh updrafts of disequilibrium material. Temperate mid-latitudes display a correlation between mid-IR aerosol opacity and the white albedo features in visible light (i.e., zones). We find hemispheric asymmetries in the distribution of tropospheric PH3, stratospheric hydrocarbons and the 2D wind field (estimated via the thermal-wind equation) that suggest a differing efficiency of mechanical forcing (e.g., vertical mixing and wave propagation) between the two hemispheres that we argue is driven by dynamics rather than Jupiter's small seasonal cycle. Jupiter's stratosphere is notably warmer at northern mid-latitudes than in the south in both 2000 and 2014, although the latter can be largely attributed to strong thermal wave activity near 30 degrees N that dominates the 2014 stratospheric maps and may be responsible for elevated C2H2 in the northern hemisphere. A vertically-variable pattern of temperature and wind shear minima and maxima associated with Jupiter's Quasi Quadrennial Oscillation (QQO) is observed at the equator in both datasets, although the contrasts were more subdued in 2014. Large-scale equator-to pole gradients in ethane and acetylene are superimposed on top of the mid-latitude mechanically-driven maxima, with C2H2 decreasing from equator to pole and C2H6 showing a polar enhancement, consistent with a radiatively-controlled circulation from low to high latitudes. Cold polar vortices beyond 60 latitude can be identified in the upper tropospheric and lower stratospheric temperature maps, suggesting enhanced radiative cooling from polar aerosols. Finally, compositional mapping of the Great Red Spot confirms the local enhancements in PH3 and aerosols, the north-south asymmetry in NH3 gas and the presence of a warm southern periphery that have been noted by previous authors. (C) 2016 The Authors. Published by Elsevier Inc. C1 [Fletcher, Leigh N.] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. [Greathouse, T. K.] Southwest Res Inst, Div 15,6220 Culebra Rd, San Antonio, TX 78228 USA. [Orton, G. S.; Sinclair, J. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Giles, R. S.; Irwin, P. G. J.] Univ Oxford, Dept Phys, Clarendon Lab, Atmospher Ocean & Planetary Phys, Parks Rd, Oxford OX1 3PU, England. [Encrenaz, T.] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. RP Fletcher, LN (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM leigh.fletcher@leicester.ac.uk OI Fletcher, Leigh/0000-0001-5834-9588; Giles, Rohini/0000-0002-7665-6562 FU Royal Society Research Fellowship at the University of Leicester; Science and Technology Facilities Council (STFC) FX Fletcher was supported by a Royal Society Research Fellowship at the University of Leicester. Fletcher, Greathouse, Orton and Giles were visiting astronomers at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. We recognise the significant cultural role of Mauna Kea within the indigenous Hawaiian community, and we appreciate the opportunity to conduct our Jupiter observations from this revered site. The UK authors acknowledge the support of the Science and Technology Facilities Council (STFC). A portion of this work was performed by Orton and Sinclair at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank Marco Vedovato of the Italian Amateur Astronomers Union for compiling the visible light images from I. Sharp, F. Fortunato, H. Einaga and T. Horiuchi to coincide with our TEXES programme. We are extremely grateful to John Lacy and Matt Richter for their assistance in understanding the performance of the TEXES instrument and the uncertainties related to calibration. We thank S. Guerlet, J. Moses, T. Fouchet and V. Hue for helpful comments and suggestions during this work, and Gordy Bjoraker and one anonymous reviewer for their critique of this manuscript. This research used the ALICE High Performance Computing Facility at the University of Leicester. NR 133 TC 1 Z9 1 U1 11 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2016 VL 278 BP 128 EP 161 DI 10.1016/j.icarus.2016.06.008 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT1ML UT WOS:000381246700011 ER PT J AU Davies, AG Keszthelyi, LP McEwen, AS AF Davies, Ashley Gerard Keszthelyi, Laszlo P. McEwen, Alfred S. TI Determination of eruption temperature of Io's lavas using lava tube skylights SO ICARUS LA English DT Article DE Io; Volcanism; Jupiter, satellites; Satellites, composition ID JUPITERS MOON IO; THERMAL EMISSION; HEAT-FLOW; TIDAL DISSIPATION; VOLCANIC ACTIVITY; GREENSTONE-BELT; GALILEO; SPECTROMETER; MODELS; PILLAN AB Determining the eruption temperature of Io's dominant silicate lavas would constrain Io's present interior state and composition. We have examined how eruption temperature can be estimated at lava tube skylights through synthesis of thermal emission from the incandescent lava flowing within the lava tube. Lava tube skylights should be present along Io's long-lived lava flow fields, and are attractive targets because of their temporal stability and the narrow range of near -eruption temperatures revealed through them. We conclude that these skylights are suitable and desirable targets (perhaps the very best targets) for the purposes of constraining eruption temperature, with a 0.9:0.7-mu m radiant flux ratio <= 63 being diagnostic of ultramafic lava temperatures. Because the target skylights may be small - perhaps only a few m or 10 s of m across - such observations will require a future Io-dedicated mission that will obtain high spatial resolution (<100 mipixel), unsaturated observations of Io's surface at multiple wavelengths in the visible and near-infrared, ideally at night. In contrast to observations of lava fountains or roiling lava lakes, where accurate determination of surface temperature distribution requires simultaneous or near simultaneous (<0.1 s) observations at different wavelengths, skylight thermal emission data are superior for the purposes of temperature derivation, as emission is stable on much longer time scales (minutes, or longer), so long as viewing geometry does not greatly change during that time. (C) 2016 Elsevier Inc. All rights reserved. C1 [Davies, Ashley Gerard] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Keszthelyi, Laszlo P.] USGS Astrogeol Sci Ctr, Flagstaff, AZ USA. [McEwen, Alfred S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ USA. RP Davies, AG (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Ashley.Davies@jpl.nasa.gov FU NASA Outer Planets Research Program [NNN13D466T] FX This work was carried out in part at the Jet Propulsion Laboratory - California Institute of Technology, under contract to the National Aeronautics and Space Administration. We thank Alison Canning Davies and Greg Vaughan for their pre-submission reviews of the manuscript. We also thank David Williams of Arizona State University and an anonymous reviewer for their reviews of the submitted manuscript. AGD is supported by grant NNN13D466T from the NASA Outer Planets Research Program. NR 58 TC 0 Z9 0 U1 9 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2016 VL 278 BP 266 EP 278 DI 10.1016/j.icarus.2016.06.003 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT1ML UT WOS:000381246700019 ER PT J AU Holdeman, JD AF Holdeman, James D. TI Re: Penetration behavior of opposed rows of staggered secondary air jets depending on jet penetration coefficient and momentum flux ratio SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Solid waste incinerator; Staggered jets; Momentum-flux ratio; Jet penetration coefficient; Jets in crossflow; Gas turbine combustors; Dilution jets; Empirical model; Correlations; Conserved scalar; Temperature distribution; JIC ID CROSS-FLOW; SPREADSHEET CALCULATIONS AB The purpose of this article is to explain why the extension of the previously published C = (5/H-o)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because H-o/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection. (C) 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.orgflicensesiby-nc-nd/4.0/). C1 [Holdeman, James D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Holdeman, James D.] 5228 Meadow Moss Ln, N Ridgeville, OH 44039 USA. RP Holdeman, JD (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.; Holdeman, JD (reprint author), 5228 Meadow Moss Ln, N Ridgeville, OH 44039 USA. EM jjdholdeman@aol.com FU Combustion Branch at the NASA Glenn Research Center FX The author would particularly like to thank Mr. Richard E. Walker (Aerojet Liquid Rocket Company, ret.) and Dr. Ram Srinivasan (then of Garrett Turbine Engine Company) for their early contributions to the NASA JIC empirical model. The author would also like to thank Professor William E. Lear, Jr. of the University of Florida for suggesting that the original computer code could be converted to an Excel (R) spreadsheet and for directing its development, and to Mr. James R. Clisset who did the initial Excel programming as an undergraduate student at UF. Also, Messrs. Timothy D. Smith and Jeffrey P. Moder of the NASA Glenn Research Center contributed significantly to development and demonstration of the spreadsheet. Finally, the author would like to thank Dr. Clarence T. Chang of the Combustion Branch at the NASA Glenn Research Center for providing funding for the Open Access publication and color printing of this paper. NR 10 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD NOV PY 2016 VL 102 BP 435 EP 444 DI 10.1016/j.ijheatmasstransfer.2016.06.038 PG 10 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA DU7QS UT WOS:000382410300043 ER PT J AU Johnson, M Gorospe, G Landry, J Schuster, A AF Johnson, Michael Gorospe, George Landry, Jonathan Schuster, Anja TI Review of mitigation technologies for terrestrial power grids against space weather effects SO INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS LA English DT Review DE Space weather; Gemagnetically induced currents; Power grids; Transformers; Mitigation strategies ID SYSTEMS; TRANSMISSION; SCENARIOS; EVENT AB This paper discusses the earth-based effects of solar weather and presents a review of mitigation and protection techniques for the terrestrial power grid infrastructure. Solar events such as Coronal Mass Ejections (CMEs), solar flares and associated recombination events are one of the driving factors in space weather and the solar wind intensity. Even though it is located at such a great distance from our nearest star, the Earth and its associated satellites are still directly affected by variances in these space weather phenomena. On the surface of the planet, nowhere is this more immediate and important than with the terrestrial power grid, which is responsible for delivering electrical power to much of the planets population. Large-scale variations in solar activity can result in potentially devastating effects on the terrestrial power grid and the associated infrastructure. A team project was undertaken at the International Space University (ISU) Space Studies Program (SSP) 2013 to categorize and mitigate the risks involved in such a solar event. As part of this research, which included risk assessment for satellite, spacecraft and terrestrial resources, this paper presents a review of the terrestrial power grid and its inherent susceptibility to such phenomena. Mitigation schemes, techniques and approaches ranging from adaption of the existing power grid to alternative systems are considered in this paper, which allow for continued electrical power delivery and transmission, even in the face of such detrimental space weather effects. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Johnson, Michael] Univ Limerick, Limerick, Ireland. [Gorospe, George] NASA, Ames Res Ctr, San Jose, CA USA. [Landry, Jonathan] ETS, Montreal, PQ, Canada. [Schuster, Anja] Tech Univ Darmstadt, Darmstadt, Germany. RP Johnson, M (reprint author), Univ Limerick, Limerick, Ireland. EM michael.johnson@ul.ie FU International Space University; Johns Hopkins University Applied Physics Laboratory FX The authors would like to acknowledge the work of all team members in Team Project SolarMax at the 2013 International Space University Space Studies Program 2013 for their contributions towards the team project and this work. Team SolarMAX was composed of Ang Xu, Anja Schuster, Arnaud Sternchass, Ashley Dale, Bai Baocun, Beatrice Hainaut, Caroline Smoczarski, Chandrakanta Kumar, Charles Laing, Chunhui Wang, Eric Hall, Gabriele Librandi, George Gorospe, Gongyou Wu, Hester Vermeiden, Hongbin Shi, Jaime Babb, Jonathan Landry, Julio Ceasar Salazar Ospina, Kun Li, Leo Teeney, Mark Burke, Matt Palmer, Meifang Li, Melissa Battler, Michael Johnson, Morten Salvesen, Nicolas Thiry, Paul Tarantino, Remco Timmermans, Richard Passmore, Suquan Ding, Timo Nikkanen, Xianxu Yuan, Yevgeny Tsodikovich, Yuta Nakajima. Team SolarMAX would also like to thank David Haslam, Dr. Rogan Shimmin and Dr. Pete S. Worden for their leadership and guidance, and would like to acknowledge both the International Space University and Johns Hopkins University Applied Physics Laboratory for supporting this project. NR 35 TC 0 Z9 0 U1 22 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-0615 EI 1879-3517 J9 INT J ELEC POWER JI Int. J. Electr. Power Energy Syst. PD NOV PY 2016 VL 82 BP 382 EP 391 DI 10.1016/j.ijepes.2016.02.049 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA DP4ET UT WOS:000378449700039 ER PT J AU Kikuchi, N Kurashima, S Ishida, M Iizuka, R Maeda, Y Hayashi, T Okajima, T Matsumoto, H Mitsuishi, I Saji, S Sato, T Tachibana, S Mori, H Christensen, F Brejnholt, N Nitta, K Uruga, T AF Kikuchi, Naomichi Kurashima, Sho Ishida, Manabu Iizuka, Ryo Maeda, Yoshitomo Hayashi, Takayuki Okajima, Takashi Matsumoto, Hironori Mitsuishi, Ikuyuki Saji, Shigetaka Sato, Toshiki Tachibana, Sasagu Mori, Hideyuki Christensen, Finn Brejnholt, Nicolai Nitta, Kiyofumi Uruga, Tomoya TI Atomic scattering factor of the ASTRO-H (Hitomi) SXT reflector around the gold's L edges SO OPTICS EXPRESS LA English DT Article AB The atomic scattering factor in the energy range of 11.2-15.4 keV for the ASTROH Soft X-ray Telescope (SXT) is reported. The large effective area of the SXT makes use of photon spectra above 10 keV viable, unlike most other X-ray satellites with total-reflection mirror optics. Presence of gold's L-edges in the energy band is a major issue, as it complicates the function of the effective area. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4-0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor. (C) 2016 Optical Society of America C1 [Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Maeda, Yoshitomo; Sato, Toshiki] Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. [Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Sato, Toshiki] Japan Aerosp Explorat Agcy JAXA, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. [Ishida, Manabu; Maeda, Yoshitomo] Grad Univ Adv Studies, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Hayashi, Takayuki; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; Tachibana, Sasagu] Nagoya Univ, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan. [Hayashi, Takayuki; Okajima, Takashi; Mori, Hideyuki] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Christensen, Finn] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Brejnholt, Nicolai] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nitta, Kiyofumi; Uruga, Tomoya] JASRI SPring 8, Sayo Cho, Sayo, Hyogo 6795198, Japan. RP Maeda, Y (reprint author), Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. EM ymaeda@astro.isas.jaxa.jp FU Ministry of Education, Culture, Sports, Science and Technology, Japan [25870744, 25105516, 23540280] FX The authors are grateful to all the full-time engineers and part-time workers in the GSFC/NASA laboratory for support in mass production of the Soft X-ray Telescope reflectors. R.I. and Y.M. acknowledge Support from the Grants-in-Aid for Scientific Research (numbers 25870744, 25105516 and 23540280) by the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank M. Sakano (Wise Babel Ltd.) and Chris Baluta for English correction. NR 19 TC 0 Z9 0 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 31 PY 2016 VL 24 IS 22 BP 25548 EP 25564 DI 10.1364/OE.24.025548 PG 17 WC Optics SC Optics GA EC8SQ UT WOS:000388413400085 PM 27828493 ER PT J AU Suazo-Davila, D Rivera-Melendez, J Koehne, J Meyyappan, M Cabrera, CR AF Suazo-Davila, D. Rivera-Melendez, J. Koehne, J. Meyyappan, M. Cabrera, C. R. TI Surface analysis and electrochemistry of a robust carbon-nanofiber-based electrode platform H2O2 sensor SO APPLIED SURFACE SCIENCE LA English DT Article DE H2O2; Cholesterol; Carbon nanofiber electrode; Cholesterol oxidase ID HYDROGEN-PEROXIDE SENSOR; BORON-DOPED DIAMOND; NANOELECTRODE ARRAYS; SILVER NANOPARTICLES; NANOTUBES; BIOSENSOR; GRAPHENE; FABRICATION; PLATINUM; GLUCOSE AB A vertically aligned carbon nanofiber-based (VACNF) electrode platform was developed for an enzyme less hydrogen peroxide sensor. Vertical nanofibers have heights on the order of 2-3 mu m, and diameters that vary from 50 to 100 nm as seen by atomic force microscopy. The VACNF was grown as individual, vertically, and freestanding structures using plasma-enhanced chemical vapor deposition. The electrochemical sensor, for the hydrogen peroxide measurement in solution, showed stability and reproducibility in five consecutive calibration curves with different hydrogen peroxide concentrations over a period of 3 days. The detection limit was 66 mu M. The sensitivity for hydrogen peroxide electrochemical detection was 0.0906 mA cm(-2) mM(-1), respectively. The sensor was also used for the measurement of hydrogen peroxide as the by-product of the reaction of cholesterol with cholesterol oxidase as a biosensor application. The sensor exhibits linear behavior in the range of 50 mu M-1 mM in cholesterol concentrations. The surface analysis and electrochemistry characterization is presented. (C) 2016 Published by Elsevier B.V. C1 [Suazo-Davila, D.; Rivera-Melendez, J.; Cabrera, C. R.] Univ Puerto Rico, Mol Sci Res Ctr, Dept Chem, NASA MIRO Ctr Adv Nanoscale Mat CANM, Rio Piedras Campus, San Juan, PR 00936 USA. [Koehne, J.; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Cabrera, CR (reprint author), Univ Puerto Rico, Mol Sci Res Ctr, Dept Chem, NASA MIRO Ctr Adv Nanoscale Mat CANM, Rio Piedras Campus, San Juan, PR 00936 USA. EM carlos.cabrera2@upr.edu FU NASA-MIRO [NNX10AQ17A]; NSF-Chemistry [CHE-1152940]; NASA; NIH-MARC FX This work was financially supported in part by NASA-MIRO Grant No. NNX10AQ17A and NSF-Chemistry Grant No. CHE-1152940. DSD and JR acknowledge the NASA Harriet Jenkins Pre-doctoral Fellowship Program and the NIH-MARC Undergraduate Fellowship Program, respectively. NR 54 TC 2 Z9 2 U1 68 U2 173 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 30 PY 2016 VL 384 BP 251 EP 257 DI 10.1016/j.apsusc.2016.05.027 PG 7 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DP5TP UT WOS:000378560900031 ER PT J AU Isakov, SV Mazzola, G Smelyanskiy, VN Jiang, Z Boixo, S Neven, H Troyer, M AF Isakov, Sergei V. Mazzola, Guglielmo Smelyanskiy, Vadim N. Jiang, Zhang Boixo, Sergio Neven, Hartmut Troyer, Matthias TI Understanding Quantum Tunneling through Quantum Monte Carlo Simulations SO PHYSICAL REVIEW LETTERS LA English DT Article ID PATH-INTEGRALS; SPIN-GLASS; OPTIMIZATION; ALGORITHM; DYNAMICS AB The tunneling between the two ground states of an Ising ferromagnet is a typical example of many-body tunneling processes between two local minima, as they occur during quantum annealing. Performing quantum Monte Carlo (QMC) simulations we find that the QMC tunneling rate displays the same scaling with system size, as the rate of incoherent tunneling. The scaling in both cases is O(Delta(2)), where Delta is the tunneling splitting (or equivalently the minimum spectral gap). An important consequence is that QMC simulations can be used to predict the performance of a quantum annealer for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent to a projector QMC algorithm, we obtain a quadratic speedup for QMC simulations, and achieve linear scaling in Delta. We provide a physical understanding of these results and their range of applicability based on an instanton picture. C1 [Isakov, Sergei V.] Google, CH-8002 Zurich, Switzerland. [Mazzola, Guglielmo; Troyer, Matthias] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland. [Smelyanskiy, Vadim N.; Boixo, Sergio; Neven, Hartmut] Google, Venice, CA 90291 USA. [Jiang, Zhang] NASA, QuAIL, Ames Res Ctr, Moffett Field, CA 94035 USA. [Jiang, Zhang] Stinger Ghaffarian Technol Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. RP Isakov, SV (reprint author), Google, CH-8002 Zurich, Switzerland. FU Swiss National Science Foundation through the National Competence Center in Research QSIT; ODNI; IARPA via MIT Lincoln Laboratory Air Force [FA8721-05-C-0002]; NSF [PHY-1066293] FX The work of G. M. and M. T. has been supported by the Swiss National Science Foundation through the National Competence Center in Research QSIT and by ODNI, IARPA via MIT Lincoln Laboratory Air Force Contract No. FA8721-05-C-0002. M. T. acknowledges hospitality of the Aspen Center for Physics, supported by NSF Grant No. PHY-1066293. We acknowledge useful discussions with F. Becca, M. Dykman, and G. Santoro. NR 46 TC 2 Z9 2 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2016 VL 117 IS 18 AR 180402 DI 10.1103/PhysRevLett.117.180402 PG 6 WC Physics, Multidisciplinary SC Physics GA EF3MF UT WOS:000390227800001 PM 27835027 ER PT J AU Cullather, RI Lim, YK Boisvert, LN Brucker, L Lee, JN Nowicki, SMJ AF Cullather, Richard I. Lim, Young-Kwon Boisvert, Linette N. Brucker, Ludovic Lee, Jae N. Nowicki, Sophie M. J. TI Analysis of the warmest Arctic winter, 2015-2016 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE polar amplification; winter 2015-2016; Arctic warming ID SEA-ICE; ATMOSPHERIC RESPONSE; NORTH-ATLANTIC; CLIMATE-CHANGE; AMPLIFICATION; OSCILLATION; TELECONNECTIONS; ANOMALIES; PATTERNS; ASTERISK AB December through February 2015-2016 defines the warmest winter season over the Arctic in the observational record. Positive 2m temperature anomalies were focused over regions of reduced sea ice cover in the Kara and Barents Seas and southwestern Alaska. A third region is found over the ice-covered central Arctic Ocean. The period is marked by a strong synoptic pattern which produced melting temperatures in close proximity to the North Pole in late December and anomalous high pressure near the Taymyr Peninsula. Atmospheric teleconnections from the Atlantic contributed to warming over Eurasian high-latitude land surfaces, and El Nino-related teleconnections explain warming over southwestern Alaska and British Columbia, while warm anomalies over the central Arctic are associated with physical processes including the presence of enhanced atmospheric water vapor and an increased downwelling longwave radiative flux. Preconditioning of sea ice conditions by warm temperatures affected the ensuing spring extent. C1 [Cullather, Richard I.; Boisvert, Linette N.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Cullather, Richard I.; Lim, Young-Kwon] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Lim, Young-Kwon] Goddard Earth Sci Technol & Res, IM Syst Grp, College Pk, MD USA. [Boisvert, Linette N.; Brucker, Ludovic; Nowicki, Sophie M. J.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD USA. [Brucker, Ludovic] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Lee, Jae N.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Lee, Jae N.] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD USA. RP Cullather, RI (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.; Cullather, RI (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. EM richard.cullather@nasa.gov RI Brucker, Ludovic/A-8029-2010 OI Brucker, Ludovic/0000-0001-7102-8084 FU NASA Interdisciplinary Research in Earth Science (IDS) program FX Surface Temperature Analysis (GISTEMP) data were obtain from NASA Goddard Institute for Space Studies (http://data.giss.nasa.gov/gistemp/). Reanalysis fields [Global Modeling and Assimilation Office, 2015a, 2015b] and AIRS data products were obtained from the Goddard Earth Sciences Data and Information Services Center. Sea ice concentration data derived from passive microwave remote sensing with the NASA Team algorithm were obtained from the National Snow and Ice Data Center. Monthly indices were obtained from the NOAA Earth System Research Laboratory (http://www.esrl.noaa.gov/psd/data/climateindices/list/). The authors posthumously thank Andrew G. Slater for his helpful comments in review and thank one other anonymous reviewer. This study was funded by grants from the NASA Interdisciplinary Research in Earth Science (IDS) program to the first, fourth, and sixth authors. NR 54 TC 3 Z9 3 U1 17 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2016 VL 43 IS 20 BP 10808 EP 10816 DI 10.1002/2016GL071228 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EC7CQ UT WOS:000388293800033 ER PT J AU Christianson, K Bushuk, M Dutrieux, P Parizek, BR Joughin, IR Alley, RB Shean, DE Abrahamsen, EP Anandakrishnan, S Heywood, KJ Kim, TW Lee, SH Nicholls, K Stanton, T Truffer, M Webber, BGM Jenkins, A Jacobs, S Bindschadler, R Holland, DM AF Christianson, Knut Bushuk, Mitchell Dutrieux, Pierre Parizek, Byron R. Joughin, Ian R. Alley, Richard B. Shean, David E. Abrahamsen, E. Povl Anandakrishnan, Sridhar Heywood, Karen J. Kim, Tae-Wan Lee, Sang Hoon Nicholls, Keith Stanton, Tim Truffer, Martin Webber, Benjamin G. M. Jenkins, Adrian Jacobs, Stan Bindschadler, Robert Holland, David M. TI Sensitivity of Pine Island Glacier to observed ocean forcing SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ANTARCTIC ICE-SHEET; AMUNDSEN SEA EMBAYMENT; GROUNDING LINE RETREAT; WEST ANTARCTICA; THWAITES GLACIER; SHELF; BENEATH; MELT; CIRCULATION; WIDESPREAD AB We present subannual observations (2009-2014) of a major West Antarctic glacier (Pine Island Glacier) and the neighboring ocean. Ongoing glacier retreat and accelerated ice flow were likely triggered a few decades ago by increased ocean-induced thinning, which may have initiated marine ice sheet instability. Following a subsequent 60% drop in ocean heat content from early 2012 to late 2013, ice flow slowed, but by<4%, with flow recovering as the ocean warmed to prior temperatures. During this cold-ocean period, the evolving glacier-bed/ice shelf system was also in a geometry favorable to stabilization. However, despite a minor, temporary decrease in ice discharge, the basin-wide thinning signal did not change. Thus, as predicted by theory, once marine ice sheet instability is underway, a single transient high-amplitude ocean cooling has only a relatively minor effect on ice flow. The long-term effects of ocean temperature variability on ice flow, however, are not yet known. C1 [Christianson, Knut; Shean, David E.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Bushuk, Mitchell; Holland, David M.] NYU, Courant Inst Math Sci, New York, NY USA. [Bushuk, Mitchell] Princeton Univ, Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA. [Dutrieux, Pierre; Joughin, Ian R.; Shean, David E.] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Dutrieux, Pierre; Jacobs, Stan] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Parizek, Byron R.] Penn State Univ, Math & Geosci, Du Bois, PA USA. [Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Abrahamsen, E. Povl; Nicholls, Keith; Jenkins, Adrian] British Antarctic Survey, Nat Environm Res Council, Cambridge, England. [Heywood, Karen J.; Webber, Benjamin G. M.] Univ East Anglia, Sch Environm Sci, Ctr Ocean & Atmospher Sci, Norwich, Norfolk, England. [Kim, Tae-Wan; Lee, Sang Hoon] Korea Polar Res Inst, Inchon, South Korea. [Stanton, Tim] US Naval Postgrad Sch, Dept Oceanog, Monterey, CA USA. [Truffer, Martin] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Bindschadler, Robert] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Christianson, K (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. EM knut@uw.edu RI Abrahamsen, Povl/B-2140-2008; OI Abrahamsen, Povl/0000-0001-5924-5350; Heywood, Karen/0000-0001-9859-0026; Dutrieux, Pierre/0000-0002-8066-934X FU National Aeronautics and Space Administration [NNX16AM01G, NNX12AB69G, NNX15AH84G]; U.S. National Science Foundation [PLR-0732869, PLR-0732730, PLR-1443190, PLR-0632282, ANT-0732926, AGS-138832, ANT-0424589]; New York University Abu Dhabi Research Institute [G1204]; U.K. Natural Environment Research Council iSTAR program [NE/J005703/1, NE/G001367/1, NE/J005746/1]; South Korean Polar Research Institute grant KOPRI [PP15020] FX The work was supported by National Aeronautics and Space Administration grants NNX16AM01G (K.C.), NNX12AB69G (K.C. and D.H.), and NNX15AH84G (B.P.); U.S. National Science Foundation grants PLR-0732869 (D.H. and M. B.), PLR-0732730 (M.T.), PLR-1443190 (B.P.), PLR-0632282 (S.J.), ANT-0732926 (T.S.), AGS-138832 (B.P. and R.A.) and ANT-0424589 (I.J., K.C., R.A., S.A., and B.P.); New York University Abu Dhabi Research Institute grant G1204 (D.H.); U.K. Natural Environment Research Council iSTAR program-grants NE/J005703/1 (K.H. and B.W.), NE/G001367/1 (A.J. and P.D.), and NE/J005746/1 (A.J., K.H., B.W., and P. D.), and South Korean Polar Research Institute grant KOPRI PP15020 (S.L. and T.K.). The U.S.-NSF POLENET project provided GPS base data. Logistical support was provided by the U.S. Air Force, 139th Expeditionary Airlift Squadron of the New York Air National Guard, Kenn Borek Air, and by many dedicated individuals working as part of the Antarctic Support Contract, managed by Raytheon Polar Services Company and Lockheed-Martin, and by the officers, scientists and crew of RV Araon, RV Nathaniel B. Palmer and RRS James Clark Ross. GPS data are archived with UNAVCO (www.unavco.org). Oceanographic data have been submitted to the NOAA National Centers for Environmental Information (https://www.nodc.noaa.gov/), British Oceanographic Data Centre (http://www.bodc.ac.uk/), and IEDA/MGDS Southern Ocean portal (http://www.marine-geo.org/index.php). SAR-derived ice velocity fields and grounding lines, and basal altimeter range data are freely available from the corresponding author. NR 55 TC 2 Z9 2 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2016 VL 43 IS 20 BP 10817 EP 10825 DI 10.1002/2016GL070500 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EC7CQ UT WOS:000388293800045 ER PT J AU Frederikse, T Riva, R Kleinherenbrink, M Wada, Y van den Broeke, M Marzeion, B AF Frederikse, Thomas Riva, Riccardo Kleinherenbrink, Marcel Wada, Yoshihide van den Broeke, Michiel Marzeion, Ben TI Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE sea level budget ID GREENLAND ICE-SHEET; COASTAL ZONES; RISE; IMPACT; MODEL; 20TH-CENTURY; CONSISTENT; TIDE; ACCELERATION; FLUCTUATIONS AB Long-term trends and decadal variability of sea level in the North Sea and along the Norwegian coast have been studied over the period 1958-2014. We model the spatially nonuniform sea level and solid earth response to large-scale ice melt and terrestrial water storage changes. GPS observations, corrected for the solid earth deformation, are used to estimate vertical land motion. We find a clear correlation between sea level in the North Sea and along the Norwegian coast and open ocean steric variability in the Bay of Biscay and west of Portugal, which is consistent with the presence of wind-driven coastally trapped waves. The observed nodal cycle is consistent with tidal equilibrium. We are able to explain the observed sea level trend over the period 1958-2014 well within the standard error of the sum of all contributing processes, as well as the large majority of the observed decadal sea level variability. C1 [Frederikse, Thomas; Riva, Riccardo; Kleinherenbrink, Marcel] Delft Univ Technol, Dept Geosci & Remote Sensing, Delft, Netherlands. [Wada, Yoshihide] NASA Goddard Inst Space Studies, New York, NY USA. [Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Wada, Yoshihide] Univ Utrecht, Dept Phys Geog, Utrecht, Netherlands. [Wada, Yoshihide] Int Inst Appl Syst Anal, Laxenburg, Austria. [van den Broeke, Michiel] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands. [Marzeion, Ben] Univ Bremen, Inst Geog, Bremen, Germany. RP Frederikse, T (reprint author), Delft Univ Technol, Dept Geosci & Remote Sensing, Delft, Netherlands. EM t.frederikse@tudelft.nl RI Van den Broeke, Michiel/F-7867-2011 OI Van den Broeke, Michiel/0000-0003-4662-7565 FU Netherlands Organisation for Scientific Research (NWO) VIDI grant [864.12.012]; Austrian Science Fund (FWF) [P25362-N26] FX Tide gauge data have been obtained from PSMSL (www.psmsl.org), EN4.1.1 gridded profiles from Met Office Hadley Center (metoffice.gov.uk/hadobs/en4), Twentieth Century Reanalysis V2c data from NOAA/OAR/ESRL PSD (esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html), ICE6G data from atmosp.physics.utoronto.ca/similar to peltier, NorESM model results were obtained from the ESGF Node at DKRZ (esgf-data.dkrz.de). Ocean Weather Station Mike data have been obtained from http://www.eurosites.info/stationm.php. All gridded plots have been made using the Generic Mapping Tools. This study was funded through the Netherlands Organisation for Scientific Research (NWO) VIDI grant 864.12.012. Ben Marzeion acknowledges support from the Austrian Science Fund (FWF): P25362-N26. We would like to thank the two anonymous reviewers for their constructive comments, which led to substantial improvements to the manuscript. NR 63 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2016 VL 43 IS 20 BP 10864 EP 10872 DI 10.1002/2016GL070750 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EC7CQ UT WOS:000388293800009 PM 28239204 ER PT J AU Chafik, L Hakkinen, S England, MH Carton, JA Nigam, S Ruiz-Barradas, A Hannachi, A Miller, L AF Chafik, L. Hakkinen, S. England, M. H. Carton, J. A. Nigam, S. Ruiz-Barradas, A. Hannachi, A. Miller, L. TI Global linkages originating from decadal oceanic variability in the subpolar North Atlantic SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE subpolar North Atlantic; decadal variability; Atlantic climate; Walker circulation; Pacific climate; teleconnections ID MERIDIONAL OVERTURNING CIRCULATION; HEAT-CONTENT; MULTIDECADAL OSCILLATION; WARMING HIATUS; GULF-STREAM; ATMOSPHERIC CIRCULATION; SST VARIABILITY; TEMPERATURE; PACIFIC; 20TH-CENTURY AB The anomalous decadal warming of the subpolar North Atlantic Ocean (SPNA), and the northward spreading of this warm water, has been linked to rapid Arctic sea ice loss and more frequent cold European winters. Recently, variations in this heat transport have also been reported to covary with global warming slowdown/acceleration periods via a Pacific climate response. We here examine the role of SPNA temperature variability in this Atlantic-Pacific climate connectivity. We find that the evolution of ocean heat content anomalies from the subtropics to the subpolar region, likely due to ocean circulation changes, coincides with a basin-wide Atlantic warming/cooling. This induces an Atlantic-Pacific sea surface temperature seesaw, which in turn, strengthens/weakens the Walker circulation and amplifies the Pacific decadal variability that triggers pronounced global-scale atmospheric circulation anomalies. We conclude that the decadal oceanic variability in the SPNA is an essential component of the tropical interactions between the Atlantic and Pacific Oceans. C1 [Chafik, L.; Miller, L.] NOAA, NESDIS Ctr Satellite Applicat & Res, College Pk, MD 20740 USA. [Chafik, L.] Univ Maryland, Cooperat Inst Climate & Satellites, College Pk, MD 20742 USA. [Hakkinen, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [England, M. H.] Univ New South Wales, Australian Res Council Ctr Excellence Climate Sys, Sydney, NSW, Australia. [England, M. H.] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia. [Carton, J. A.; Nigam, S.; Ruiz-Barradas, A.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Hannachi, A.] Stockholm Univ, Dept Meteorol, Stockholm, Sweden. RP Chafik, L (reprint author), NOAA, NESDIS Ctr Satellite Applicat & Res, College Pk, MD 20740 USA.; Chafik, L (reprint author), Univ Maryland, Cooperat Inst Climate & Satellites, College Pk, MD 20742 USA. EM leon.chafik@uib.no RI Miller, Laury/B-8305-2011; OI Miller, Laury/0000-0003-3095-5804; Carton, James/0000-0003-0598-5198 FU NASA Physical Oceanography Program; Australian Research Council; US National Science Foundation [AGS1439940] FX The authors wish to thank Thomas Rossby, Johan Nilsson, and the two anonymous reviewers for their insightful comments and helpful suggestions. L.C. is supported by the Jason Altimetry Program. S.H. is supported by the NASA Physical Oceanography Program. M.H.E. is supported by the Australian Research Council. S.N. and A.R.-B. gratefully acknowledge the support of the US National Science Foundation through grant AGS1439940. AWT data are included as a supporting information file; any additional data may be obtained from L.C. (leon.chafik@uib.no). This work was completed at the corresponding author's current affiliation (Geophysical Institute, University of Bergen, Norway). NR 78 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2016 VL 43 IS 20 BP 10909 EP 10919 DI 10.1002/2016GL071134 PG 11 WC Geosciences, Multidisciplinary SC Geology GA EC7CQ UT WOS:000388293800027 ER PT J AU Tan, XX Huang, Y Diao, MH Bansemer, A Zondlo, MA DiGangi, JP Volkamer, R Hu, YY AF Tan, Xiaoxiao Huang, Yi Diao, Minghui Bansemer, Aaron Zondlo, Mark A. DiGangi, Joshua P. Volkamer, Rainer Hu, Yongyun TI An assessment of the radiative effects of ice supersaturation based on in situ observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ATMOSPHERIC INFRARED SOUNDER; CIRRUS CLOUD SCHEME; UPPER TROPOSPHERE; LIDAR MEASUREMENTS; RELATIVE-HUMIDITY; CLIMATE MODEL; REGIONS; STRATOSPHERE; MICROPHYSICS; NUCLEATION AB We use aircraft observations combined with the reanalysis data to investigate the radiative effects of ice supersaturation (ISS). Our results show that although the excess water vapor over ice saturation itself has relatively small radiative effects, mistaking it as ice crystals in climate models would lead to considerable impacts: on average, +2.49W/m(2) change in the top of the atmosphere (TOA) radiation, -2.7W/m(2) change in surface radiation, and 1.47K/d change in heating rates. The radiative effects of ISS generally increase with the magnitudes of supersaturation. However, there is a strong dependence on the preexisting ice water path, which can even change the sign of the TOA radiative effect. It is therefore important to consider coexistence between ISS and ice clouds and to validate their relationship in the parameterizations of ISS in climate models. C1 [Tan, Xiaoxiao; Hu, Yongyun] Peking Univ, Dept Atmospher & Ocean Sci, Beijing, Peoples R China. [Tan, Xiaoxiao; Huang, Yi] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Diao, Minghui] San Jose State Univ, Dept Meteorol & Climate Sci, San Jose, CA 95192 USA. [Bansemer, Aaron] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Lab, POB 3000, Boulder, CO 80307 USA. [Zondlo, Mark A.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [DiGangi, Joshua P.] NASA Langley Res Ctr, Chem & Dynam Branch, Hampton, VA USA. [Volkamer, Rainer] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. [Volkamer, Rainer] Univ Colorado, CIRES, Boulder, CO 80309 USA. RP Huang, Y (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. EM yi.huang@mcgill.ca RI Volkamer, Rainer/B-8925-2016; Huang, Yi/E-9479-2016; OI Volkamer, Rainer/0000-0002-0899-1369; Huang, Yi/0000-0002-5065-4198; Zondlo, Mark/0000-0003-2302-9554 FU China Scholarship Council; Natural Sciences and Engineering Research Council of Canada [RGPIN 418305-13]; Fonds de recherche du Quebec-Nature et technologies [PR-190145]; National Center for Atmospheric Research Advanced Study Program; National Natural Science Foundation of China [41375072, 41530423]; National Science Foundation FX We acknowledge the ECMWF for the ERA-Interim data (http://apps.ecmwf.int/datasets/data/interim-full-moda/), the NSF for the observed ISS data, and the Atmospheric Environment Research for RRTMG model (http://rtweb.aer.com/rrtm_frame.html) used in this study. X.T. is supported by a visiting student fellowship of China Scholarship Council. Y. Huang acknowledges the grants support from the Natural Sciences and Engineering Research Council of Canada (RGPIN 418305-13) and the Fonds de recherche du Quebec-Nature et technologies (PR-190145). M.D. acknowledges the support of National Center for Atmospheric Research Advanced Study Program for her postdoctoral research in 2013-2015. Y. Hu acknowledges the grants from the National Natural Science Foundation of China (41375072 and 41530423). NCAR is sponsored by the National Science Foundation. For the observation analysis on five NSF campaigns (HIPPO Global, START08, PREDICT, DC3, and TORERO), we thank the efforts of flight, technical, and mechanical crews at the NCAR/Earth Observing Laboratory. M.A. Zondlo, M. Diao, J. DiGangi, and S.P. Beaton provided the field support and laboratory calibration of the VCSEL hygrometer. A. Bansemer, A.J. Heymsfield, D.C. Rogers, and C.J. Webster provided support on the SID-2H instrument and Fast-2 DC probes. We acknowledge the observations from the European Union INCA campaign, with recent data updates from Ulrich Schumann and Andreas Minikin. All data used in this study are free and publicly available. The aircraft observations for individual NSF campaigns were obtained at http://data.eol.ucar.edu/codiac/ NR 40 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2016 VL 43 IS 20 BP 11039 EP 11047 DI 10.1002/2016GL071144 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EC7CQ UT WOS:000388293800053 ER PT J AU Hughes, EJ Yorks, J Krotkov, NA da Silva, AM McGill, M AF Hughes, E. J. Yorks, J. Krotkov, N. A. da Silva, A. M. McGill, M. TI Using CATS near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2) forecasts SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLOUDS; ERUPTION AB An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds. C1 [Hughes, E. J.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Yorks, J.; Krotkov, N. A.; da Silva, A. M.; McGill, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 32899 USA. RP Hughes, EJ (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM ehughes@umd.edu FU NASA Applied Sciences Natural Hazards Program; NASA [NNX13AG51G] FX The authors acknowledge the NASA Applied Sciences Natural Hazards Program and NASA grant NNX13AG51G, which provided funding for this research. Observations from CATS can be found at http://cats.gsfc.nasa.gov and OMPS-NM SO2 observations can be found at http://so2.gsfc.nasa.gov. Geostationary observations from Meteosat-10/SEVIRI can be found at http://www.eumetsat.int/website/home/Images/RealTimeImages/index.html. NR 33 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2016 VL 43 IS 20 BP 11089 EP 11097 DI 10.1002/2016GL070119 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EC7CQ UT WOS:000388293800062 ER PT J AU Zuber, MT Smith, DE Neumann, GA Goossens, S Andrews-Hanna, JC Head, JW Kiefer, WS Asmar, SW Konopliv, AS Lemoine, FG Matsuyama, I Melosh, HJ McGovern, PJ Nimmo, F Phillips, RJ Solomon, SC Taylor, GJ Watkins, MM Wieczorek, MA Williams, JG Jansen, JC Johnson, BC Keane, JT Mazarico, E Miljkovic, K Park, RS Soderblom, JM Yuan, DN AF Zuber, Maria T. Smith, David E. Neumann, Gregory A. Goossens, Sander Andrews-Hanna, Jeffrey C. Head, James W. Kiefer, Walter S. Asmar, Sami W. Konopliv, Alexander S. Lemoine, Frank G. Matsuyama, Isamu Melosh, H. Jay McGovern, Patrick J. Nimmo, Francis Phillips, Roger J. Solomon, Sean C. Taylor, G. Jeffrey Watkins, Michael M. Wieczorek, Mark A. Williams, James G. Jansen, Johanna C. Johnson, Brandon C. Keane, James T. Mazarico, Erwan Miljkovic, Katarina Park, Ryan S. Soderblom, Jason M. Yuan, Dah-Ning TI Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission SO SCIENCE LA English DT Article ID MULTIRING BASINS; LUNAR CRUST; MOON; GRAIL; ORIGIN; RINGS AB The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) x 10(6) km(3) of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins. C1 [Zuber, Maria T.; Smith, David E.; Johnson, Brandon C.; Miljkovic, Katarina; Soderblom, Jason M.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Neumann, Gregory A.; Lemoine, Frank G.; Mazarico, Erwan] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Goossens, Sander] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Andrews-Hanna, Jeffrey C.; Jansen, Johanna C.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Andrews-Hanna, Jeffrey C.; Jansen, Johanna C.] Colorado Sch Mines, Ctr Space Resources, Golden, CO 80401 USA. [Andrews-Hanna, Jeffrey C.; Phillips, Roger J.] Southwest Res Inst, Boulder, CO 80302 USA. [Head, James W.; Johnson, Brandon C.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Kiefer, Walter S.; McGovern, Patrick J.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Asmar, Sami W.; Konopliv, Alexander S.; Watkins, Michael M.; Williams, James G.; Park, Ryan S.; Yuan, Dah-Ning] Jet Prop Lab, Pasadena, CA 91109 USA. [Matsuyama, Isamu; Keane, James T.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Melosh, H. Jay] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Nimmo, Francis] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Taylor, G. Jeffrey] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Watkins, Michael M.] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Wieczorek, Mark A.] Univ Paris Diderot, Sorbonne Paris Cite, Inst Phys Globe Paris, F-75205 Paris 13, France. [Miljkovic, Katarina] Curtin Univ, Dept Appl Geol, Perth, WA 6845, Australia. RP Zuber, MT (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM zuber@mit.edu RI Neumann, Gregory/I-5591-2013; OI Neumann, Gregory/0000-0003-0644-9944; Kiefer, Walter/0000-0001-6741-5460 FU NASA's Discovery Program FX The GRAIL mission is supported by NASA's Discovery Program and is performed under contract to the Massachusetts Institute of Technology and the Jet Propulsion Laboratory. Topography was obtained from the Lunar Orbiter Laser Altimeter on the Lunar Reconnaissance Mission, managed by NASA's Goddard Space Flight Center. The NASA Pleiades and Center for Climate Simulation supercomputers were used to compute the gravity solutions. All data used in this study are archived in the Geosciences Node of the NASA Planetary Data System at http://geo.pds.nasa.gov/missions/grail/default.htm. NR 39 TC 1 Z9 1 U1 6 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD OCT 28 PY 2016 VL 354 IS 6311 BP 438 EP 441 DI 10.1126/science.aag0519 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB9AT UT WOS:000387684400034 PM 27789835 ER PT J AU Ancellet, G Daskalakis, N Raut, JC Tarasick, D Hair, J Quennehen, B Ravetta, F Schlager, H Weinheimer, AJ Thompson, AM Johnson, B Thomas, JL Law, KS AF Ancellet, Gerard Daskalakis, Nikos Raut, Jean Christophe Tarasick, David Hair, Jonathan Quennehen, Boris Ravetta, Francois Schlager, Hans Weinheimer, Andrew J. Thompson, Anne M. Johnson, Bryan Thomas, Jennie L. Law, Katharine S. TI Analysis of the latitudinal variability of tropospheric ozone in the Arctic using the large number of aircraft and ozonesonde observations in early summer 2008 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID HIGH NORTHERN LATITUDES; IN-SITU OBSERVATIONS; SATELLITE-OBSERVATIONS; LOWER STRATOSPHERE; FIELD-MEASUREMENTS; FIRE EMISSIONS; BOUNDARY-LAYER; AIRBORNE LIDAR; MIXING RATIOS; POLLUTION AB During the 2008 International Polar Year, the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport) campaign, conducted in summer over Greenland and Canada, produced a large number of measurements from three aircraft and seven ozonesonde stations. Here we present an observation-integrated analysis based on three different types of O-3 measurements: airborne lidar, airborne UV absorption or chemiluminescence measurement, and intensified electrochemical concentration cell (ECC) ozonesonde profiles. Discussion of the latitudinal and vertical variability of tropospheric ozone north of 55 degrees N during this period is performed with the aid of a regional model (WFR-Chem). The model is able to reproduce the O-3 latitudinal and vertical variability but with a negative O-3 bias of 6-15 ppbv in the free troposphere above 4 km, especially over Canada. For Canada, large average CO concentrations in the free troposphere above 4 km (> 130 ppbv) and the weak correlation (< 30 %) of O-3 and PV suggest that stratospheretroposphere exchange (STE) is not the major contributor to average tropospheric ozone at latitudes less than 70 degrees N, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely, significant STE is found over Greenland according to the better O-3 vs. PV correlation (> 40 %) and the higher values of the 75th PV percentile. It is related to the persistence of cyclonic activity during the summer over Baffin Bay. Using differences between average concentration above Northern and Southern Canada, a weak negative latitudinal summer ozone gradient of 6 to 8 ppbv is found in the mid-troposphere between 4 and 8 km. This is attributed to an efficient O-3 photochemical production from BB emissions at latitudes less than 65 degrees N, while the STE contribution is more homogeneous in the latitude range 55-70 degrees N. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long-range transport from multiple mid-latitude sources (North America, Europe, and even Asia for latitudes higher than 77 degrees N). For the Arctic latitudes (> 80 degrees N), free tropospheric O-3 concentrations during summer 2008 are related to a mixture of Asian pollution and stratospheric O-3 transport across the tropopause. C1 [Ancellet, Gerard; Daskalakis, Nikos; Raut, Jean Christophe; Quennehen, Boris; Ravetta, Francois; Thomas, Jennie L.; Law, Katharine S.] Sorbonne Univ, UPMC Univ Paris 06, LATMOS IPSL, UVSQ,CNRS, Paris, France. [Hair, Jonathan] NASA Langley Res Ctr, Hampton, VA USA. [Tarasick, David] Environm & Climate Change Canada, Downsview, ON, Canada. [Schlager, Hans] DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany. [Weinheimer, Andrew J.] NCAR, Boulder, CO USA. [Thompson, Anne M.] NASA GSFC, Greenbelt, MD USA. [Johnson, Bryan] NOAA Earth Syst Res Lab ESRL, Boulder, CO USA. RP Ancellet, G (reprint author), Sorbonne Univ, UPMC Univ Paris 06, LATMOS IPSL, UVSQ,CNRS, Paris, France. EM gerard.ancellet@latmos.ipsl.fr RI Thompson, Anne /C-3649-2014; OI Thompson, Anne /0000-0002-7829-0920; Raut, Jean-Christophe/0000-0002-3552-2437; Daskalakis, Nikos/0000-0002-2409-0392; Tarasick, David/0000-0001-9869-0692 FU ANR; LEFE INSU/CNRS (CLIMSLIP project); ICE-ARC programme from the European Union [603887]; NASA; DLR FX We are very grateful to the support of the Meteo France/CNRS/CNES UMS SAFIRE for the ATR-42 aircraft deployment over Greenland. This work was supported by funding from ANR and LEFE INSU/CNRS (CLIMSLIP project) and from the ICE-ARC programme from the European Union 7th Framework Programme, grant number 603887. The FLEXTRA team (A. Stohl, and co-workers) is acknowledged for providing and supporting the FLEXTRA code. NASA and DLR are acknowledged for their support of the deployment of the DC-8 and Falcon-20 aircraft. WOUDC and the NASA MODIS team are acknowledged for providing the ozonesonde data and the MODIS data, respectively. NR 68 TC 0 Z9 0 U1 11 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD OCT 28 PY 2016 VL 16 IS 20 BP 13341 EP 13358 DI 10.5194/acp-16-13341-2016 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB1LP UT WOS:000387113800006 ER PT J AU Ni, X Liu, CT Zhang, QH Cecil, DJ AF Ni, Xiang Liu, Chuntao Zhang, Qinghong Cecil, Daniel J. TI Properties of hail storms over China and the United States from the Tropical Rainfall Measuring Mission SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE hail size; TRMM; microwave brightness temperature; remote sensing properties; radar reflectivity ID TRMM PRECIPITATION RADAR; PROFILING ALGORITHM; CLIMATOLOGY; SIZE; SCATTERING; THUNDERSTORMS; PERFORMANCE; VALIDATION; CONVECTION; SATELLITE AB A 16year record of hail reports over the south U.S. and from weather stations in China are collocated with precipitation features (PFs) derived from the Tropical Rainfall Measuring Mission (TRMM) radar and passive microwave observations. Differences in the way hail is reported in the two nations make it difficult to draw meaningful conclusions about storm frequency. But taking the two together yields a wide spectrum of hail sizes, suitable for comparing with remote sensing measurements. While U.S. hail reports are dominated by cases with hail size greater than 19mm, hail reports in China mostly include diameters of 1-10mm and mostly occur over the Tibetan Plateau. The fraction of PFs collocated with hail reports (hail PFs) reaches 3% in the plains of the U.S. In China, the fraction is higher in high elevation regions than low elevation regions. Hail PFs (as reported in the U.S.) show lower brightness temperatures, higher lightning flash rates, stronger maximum reflectivity, and higher echo tops than those with smaller hail, as reported in China. The average near surface maximum reflectivity of hail PFs at high elevations (2000m) in China is about 5dB smaller than those at low elevations. Larger hail is reported with PFs having stronger maximum reflectivity above 6km, though the median of maximum reflectivity values at levels below 5km is similar among the storms with large and small hail sizes. C1 [Ni, Xiang; Zhang, Qinghong] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing, Peoples R China. [Ni, Xiang; Liu, Chuntao] Texas A&M Univ, Dept Phys & Environm Sci, Corpus Christi, TX USA. [Zhang, Qinghong] NUIST, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Jiangsu, Peoples R China. [Cecil, Daniel J.] NASA Marshall Space Flight Ctr, Huntsville, AL USA. RP Zhang, QH (reprint author), Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing, Peoples R China.; Zhang, QH (reprint author), NUIST, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Jiangsu, Peoples R China. EM qzhang@pku.edu.cn FU Chinese National Science Foundation [41330421, 41461164006]; NASA Precipitation Measurement Missions Science Team; China Scholarship Council FX This study is supported by the Chinese National Science Foundation under grants 41330421 and 41461164006 and by the NASA Precipitation Measurement Missions Science Team. The first author gratefully acknowledges the financial support from the China Scholarship Council. The TRMM Precipitation Feature Database could be obtained freely from http://atmos.tamucc.edu/trmm/. The hail reports in U. S. are updated by NCDC (http://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/). Due to the National data management policy, the use of station hail size records in China must be authorized by the Meteorological Information Center of the China Meteorological Administration (http://www.nmic.gov.cn/web/index.htm). NR 51 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2016 VL 121 IS 20 BP 12031 EP 12044 DI 10.1002/2016JD025600 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC7CJ UT WOS:000388293100017 ER PT J AU Xi, X Sokolik, IN AF Xi, Xin Sokolik, Irina N. TI Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE anthropogenic dust; land use; agriculture; Aral Sea; Central Asia; dust emission ID CLIMATE-CHANGE; MODEL; DESERTIFICATION; AEROSOLS AB A regional dust model system is applied to quantify the anthropogenic dust emission in the post-Soviet Central Asia from 2000 to 2014. Two physically based dust schemes suggest that a proportion of 18.3-32.8% of total dust emissions is contributed by agricultural land use and the desiccation of Aral Sea, whereas a simplified dust scheme yields higher estimates in the range of 49.7-56.5% depending on whether a static or dynamic preferential dust source function is used. The dust schemes also differ greatly in the spatial distribution of anthropogenic dust and the sensitivity to the use of land use intensity in separating natural and human-made source areas, suggesting that the model representation of erosion threshold velocity, especially the role of vegetation, is a key source of model uncertainty in quantifying anthropogenic dust. The relative importance of agriculture and dried Aral Sea bed (Aralkum) differs greatly among the dust schemes. Despite the increased dust from the expansion of Aralkum, there is a negative trend in the anthropogenic dust proportion, indicating a shift of dust emission toward natural source areas. All dust schemes show a decrease in anthropogenic dust in response to land cover changes over agricultural lands. C1 [Xi, Xin; Sokolik, Irina N.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Xi, Xin] NASA Ames Res Ctr, Div Earth Sci, Moffett Field, CA USA. RP Xi, X (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.; Xi, X (reprint author), NASA Ames Res Ctr, Div Earth Sci, Moffett Field, CA USA. EM xin.xi30@gmail.com OI XI, XIN/0000-0003-3804-2735 FU NASA LCLUC program FX This study was funded by the NASA LCLUC program. We thank three anonymous reviewers for improving this manuscript. Data used in this study are obtained from public domains: HYDE land use data from the PBL Netherlands Environmental Assessment Agency at http://themasites.pbl.nl/tridion/en/themasites/hyde/ and MODIS land cover product from Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov). Results are available from the corresponding author (X. Xi, xin.xi30@gmail.com) upon request. NR 34 TC 1 Z9 1 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2016 VL 121 IS 20 BP 12270 EP 12281 DI 10.1002/2016JD025556 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC7CJ UT WOS:000388293100022 ER PT J AU Duderstadt, KA Dibb, JE Jackman, CH Randall, CE Schwadron, NA Solomon, SC Spence, HE AF Duderstadt, K. A. Dibb, J. E. Jackman, C. H. Randall, C. E. Schwadron, N. A. Solomon, S. C. Spence, H. E. TI Comment on "Atmospheric ionization by high-fluence, hard spectrum solar proton events and their probable appearance in the ice core archive" by A. L. Melott et al. SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Editorial Material DE nitrate; SPE ID IMPULSIVE NITRATE EVENTS; TIME RESOLUTION ANALYSIS; MIDDLE ATMOSPHERE; ODD NITROGEN; ION SPIKES; PRECIPITATION; PROXIES; MODEL; SNOW C1 [Duderstadt, K. A.; Dibb, J. E.; Schwadron, N. A.; Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Jackman, C. H.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Randall, C. E.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Randall, C. E.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Solomon, S. C.] Natl Ctr Atmospher Res, High Altitude Observ, Pob 3000, Boulder, CO 80307 USA. RP Duderstadt, KA (reprint author), Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. EM duderstadtk@eos.sr.unh.edu RI Solomon, Stanley/J-4847-2012; Jackman, Charles/D-4699-2012; Randall, Cora/L-8760-2014 OI Solomon, Stanley/0000-0002-5291-3034; Randall, Cora/0000-0002-4313-4397 NR 26 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2016 VL 121 IS 20 BP 12484 EP 12489 DI 10.1002/2016JD025220 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC7CJ UT WOS:000388293100013 ER PT J AU Yadav, V Michalak, AM Ray, J Shiga, YP AF Yadav, Vineet Michalak, Anna M. Ray, Jaideep Shiga, Yoichi P. TI A statistical approach for isolating fossil fuel emissions in atmospheric inverse problems SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE inverse problem; fossil fuel emissions ID CARBON-DIOXIDE EMISSIONS; FLUX ESTIMATION; UNITED-STATES; CO2 EMISSIONS; GAS EMISSIONS; MODEL; CITY; SURFACE; SYSTEM; CYCLE AB Independent verification and quantification of fossil fuel (FF) emissions constitutes a considerable scientific challenge. By coupling atmospheric observations of CO2 with models of atmospheric transport, inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric and FF flux components of terrestrial fluxes from CO2 concentration measurements has proven to be difficult, due to observational and modeling limitations. In this study, we propose a statistical inverse modeling scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates, where these covariances and covariates are representative of the underlying processes affecting FF and biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data prototypical inversions by using in situ CO2 measurements over North America. Inversions are performed only for the month of January, as predominance of biospheric CO2 signal relative to FF CO2 signal and observational limitations preclude disaggregation of the fluxes in other months. The quality of disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower than 0.15 mu molm(-2)s(-1) between FF and biospheric fluxes. Error covariance models and covariates based on temporally varying FF inventory data provide a more robust disaggregation over static proxies (e.g., nightlight intensity and population density). However, the synthetic data case study shows that disaggregation is possible even in absence of detailed temporally varying FF inventory data. C1 [Yadav, Vineet; Michalak, Anna M.; Shiga, Yoichi P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Yadav, Vineet] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Ray, Jaideep] Sandia Natl Labs, Livermore, CA USA. [Shiga, Yoichi P.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. RP Yadav, V (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.; Yadav, V (reprint author), Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. EM vineet.yadav@jpl.nasa.gov FU Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) funds - Geosciences Investment Area; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation [1342076]; Carnegie Institution of Washington [NNN15R040T]; National Aeronautics and Space Administration [NNN15R040T]; National Science Foundation Biocomplexity in the Environment Program [ATM-0221850]; University of Virginia; DOE Office of Science-Terrestrial Carbon Processes program; NOAA [NA11OAR4310056]; U.S. Department of Energy [DE-AC09-08SR22470]; California Energy Commission's Public Interest Environmental Research Program [DE-AC02-05CH11231]; U.S. Department of Energy Office of Science TCP program [DE-FG02-06ER64315]; U.S. Department of Commerce, NOAA office of Global Programs [NA08OAR4310533]; U.S. Department of Energy through the Ameriflux Management Project; Midwestern Center of the National Institute for Global Environmental Change (NIGEC); National Institute for Climate Change Research (NICCR); Terrestrial Carbon Program (TCP) program; Terrestrial Ecosystem Sciences (TES) program; Scripps CO2 program FX This work was supported by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) funds, sponsored by the Geosciences Investment Area. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Additional funding for this research came from National Science Foundation under grant 1342076. Some of this research, was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract NNN15R040T between Carnegie Institution of Washington and National Aeronautics and Space Administration. We gratefully acknowledge the efforts of the PIs of the various towers providing continuous atmospheric CO2 observations, which were instrumental for these analyses. The sites BRW, WGC, SNP, SCT, AMT, WBI, BAO, LEF, and WKT are part of NOAA's Global Greenhouse Gas Reference Network operated by the Global Monitoring Division of NOAA's Earth System Research Laboratory with additional support from NOAA's Climate Program Office and are a contribution to the North American Carbon Program. The installation of CO2 sampling equipment was made possible at AMT, by a grant from the National Science Foundation Biocomplexity in the Environment Program (ATM-0221850), at SNP, by the University of Virginia, and at SCT by funding provided by the DOE Office of Science-Terrestrial Carbon Processes program. The Savannah River National Laboratory (SRNL) provided support during the installation at SCT and provides ongoing support via funding from NOAA. SNRL is operated by Savannah River Nuclear Solutions, LLC, under contract DE-AC09-08SR22470 with the U.S. Department of Energy. WGC measurements were supported by a combination of the California Energy Commission's Public Interest Environmental Research Program to the Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231 and NOAA. Research at CVA, OZA, KEW, CEN, MEA, ROL, and GAL was sponsored by the U.S. Department of Energy Office of Science TCP program (DE-FG02-06ER64315) and by the U.S. Department of Commerce, NOAA office of Global Programs (NA08OAR4310533). The five Oregon sites FIR, MET, YAH, MAP, and NGB were supported by NOAA (NA11OAR4310056). The research at the MMS site was sponsored by the U.S. Department of Energy through the Ameriflux Management Project, the Midwestern Center of the National Institute for Global Environmental Change (NIGEC), the National Institute for Climate Change Research (NICCR), the Terrestrial Carbon Program (TCP), and the Terrestrial Ecosystem Sciences (TES) programs. CO2 measurements at LJA were supported by the Scripps CO2 program. We thank the following individuals for collecting and providing the atmospheric CO2 data from the following sites: Arlyn Andrews (NOAA) for SNP, AMT, WBI, BAO, LEF, and WKT; Kirk Thoning (NOAA) for BRW; Mattew J.; Parker (SRNL) for SCT; Marc Fischer (LBNL) and Arlyn Andrews (NOAA) for WGC; Kenneth Davis, Scott Richardson, and Natasha Miles (Pennsylvania State University) for CVA, OZA, KEW, CEN, MEA, ROL, and GAL; Britton Stephens (NCAR) and the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (RACCOON) for NWR, SPL, and HDP; Beverly Law (Oregon State University) and the TERRA-PNW group for data from five Oregon sites, FIR, MET, YAH, MAP, and NGB; William Munger (Harvard University) and Steven Wofsy (Harvard University) for HFM; Doug Worthy (Environment Canada) for CDL, FRD, SBL, EGB, ETL, LLB, and CHM; Kimberly Novick (Indiana University) for MMS; Sebastien Biraud (LBNL) and Margaret Torn (LBNL) for SGP; and Ralph Keeling (Scripps Institution of Oceanography) and Lisa Welp (Purdue University) for LJA. Note that all the code required for evaluating, replicating, and building upon the results of this paper can be obtained without cost from Vineet Yadav by contacting him through email at vineet.yadav@jpl.nasa.gov. For obtaining the concentration data utilized in this study, researchers would have to directly (on their own) contact the principal investigators of towers listed above. NR 69 TC 1 Z9 1 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2016 VL 121 IS 20 BP 12490 EP 12504 DI 10.1002/2016JD025642 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC7CJ UT WOS:000388293100010 ER PT J AU Yeung, LY Murray, LT Ash, JL Young, ED Boering, KA Atlas, EL Schauffler, SM Lueb, RA Langenfelds, RL Krummel, PB Steele, LP Eastham, SD AF Yeung, Laurence Y. Murray, Lee T. Ash, Jeanine L. Young, Edward D. Boering, Kristie A. Atlas, Elliot L. Schauffler, Sue M. Lueb, Richard A. Langenfelds, Ray L. Krummel, Paul. B. Steele, L. Paul Eastham, Sebastian D. TI Isotopic ordering in atmospheric O-2 as a tracer of ozone photochemistry and the tropical atmosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE clumped isotopes; oxygen; ozone; stratosphere-troposphere exchange; tropical circulation; atmospheric residence times ID LAST GLACIAL MAXIMUM; STRATOSPHERE-TROPOSPHERE EXCHANGE; INTERCOMPARISON PROJECT ACCMIP; MADDEN-JULIAN OSCILLATION; CHEMISTRY-TRANSPORT MODEL; VOSTOK ICE CORE; CARBON-DIOXIDE; CLIMATE SENSITIVITY; GEOS-CHEM; MIDDLE ATMOSPHERE AB The distribution of isotopes within O-2 molecules can be rapidly altered when they react with atomic oxygen. This mechanism is globally important: while other contributions to the global budget of O-2 impart isotopic signatures, the O(P-3)+O-2 reaction resets all such signatures in the atmosphere on subdecadal timescales. Consequently, the isotopic distribution within O-2 is determined by O-3 photochemistry and the circulation patterns that control where that photochemistry occurs. The variability of isotopic ordering in O-2 has not been established, however. We present new measurements of (OO)-O-18-O-18 in air (reported as (36) values) from the surface to 33km altitude. They confirm the basic features of the clumped-isotope budget of O-2: Stratospheric air has higher (36) values than tropospheric air (i.e., more (OO)-O-18-O-18), reflecting colder temperatures and fast photochemical cycling of O-3. Lower (36) values in the troposphere arise from photochemistry at warmer temperatures balanced by the influx of high-(36) air from the stratosphere. These observations agree with predictions derived from the GEOS-Chem chemical transport model, which provides additional insight. We find a link between tropical circulation patterns and regions where (36) values are reset in the troposphere. The dynamics of these regions influences lapse rates, vertical and horizontal patterns of O-2 reordering, and thus the isotopic distribution toward which O-2 is driven in the troposphere. Temporal variations in (36) values at the surface should therefore reflect changes in tropospheric temperatures, photochemistry, and circulation. Our results suggest that the tropospheric O-3 burden has remained within a 10% range since 1978. C1 [Yeung, Laurence Y.] Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. [Murray, Lee T.] NASA Goddard Inst Space Studies, New York, NY USA. [Murray, Lee T.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Murray, Lee T.] Univ Rochester, Dept Earth & Environm Sci, Rochester, NY USA. [Ash, Jeanine L.; Young, Edward D.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Boering, Kristie A.] Univ Calif Berkeley, Dept Chem & Earth & Planetary Sci, Berkeley, CA USA. [Atlas, Elliot L.] Univ Miami, Div Marine & Atmospher Chem, Miami, FL USA. [Schauffler, Sue M.; Lueb, Richard A.] Natl Ctr Atmospher Res, Boulder, CO USA. [Langenfelds, Ray L.; Krummel, Paul. B.; Steele, L. Paul] CSIRO Oceans & Atmosphere, Aspendale, Vic, Australia. [Eastham, Sebastian D.] MIT, Dept Aeronaut & Astronaut, Lab Aviat & Environm, Cambridge, MA USA. RP Yeung, LY (reprint author), Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. EM lyeung@rice.edu RI Steele, Paul/B-3185-2009; Krummel, Paul/A-4293-2013; Chem, GEOS/C-5595-2014; Langenfelds, Raymond/B-5381-2012; Murray, Lee/F-2296-2014; Yeung, Laurence/D-4574-2009 OI Steele, Paul/0000-0002-8234-3730; Krummel, Paul/0000-0002-4884-3678; Murray, Lee/0000-0002-3447-3952; Yeung, Laurence/0000-0001-9901-2607 FU National Science Foundation [EAR-1049655, DGE-1144087]; National Aeronautics and Space Administration Upper Atmosphere Research Program [NNX13AH10G]; Cosmochemistry Program; Deep Carbon Observatory; Rice University faculty startup funds FX We thank A.M. Fiore (Columbia University) for computational resources for simulations, S. Donnelly and R. Hendershot for engineering support, and I. Mellor-Crummey and S. Li for their efforts in construction and testing of the automated O2 sample preparation system at Rice. We also thank D.R. Blake for providing sample aliquots from the DC3 campaign, M. Bender for providing the sample of 1992 air from Niwot Ridge, CO, and M. Aydin and two anonymous reviewers for comments that improved the manuscript. Finally, we thank the staff of the Cape Grim Baseline Air Pollution Station for their diligence in collecting the air archive samples, and the Australian Bureau of Meteorology for their long-term, and ongoing support of the Cape Grim Air Archive. This work was supported in part by the National Science Foundation (EAR-1049655 and DGE-1144087), the National Aeronautics and Space Administration Upper Atmosphere Research Program (NNX13AH10G) and Cosmochemistry Program, the Deep Carbon Observatory, and Rice University faculty startup funds. The laboratory data reported in this study are freely available as supporting information (Table S1). NR 103 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2016 VL 121 IS 20 BP 12541 EP 12559 DI 10.1002/2016JD025455 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC7CJ UT WOS:000388293100030 ER PT J AU Chen, DX Huey, LG Tanner, DJ Salawitch, RJ Anderson, DC Wales, PA Pan, LL Atlas, EL Hornbrook, RS Apel, EC Blake, NJ Campos, TL Donets, V Flocke, FM Hall, SR Hanisco, TF Hills, AJ Honomichl, SB Jensen, JB Kaser, L Montzka, DD Nicely, JM Reeves, JM Riemer, DD Schauffler, SM Ullmann, K Weinheimer, AJ Wolfe, GM AF Chen, Dexian Huey, L. Gregory Tanner, David J. Salawitch, Ross J. Anderson, Daniel C. Wales, Pamela A. Pan, Laura L. Atlas, Elliot L. Hornbrook, Rebecca S. Apel, Eric C. Blake, Nicola J. Campos, Teresa L. Donets, Valeria Flocke, Frank M. Hall, Samuel R. Hanisco, Thomas F. Hills, Alan J. Honomichl, Shawn B. Jensen, Jorgen B. Kaser, Lisa Montzka, Denise D. Nicely, Julie M. Reeves, J. Michael Riemer, Daniel D. Schauffler, Sue M. Ullmann, Kirk Weinheimer, Andrew J. Wolfe, Glenn M. TI Airborne measurements of BrO and the sum of HOBr and Br-2 over the Tropical West Pacific from 1 to 15km during the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE bromine oxide; hypobromous acid; CONTRAST; hydrobromic acid; product gas injection ID IONIZATION MASS-SPECTROMETRY; TROPOPAUSE LAYER; ATMOSPHERIC CHEMISTRY; LOWER STRATOSPHERE; TROPOSPHERIC BRO; DOAS MEASUREMENTS; ORGANIC BROMINE; OZONE LOSS; CHLORINE; ARCTAS AB A chemical ionization mass spectrometer was used to measure BrO and HOBr+Br-2 over the Tropical West Pacific Ocean within the altitude range of 1 to 15km, during the CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign in 2014. Isolated episodes of elevated BrO (up to 6.6pptv) and/or HOBr+Br-2 (up to 7.3pptv) were observed in the tropical free troposphere (TFT) and were associated with biomass burning. However, most of the time we did not observe significant BrO or HOBr+Br-2 in the TFT and the tropical tropopause layer (TTL) above our limits of detection (LOD). The 1min average LOD for BrO ranged from 0.6 to 1.6pptv and for HOBr+Br-2 ranged from 1.3 to 3.5pptv. During one flight, BrO observations from the TTL to the extratropical lowermost stratosphere were used to infer a profile of inorganic bromine (Br-y). Based on this profile, we estimated the product gas injection of bromine species into the stratosphere to be 2pptv. Analysis of Br-y partitioning further indicates that BrO levels are likely very low in the TFT environment and that future studies should target the measurement of HBr or atomic Br. C1 [Chen, Dexian; Huey, L. Gregory; Tanner, David J.] Georgia Tech, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Salawitch, Ross J.; Anderson, Daniel C.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD USA. [Salawitch, Ross J.; Wales, Pamela A.; Nicely, Julie M.] Univ Maryland, Dept Chem & Biochem, College Pk, MD USA. [Salawitch, Ross J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. [Pan, Laura L.; Hornbrook, Rebecca S.; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank M.; Hall, Samuel R.; Hills, Alan J.; Honomichl, Shawn B.; Jensen, Jorgen B.; Kaser, Lisa; Montzka, Denise D.; Reeves, J. Michael; Schauffler, Sue M.; Ullmann, Kirk; Weinheimer, Andrew J.] Natl Ctr Atmospher Res, Boulder, CO USA. [Atlas, Elliot L.; Donets, Valeria; Riemer, Daniel D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Chem, Coral Gables, FL USA. [Blake, Nicola J.] Univ Calif Irvine, Dept Chem, Irvine, CA USA. [Hanisco, Thomas F.; Nicely, Julie M.; Wolfe, Glenn M.] NASA Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Wolfe, Glenn M.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD USA. RP Huey, LG (reprint author), Georgia Tech, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM greg.huey@eas.gatech.edu RI Pan, Laura/A-9296-2008; Salawitch, Ross/B-4605-2009; Wolfe, Glenn/D-5289-2011; Anderson, Daniel/I-4398-2014; OI Pan, Laura/0000-0001-7377-2114; Salawitch, Ross/0000-0001-8597-5832; Anderson, Daniel/0000-0002-9826-9811; Nicely, Julie/0000-0003-4828-0032 FU NSF [1262033, 1261657]; NASA Atmospheric Composition: Modeling and Analysis Program [NNH12ZDA001N-ACMAP]; NSF AGS grant [1261689]; NASA Upper Atmospheric Research Program [NNH12ZDA001N-UACO]; National Science Foundation FX D.C., L.G.H., and D.J.T. were supported by the NSF grant 1262033. R.J.S., P.A.W., D.C. A., and JMN received support from the NASA Atmospheric Composition: Modeling and Analysis Program under NNH12ZDA001N-ACMAP and from NSF under grant 1261657. E.A. and V.T. were supported by the NSF AGS grant 1261689. G.M.W., D.C. A., and T.F.H. received support from the NASA Upper Atmospheric Research Program under NNH12ZDA001N-UACO. The authors would like thank the CONTRAST team and the GV crew. CONTRAST data are available online at http://data.eol.ucar.edu/master_list/?project=CONTRAST. CONTRAST data are managed by the Earth Observing Laboratory of the National Center for Atmospheric Research (NCAR/EOL). NCAR is sponsored by the National Science Foundation. NR 72 TC 2 Z9 2 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2016 VL 121 IS 20 BP 12560 EP 12578 DI 10.1002/2016JD025561 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC7CJ UT WOS:000388293100039 ER PT J AU Watson, JT Haynie, AC AF Watson, Jordan T. Haynie, Alan C. TI Using Vessel Monitoring System Data to Identify and Characterize Trips Made by Fishing Vessels in the United States North Pacific SO PLoS One LA English DT Article ID POSITIONAL DATA; CLIMATE-CHANGE; FISHERY; LOCATION; PATTERNS; LANDINGS; LOGBOOK; FUTURE; RISK AB Time spent fishing is the effort metric often studied in fisheries but it may under-represent the effort actually expended by fishers. Entire fishing trips, from the time vessels leave port until they return, may prove more useful for examining trends in fleet dynamics, fisher behavior, and fishing costs. However, such trip information is often difficult to resolve. We identified similar to 30,000 trips made by vessels that targeted walleye pollock (Gadus chalcogrammus) in the Eastern Bering Sea from 2008 - 2014 by using vessel monitoring system (VMS) and landings data. We compared estimated trip durations to observer data, which were available for approximately half of trips. Total days at sea were estimated with < 1.5% error and 96.4% of trip durations were either estimated with < 5% error or they were within expected measurement error. With 99% accuracy, we classified trips as fishing for pollock, for another target species, or not fishing. This accuracy lends strong support to the use of our method with unobserved trips across North Pacific fisheries. With individual trips resolved, we examined potential errors in datasets which are often viewed as " the truth." Despite having > 5 million VMS records (timestamps and vessel locations), this study was as much about understanding and managing data errors as it was about characterizing trips. Missing VMS records were pervasive and they strongly influenced our approach. To understand implications of missing data on inference, we simulated removal of VMS records from trips. Removal of records straightened (i. e., shortened) vessel trajectories, and travel distances were underestimated, on average, by 1.5 - 13.4% per trip. Despite this bias, VMS proved robust for trip characterization and for improved quality control of human-recorded data. Our scrutiny of human-reported and VMS data advanced our understanding of the potential utility and challenges facing VMS users globally. C1 [Watson, Jordan T.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. [Watson, Jordan T.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA. [Haynie, Alan C.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Resource Ecol & Fisheries Management Div, Seattle, WA 98115 USA. RP Watson, JT (reprint author), NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA.; Watson, JT (reprint author), Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA. EM jordan.watson@noaa.gov OI Watson, Jordan/0000-0002-1686-0377 FU NOM Fisheries Science and Technology through the Spatial Economics Toolbox for Fisheries (FishSET) Project; North Pacific Research Board Bering Sea Integrated Ecosystem Research Program; Alaska Sea Grant [R/112-04] FX Funding for this project came from NOM Fisheries Science and Technology through the Spatial Economics Toolbox for Fisheries (FishSET) Project, the North Pacific Research Board Bering Sea Integrated Ecosystem Research Program (www.nprb.org/bering-sea-project), and Alaska Sea Grant R/112-04 (www.seagrant.uaf.edu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 35 TC 0 Z9 0 U1 0 U2 0 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 27 PY 2016 VL 11 IS 10 DI 10.1371/journal.pone.0165173 PG 20 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EE4VY UT WOS:000389604900050 ER PT J AU Ganeshan, M Wu, DL AF Ganeshan, Manisha Wu, Dong L. TI The open-ocean sensible heat flux and its significance for Arctic boundary layer mixing during early fall SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID COLD-AIR OUTBREAKS; SEA-ICE; CELL CONVECTION; LATE SUMMER; CLOUDS; WINDS; ROLL AB The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multi-year Japanese cruise-ship observations from R/V Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain similar to 10% of the open-ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the R/V Mirai for better understanding and predicting the dynamic nature of the Arctic climate. C1 [Ganeshan, Manisha] USRA, Goddard Earth Sci Technol & Res Studies & Invest, Greenbelt, MD 20771 USA. [Wu, Dong L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ganeshan, M (reprint author), USRA, Goddard Earth Sci Technol & Res Studies & Invest, Greenbelt, MD 20771 USA. EM mganeshan@usra.edu FU NASA Earth Science GNSS Remote Sensing and Interdisciplinary Research programs FX This work is supported by NASA Earth Science GNSS Remote Sensing and Interdisciplinary Research programs. Data used in this study were acquired during the MR02-K05 Leg 1, MR04-05, MR08-04, MR09-03 Leg 2, MR10-05 Leg 2, and MR13-06 Leg 1 cruises of R/V Mirai, Japan Agency for Marine-Earth Science and Technology. NR 48 TC 0 Z9 0 U1 5 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD OCT 27 PY 2016 VL 16 IS 20 BP 13173 EP 13184 DI 10.5194/acp-16-13173-2016 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB1LH UT WOS:000387112800002 ER PT J AU Connor, B Bosch, H McDuffie, J Taylor, T Fu, DJ Frankenberg, C O'Dell, C Payne, VH Gunson, M Pollock, R Hobbs, J Oyafuso, F Jiang, YB AF Connor, Brian Bosch, Hartmut McDuffie, James Taylor, Tommy Fu, Dejian Frankenberg, Christian O'Dell, Chris Payne, Vivienne H. Gunson, Michael Pollock, Randy Hobbs, Jonathan Oyafuso, Fabiano Jiang, Yibo TI Quantification of uncertainties in OCO-2 measurements of XCO2: simulations and linear error analysis SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID CO2 RETRIEVAL ALGORITHM; PARAMETERS; SPACE; BAND; SPECTROSCOPY; VALIDATION; SATELLITE; SHAPES AB We present an analysis of uncertainties in global measurements of the column averaged dry-air mole fraction of CO2 (XCO2) by the NASA Orbiting Carbon Observatory-2 (OCO-2). The analysis is based on our best estimates for uncertainties in the OCO-2 operational algorithm and its inputs, and uses simulated spectra calculated for the actual flight and sounding geometry, with measured atmospheric analyses. The simulations are calculated for land nadir and ocean glint observations. We include errors in measurement, smoothing, interference, and forward model parameters. All types of error are combined to estimate the uncertainty in XCO2 from single soundings, before any attempt at bias correction has been made. From these results we also estimate the "variable error" which differs between soundings, to infer the error in the difference of XCO2 between any two soundings. The most important error sources are aerosol interference, spectroscopy, and instrument calibration. Aerosol is the largest source of variable error. Spectroscopy and calibration, although they are themselves fixed error sources, also produce important variable errors in XCO2. Net variable errors are usually < 1 ppm over ocean and similar to 0.5-2.0 ppm over land. The total error due to all sources is similar to 1.5-3.5 ppm over land and similar to 1.5-2.5 ppm over ocean. C1 [Connor, Brian] BC Sci Consulting, Stony Brook, NY 11790 USA. [Bosch, Hartmut] Univ Leicester, EOS Grp, Dept Phys & Astron, Leicester, Leics, England. [McDuffie, James; Fu, Dejian; Payne, Vivienne H.; Gunson, Michael; Pollock, Randy; Hobbs, Jonathan; Oyafuso, Fabiano; Jiang, Yibo] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Taylor, Tommy; O'Dell, Chris] Cooperat Inst Res Atmosphere, Ft Collins, CO USA. [Frankenberg, Christian] CALTECH, Pasadena, CA 91125 USA. [Bosch, Hartmut] Univ Leicester, NCEO, Leicester, Leics, England. RP Connor, B (reprint author), BC Sci Consulting, Stony Brook, NY 11790 USA. EM bc.scientific.consulting@gmail.com RI Boesch, Hartmut/G-6021-2012; Frankenberg, Christian/A-2944-2013 OI Frankenberg, Christian/0000-0002-0546-5857 FU JPL [1439002, 1518224] FX We thank the following members of the OCO-2 team for support and helpful discussions: Vijay Natraj, Linda Brown, Brian Drouin, Chris Benner, Malathy Devi, and Annmarie Eldering. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The CSU contribution to this work was supported by JPL subcontract 1439002. The contribution by BC Scientific Consulting was supported by JPL subcontract 1518224. NR 28 TC 4 Z9 4 U1 13 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD OCT 27 PY 2016 VL 9 IS 10 BP 5227 EP 5238 DI 10.5194/amt-9-5227-2016 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB1LX UT WOS:000387114700001 ER PT J AU Wong, CK Pongetti, TJ Oda, T Rao, P Gurney, KR Newman, S Duren, RM Miller, CE Yung, YL Sander, SP AF Wong, Clare K. Pongetti, Thomas J. Oda, Tom Rao, Preeti Gurney, Kevin R. Newman, Sally Duren, Riley M. Miller, Charles E. Yung, Yuk L. Sander, Stanley P. TI Monthly trends of methane emissions in Los Angeles from 2011 to 2015 inferred by CLARS-FTS observations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID INVERSE MODELING TECHNIQUE; WASTE-WATER TREATMENT; LIQUID DAIRY MANURE; TOP-DOWN ESTIMATE; SATELLITE-OBSERVATIONS; CALIFORNIA; BASIN; CO2; AGITATION; STORAGE AB This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period - from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4-CO2 tracer-tracer correlations, we observed -18 to +22% monthly variability in CH4 : CO2 from the annual mean in the Los Angeles Basin. Top-down estimates of methane emissions for the basin also exhibit significant monthly variability (-19 to +31% from annual mean and a maximum month-to-month change of 47 %). During this period, methane emissions consistently peaked in the late summer/early fall and winter. The estimated annual methane emissions did not show a statistically significant trend over the 2011 to 2015 time period. C1 [Wong, Clare K.; Pongetti, Thomas J.; Rao, Preeti; Duren, Riley M.; Miller, Charles E.; Sander, Stanley P.] CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Wong, Clare K.; Newman, Sally; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Oda, Tom] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Oda, Tom] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gurney, Kevin R.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Wong, Clare K.] Calif State Univ Northridge, Northridge, CA 91330 USA. RP Wong, CK (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.; Wong, CK (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.; Wong, CK (reprint author), Calif State Univ Northridge, Northridge, CA 91330 USA. EM wclare@gmail.com FU California Air Resources Board; NIST GHG and Climate Science Program; W. M. Keck Institute FX The research in this study was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Clare K. Wong thanks the California Air Resources Board, NIST GHG and Climate Science Program, and the W. M. Keck Institute for Space Studies for support. The authors would like to acknowledge our colleagues at JPL and California Institute of Technology, and Risa Patarasuk at Arizona State University for helpful comments and suggestions. NR 32 TC 2 Z9 2 U1 7 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD OCT 26 PY 2016 VL 16 IS 20 BP 13121 EP 13130 DI 10.5194/acp-16-13121-2016 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB1LC UT WOS:000387112200003 ER PT J AU Tinto, M de Araujo, JCN AF Tinto, Massimo de Araujo, Jose C. N. TI Coherent observations of gravitational radiation with LISA and gLISA SO PHYSICAL REVIEW D LA English DT Article ID WAVES AB The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past 5 years, has been under joint study at the Jet Propulsion Laboratory; Stanford University; the National Institute for Space Research (I.N.P.E., Brazil); and Space Systems Loral. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the millihertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is "white" from about 3 x 10(-3) Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), coalescing black-hole binaries (BHBs) with masses in the range (10 - 10(8))M-circle dot. Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10(-4) - 10(3)) Hz frequency band. C1 [Tinto, Massimo] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [de Araujo, Jose C. N.] Inst Nacl Pesquisas Espaciais, Div Astrofis, Ave Astronautas 1758, BR-12227010 Sao Paulo, Brazil. RP Tinto, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; de Araujo, JCN (reprint author), Inst Nacl Pesquisas Espaciais, Div Astrofis, Ave Astronautas 1758, BR-12227010 Sao Paulo, Brazil. EM massimo.tinto@jpl.nasa.gov; jcarlos.dearaujo@inpe.br FU FAPESP [2013/26258-4]; CNPq [308983/2013-0]; Topic Research and Technology Development program of the Jet Propulsion laboratory FX M. T. would like to thank Professor Daniel DeBra and Dr. Sasha Buchman for many stimulating conversations about the gLISA mission concept, Dr. John W. Armstrong for reading the manuscript and his valuable comments, and Dr. Anthony Freeman and Dr. Daniel McCleese for their constant encouragement. M. T. also acknowledges financial support through the Topic Research and Technology Development program of the Jet Propulsion laboratory. J. C. N. A. acknowledges partial support from FAPESP (2013/26258-4) and CNPq (308983/2013-0). This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 21 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT 26 PY 2016 VL 94 IS 8 AR 081101 DI 10.1103/PhysRevD.94.081101 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EB1NT UT WOS:000387120400001 ER PT J AU Meador, MAB Agnello, M McCorkle, L Vivod, SL Wilmoth, N AF Meador, Mary Ann B. Agnello, Marika McCorkle, Linda Vivod, Stephanie L. Wilmoth, Nathan TI Moisture-Resistant Polyimide Aerogels Containing Propylene Oxide Links in the Backbone SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE aerogel; polyimide; mesoporous; cross-linked; insulation; hydrophobic ID MECHANICALLY STRONG; ADSORPTION AB Polyimide aerogels made using anhydride capped oligomers from 4,4'-oxydianiline (ODA) and 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) cross-linked with 1,3,5-tri(aminophenoxy)benzene (TAB) have been reported with very good mechanical properties but poor resistance to moisture. Replacing 50 mol % of the ODA with poly(propylene glycol)bis(2-aminopropyl ether) (PPG) with an average molecular weight of 230 g/mol in the oligomer backbone gives aerogels with water contact angles of 80 degrees. The aerogels also absorb very little moisture on soaking in water. The aerogels also shrink less with increasing PPG concentration and therefore have significantly lower density and higher porosity than those made without PPG. Mechanical properties of the aerogels increased with increasing density, regardless of the polymer backbone. Brunauer-Emmett-Teller (BET) surface area of the aerogels studied ranged from 300 to 400 m(2)/g, depending mainly on PPG concentration. The high moisture resistance makes them promising materials for substrates for lightweight antennas as well as insulation for a variety of applications. C1 [Meador, Mary Ann B.; Agnello, Marika; McCorkle, Linda; Vivod, Stephanie L.; Wilmoth, Nathan] NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. RP Meador, MAB (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM maryann.meador@nasa.gov OI Meador, Mary Ann/0000-0003-2513-7372 FU National Aeronautic and Space Administration's Space Technology Mission Directorate Game Changing Development Program FX The authors are grateful for support from the National Aeronautic and Space Administration's Space Technology Mission Directorate Game Changing Development Program. We also thank Daniel Scheiman (Ohio Aerospace Institute) for thermal analysis and FT-IR and Baochau Nguyen (Ohio Aerospace Institute) for solid NMR and nitrogen sorption measurements. NR 20 TC 1 Z9 1 U1 31 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD OCT 26 PY 2016 VL 8 IS 42 BP 29073 EP 29079 DI 10.1021/acsami.6b10248 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EA3WP UT WOS:000386540300090 ER PT J AU Steffen, JH Coughlin, JL AF Steffen, Jason H. Coughlin, Jeffrey L. TI A Population of planetary systems characterized by short-period, Earth-sized planets SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE exoplanets; Kepler; planetary systems ID MULTIPLANET SYSTEMS; EXOPLANETARY SYSTEMS; EXTRASOLAR PLANETS; GIANT PLANETS; HOT JUPITERS; SUPER-EARTHS; KEPLER; MASS; ARCHITECTURE; EVAPORATION AB We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (greater than or similar to 17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. C1 [Steffen, Jason H.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Coughlin, Jeffrey L.] SETI Inst, Mountain View, CA 94043 USA. [Coughlin, Jeffrey L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Steffen, JH (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. EM jason.steffen@unlv.edu FU NASA [NNH12ZDA001N-KPS, NNH13ZDA001N-OSS, NNX13AD01A] FX J.H.S. thanks the Kepler multibody working group, Jason Rowe, Jason Hwang, and Chris Burke for ongoing discussions and the members of the Kepler Science Office for their work preparing the Kepler data products and catalogs. J.H.S. is supported by NASA under Grant NNH12ZDA001N-KPS issued through the Kepler Participating Scientist Program and Grant NNH13ZDA001N-OSS issued through the Origins of Solar Systems program. J.L.C. is supported by NASA Grant NNX13AD01A. This research made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with NASA under the Exoplanet Exploration Program. NR 45 TC 0 Z9 0 U1 1 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 25 PY 2016 VL 113 IS 43 BP 12023 EP 12028 DI 10.1073/pnas.1606658113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DZ7ZI UT WOS:000386087100035 PM 27790984 ER PT J AU Khazendar, A Rignot, E Schroeder, DM Seroussi, H Schodlok, MP Scheuchl, B Mouginot, J Sutterley, TC Velicogna, I AF Khazendar, Ala Rignot, Eric Schroeder, Dustin M. Seroussi, Helene Schodlok, Michael P. Scheuchl, Bernd Mouginot, Jeremie Sutterley, Tyler C. Velicogna, Isabella TI Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica SO NATURE COMMUNICATIONS LA English DT Article ID PINE ISLAND GLACIER; AMUNDSEN SEA EMBAYMENT; THWAITES GLACIER; LASER ALTIMETRY; DEEP-WATER; MASS-LOSS; RADAR; GREENLAND; SENSITIVITY; RETREAT AB Enhanced submarine ice-shelf melting strongly controls ice loss in the Amundsen Sea embayment (ASE) of West Antarctica, but its magnitude is not well known in the critical grounding zones of the ASE's major glaciers. Here we directly quantify bottom ice losses along tens of kilometres with airborne radar sounding of the Dotson and Crosson ice shelves, which buttress the rapidly changing Smith, Pope and Kohler glaciers. Melting in the grounding zones is found to be much higher than steady-state levels, removing 300-490m of solid ice between 2002 and 2009 beneath the retreating Smith Glacier. The vigorous, unbalanced melting supports the hypothesis that a significant increase in ocean heat influx into ASE sub-ice-shelf cavities took place in the mid-2000s. The synchronous but diverse evolutions of these glaciers illustrate how combinations of oceanography and topography modulate rapid submarine melting to hasten mass loss and glacier retreat from West Antarctica. C1 [Khazendar, Ala; Rignot, Eric; Schroeder, Dustin M.; Seroussi, Helene; Schodlok, Michael P.; Velicogna, Isabella] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Rignot, Eric; Scheuchl, Bernd; Mouginot, Jeremie; Sutterley, Tyler C.; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. RP Khazendar, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ala@jpl.nasa.gov RI Sutterley, Tyler/Q-8325-2016; OI Sutterley, Tyler/0000-0002-6964-1194; Rignot, Eric/0000-0002-3366-0481 FU NASA's Cryospheric Sciences Program; NASA's Cryospheric Sciences Program at UC Irvine [NNX14AB93G, NNX13AN46G, NNX14AN03G] FX A.K. was supported by NASA's Cryospheric Sciences Program. E.R., B.S. and J.M. were funded by research grants NNX14AB93G, NNX13AN46G and NNX14AN03G from NASA's Cryospheric Sciences Program at UC Irvine. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 50 TC 1 Z9 1 U1 22 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT 25 PY 2016 VL 7 AR 13243 DI 10.1038/ncomms13243 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DZ6VX UT WOS:000386001800001 PM 27780191 ER PT J AU Egedal, J Le, A Daughton, W Wetherton, B Cassak, PA Chen, LJ Lavraud, B Torbert, RB Dorelli, J Gershman, DJ Avanov, LA AF Egedal, J. Le, A. Daughton, W. Wetherton, B. Cassak, P. A. Chen, L. -J Lavraud, B. Torbert, R. B. Dorelli, J. Gershman, D. J. Avanov, L. A. TI Spacecraft Observations and Analytic Theory of Crescent-Shaped Electron Distributions in Asymmetric Magnetic Reconnection SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIFFUSION REGION; MAGNETOPAUSE; MAGNETOTAIL AB Supported by a kinetic simulation, we derive an exclusion energy parameter EX providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell demon, only high-energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low-density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low-density separatrix. C1 [Egedal, J.; Wetherton, B.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Le, A.; Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cassak, P. A.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Chen, L. -J; Dorelli, J.; Gershman, D. J.; Avanov, L. A.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, UMR 5277, Toulouse, France. [Torbert, R. B.] Univ New Hampshire, Durham, NH 03824 USA. RP Egedal, J (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. OI Wetherton, Blake/0000-0003-2723-7190 FU National Science Foundation (NSF) Geospace Environment Modeling Grant [1405166]; NASA [NNX16AF75G, NNX16AG76G, NNX14AL38G]; Centre national de la recherche scientifique (CNRS); Centre national d'etudes spatiales (CNES) FX J. E. acknowledges the support by the National Science Foundation (NSF) Geospace Environment Modeling Grant No. 1405166, P. A. C. was supported by NASA Grants No. NNX16AF75G and No. NNX16AG76G, B. L. was supported by Centre national de la recherche scientifique (CNRS) and Centre national d'etudes spatiales (CNES), while A. L. acknowledges NASA Grant No. NNX14AL38G, and simulations used NASA High End Computing program and Los Alamos National Laboratory IC resources. NR 26 TC 3 Z9 3 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2016 VL 117 IS 18 AR 185101 DI 10.1103/PhysRevLett.117.185101 PG 5 WC Physics, Multidisciplinary SC Physics GA EF3KV UT WOS:000390224200005 PM 27835028 ER PT J AU Ialongo, I Herman, J Krotkov, N Lamsal, L Boersma, KF Hovila, J Tamminen, J AF Ialongo, Iolanda Herman, Jay Krotkov, Nick Lamsal, Lok Boersma, K. Folkert Hovila, Jari Tamminen, Johanna TI Comparison of OMI NO2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID OZONE MONITORING INSTRUMENT; TROPOSPHERIC NO2; SATELLITE RETRIEVALS; NITROGEN-DIOXIDE; SURFACE MEASUREMENTS; POWER-PLANTS; IN-SITU; EMISSIONS; ALGORITHM; LIFETIMES AB We present the comparison of satellite-based OMI (Ozone Monitoring Instrument) NO2 products with ground-based observations in Helsinki. OMI NO2 total columns, available from NASA's standard product (SP) and KNMI DOMINO product, are compared with the measurements performed by the Pandora spectrometer in Helsinki in 2012. The relative difference between Pandora no. 21 and OMI SP total columns is 4 and 6% for clear-sky and all-sky conditions, respectively. DOMINO NO2 retrievals showed slightly lower total columns with median differences about -5 and -14% for clear-sky and all-sky conditions, respectively. Large differences often correspond to cloudy fallwinter days with solar zenith angles above 65 degrees. Nevertheless, the differences remain within the retrieval uncertainties. The average difference values are likely the result of different factors partly canceling each other: the overestimation of the stratospheric columns causes a positive bias partly compensated by the limited spatial representativeness of the relatively coarse OMI pixel for sharp NO2 gradients. The comparison between Pandora and the new version (V3) of OMI NO2 retrievals shows a larger negative difference (about 30 %) than the current version (V2.1) because the revised spectral fitting procedure reduces the overestimation of the stratospheric column. The weekly and seasonal cycles from OMI, Pandora and NO2 surface concentrations are also compared. Both satellite-and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as a result of reduced emissions from traffic and industrial activities. The seasonal cycle also shows a similar behavior, even though the results are affected by the fact that most of the data are available during spring-summer because of cloud cover in other seasons. This is one of few works in which OMI NO2 retrievals are evaluated in a urban site at high latitudes (60 degrees N). Despite the city of Helsinki having relatively small pollution sources, OMI retrievals have proved to be able to describe air quality features and variability similar to surface observations. This adds confidence in using satellite observations for air quality monitoring also at high latitudes. C1 [Ialongo, Iolanda; Hovila, Jari; Tamminen, Johanna] Finnish Meteorol Inst, Earth Observat Unit, Helsinki, Finland. [Herman, Jay; Krotkov, Nick; Lamsal, Lok] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Lamsal, Lok] Univ Space Res Assoc, GESTAR, Columbia, MD USA. [Boersma, K. Folkert] Royal Netherlands Meteorol Inst, Climate Observat Dept, De Bilt, Netherlands. [Boersma, K. Folkert] Wageningen Univ, Meteorol & Air Qual Grp, Wageningen, Netherlands. RP Ialongo, I (reprint author), Finnish Meteorol Inst, Earth Observat Unit, Helsinki, Finland. EM iolanda.ialongo@fmi.fi RI Boersma, Klaas/H-4559-2012; Ialongo, Iolanda/E-1638-2014; Tamminen, Johanna/D-7959-2014 OI Boersma, Klaas/0000-0002-4591-7635; Tamminen, Johanna/0000-0003-3095-0069 FU Academy of Finland; EU-FP7 grant [QA4ECV, 607405]; NASA Earth Science Division; KNMI FX This work of Iolanda Ialongo was founded by the ILMA project (Applications of NO2 satellite observations at high latitudes for monitoring air quality) within the ESA Living Planet Programme. Johanna Tamminen was partially funded by the Academy of Finland project INQUIRE. Folkert Boersma acknowledges support by the EU-FP7 grant QA4ECV (no. 607405). The authors acknowledge the NASA Earth Science Division and KNMI for funding the OMI NO2 development and the archiving of standard and DOMINO products, respectively. The authors also thank the Atmospheric Sciences department of the University of Helsinki for providing surface concentration measurements through the SmartSMEAR download tool. NR 42 TC 0 Z9 0 U1 7 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD OCT 24 PY 2016 VL 9 IS 10 BP 5203 EP 5212 DI 10.5194/amt-9-5203-2016 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EA6XF UT WOS:000386771700003 ER PT J AU Yang, CY Liu, JP Hu, YY Horton, RM Chen, LQ Cheng, X AF Yang, Chao-Yuan Liu, Jiping Hu, Yongyun Horton, Radley M. Chen, Liqi Cheng, Xiao TI Assessment of Arctic and Antarctic sea ice predictability in CMIP5 decadal hindcasts SO CRYOSPHERE LA English DT Article ID MERIDIONAL OVERTURNING CIRCULATION; NORTH-ATLANTIC; SOUTHERN-OCEAN; CLIMATE MODEL; BERING-SEA; VARIABILITY; PREDICTION; TRENDS; EXTENT; TEMPERATURE AB This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Decadal hindcasts exhibit a large multimodel spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3-7 years), but there is a reemerging predictive skill in the North Atlantic at a lead time of 6-8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic. C1 [Yang, Chao-Yuan; Liu, Jiping] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA. [Hu, Yongyun] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing, Peoples R China. [Horton, Radley M.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Horton, Radley M.] NASA Goddard Inst Space Studies, New York, NY USA. [Chen, Liqi] SOA, Inst Oceanog 3, Key Lab Global Change & Marine Atmospher Chem, Xiamen, Peoples R China. [Cheng, Xiao] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China. RP Yang, CY (reprint author), SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA. EM cyang4@albany.edu FU NOAA Climate Program Office [NA15OAR4310163, NA14OAR4310216]; NSFC [41676185] FX This research is supported by the NOAA Climate Program Office (NA15OAR4310163 and NA14OAR4310216) and the NSFC (41676185). NR 95 TC 0 Z9 0 U1 10 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PD OCT 21 PY 2016 VL 10 IS 5 BP 2429 EP 2452 DI 10.5194/tc-10-2429-2016 PG 24 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA EA6YI UT WOS:000386774700001 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Bejger, M Bell, AS Berger, BK Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Birnholtz, O Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Boer, M Bogaert, G Bogan, C Bohe, A Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Broida, JE Brooks, AF Brown, DA Brown, DD Brown, NM Brunett, S Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cabero, M Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Cheeseboro, BD Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dasgupta, A Da Silva Costa, CF Dattilo, V Dave, I Davier, M Davies, GS Daw, EJ Day, R De, S DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Devine, RC Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Girolamo, T Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Fenyvesi, E Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fong, H Fournier, JD Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gaebel, S Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gaur, G Gehrels, N Gemme, G Geng, P Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Grado, A Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hamilton, H Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Healy, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Henry, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hofman, D Holt, K Holz, DE Hopkins, P Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jian, L Jimenez-Forteza, F Johnson, WW Johnson-McDaniel, NK Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kapadia, SJ Karki, S Karvinen, KS Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, CW Kim, C Kim, J Kim, K Kim, N Kim, W Kim, YM Kimbrell, SJ King, EJ King, PJ Kissel, JS Klein, B Kleybolte, L Klimenko, S Koehlenbeck, SM Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kumar, R Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Laxen, M Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Lewis, JB Li, TGF Libson, A Littenberg, TB Lockerbie, NA Lombardi, AL London, LT Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lousto, C Luck, H Lundgren, AP Lynch, R Ma, Y Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Zertuche, LM Magee, RM Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ Mcrae, T McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mercer, RA Merilh, EL Merzougui, M Meshkov, S Messenger, C Messick, C Metzdorff, R Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, AL Miller, A Miller, BB Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Nedkova, K Nelemans, G Nelson, TJN Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pan, Y Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Perri, LM Pfeiffer, HP Phelps, M Piccinni, OJ Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poe, M Poggiani, R Popolizio, P Porter, E Post, A Powell, J Prasad, J Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Qiu, S Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rajan, C Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Rizzo, M Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Sakellariadou, M Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, OES Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schoenbeck, A Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Setyawati, Y Shaddock, DA Shaffer, T Shahriar, MS Shaltev, M Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sieniawska, M Sigg, D Silva, AD Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stevenson, S Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sunil, S Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Toland, K Tomlinson, C Tonelli, M Tornasi, Z Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Bakel, N van Beuzekom, M van den Brand, JFJ van Den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, DV Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Woehler, J Worden, J Wright, JL Wu, DS Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Bejger, M. Bell, A. S. Berger, B. K. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Birnholtz, O. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Broida, J. E. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Brunett, S. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cabero, M. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Cheeseboro, B. D. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dasgupta, A. Da Silva Costa, C. F. Dattilo, V. Dave, I. Davier, M. Davies, G. S. Daw, E. J. Day, R. De, S. DeBra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Devine, R. C. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Girolamo, T. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Fenyvesi, E. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fong, H. Fournier, J. -D. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gaebel, S. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gaur, G. Gehrels, N. Gemme, G. Geng, P. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Abhirup Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Grado, A. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hamilton, H. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Healy, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Henry, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hofman, D. Holt, K. Holz, D. E. Hopkins, P. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jian, L. Jimenez-Forteza, F. Johnson, W. W. Johnson-McDaniel, N. K. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kapadia, S. J. Karki, S. Karvinen, K. S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, Chi-Woong Kim, Chunglee Kim, J. Kim, K. Kim, N. Kim, W. Kim, Y. -M. Kimbrell, S. J. King, E. J. King, P. J. Kissel, J. S. Klein, B. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kumar, R. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Laxen, M. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Lewis, J. B. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Lombardi, A. L. London, L. T. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lousto, C. Lueck, H. Lundgren, A. P. Lynch, R. Ma, Y. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Zertuche, L. Magana Magee, R. M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McRae, T. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mercer, R. A. Merilh, E. L. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Metzdorff, R. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. L. Miller, A. Miller, B. B. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Nedkova, K. Nelemans, G. Nelson, T. J. N. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pan, Y. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Perri, L. M. Pfeiffer, H. P. Phelps, M. Piccinni, O. J. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poe, M. Poggiani, R. Popolizio, P. Porter, E. Post, A. Powell, J. Prasad, J. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Qiu, S. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rajan, C. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Rizzo, M. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Sakellariadou, M. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. E. S. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Setyawati, Y. Shaddock, D. A. Shaffer, T. Shahriar, M. S. Shaltev, M. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sieniawska, M. Sigg, D. Silva, A. D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stevenson, S. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sunil, S. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Toland, K. Tomlinson, C. Tonelli, M. Tornasi, Z. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. van Den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. V. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Woehler, J. Worden, J. Wright, J. L. Wu, D. S. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Binary Black Hole Mergers in the First Advanced LIGO Observing Run SO PHYSICAL REVIEW X LA English DT Article ID INSPIRALLING COMPACT BINARIES; GRAVITATIONAL-WAVE TRANSIENTS; X-RAY TRANSIENTS; NEUTRON-STAR; PARAMETER-ESTIMATION; COALESCING BINARIES; MASS MEASUREMENTS; COMMON ENVELOPE; (POST)(5/2)-NEWTONIAN ORDER; OBJECT BINARIES AB The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M. and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 sigma over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several highorder post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9-240 Gpc(-3) yr(-1). These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Lazzarini, A.; Lewis, J. B.; Maros, E.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Abernathy, M. R.; Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Acernese, F.; Barone, F.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Di Girolamo, T.; Garufi, F.; Grado, A.; Milano, L.] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Da Silva Costa, C. F.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Klimenko, S.; Miller, A. L.; Mitselmakher, G.; Mueller, G.; Mytidis, A.; Reitze, D. H.; Tanner, D. B.; Voss, D. V.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Laxen, M.; Lormand, M.; McCormick, S.; Mullavey, A.; Nelson, T. J. N.; Nolting, D.; Oram, Richard J.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Birnholtz, O.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Cabero, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Grote, H.; Hanke, M. M.; Heurs, M.; Hu, Y. M.; Indik, N.; Kapadia, S. J.; Karvinen, K. S.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Meadors, G. D.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Post, A.; Prijatelj, M.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.; Woehler, J.; Wu, D. S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van Den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Martynov, D. V.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Casentini, C.; Cesarini, E.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Abhirup; Ghosh, Archisman; Iyer, B. R.; Johnson-McDaniel, N. K.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Poe, M.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Danzmann, K.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Singh, A.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; McRae, T.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Read, J.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS IN2P3, Univ Paris Saclay, LAL, F-91898 Orsay, France. [Arun, K. G.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Lebigot, E. O.; Porter, E.; Tacca, M.] Univ Paris Diderot, CNRS IN2P3, Sorbonne Paris Cite, APC AstroParticule & Cosmol,CEA Irfu,Observ Paris, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalier, F.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Hoak, D.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; De, S.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Zertuche, L. Magana; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Toland, K.; Tornasi, Z.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Goetz, E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; McCarthy, R.; Mendell, G.; Merilh, E. L.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Savage, R. L.; Shaffer, T.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] Wigner RCP, RMKI, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Sieniawska, M.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Gaebel, S.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Stevenson, S.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.; Rajan, C.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Jian, L.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote dAzur, CNRS, Artemis, Observ Cote dAzur, CS 34229, F-06304 Nice 4, France. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.; Wang, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.; Metzdorff, R.] UPMC Sorbonne Univ, Coll France, ENS PSL Res Univ, Lab Kastler Brossel,CNRS, F-75005 Paris, France. [Broida, J. E.; Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Cho, M.; Graff, P. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] CNRS IN2P3, LMA, F-69622 Villeurbanne, France. [Cagnoli, G.] Univ Lyon 1, F-69622 Villeurbanne, France. [Calloni, E.; De laurentis, M.; De Rosa, R.; Di Girolamo, T.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.] Univ Tokyo, RESCEU, Tokyo 1130033, Japan. [Cao, J.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Cheeseboro, B. D.; Devine, R. C.; McWilliams, S. T.] West Virginia Univ, Morgantown, WV 26506 USA. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, Chi-Woong; Kim, Chunglee] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Colla, A.; Conte, A.; Di Pace, S.; Di Palma, I.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Piccinni, O. J.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Kalogera, V.; Klein, B.; Miller, A.; Miller, B. B.; Pankow, C.; Perri, L. M.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, CIERA, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Dasgupta, A.; Gaur, G.; Gupta, M. K.; Khan, Z.; Kumar, R.; Srivastava, A. K.; Sunil, S.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Diaz, M. C.; Geng, P.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tiwari, S.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; London, L. T.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Fenyvesi, E.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Fong, H.; Kehl, M. S.; Kumar, P.; Pfeiffer, H. P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto M5S 3H8, ON, Canada. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Grado, A.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Gustafson, R.; Neunzert, A.; Riles, K.; Sauter, O. E. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Hamilton, H.; Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Healy, J.; Henry, J.; Lange, J.; Lousto, C.; O'Shaughnessy, R.; Rizzo, M.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Huerta, E. A.] Univ Illinois, NCSA, Urbana, IL 61801 USA. [Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC IAC3, E-07122 Palma De Mallorca, Spain. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Ain, A.; Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Kim, W.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Qiu, S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Li, T. G. F.] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Pedurand, R.] Univ Lyon, F-69361 Lyon, France. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Sakellariadou, M.] Univ London, Kings Coll London, London WC2R 2LS, England. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Sigg, Daniel/I-4308-2015; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Garufi, Fabio/K-3263-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; prodi, giovanni/B-4398-2010; Leonardi, Matteo/G-9694-2015; Ferrante, Isidoro/F-1017-2012; Cesarini, Elisabetta/C-4507-2017; Costa, Cesar/G-7588-2012; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Ciani, Giacomo/G-1036-2011; Iyer, Bala R./E-2894-2012; Cella, Giancarlo/A-9946-2012; Sorrentino, Fiodor/M-6662-2016; Travasso, Flavio/J-9595-2016; Rocchi, Alessio/O-9499-2015; Tiwari, Shubhanshu/R-8546-2016; Strain, Kenneth/D-5236-2011; Gemme, Gianluca/C-7233-2008; Strigin, Sergey/I-8337-2012; Vecchio, Alberto/F-8310-2015; Marchesoni, Fabio/A-1920-2008; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012 OI Piccinni, Ornella Juliana/0000-0001-5478-3950; Haney, Maria/0000-0001-7554-3665; Kanner, Jonah/0000-0001-8115-0577; Freise, Andreas/0000-0001-6586-9901; Nelemans, Gijs/0000-0002-0752-2974; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Sigg, Daniel/0000-0003-4606-6526; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi, Fabio/0000-0003-1391-6168; Del Pozzo, Walter/0000-0003-3978-2030; Granata, Massimo/0000-0003-3275-1186; Berry, Christopher/0000-0003-3870-7215; prodi, giovanni/0000-0001-5256-915X; Ferrante, Isidoro/0000-0002-0083-7228; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Gammaitoni, Luca/0000-0002-4972-7062; Ciani, Giacomo/0000-0003-4258-9338; Iyer, Bala R./0000-0002-4141-5179; Cella, Giancarlo/0000-0002-0752-0338; Sorrentino, Fiodor/0000-0002-9605-9829; Travasso, Flavio/0000-0002-4653-6156; Rocchi, Alessio/0000-0002-1382-9016; Tiwari, Shubhanshu/0000-0003-1611-6625; Strain, Kenneth/0000-0002-2066-5355; Gemme, Gianluca/0000-0002-1127-7406; Vecchio, Alberto/0000-0002-6254-1617; Marchesoni, Fabio/0000-0001-9240-6793; Punturo, Michele/0000-0001-8722-4485 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Australian Research Council; Netherlands Organisation for Scientific Research; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Russian Foundation for Basic Research; Leverhulme Trust; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies, as well as by the Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; the Spanish Ministerio de Economia y Competitividad; the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; the National Science Centre of Poland; the European Commission; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, and Innovation; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Russian Foundation for Basic Research; the Leverhulme Trust, the Research Corporation; Ministry of Science and Technology (MOST), Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. NR 216 TC 32 Z9 32 U1 50 U2 50 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD OCT 21 PY 2016 VL 6 IS 4 AR 041015 DI 10.1103/PhysRevX.6.041015 PG 36 WC Physics, Multidisciplinary SC Physics GA EA1YO UT WOS:000386388300002 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Bejger, M Bell, AS Berger, BK Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Birnholtz, O Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Boer, M Bogaert, G Bogan, C Bohe, A Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Broida, JE Brooks, AF Brown, DA Brown, DD Brown, NM Brunett, S Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cabero, M Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, CC Casentini, J Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Cheeseboro, BD Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dasgupta, A Da Silva Costa, CF Dattilo, V Dave, I Davier, M Davies, GS Daw, EJ Day, R De, S Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Devine, RC Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Girolamo, T Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etienne, Z Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Fauchon-Jones, E Favata, M Fays, M Fehrmann, H Fejer, MM Fenyvesi, E Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gaebel, S Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gaur, G Gehrels, N Gemme, G Geng, P Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Grado, A Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Healy, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Henry, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hofman, D Holt, K Holz, DE Hopkins, P Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jian, L Jimenez-Forteza, F Johnson, WW Johnson-McDaniel, NK Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kapadia, SJ Karki, S Karvinen, KS Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, CW Kim, C Kim, J Kim, K Kim, N Kim, W Kim, YM Kimbrell, SJ King, EJ King, PJ Kissel, JS Klein, B Kleybolte, L Klimenko, S Koehlenbeck, SM Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krolak, A Krueger, C Kuehn, G Kumar, P Kumar, R Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Laxen, M Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Lewis, JB Li, TGF Libson, A Littenberg, TB Lockerbie, NA Lombardi, AL London, LT Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Lousto, CO Lovelace, G Luck, H Lundgren, AP Lynch, R Ma, Y Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Zertuche, LM Magee, RM Majorana, E Maksimovic, I Malvezzi, V Man, N Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McRae, T McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mercer, RA Merilh, EL Merzougui, M Meshkov, S Messenger, C Messick, C Metzdorff, R Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, AL Miller, A Miller, BB Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Nedkova, K Nelemans, G Nelson, TJN Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Perri, LM Pfeiffer, HP Phelps, M Piccinni, OJ Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poe, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Qiu, S Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rajan, C Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Rizzo, M Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Sakellariadou, M Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, OES Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Setyawati, Y Shaddock, DA Shaffer, T Shahriar, MS Shaltev, M Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sieniawska, M Sigg, D Silva, AD Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stevenson, SP Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sunil, S Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Toland, K Tomlinson, C Tonelli, M Tornasi, Z Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van der Sluys, MV Van Heijningen, JV Vano-Vinuales, A van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, DV Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Woehler, J Worden, J Wright, JL Wu, DS Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J Boyle, M Brugmann, B Campanelli, M Chu, T Clark, M Haas, R Hemberger, D Hinder, I Kidder, LE Kinsey, M Laguna, P Ossokine, S Pan, Y Rover, C Scheel, M Szilagyi, B Teukolsky, S Zlochower, Y AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Bejger, M. Bell, A. S. Berger, B. K. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Birnholtz, O. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Broida, J. E. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Brunett, S. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cabero, M. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, C. Casanueva Casentini, J. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Cheeseboro, B. D. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dasgupta, A. Da Silva Costa, C. F. Dattilo, V. Dave, I. Davier, M. Davies, G. S. Daw, E. J. Day, R. De, S. DeBra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Devine, R. C. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Girolamo, T. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etienne, Z. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Fauchon-Jones, E. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Fenyvesi, E. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gaebel, S. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gaur, G. Gehrels, N. Gemme, G. Geng, P. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Abhirup Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Grado, A. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Healy, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Henry, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hofman, D. Holt, K. Holz, D. E. Hopkins, P. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jian, L. Jimenez-Forteza, F. Johnson, W. W. Johnson-McDaniel, N. K. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kapadia, S. J. Karki, S. Karvinen, K. S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, Chi-Woong Kim, Chunglee Kim, J. Kim, K. Kim, N. Kim, W. Kim, Y. -M. Kimbrell, S. J. King, E. J. King, P. J. Kissel, J. S. Klein, B. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kumar, R. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Laxen, M. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Lewis, J. B. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Lombardi, A. L. London, L. T. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lousto, C. O. Lovelace, G. Lueck, H. Lundgren, A. P. Lynch, R. Ma, Y. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Zertuche, L. Magana Magee, R. M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McRae, T. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mercer, R. A. Merilh, E. L. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Metzdorff, R. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. L. Miller, A. Miller, B. B. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Nedkova, K. Nelemans, G. Nelson, T. J. N. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Perri, L. M. Pfeiffer, H. P. Phelps, M. Piccinni, O. J. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poe, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Qiu, S. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rajan, C. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Rizzo, M. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Sakellariadou, M. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. E. S. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoebeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Setyawati, Y. Shaddock, D. A. Shaffer, T. Shahriar, M. S. Shaltev, M. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sieniawska, M. Sigg, D. Silva, A. D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stevenson, S. P. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sunil, S. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Toland, K. Tomlinson, C. Tonelli, M. Tornasi, Z. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van der Sluys, M. V. Van Heijningen, J. V. Vano-Vinuales, A. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. V. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Woehler, J. Worden, J. Wright, J. L. Wu, D. S. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. Boyle, M. Bruegmann, B. Campanelli, M. Chu, T. Clark, M. Haas, R. Hemberger, D. Hinder, I. Kidder, L. E. Kinsey, M. Laguna, P. Ossokine, S. Pan, Y. Roever, C. Scheel, M. Szilagyi, B. Teukolsky, S. Zlochower, Y. CA LIGO Sci Collaboration Virgo Collaboration TI Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model SO PHYSICAL REVIEW X LA English DT Article ID SCHWARZSCHILD BLACK-HOLE; GRAVITATIONAL-RADIATION; COMPACT BINARIES AB This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-onebody (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35(-3)(+5) M-circle dot and 30(-4)(+3) M-circle dot (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate < 0.65 and a secondary spin estimate < 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Maros, E.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Abernathy, M. R.; Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Di Girolamo, T.; Garufi, F.; Grado, A.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Da Silva Costa, C. F.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Klimenko, S.; Miller, A. L.; Mitselmakher, G.; Mueller, G.; Mytidis, A.; Reitze, D. H.; Tanner, D. B.; Voss, D. V.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Laxen, M.; Lormand, M.; McCormick, S.; Mullavey, A.; Nelson, T. J. N.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Birnholtz, O.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Cabero, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Grote, H.; Hanke, M. M.; Heurs, M.; Hu, Y. M.; Indik, N.; Kapadia, S. J.; Karvinen, K. S.; Koehlenbeck, S. M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Meadors, G. D.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prijatelj, M.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.; Woehler, J.; Wu, D. S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; Van Heijningen, J. V.] NIKHEF, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Martynov, D. V.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Hofman, D.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Gran Sasso Sci Inst, Ist Nazl Fis Nucl, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, J.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Abhirup; Ghosh, Archisman; Iyer, B. R.; Johnson-McDaniel, N. K.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Poe, M.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Bisht, A.; Danzmann, K.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Singh, A.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez, G.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; McRae, T.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Lovelace, G.; Read, J.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, C. Casanueva; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Robinet, F.] Univ Paris 11, Univ Paris Saclay, CNRS IN2P3, LAL, Orsay, France. [Arun, K. G.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, J.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoebeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Pace, S.; Di Palma, I.; Frasca, S.; Leaci, P.; Majorana, E.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Palomba, C.; Piccinni, O. J.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Meadors, G. D.; Ming, J.; Papa, M. A.; Pfeiffer, H. P.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.; Haas, R.; Hinder, I.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, CNRS IN2P3, CEA Irfu, APC,AstroParticule & Cosmol,Observ Paris,Sorbonne, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalier, F.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Hoak, D.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; De, S.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Zertuche, L. Magana; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Toland, K.; Tornasi, Z.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Goetz, E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; McCarthy, R.; Mendell, G.; Merilh, E. L.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Shaffer, T.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Matichard, F.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.; Sieniawska, M.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Gaebel, S.; Green, A. C.; Haster, C. -J.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Stevenson, S. P.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.; Rajan, C.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Jian, L.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; van der Sluys, M. V.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote dAzur, CNRS, Artemis, Observ Cote dAzur, CS 34229, Nice 4, France. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.; Wang, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.; Metzdorff, R.] ENS PSL Res Univ, Coll France, UPMC Sorbonne Univ, Lab Kastler Brossel,CNRS, F-75005 Paris, France. [Broida, J. E.; Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] CNRS IN2P3, LMA, F-69622 Villeurbanne, France. [Cagnoli, G.] Univ Lyon 1, F-69622 Villeurbanne, France. [Calloni, E.; De laurentis, M.; De Rosa, R.; Di Girolamo, T.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.] Univ Tokyo, RESCEU, Tokyo 1130033, Japan. [Cao, J.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Penn State Univ, University Pk, PA 16802 USA. [Charlton, P.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Cheeseboro, B. D.; Devine, R. C.; Etienne, Z.; McWilliams, S. T.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] West Virginia Univ, Morgantown, WV 26506 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.; Vallisneri, M.] Univ Chicago, Chicago, IL 60637 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, Chi-Woong; Kim, Chunglee] Caltech CaRT, Pasadena, CA 91125 USA. [Colla, A.; Conte, A.; Di Pace, S.; Di Palma, I.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Piccinni, O. J.; Rapagnani, P.; Ricci, F.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Collette, C. G.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Cominsky, L.] Univ Brussels, B-1050 Brussels, Belgium. [Coughlin, S. B.; Kalogera, V.; Klein, B.; Miller, A.; Miller, B. B.; Pankow, C.; Perri, L. M.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Northwestern Univ, CIERA, Evanston, IL 60208 USA. [Darman, N. S.; Melatos, A.; Sun, L.] Univ Minnesota, Minneapolis, MN 55455 USA. [Dasgupta, A.; Gaur, G.; Gupta, M. K.; Khan, Z.; Kumar, R.; Srivastava, A. K.; Sunil, S.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Diaz, M. C.; Geng, P.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tiwari, S.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Everett, R.; Hanna, C.; Meacher, D.; Messick, C.] Trento Inst Fundamental Phys & Applicat, Ist Nazl Fis Nucl, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fauchon-Jones, E.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; London, L. T.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Vano-Vinuales, A.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Fenyvesi, E.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Grado, A.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Gustafson, R.; Neunzert, A.; Riles, K.; Sauter, O. E. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Healy, J.; Henry, J.; Lange, J.; Lousto, C. O.; O'Shaughnessy, R.; Rizzo, M.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Huerta, E. A.] Univ Illinois, NCSA, Urbana, IL 61801 USA. [Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC IAC3, E-07122 Palma De Mallorca, Spain. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Kehl, M. S.; Kumar, P.; Pfeiffer, H. P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Kim, W.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Qiu, S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Li, T. G. F.] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Loriette, V.; Maksimovic, I.] ESPCI, CNRS, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP, South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Pedurand, R.] Univ Lyon, F-69361 Lyon, France. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Sakellariadou, M.] Univ London, Kings Coll London, London WC2R 2LS, England. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Boyle, M.; Chu, T.; Kidder, L. E.; Teukolsky, S.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Bruegmann, B.] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany. [Szilagyi, B.] Caltech JPL, Pasadena, CA 91109 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI prodi, giovanni/B-4398-2010; Leonardi, Matteo/G-9694-2015; Ferrante, Isidoro/F-1017-2012; Cesarini, Elisabetta/C-4507-2017; Costa, Cesar/G-7588-2012; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Ciani, Giacomo/G-1036-2011; Cella, Giancarlo/A-9946-2012; Iyer, Bala R./E-2894-2012; Sorrentino, Fiodor/M-6662-2016; Travasso, Flavio/J-9595-2016; Rocchi, Alessio/O-9499-2015; Tiwari, Shubhanshu/R-8546-2016; Strain, Kenneth/D-5236-2011; Gemme, Gianluca/C-7233-2008; Strigin, Sergey/I-8337-2012; Vecchio, Alberto/F-8310-2015; Marchesoni, Fabio/A-1920-2008; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Sigg, Daniel/I-4308-2015; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Garufi, Fabio/K-3263-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; OI prodi, giovanni/0000-0001-5256-915X; Ferrante, Isidoro/0000-0002-0083-7228; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Gammaitoni, Luca/0000-0002-4972-7062; Ciani, Giacomo/0000-0003-4258-9338; Cella, Giancarlo/0000-0002-0752-0338; Iyer, Bala R./0000-0002-4141-5179; Sorrentino, Fiodor/0000-0002-9605-9829; Travasso, Flavio/0000-0002-4653-6156; Rocchi, Alessio/0000-0002-1382-9016; Tiwari, Shubhanshu/0000-0003-1611-6625; Strain, Kenneth/0000-0002-2066-5355; Gemme, Gianluca/0000-0002-1127-7406; Vecchio, Alberto/0000-0002-6254-1617; Marchesoni, Fabio/0000-0001-9240-6793; Punturo, Michele/0000-0001-8722-4485; Nelemans, Gijs/0000-0002-0752-2974; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Sigg, Daniel/0000-0003-4606-6526; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi, Fabio/0000-0003-1391-6168; Granata, Massimo/0000-0003-3275-1186; Piccinni, Ornella Juliana/0000-0001-5478-3950 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck Society (MPS); State of Niedersachsen/Germany; Australian Research Council; Netherlands Organisation for Scientific Research; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies, as well as by the Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; the Spanish Ministerio de Economia y Competitividad; the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; the National Science Centre of Poland; the European Commission; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; the Leverhulme Trust; the Research Corporation; Ministry of Science and Technology (MOST), Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. NR 57 TC 11 Z9 11 U1 37 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD OCT 21 PY 2016 VL 6 IS 4 AR 041014 DI 10.1103/PhysRevX.6.041014 PG 19 WC Physics, Multidisciplinary SC Physics GA EA1YO UT WOS:000386388300001 ER PT J AU Haworth, TJ Ilee, JD Forgan, DH Facchini, S Price, DJ Boneberg, DM Booth, RA Clarke, CJ Gonzalez, JF Hutchison, MA Kamp, I Laibe, G Lyra, W Meru, F Mohanty, S Panic, O Rice, K Suzuki, T Teague, R Walsh, C Woitke, P AF Haworth, Thomas J. Ilee, John D. Forgan, Duncan H. Facchini, Stefano Price, Daniel J. Boneberg, Dominika M. Booth, Richard A. Clarke, Cathie J. Gonzalez, Jean-Francois Hutchison, Mark A. Kamp, Inga Laibe, Guillaume Lyra, Wladimir Meru, Farzana Mohanty, Subhanjoy Panic, Olja Rice, Ken Suzuki, Takeru Teague, Richard Walsh, Catherine Woitke, Peter TI Grand Challenges in Protoplanetary Disc Modelling SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA LA English DT Review DE astrochemistry; magnetohydrodynamics (MHD); hydrodynamics; planetary systems: formation; protoplanetary disks; radiative transfer ID SMOOTHED PARTICLE HYDRODYNAMICS; SHOCKED CIRCUMSTELLAR ENVELOPES; GRAVITATING ACCRETION DISCS; ADAPTIVE-MESH-REFINEMENT; LIMITED DIFFUSION-APPROXIMATION; VERTICAL SHEAR INSTABILITY; CARLO RADIATIVE-TRANSFER; D-TYPE EXPANSION; X-RAY-RADIATION; DUSTY GAS AB The Protoplanetary Discussions conference-held in Edinburgh, UK, from 2016 March 7th-11thincluded several open sessions led by participants. This paper reports on the discussions collectively concerned with the multi-physics modelling of protoplanetary discs, including the self-consistent calculation of gas and dust dynamics, radiative transfer, and chemistry. After a short introduction to each of these disciplines in isolation, we identify a series of burning questions and grand challenges associated with their continuing development and integration. We then discuss potential pathways towards solving these challenges, grouped by strategical, technical, and collaborative developments. This paper is not intended to be a review, but rather to motivate and direct future research and collaboration across typically distinct fields based on community-driven input, to encourage further progress in our understanding of circumstellar and protoplanetary discs. C1 [Haworth, Thomas J.; Ilee, John D.; Boneberg, Dominika M.; Booth, Richard A.; Clarke, Cathie J.; Meru, Farzana; Panic, Olja] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Haworth, Thomas J.; Mohanty, Subhanjoy; Woitke, Peter] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Forgan, Duncan H.; Laibe, Guillaume] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Facchini, Stefano] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Price, Daniel J.] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Price, Daniel J.] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia. [Gonzalez, Jean-Francois] Univ Lyon, Univ Lyon 1, Ens Lyon, CNRS,Ctr Rech Astrophys Lyon,UMR5574, F-69230 St Genis Laval, France. [Hutchison, Mark A.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Kamp, Inga] Univ Groningen, Kapteyn Astron Inst, Postbus 800, NL-9700 AV Groningen, Netherlands. [Lyra, Wladimir] Calif State Univ Northridge, Dept Phys & Astron, 18111 Nordhoff St, Northridge, CA 91330 USA. [Lyra, Wladimir] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Panic, Olja] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Rice, Ken] Univ Edinburgh, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Suzuki, Takeru] Univ Tokyo, Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan. [Suzuki, Takeru] Nagoya Univ, Dept Phys, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan. [Teague, Richard] Max Planck Inst Astron, Knigstuhl 17, D-69117 Heidelberg, Germany. [Walsh, Catherine] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. RP Haworth, TJ (reprint author), Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.; Haworth, TJ (reprint author), Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. EM thaworth@ast.cam.ac.uk RI Rice, Ken/H-5084-2011; OI Rice, Ken/0000-0002-6379-9185; Facchini, Stefano/0000-0003-4689-2684; Booth, Richard/0000-0002-0364-937X; Price, Daniel/0000-0002-4716-4235 FU STFC consolidated grant [ST/K000985/1]; Imperial Junior research fellowship; DISCSIM project [341137]; European Research Council; ECOGAL project [291227]; Future Fellowship from Australian Research Council [FT130100034]; Royal Society Dorothy Hodgkin Fellowship FX Through most of this work TJH was funded by the STFC consolidated grant ST/K000985/1 and is now funded by an Imperial Junior research fellowship. JDI gratefully acknowledges support from the DISCSIM project, grant agreement 341137, funded by the European Research Council under ERC-2013-ADG. DHF acknowledges support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG. DJP gratefully acknowledges funding via Future Fellowship FT130100034 from the Australian Research Council. OP is supported by the Royal Society Dorothy Hodgkin Fellowship. NR 294 TC 1 Z9 1 U1 4 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1323-3580 EI 1448-6083 J9 PUBL ASTRON SOC AUST JI Publ. Astron. Soc. Aust. PD OCT 21 PY 2016 VL 33 AR e053 DI 10.1017/pasa.2016.45 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA8OU UT WOS:000386896700001 ER PT J AU Lange, R Moffett, AJ Driver, SP Robotham, ASG Lagos, CD Kelvin, LS Conselice, C Margalef-Bentabol, B Alpaslan, M Baldry, I Bland-Hawthorn, J Bremer, M Brough, S Cluver, M Colless, M Davies, LJM Haussler, B Holwerda, BW Hopkins, AM Kafle, PR Kennedy, R Liske, J Phillipps, S Popescu, CC Taylor, EN Tuffs, R van Kampen, E Wright, AH AF Lange, Rebecca Moffett, Amanda J. Driver, Simon P. Robotham, Aaron S. G. Lagos, Claudia del P. Kelvin, Lee S. Conselice, Christopher Margalef-Bentabol, Berta Alpaslan, Mehmet Baldry, Ivan Bland-Hawthorn, Joss Bremer, Malcolm Brough, Sarah Cluver, Michelle Colless, Matthew Davies, Luke J. M. Haussler, Boris Holwerda, Benne W. Hopkins, Andrew M. Kafle, Prajwal R. Kennedy, Rebecca Liske, Jochen Phillipps, Steven Popescu, Cristina C. Taylor, Edward N. Tuffs, Richard van Kampen, Eelco Wright, Angus H. TI Galaxy And Mass Assembly (GAMA): M-star-R-e relations of z=0 bulges, discs and spheroids SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: formation; galaxies: fundamental parameters; galaxies: spiral; galaxies: statistics ID DIGITAL SKY SURVEY; EXTRAGALACTIC LEGACY SURVEY; HUBBLE-SPACE-TELESCOPE; ULTRA-DEEP-FIELD; SIMILAR-TO 1; LESS-THAN 3; SIZE EVOLUTION; EAGLE SIMULATIONS; ELLIPTIC GALAXIES; DATA RELEASE AB We perform automated bulge + disc decomposition on a sample of similar to 7500 galaxies from the Galaxy And Mass Assembly (GAMA) survey in the redshift range of 0.002 < z < 0.06 using Structural Investigation of Galaxies via Model Analysis, a wrapper around GALFIT3. To achieve robust profile measurements, we use a novel approach of repeatedly fitting the galaxies, varying the input parameters to sample a large fraction of the input parameter space. Using this method, we reduce the catastrophic failure rate significantly and verify the confidence in the fit independently of chi(2). Additionally, using the median of the final fitting values and the 16th and 84th percentile produces more realistic error estimates than those provided by GALFIT, which are known to be underestimated. We use the results of our decompositions to analyse the stellar mass - half-light radius relations of bulges, discs and spheroids. We further investigate the association of components with a parent disc or elliptical relation to provide definite z = 0 disc and spheroid M-star-R-e relations. We conclude by comparing our local disc and spheroid M-star - R-e to simulated data from EAGLE and high-redshift data from Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey-Ultra Deep Survey. We show the potential of using the M-star-R-e relation to study galaxy evolution in both cases but caution that for a fair comparison, all data sets need to be processed and analysed in the same manner. C1 [Lange, Rebecca; Moffett, Amanda J.; Driver, Simon P.; Robotham, Aaron S. G.; Lagos, Claudia del P.; Davies, Luke J. M.; Kafle, Prajwal R.; Wright, Angus H.] Univ Western Australia, Int Ctr Radio Astron Res, M468,35 Stirling Highway, Crawley, WA 6009, Australia. [Driver, Simon P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Lagos, Claudia del P.] Australian Res Council Ctr Excellence All Sky Ast, 44 Rosehill St, Redfern, NSW 2016, Australia. [Kelvin, Lee S.; Baldry, Ivan] Liverpool John Moores Univ, Astrophys Res Inst, IC2,Liverpool Sci Pk,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Conselice, Christopher; Margalef-Bentabol, Berta; Kennedy, Rebecca] Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England. [Alpaslan, Mehmet] NASA, Ames Res Ctr, N232 Moffett Field, Mountain View, CA 94035 USA. [Bland-Hawthorn, Joss; Hopkins, Andrew M.] Univ Sydney, Sch Phys A28, Sydney Inst forAstron, Sydney, NSW 2006, Australia. [Bremer, Malcolm; Phillipps, Steven] Univ Bristol, Sch Phys, Astrophys Grp, Bristol BS8 1TL, Avon, England. [Brough, Sarah] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Cluver, Michelle] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Bellville, South Africa. [Colless, Matthew] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Haussler, Boris] European Southern Observ, Alonso de Cordova 3107, Santiago, Chile. [Holwerda, Benne W.] Leiden Univ, Sterrenwacht Leiden, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Liske, Jochen] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. [Popescu, Cristina C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Leighton Bldg, Preston PR1 2HE, Lancs, England. [Popescu, Cristina C.] Romanian Acad, Astron Inst, Str Cutitul Argint 5, Bucharest, Romania. [Taylor, Edward N.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Tuffs, Richard] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. [van Kampen, Eelco] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. RP Lange, R; Driver, SP (reprint author), Univ Western Australia, Int Ctr Radio Astron Res, M468,35 Stirling Highway, Crawley, WA 6009, Australia.; Driver, SP (reprint author), Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. EM rebecca.lange@icrar.org; simon.driver@icrar.org FU International Centre for Radio Astronomy Research; University of Western Australia; Australian Research Council [FT140101166]; Discovery Early Career Researcher Award [DE150100618]; ESO Telescopes at the La Silla Paranal Observatory [179.A-2004]; STFC (UK); ARC (Australia); AAO FX RL would like to acknowledge funding from the International Centre for Radio Astronomy Research and the University of Western Australia. SB acknowledges the funding support from the Australian Research Council through a Future Fellowship (FT140101166). CL is funded by a Discovery Early Career Researcher Award (DE150100618).; GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programs including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. The VISTA VIKING data used in this paper are based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 179.A-2004. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/. NR 109 TC 2 Z9 2 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2016 VL 462 IS 2 BP 1470 EP 1500 DI 10.1093/mnras/stw1495 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XE UT WOS:000384674100023 ER PT J AU Sbarrato, T Ghisellini, G Tagliaferri, G Perri, M Madejski, GM Stern, D Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Zhang, WW AF Sbarrato, T. Ghisellini, G. Tagliaferri, G. Perri, M. Madejski, G. M. Stern, D. Boggs, S. E. Christensen, F. E. Craig, W. W. Hailey, C. J. Harrison, F. A. Zhang, W. W. TI Extremes of the jet-accretion power relation of blazars, as explored by NuSTAR SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; quasars: general; quasars: individual: B0222+185; quasars: individual: S5 0014+813; X-rays: general ID ACTIVE GALACTIC NUCLEI; SPECTRAL ENERGY-DISTRIBUTIONS; HIGH-REDSHIFT QUASARS; LARGE-AREA TELESCOPE; RADIO-LOUD QUASARS; X-RAY TELESCOPE; RELATIVISTIC JETS; BLACK-HOLES; VIEW; SPECTROSCOPY AB Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat-spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z = 2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/X-ray Telescope, showing different variability behaviours. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively the most luminous accretion disc and the most powerful jet among known blazars. Thanks to these properties, they are located at the extreme end of the jet-accretion disc relation previously found for gamma-ray detected blazars, to which they are consistent. C1 [Sbarrato, T.] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Milan, Italy. [Ghisellini, G.; Tagliaferri, G.] INAF Osservatorio Astron Brera, Via E Bianchi 46, I-23807 Merate, Italy. [Perri, M.] ASI Sci Data Ctr, Via Politecn, I-00133 Rome, Italy. [Perri, M.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Madejski, G. M.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Stern, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sbarrato, T (reprint author), Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Milan, Italy. EM tullia.sbarrato@unimib.it OI Sbarrato, Tullia/0000-0002-3069-9399 FU ASI-INAF [I/037/12/0]; National Aeronautics and Space Administration FX We thank the referee for her/his comments, that helped us to improve the paper. We acknowledge financial support from the ASI-INAF grant I/037/12/0. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR operations, software and calibration teams for support with the execution and analysis of these observations. This research has made also use of the NuSTAR Data Analysis Software (NUSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (Caltech, USA). This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. Part of this work is based on archival data, software or online services provided by the ASDC. This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASDC, Italy. NR 51 TC 0 Z9 0 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2016 VL 462 IS 2 BP 1542 EP 1550 DI 10.1093/mnras/stw1730 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XE UT WOS:000384674100028 ER PT J AU Evans, PA Kennea, JA Palmer, DM Bilicki, M Osborne, JP O'Brien, PT Tanvir, NR Lien, AY Barthelmy, SD Burrows, DN Campana, S Cenko, SB D'Elia, V Gehrels, N Marshall, FE Page, KL Perri, M Sbarufatti, B Siegel, MH Tagliaferri, G Troja, E AF Evans, P. A. Kennea, J. A. Palmer, D. M. Bilicki, M. Osborne, J. P. O'Brien, P. T. Tanvir, N. R. Lien, A. Y. Barthelmy, S. D. Burrows, D. N. Campana, S. Cenko, S. B. D'Elia, V. Gehrels, N. Marshall, F. E. Page, K. L. Perri, M. Sbarufatti, B. Siegel, M. H. Tagliaferri, G. Troja, E. TI Swift follow-up of gravitational wave triggers: results from the first aLIGO run and optimization for the future SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational waves; methods: data analysis; gamma-ray burst: general; X-rays: general ID GAMMA-RAY BURSTS; PHOTOMETRIC REDSHIFT CATALOG; BINARY NEUTRON-STARS; X-RAY; LUMINOSITY FUNCTION; EVENT GW150914; HOST GALAXIES; ADVANCED LIGO; JET BREAKS; TELESCOPE AB During its first observing run, in late 2015, the advanced Laser Interferometer Gravitational-wave Observatory facility announced three gravitational wave (GW) triggers to electromagnetic follow-up partners. Two of these have since been confirmed as being of astrophysical origin: both are binary black hole mergers at similar to 500 Mpc; the other trigger was later found not to be astrophysical. In this paper, we report on the Swift follow-up observations of the second and third triggers, including details of 21 X-ray sources detected; none of which can be associated with the GW event. We also consider the challenges that the next GW observing run will bring as the sensitivity and hence typical distance of GW events will increase. We discuss how to effectively use galaxy catalogues to prioritize areas for follow-up, especially in the presence of distance estimates from the GW data. We also consider two galaxy catalogues and suggest that the high completeness at larger distances of the 2MASS Photometric Redshift catalogue makes it very well suited to optimize Swift follow-up observations. C1 [Evans, P. A.; Osborne, J. P.; O'Brien, P. T.; Tanvir, N. R.; Page, K. L.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Kennea, J. A.; Burrows, D. N.; Sbarufatti, B.; Siegel, M. H.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Palmer, D. M.] Los Alamos Natl Lab, B244, Los Alamos, NM 87545 USA. [Bilicki, M.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Bilicki, M.] Univ Zielona Gora, Janusz Gil Inst Astron, Ul Lubuska 2, PL-65265 Zielona Gora, Poland. [Lien, A. Y.; Barthelmy, S. D.; Cenko, S. B.; Gehrels, N.; Marshall, F. E.; Troja, E.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Campana, S.; Sbarufatti, B.; Tagliaferri, G.] Osserv Astron Brera, INAF, Via E Bianchi 46, I-23807 Merate, Italy. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [D'Elia, V.; Perri, M.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, RM, Italy. [D'Elia, V.; Perri, M.] ASI Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Troja, E.] Univ Maryland, Dept Phys & Astron, College Pk, MD 20742 USA. RP Evans, PA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM pae9@leicester.ac.uk OI Bilicki, Maciej/0000-0002-3910-5809; Sbarufatti, Boris/0000-0001-6620-8347 FU National Aeronautics and Space Administration; National Science Foundation; UK Space Agency; ASI [I/004/11/1]; Netherlands Organisation for Scientific Research, NWO [614.001.451]; European Research Council [279396]; Polish National Science Centre [UMO-2012/07/D/ST9/02785] FX We thank Andras Kovacs for helpful discussion on galaxy catalogues. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. This research has also made use of the SIMBAD data base, operated at CDS, Strasbourg, France. The GW probability maps and our related galaxy maps are in HEALPIX format (Gorski et al. 2005). PAE, JPO and KLP acknowledge UK Space Agency support. SC and GT acknowledge ASI for support (contract I/004/11/1). MB is supported by the Netherlands Organisation for Scientific Research, NWO, through grant number 614.001.451; through FP7 grant number 279396 from the European Research Council; and by the Polish National Science Centre under contract #UMO-2012/07/D/ST9/02785. NR 78 TC 5 Z9 5 U1 6 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2016 VL 462 IS 2 BP 1591 EP 1602 DI 10.1093/mnras/stw1746 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XE UT WOS:000384674100032 ER PT J AU Rappaport, S Lehmann, H Kalomeni, B Borkovits, T Latham, D Bieryla, A Ngo, H Mawet, D Howell, S Horch, E Jacobs, TL LaCourse, D Sodor, A Vanderburg, A Pavlovski, K AF Rappaport, S. Lehmann, H. Kalomeni, B. Borkovits, T. Latham, D. Bieryla, A. Ngo, H. Mawet, D. Howell, S. Horch, E. Jacobs, T. L. LaCourse, D. Sodor, A. Vanderburg, A. Pavlovski, K. TI A quintuple star system containing two eclipsing binaries SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries : close; binaries: eclipsing; binaries: general; binaries: spectroscopic; binaries: visual ID RADIAL-VELOCITIES; TIDAL FRICTION; MULTIPLE STARS; CLOSE BINARIES; DATA RELEASE; SKY SURVEY; DATA SET; KEPLER; EVOLUTION; CATALOG AB We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 arcsec on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09 arcsec, while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The 'A' binary is circular with a 5.1-d period, while the 'B' binary is eccentric with a 13.1-d period. The gamma velocities of the A and B binaries are different by similar to 10 km s(-1). That, coupled with their resolved projected separation of 0.09 arcsec, indicates that the orbital period and separation of the 'C' binary (consisting of A orbiting B) are similar to 65 yr and similar or equal to 25 au, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e. 212651213) has an RV and proper motion that differ from that of 212651234 by only similar to 1.4 km s(-1) and similar to 3 mas yr(-1). This set of similar space velocities in three dimensions strongly implies that these two objects are also physically bound, making this at least a quintuple star system. C1 [Rappaport, S.; Kalomeni, B.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Rappaport, S.; Kalomeni, B.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Lehmann, H.] Thuringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany. [Kalomeni, B.] Ege Univ, Dept Astron & Space Sci, TR-35100 Izmir, Turkey. [Borkovits, T.] Univ Szeged, Baja Astron Observ, Kt 766, H-6500 Baja, Hungary. [Latham, D.; Bieryla, A.; Vanderburg, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Ngo, H.] CALTECH, Div Geol & Planetary Sci, 1200 E Calif Blvd MC 150-21, Pasadena, CA 91125 USA. [Mawet, D.] CALTECH, Dept Astron, MC 249-17,1200 E Calif Blvd, Pasadena, CA 91125 USA. [Mawet, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Howell, S.] NASA, Ames Res Ctr, Kepler & Missions K2, POB 1,M-S 244-30, Moffett Field, CA 94035 USA. [Horch, E.] Southern Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Jacobs, T. L.] 12812 SE 69th Pl, Bellevue, WA 98006 USA. [LaCourse, D.] 7507 52nd Pl NE, Marysville, WA 98270 USA. [Sodor, A.] MTA CSFK, Konkoly Observ, Konkoly Thege M Ut 15-17, H-1121 Budapest, Hungary. [Pavlovski, K.] Univ Zagreb, Fac Sci, Dept Phys, Bijenicka Cesta 32, Zagreb 10000, Croatia. RP Rappaport, S (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA.; Rappaport, S (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sar@mit.edu OI Ngo, Henry/0000-0001-5172-4859 FU NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]; NSF Graduate Research Fellowship [DGE 1144152]; Turkish Scientific and Technical Research Council [TUBITAK-112T766, TUBITAK-BIDEP 2219]; Croatian HRZZ grant [2014-09-8656]; Hungarian NKFIH Grant [K-115709]; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; NKFIH [OTKA K-113117]; Lendulet grant of the Hungarian Academy of Sciences [LP2012-31] FX We are grateful to Mark Everett for help with the WIYN observations. We thank Alan Levine for helpful discussions about this system. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. Based, in part, on data from CMC15 Data Access Service at CAB (INTA-CSIC). This work was based on observations at the W. M. Keck Observatory granted by the California Institute of Technology. We thank the observers who contributed to the measurements reported here and acknowledge the efforts of the Keck Observatory staff. We extend special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. AV is supported by the NSF Graduate Research Fellowship, Grant No. DGE 1144152. EH is grateful for support from NASA's Ames Research Center that allowed him to participate in the speckle observations and analysis. BK gratefully acknowledges the support provided by the Turkish Scientific and Technical Research Council (TUBITAK-112T766 and TUBITAK-BIDEP 2219). KP was supported by the Croatian HRZZ grant 2014-09-8656. AS acknowledges the financial support of the Hungarian NKFIH Grant K-115709 and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. TB and AS acknowledge the financial support of the NKFIH Grant OTKA K-113117. The Konkoly observations were supported by the Lendulet grant LP2012-31 of the Hungarian Academy of Sciences. NR 57 TC 1 Z9 1 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2016 VL 462 IS 2 BP 1812 EP 1825 DI 10.1093/mnras/stw1745 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XE UT WOS:000384674100046 ER PT J AU Srivastava, MK Banerjee, DPK Ashok, NM Venkataraman, V Sand, D Diamond, T AF Srivastava, Mudit K. Banerjee, D. P. K. Ashok, N. M. Venkataraman, V. Sand, D. Diamond, T. TI Near-infrared studies of V2944 Ophiuchi (Nova Ophiuchi 2015) SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE line: identification; techniques: photometric; techniques: spectroscopic; stars: individual: V2944 Oph; novae, cataclysmic variables ID RECOMBINATION-LINE-INTENSITIES; 0.8-2.5 MICRON SPECTROSCOPY; NEUTRAL OXYGEN SPECTRUM; CLASSICAL NOVAE; T PYXIDIS; HYDROGENIC IONS; 2006 OUTBURST; EARLY DECLINE; RS-OPHIUCHI; EVOLUTION AB We present multi-epoch near-infrared observations of Nova Ophiuchi 2015 which was discovered during outburst in March 2015. This nova showed a few special properties viz. (i) it displayed an unusual prolonged flat-top light curve which does not easily fit into known classes of nova light curves, (ii) it showed evidence for possessing an evolved secondary in the outbursting binary system, and (iii) it made a rare reverse hybrid transition from the He/N class to Fe II class early during its outburst. The present studies focus on the spectroscopic evolution of the object around maximum light and early decline. We show that there was a unique, rapid strengthening and decline in the He 1.0831, 2.0581 mu m line strengths during this stage, wherein the nova combined the traits of both the He/N and Fe II classes. Possible causes for this behaviour are discussed. The relative strengths of the Ly beta fluoresced OI 0.8446, 1.1287 mu m lines are used to estimate the reddening to the nova. A recombination Case B analysis of the early spectra is used to set constraints on the electron density and emission measure, and a later time spectrum when the ejecta were optically thin is used to estimate the ejecta mass to be (0.95-1.9) x 10(-4) M-circle dot. Power-law fits made to study the evolution of the continuum, show a fairly constant slope which differs from the trend generally expected during a nova's evolution viz. beginning with a blackbody and evolving to a free-free distribution at later stages. C1 [Srivastava, Mudit K.; Banerjee, D. P. K.; Ashok, N. M.; Venkataraman, V.] Phys Res Lab, Astron & Astrophys Div, Ahmadabad 380009, Gujarat, India. [Sand, D.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Diamond, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Srivastava, MK; Banerjee, DPK; Ashok, NM (reprint author), Phys Res Lab, Astron & Astrophys Div, Ahmadabad 380009, Gujarat, India. EM mudit@prl.res.in; orion@prl.res.in; ashok@prl.res.in FU Department of Space, Government of India; National Aeronautics and Space Administration [NNH14CK55B] FX We are grateful to the anonymous referee for several helpful suggestions that have improved the content and presentation of the paper. The research work at the Physical Research Laboratory is funded by the Department of Space, Government of India. We acknowledge the use of data from the AAVSO data base. DS is a visiting astronomer at the Infrared Telescope Facility which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration. NR 62 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2016 VL 462 IS 2 BP 2074 EP 2084 DI 10.1093/mnras/stw1807 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8XE UT WOS:000384674100066 ER PT J AU Britto, RJ Bottacini, E Lott, B Razzaque, S Buson, S AF Britto, Richard J. Bottacini, Eugenio Lott, Benoit Razzaque, Soebur Buson, Sara TI FERMI-LAT OBSERVATIONS OF THE 2014 MAY-JULY OUTBURST FROM 3C 454.3 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; gamma rays: galaxies; quasars: individual (3C 454.3) ID LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; EXTRAGALACTIC BACKGROUND LIGHT; BRIGHT BLAZARS; MULTIWAVELENGTH OBSERVATIONS; DETECTED BLAZARS; PAIR PRODUCTION; SOURCE CATALOG; CRAZY-DIAMOND; 2009 DECEMBER AB A prominent outburst of the flat spectrum radio quasar 3C 454.3 was observed in 2014 June with the Fermi Large Area Telescope. This outburst was characterized by a three-stage light-curve pattern-plateau, flare, and post-flare-that occurred from 2014 May to July, in a similar pattern as observed during the exceptional outburst in 2010 November. The highest flux of the outburst reported in this paper occurred during 2014 June 7-29, showing a multiple-peak structure in the light-curves. The average flux in these 22 days was found to be F[E > 100 MeV] = (7.2 +/- 0.2) x 10(-6) ph cm(-2) s(-1), with a spectral index, for a simple power law, of Gamma = 2.04 +/- 0.01. That made this outburst the first gamma-ray high state of 3C 454.3 ever to be detected by Fermi with such a hard spectrum over several days. The highest flux was recorded on 2014 June 15, in a 3 hr bin, at MJD 56823.5625, at a level of F[E > 100 MeV] = (17.6 +/- 1.9) x 10(-6) ph cm(-2) s(-1). The rise time of one of the short subflares was found to be T-r = 1200 +/- 700 s at MJD. =. 56827, when the flux increased from 4 to 12 x 10(-6) ph cm(-2) s(-1). Several photons above 20 GeV were collected during this outburst, including one at 45 GeV on MJD 56827, constraining the gamma-ray emission region to be located close to the outer boundary of the broad-line region, leading to fast flux variability. C1 [Britto, Richard J.; Razzaque, Soebur] Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa. [Bottacini, Eugenio] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Lott, Benoit] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, CNRS,IN2P3, F-33175 Gradignan, France. [Buson, Sara] Ist Nazl Fis Nucl, Sez Padova, I-34131 Padua, Italy. [Buson, Sara] Univ Padua, Dipartimento Fis G Galilei, I-34131 Padua, Italy. [Britto, Richard J.] Univ Free State, Dept Phys, POB 339, ZA-9300 Bloemfontein, South Africa. [Buson, Sara] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Buson, Sara] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. RP Britto, RJ (reprint author), Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa.; Britto, RJ (reprint author), Univ Free State, Dept Phys, POB 339, ZA-9300 Bloemfontein, South Africa. EM brittor@ufs.ac.za; eugenio.bottacini@stanford.edu; lott@cenbg.in2p3.fr; srazzaque@uj.ac.za; sara.buson@nasa.gov FU NASA [NNX13AO84G, NNX13AF13G]; National Research Foundation, South Africa; South African Gamma-ray Astronomy Programme (SA-GAMMA); Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; E. B. acknowledges NASA grants NNX13AO84G and NNX13AF13G.; R.J.B. and S.R. acknowledge support from the National Research Foundation, South Africa and the South African Gamma-ray Astronomy Programme (SA-GAMMA). NR 61 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 162 DI 10.3847/0004-637X/830/2/162 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA4LG UT WOS:000386583400014 ER PT J AU Brosius, JW Daw, AN Inglis, AR AF Brosius, Jeffrey W. Daw, Adrian N. Inglis, Andrew R. TI QUASI-PERIODIC FLUCTUATIONS AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE RIBBON OBSERVED BY HINODE/EIS, IRIS, AND RHESSI SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: chromosphere; Sun: flares; Sun: oscillations; Sun: UV radiation; Sun: X-rays, gamma-rays ID HARD X-RAY; ULTRAVIOLET IMAGING SPECTROMETER; BRAGG CRYSTAL SPECTROMETER; HIGH TIME RESOLUTION; MAGNETIC RECONNECTION; EXTREME-ULTRAVIOLET; IMPULSIVE PHASE; ATOMIC DATABASE; SPECTROSCOPIC OBSERVATIONS; ELECTRON ACCELERATION AB The Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic (P approximate to 75.6 +/- 9.2 s) intensity fluctuations occurred in emission lines of O IV, Mg VI, Mg VII, Si VII, Fe XIV, and Fe XVI during the flare's impulsive rise, and ended when the maximum intensity in Fe XXIII was reached. The profiles of the O IV-Fe XVI lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe XXIII profile revealed multiple components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RIIESSI detected 25-100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe XIV (4.6 x 10(10) cm(-3)) and Mg VII (7.8 x 10(9) cm(-3)) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 x 10(6) K, and 46 s at 6.3 x 10(5) K (about half the quasi-period); assuming Fe XIV's density for Fe XXIII yields a radiative cooling time of 10(3) s (13 times the quasi-period) at 1.4 x 10(7) K. C1 [Brosius, Jeffrey W.; Inglis, Andrew R.] Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. [Daw, Adrian N.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. RP Brosius, JW (reprint author), Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. EM Jeffrey.W.Brosius@nasa.gov FU Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract FX Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners; it is operated by these agencies in cooperation with ESA and NSC (Norway). IRIS is a NASA Small Explorer mission developed and operated by LMSAL and partner institutions with mission operations executed at NASA Ames Research Center and major contributions to downlink communications funded by the Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract. The AIA data used are provided courtesy of NASA/SDO and the AIA science team. CHIANTI is a collaborative project involving George Mason University (USA), the University of Michigan (USA), and the University of Cambridge (UK). We thank the anonymous referee for valuable comments that helped improve the manuscript. NR 83 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 101 DI 10.3847/0004-637X/830/2/101 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA3FZ UT WOS:000386488200004 ER PT J AU Faggi, S Villanueva, GL Mumma, MJ Brucato, JR Tozzi, GP Oliva, E Massi, F Sanna, N Tozzi, A AF Faggi, S. Villanueva, G. L. Mumma, M. J. Brucato, J. R. Tozzi, G. P. Oliva, E. Massi, F. Sanna, N. Tozzi, A. TI DETAILED ANALYSIS OF NEAR-IR WATER (H2O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; comets: individual (C/2014 Q2 Lovejoy); instrumentation: spectrographs; methods: data analysis ID C/1996 B2 HYAKUTAKE; O1 HALE-BOPP; INFRARED-SPECTRUM; HALLEY; ORIGIN; FLUORESCENCE; MOLECULES; ETHANE; VAPOR AB We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 mu m region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11 +/- 0.14) x 10(29) s(-1)] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)(ORTHO), (2.33 +/- 0.11) x 10(29) s(-1)] and para-water [Q(H2O)(PARA), (0.87 +/- 0.21) x 1029 s(-1)] provide a measure of the ortho-to-para ratio (2.70 +/- 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature. C1 [Faggi, S.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.] Osserv Astrofis Arcetri, Largo Enrico Fermi 5, I-50125 Florence, IT, Italy. [Faggi, S.] Univ Florence, Dipartimento Fis & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy. [Villanueva, G. L.; Mumma, M. J.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Faggi, S (reprint author), Osserv Astrofis Arcetri, Largo Enrico Fermi 5, I-50125 Florence, IT, Italy.; Faggi, S (reprint author), Univ Florence, Dipartimento Fis & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy. EM sfaggi@arcetri.astro.it OI Mumma, Michael/0000-0003-4627-750X NR 40 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 157 DI 10.3847/0004-637X/830/2/157 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA4LG UT WOS:000386583400009 ER PT J AU Hiranaka, K Cruz, KL Douglas, ST Marley, MS Baldassare, VF AF Hiranaka, Kay Cruz, Kelle L. Douglas, Stephanie T. Marley, Mark S. Baldassare, Vivienne F. TI EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0-L6 DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; dust, extinction ID EXTRASOLAR GIANT PLANETS; PROPER-MOTION SURVEY; FIELD L-DWARFS; LOW-MASS STARS; BROWN DWARFS; ULTRACOOL DWARFS; COOL NEIGHBORS; T-DWARFS; CANDIDATE BINARIES; SPEX SPECTROSCOPY AB We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a "dust haze" of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1-100 mu m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models. C1 [Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F.] CUNY, Dept Phys & Astron, Hunter Coll, 695 Pk Ave, New York, NY 10065 USA. [Hiranaka, Kay; Cruz, Kelle L.] CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA. [Hiranaka, Kay; Cruz, Kelle L.; Douglas, Stephanie T.; Baldassare, Vivienne F.] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA. [Douglas, Stephanie T.] Columbia Univ, Dept Astron, 550 West 120th St,Mail Code 5246, New York, NY 10027 USA. [Marley, Mark S.] NASA, Ames Res Ctr, MS-245-3, Moffett Field, CA 94035 USA. [Baldassare, Vivienne F.] Univ Michigan, Dept Astron, 1085 S Univ, Ann Arbor, MI 48109 USA. RP Hiranaka, K (reprint author), CUNY, Dept Phys & Astron, Hunter Coll, 695 Pk Ave, New York, NY 10065 USA.; Hiranaka, K (reprint author), CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA.; Hiranaka, K (reprint author), Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA. EM khiranak@hunter.cuny.edu OI Douglas, Stephanie/0000-0001-7371-2832; Marley, Mark/0000-0002-5251-2943 FU National Science Foundation [AST-1313278]; PSC-CUNY Award; Professional Staff Congress; City University of New York FX We thank our anonymous referee for thorough and helpful comments. This material is based upon work supported by the National Science Foundation under grant No. AST-1313278. Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York. NR 67 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 96 DI 10.3847/0004-637X/830/2/96 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA1FK UT WOS:000386337700013 ER PT J AU Kuchner, MJ Silverberg, SM Bans, AS Bhattacharjee, S Kenyon, SJ Debes, JH Currie, T Garcia, L Jung, D Lintott, C McElwain, M Padgett, DL Rebull, LM Wisniewski, JP Nesvold, E Schawinski, K Thaller, ML Grady, CA Biggs, J Bosch, M Cernohous, T Luca, HAD Hyogo, M Wah, LLW Piipuu, A Pineiro, F AF Kuchner, Marc J. Silverberg, Steven M. Bans, Alissa S. Bhattacharjee, Shambo Kenyon, Scott J. Debes, John H. Currie, Thayne Garcia, Luciano Jung, Dawoon Lintott, Chris McElwain, Michael Padgett, Deborah L. Rebull, Luisa M. Wisniewski, John P. Nesvold, Erika Schawinski, Kevin Thaller, Michelle L. Grady, Carol A. Biggs, Joseph Bosch, Milton Cernohous, Tadeas. Luca, Hugo A. Durantini Hyogo, Michiharu Wah, Lily Lau Wan Piipuu, Art Pineiro, Fernanda CA Disk Detective Collaboration TI DISK DETECTIVE: DISCOVERY OF NEW CIRCUMSTELLAR DISK CANDIDATES THROUGH CITIZEN SCIENCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; infrared: planetary systems; methods: data analysis; protoplanetary disks; stars: emission line, Be; surveys ID INFRARED-SURVEY-EXPLORER; YOUNG STELLAR OBJECTS; DUSTY DEBRIS DISKS; DIGITAL-SKY-SURVEY; STAR-FORMING REGIONS; EXTRA-SOLAR PLANETS; SPECTROSCOPIC SURVEY; EXOPLANET SYSTEMS; OB ASSOCIATION; BINARY-SYSTEMS AB The Disk Detective citizen science project aims to find new stars with 22 mu m excess emission from circumstellar dust using data from NASA's Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 mu m excess around the previously known debris disk host star HD 22128. C1 [Kuchner, Marc J.; McElwain, Michael; Padgett, Deborah L.; Grady, Carol A.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 21230 USA. [Silverberg, Steven M.; Wisniewski, John P.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Bans, Alissa S.] Valparaiso Univ, Dept Phys & Astron, Neils Sci Ctr, 1610 Campus Dr East, Valparaiso, IN 46383 USA. [Bhattacharjee, Shambo] Int Space Univ, 1 Rue Jean Dominique Cassini, F-67400 Illkirch Graffenstaden, France. [Kenyon, Scott J.] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. [Debes, John H.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Currie, Thayne] Natl Astron Observ Japan, 650 N Aohokhu Pl, Hilo, HI 96720 USA. [Garcia, Luciano] Univ Nacl Cordoba, Observ Astron Cordoba, Laprida 854,X5000BGR, Cordoba, Argentina. [Jung, Dawoon] Korea Aerosp Res Inst, Lunar Explorat Program Off, 169-84 Gwahak Ro, Daejeon 34133, South Korea. [Lintott, Chris] Denys Wilkinson Bldg Keble Rd, Oxford OX1 3RH, England. [Rebull, Luisa M.] CALTECH, Infrared Proc & Anal Ctr, M-S 314-6 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Nesvold, Erika] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. [Schawinski, Kevin] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27 Bldg HIT, CH-8093 Zurich, Switzerland. [Thaller, Michelle L.] NASA, Headquarters Sci Mission Directorate, 300 E St SW, Washington, DC 20546 USA. [Biggs, Joseph; Bosch, Milton; Cernohous, Tadeas.; Luca, Hugo A. Durantini; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Pineiro, Fernanda; Disk Detective Collaboration] Disk Detect, Washington, DC USA. RP Kuchner, MJ (reprint author), NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 21230 USA. EM Marc.Kuchner@nasa.gov; silverberg@ou.edu; alissa.s.bans@gmail.com; shambo.bhattacharjee@community.isunet.edu; skenyon@cfa.harvard.edu; debes@stsci.edu; thayne.currie@gmail.com; lucianog@oac.uncor.edu; dwjung@kari.re.kr; cjl@astro.ox.ac.uk; michael.w.mcelwain@nasa.gov; deborah.l.padgett@nasa.gov; rebull@ipac.caltech.edu; wisniewski@ou.edu; enesvold@carnegiescience.edu; kevin.schawinski@phys.ethz.ch; michelle.thaller@nasa.gov; carol.a.grady@nasa.gov OI Kenyon, Scott/0000-0003-0214-609X FU NASA Astrophysics Data Analysis Program [14-ADAP14-0161]; NASA Astrobiology Program via the Goddard Center for Astrobiology; NASA's Science Innovation Fund; Alfred P. Sloan foundation; Google Global Impact award; NASA; NSF; Smithsonian Astrophysical Observatory; Space Telescope Science Institute under U.S. Government [NAG W-2166]; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX We acknowledge support from grant 14-ADAP14-0161 from the NASA Astrophysics Data Analysis Program. M.K. acknowledges funding from the NASA Astrobiology Program via the Goddard Center for Astrobiology and support from NASA's Science Innovation Fund.; Development of the Disk Detectives site was supported by a grant from the Alfred P. Sloan foundation, and the Zooniverse platform is supported by a Google Global Impact award.; WISE is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (JPL)/California Institute of Technology (Caltech), funded by NASA. 2MASS is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC) at Caltech, funded by NASA and the NSF. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory.; The DSS was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. This work has made use of the BeSS database, operated at LESIA, Observatoire de Meudon, France: http://basebe.obspm.fr.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 109 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 84 DI 10.3847/0004-637X/830/2/84 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA1FK UT WOS:000386337700001 ER PT J AU Liu, N Nittler, LR Alexander, CMO Wang, JH Pignatari, M Jose, J Nguyen, A AF Liu, Nan Nittler, Larry R. Alexander, Conel M. O'D Wang, Jianhua Pignatari, Marco Jose, Jordi Nguyen, Ann TI STELLAR ORIGINS OF EXTREMELY C-13- AND N-15-ENRICHED PRESOLAR SIC GRAINS: NOVAE OR SUPERNOVAE? (vol 820, 140, 2016) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O'D; Wang, Jianhua] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. [Pignatari, Marco] Hungarian Acad Sci, Konkoly Observ, Res Ctr Astron & Earth Sci, Konkoly Thege Miklos Ut 15-17, H-1121 Budapest, Hungary. [Pignatari, Marco] Univ Hull, Dept Math & Phys, EA Milne Ctr Astrophys, Kingston Upon Hull HU6 7RX, N Humberside, England. [Jose, Jordi] Univ Politecn Cataluna, EUETIB, Dept Fis, E-08036 Barcelona, Spain. [Jose, Jordi] Inst Estudis Espacials Catalunya, E-08034 Barcelona, Spain. [Nguyen, Ann] NASA, Robert M Walker Lab Space Sci, Astromat Res & Explorat Sci Directorate, Johnson Space Ctr, Houston, TX 77058 USA. [Nguyen, Ann] NASA, Jacobs, Johnson Space Ctr, Houston, TX 77058 USA. RP Liu, N (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. NR 1 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 163 DI 10.3847/0004-637X/830/2/163 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA4LG UT WOS:000386583400015 ER PT J AU Noirot, G Vernet, J De Breuck, C Wylezalek, D Galametz, A Stern, D Mei, S Brodwin, M Cooke, EA Gonzalez, AH Hatch, NA Rettura, A Stanford, SA AF Noirot, Gael Vernet, Joel De Breuck, Carlos Wylezalek, Dominika Galametz, Audrey Stern, Daniel Mei, Simona Brodwin, Mark Cooke, Elizabeth A. Gonzalez, Anthony H. Hatch, Nina A. Rettura, Alessandro Stanford, Spencer Adam TI HST GRISM CONFIRMATION OF TWO z similar to 2 STRUCTURES FROM THE CLUSTERS AROUND RADIO-LOUD AGN (CARLA) SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (CARLA J2039-2514, CARLA J0800+4029); galaxies: high-redshift; galaxies: individual (MRC 2036-254, B3 0756+406) ID STELLAR POPULATION SYNTHESIS; MOLONGLO REFERENCE CATALOG; LUMINOUS GALAXY CLUSTER; STAR-FORMATION ACTIVITY; DIGITAL SKY SURVEY; GREATER-THAN 1.5; HIGH-REDSHIFT; X-RAY; IDCS J1426.5+3508; SPECTROSCOPIC CONFIRMATION AB Using Hubble Space Telescope slitless grism data, we report the spectroscopic confirmation of two distant structures at z similar to 2 associated with powerful high-redshift radio-loud active galactic nuclei. (AGNs). These rich structures, likely (forming) clusters, are among the most distant structures currently known, and were identified on the basis of Spitzer/IRAC [3.6]-[4.5] color. We spectroscopically confirm nine members in the field of MRC. 2036 -254, comprising eight star-forming galaxies and the targeted radio galaxy. The median redshift is z = 2.000. We spectroscopically confirm 10 members in the field of B3. 0756+ 406, comprising 8 star-forming galaxies and 2 AGNs, including the targeted radio-loud quasar. The median redshift is z = 1.986. All confirmed members are within 500 kpc (1 arcmin) of the targeted AGNs. We derive median (mean) star-formation rates of similar to 35 M-circle dot yr(-1) (similar to 50 M-circle dot yr(-1)) for the confirmed star-forming members of both structures based on their [O III]lambda 5007 luminosities, and estimate average galaxy stellar masses. <= 1 x 10(11) M-circle dot based on mid-infrared fluxes and spectral energy distribution modeling. Most of our confirmed members are located above the star-forming main. sequence toward starburst galaxies, consistent with clusters at these early epochs being the sites of significant levels of star formation. The structure around MRC. 2036-254 shows an overdensity of IRAC-selected candidate galaxy cluster members consistent with being quiescent galaxies, while the structure around B3. 0756+ 406 shows field values, albeit with many lower limits to colors that could allow an overdensity of faint red quiescent galaxies. The structure around MRC. 2036-254 shows a red sequence of passive galaxy candidates. C1 [Noirot, Gael; Mei, Simona] Univ Paris 07, Univ Paris Sorbonne Cite PSC, F-75205 Paris 13, France. [Noirot, Gael; Vernet, Joel; De Breuck, Carlos] European Southern Observ, Karl Schwarzschildstr 2, D-85748 Garching, Germany. [Noirot, Gael; Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wylezalek, Dominika] Johns Hopkins Univ, Zanvyl Krieger Sch Arts & Sci, 3400 N Charles St, Baltimore, MD 21218 USA. [Galametz, Audrey] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Mei, Simona] Univ Paris Diderot, PSL Res Univ, CNRS, GEPI,Observ Paris, 61 Ave Observ, F-75014 Paris, France. [Mei, Simona] CALTECH, Pasadena, CA 91125 USA. [Brodwin, Mark] Univ Missouri, Dept Phys, 5110 Rockhill Rd, Kansas City, MO 64110 USA. [Cooke, Elizabeth A.; Hatch, Nina A.] Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England. [Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Rettura, Alessandro] CALTECH, Infrared Proc & Anal Ctr, KS 314-6, Pasadena, CA 91125 USA. [Stanford, Spencer Adam] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. RP Noirot, G (reprint author), Univ Paris 07, Univ Paris Sorbonne Cite PSC, F-75205 Paris 13, France.; Noirot, G (reprint author), European Southern Observ, Karl Schwarzschildstr 2, D-85748 Garching, Germany.; Noirot, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM gnoirot@eso.org FU NASA [NAS 5-26555]; Akbari-Mack Postdoctoral Fellowship; Institut Universitaire de France (IUF); STFC; STFC through an Ernest Rutherford Fellowship FX We thank our anonymous referee for comments and suggestions that improved the quality of this paper. This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is also based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work is also based in part on observations made with the 200 inch Hale Telescope, Palomar Observatory, operated by the California Institute of Technology. D.W. acknowledges support by Akbari-Mack Postdoctoral Fellowship. S.M. acknowledges financial support from the Institut Universitaire de France (IUF), of which she is senior member. E.A.C. acknowledges the support of the STFC. N.A.H. acknowledges support from STFC through an Ernest Rutherford Fellowship. NR 107 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 90 DI 10.3847/0004-637X/830/2/90 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA1FK UT WOS:000386337700007 ER PT J AU Penny, MT Henderson, CB Clanton, C AF Penny, Matthew T. Henderson, Calen B. Clanton, Christian TI IS THE GALACTIC BULGE DEVOID OF PLANETS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: bulge; Galaxy: disk; gravitational lensing: micro; planetary systems ID SYNTHESIZING EXOPLANET DEMOGRAPHICS; MICROLENSING OPTICAL DEPTH; LEGACY SCIENCE PROPOSAL; PARALLAX SATELLITE MASS; ESA EUCLID MISSION; LATE-TYPE STAR; M DWARF; BROWN DWARF; GIANT PLANET; SNOW LINE AB We consider a sample of 31 exoplanetary systems detected by gravitational microlensing and investigate whether or not the estimated distances to these systems conform to the Galactic distribution of planets expected from models. We derive the expected distribution of distances and relative proper motions from a simulated microlensing survey, correcting for the dominant selection effects that affect the sensitivity of planet detection as a function of distance, and compare it to the observed distribution using Anderson-Darling (AD) hypothesis testing. Taking the relative abundance of planets in the bulge to that in the disk, f(bulge), as a model parameter, we find that our model is consistent with the observed distribution only for f(bulge) < 0.54 (for a p-value threshold of 0.01) implying that the bulge may be devoid of planets relative to the disk. Allowing for a dependence of planet abundance on metallicity and host mass, or an additional dependence of planet sensitivity on event timescale, does not restore consistency for f(bulge) = 1. We examine the distance estimates of some events in detail, and conclude that some parallax-based estimates could be significantly in error. Only by combining the removal of one problematic event from our sample and the inclusion of strong dependences of planet abundance or detection sensitivity on host mass, metallicity, and event timescale are we able to find consistency with the hypothesis that the bulge and disk have equal planet abundance. C1 [Penny, Matthew T.] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA. [Henderson, Calen B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Clanton, Christian] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Penny, MT (reprint author), Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA. EM penny@astronomy.ohio-state.edu FU NASA through the Sagan Fellowship Program FX We thank Radek Poleski, Wei Zhu, Andy Gould, Dave Bennett, and the referee for their suggestions. Work by M.T.P. was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. Work by C.B.H. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. NR 100 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 150 DI 10.3847/0004-637X/830/2/150 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA4LG UT WOS:000386583400002 ER PT J AU Peverati, R Bera, PP Lee, TJ Head-Gordon, M AF Peverati, Roberto Bera, Partha P. Lee, Timothy J. Head-Gordon, Martin TI INSIGHTS INTO HYDROCARBON CHAIN AND AROMATIC RING FORMATION IN THE INTERSTELLAR MEDIUM: COMPUTATIONAL STUDY OF THE ISOMERS OF C4H3+ C6H3+ AND C6H5+ AND THEIR FORMATION PATHWAYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; evolution; ISM: clouds ID EXTRAORDINARY SOURCES ANALYSIS; CROSSED-BEAM REACTION; PHENYL CATION; HERSCHEL OBSERVATIONS; CHEMICAL-DYNAMICS; MOLECULAR CLOUDS; EXCITED-STATES; ROAMING ATOMS; ACETYLENE; CHEMISTRY AB Small hydrocarbons such as acetylene is present in circumstellar envelopes of carbon-rich stars, but the processes that yield larger molecules, and eventually polycyclic aromatic hydrocarbons (PAHs), remain poorly understood. To gain additional insight into the early steps of such processes, electronic structure calculations were performed on the potential energy surfaces of C4H3+, C6H3+ and C6H5+. The results establish reactive pathways from acetylene and its ion to formation of the first aromatic ring. We characterize the stable isomers, their spectroscopic properties, and many of the transition structures that represent barriers to isomerization. The pathways to stabilized C4H3+ and C6H3+ are most likely to arise from unimolecular decomposition of hot C4H4+ and C6H4+ by H atom elimination. By contrast, we found an ion-molecule pathway to C6H5+ to be very stable to fragmentation and elimination reactions even without collisional stabilization. This aromatic species is a good nucleation center for the growth of larger PAHs in interstellar conditions. C1 [Peverati, Roberto; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Peverati, Roberto; Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Bera, Partha P.] NASA, BAERI, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA 94035 USA. [Bera, Partha P.; Lee, Timothy J.] NASA, Ames Res Ctr, MS 245-1, Mountain View, CA 94035 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Head-Gordon, M (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu RI Lee, Timothy/K-2838-2012 FU NASA Carbon in the Galaxy consortium grant [NNH10ZDA001N]; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH13ZDA017C] FX The authors gratefully acknowledge financial support from the NASA Carbon in the Galaxy consortium grant NNH10ZDA001N. Some of this material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement Notice NNH13ZDA017C issued through the Science Mission Directorate. NR 68 TC 0 Z9 0 U1 10 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 128 DI 10.3847/0004-637X/830/2/128 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA3FZ UT WOS:000386488200031 ER PT J AU Tombesi, F Reeves, JN Kallman, T Reynolds, CS Mushotzky, RF Braito, V Behar, E Leutenegger, MA Cappi, M AF Tombesi, F. Reeves, J. N. Kallman, T. Reynolds, C. S. Mushotzky, R. F. Braito, V. Behar, E. Leutenegger, M. A. Cappi, M. TI THE COMPLEX CIRCUMNUCLEAR ENVIRONMENT OF THE BROAD-LINE RADIO GALAXY 3C 390.3 REVEALED BY CHANDRA HETG SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; galaxies: active; line: identification; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; ULTRA-FAST OUTFLOWS; ACCRETION-DISK WINDS; X-RAY-ABSORPTION; REFLECTION GRATING SPECTROMETER; SUPERMASSIVE BLACK-HOLE; HIGHLY IONIZED OUTFLOWS; XMM-NEWTON; WARM ABSORBERS; SUZAKU VIEW AB We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVII-XX). An emission line at the energy of E similar or equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log xi = 2.3 +/- 0.5 erg s(-1) cm, column density logN(H) = 20.7 +/- 0.1 cm(-2), and outflow velocity nu(out) < 150 km s(-1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei. C1 [Tombesi, F.; Kallman, T.; Leutenegger, M. A.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Tombesi, F.; Reynolds, C. S.; Mushotzky, R. F.; Behar, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Reeves, J. N.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Reeves, J. N.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Braito, V.] Osservatorio Astronomico Brera, INAF, Via Bianchi 46, I-23807 Merate, LC, Italy. [Behar, E.; Cappi, M.] Technion 32000, Dept Phys, IL-32000 Haifa, Israel. INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. RP Tombesi, F (reprint author), NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA.; Tombesi, F (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM francesco.tombesi@nasa.gov OI Reynolds, Christopher/0000-0002-1510-4860 FU National Aeronautics and Space Administration (NASA) [GO4-15103A]; NASA [NAS8-03060]; EU Horizon research and innovation program under the Marie Sklodowska Curie grant [655324] FX F.T. thanks K. Fukumura, D. Kazanas, and F. Paerels for the useful discussions. F.T. acknowledges support for this work by the National Aeronautics and Space Administration (NASA) through Chandra Award Number GO4-15103A issued by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. E.B. received funding from the EU Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No. 655324. NR 75 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 98 DI 10.3847/0004-637X/830/2/98 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA3FZ UT WOS:000386488200001 ER PT J AU Umurhan, OM Shariff, K Cuzzi, JN AF Umurhan, Orkan M. Shariff, Karim Cuzzi, Jeffrey N. TI CRITICAL LAYERS AND PROTOPLANETARY DISK TURBULENCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; instabilities; protoplanetary disks; turbulence; waves ID VERTICAL-SHEAR INSTABILITY; ROSSBY-WAVE INSTABILITY; BAROCLINIC VORTICITY PRODUCTION; THIN ACCRETION DISKS; SHALLOW-WATER THEORY; VORTEX FORMATION; CONVECTIVE OVERSTABILITY; THERMAL RELAXATION; ANGULAR-MOMENTUM; LINEAR-ANALYSIS AB A linear analysis of the zombie vortex instability (ZVI) is performed in a stratified shearing sheet setting for three model barotropic shear flows. The linear analysis is done by utilizing a Green's function formulation to resolve the critical layers of the associated normal-mode problem. The instability is the result of a resonant interaction between a Rossby wave and a gravity wave that we refer to as Z-modes. The associated critical layer is the location where the Doppler-shifted frequency of a distant Rossby wave equals the local Brunt-Vaisala frequency. The minimum required Rossby number for instability, Ro = 0.2, is confirmed for parameter values reported in the literature. It is also found that the shear layer supports the instability in the limit where stratification vanishes. The ZVI is examined in a jet model, finding that the instability can occur for Ro = 0.05. Nonlinear vorticity forcing due to unstable Z-modes is shown to result in the creation of a jet flow at the critical layer emerging as the result of the competition between the vertical lifting of perturbation radial vorticity and the radial transport of perturbation vertical vorticity. We find that the picture of this instability leading to a form of nonlinearly driven self-replicating pattern of creation and destruction is warranted: a parent jet spawns a growing child jet at associated critical layers. A mature child jet creates a next generation of child jets at associated critical layers of the former while simultaneously contributing to its own destruction via the Rossby wave instability. C1 [Umurhan, Orkan M.; Shariff, Karim; Cuzzi, Jeffrey N.] NASA, Ames Res Ctr, Moffett Field, CA 94053 USA. [Umurhan, Orkan M.] SETI Inst, 189 Bernardo Way, Mountain View, CA 94043 USA. RP Umurhan, OM (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94053 USA. EM orkan.m.umurhan@nasa.gov OI Shariff, Karim/0000-0002-7256-2497 NR 48 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 95 DI 10.3847/0004-637X/830/2/95 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA1FK UT WOS:000386337700012 ER PT J AU Wirstrom, ES Charnley, SB Cordiner, MA Ceccarelli, C AF Wirstrom, Eva S. Charnley, Steven B. Cordiner, Martin A. Ceccarelli, Cecilia TI A SEARCH FOR O-2 IN CO-DEPLETED MOLECULAR CLOUD CORES WITH HERSCHEL SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: abundances; ISM: clouds; ISM: molecules; molecular processes ID DENSE INTERSTELLAR CLOUDS; GRAIN CHEMICAL-MODELS; RHO-OPHIUCHI CLOUD; LOW-MASS PROTOSTAR; STAR-FORMATION; DARK CLOUDS; DESORPTION PROCESSES; TENTATIVE DETECTION; HIFI OBSERVATIONS; WATER FORMATION AB The general lack of molecular oxygen in molecular clouds is an outstanding problem in astrochemistry. Extensive searches with the Submillimeter Astronomical Satellite, Odin,. and Herschel have only produced two detections; upper limits to the O-2 abundance in the remaining sources observed are about 1000 times lower than predicted by chemical models. Previous atomic oxygen observations and inferences from observations of other molecules indicated that high abundances of O atoms might be present in dense cores exhibiting large amounts of CO depletion. Theoretical arguments concerning the oxygen gas-grain interaction in cold dense cores suggested that, if O atoms could survive in the gas after most of the rest of the heavy molecular material has frozen out onto dust, then O-2 could be formed efficiently in the gas. Using Herschel HIFI, we searched a small sample of four depletion cores-L1544, L694-2, L429, and. Oph D-for emission in the low excitation O-2 N-J = 3(3)-1(2) line at 487.249 GHz. Molecular oxygen was not detected and we derive upper limits to its abundance in the range of N(O-2)/N(H-2) approximate to (0.6-1.6) x 10(-7). We discuss the absence of O-2 in the light of recent laboratory and observational studies. C1 [Wirstrom, Eva S.] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, S-43992 Onsala, Sweden. [Charnley, Steven B.; Cordiner, Martin A.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Mailstop 691,8800 Greenbelt Rd, Greenbelt, MD 20770 USA. [Cordiner, Martin A.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Ceccarelli, Cecilia] Observ Grenoble, Astrophys Lab, BP 53, F-38041 Grenoble 09, France. RP Wirstrom, ES (reprint author), Chalmers, Onsala Space Observ, Dept Earth & Space Sci, S-43992 Onsala, Sweden. EM eva.wirstrom@chalmers.se OI Wirstrom, Eva/0000-0002-0656-876X FU Swedish National Space Board; NASA's Origins of Solar Systems Program FX E.S.W. acknowledges generous financial support from the Swedish National Space Board. The work of S.B.C. and M.A.C. was supported by NASA's Origins of Solar Systems Program. NR 72 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 102 DI 10.3847/0004-637X/830/2/102 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA3FZ UT WOS:000386488200005 ER PT J AU Silverberg, SM Kuchner, MJ Wisniewski, JP Gagne, J Bans, AS Bhattacharjee, S Currie, TR Debes, JR Biggs, JR Bosch, M Doll, K Durantini-Luca, HA Enachioaie, A Griffith, P Hyogo, M Piniero, F AF Silverberg, Steven M. Kuchner, Marc J. Wisniewski, John P. Gagne, Jonathan Bans, Alissa S. Bhattacharjee, Shambo Currie, Thayne R. Debes, John R. Biggs, Joseph R. Bosch, Milton Doll, Katharina Durantini-Luca, Hugo A. Enachioaie, Alexandru Griffith, Philip, Sr. Hyogo, Michiharu Piniero, Fernanda CA Disk Detective Collaboration TI A NEW M DWARF DEBRIS DISK CANDIDATE IN A YOUNG MOVING GROUP DISCOVERED WITH DISK DETECTIVE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; open clusters and associations: individual (Carina); stars: low-mass ID LOW-MASS STARS; CIRCUMSTELLAR DISKS; KINEMATIC GROUPS; BURNING LIMIT; HR 8799; ASSOCIATION; EVOLUTION; PLANETS; SEARCH; NEARBY AB We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 mu m, is a likely member (similar to 90% BANYAN II probability) of the similar to 45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution. C1 [Silverberg, Steven M.; Wisniewski, John P.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. [Gagne, Jonathan] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. [Bans, Alissa S.] Adler Planetarium, 1300 S Lake Shore Dr, Chicago, IL 60605 USA. [Bhattacharjee, Shambo] Univ Leeds, Sch Stat, Leeds LS2 9JT, W Yorkshire, England. [Currie, Thayne R.] Natl Astron Observ Japan, Subaru Telescope, Tokyo, Japan. [Debes, John R.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. RP Silverberg, SM (reprint author), Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. EM silverberg@ou.edu OI Doll, Katharina/0000-0002-2993-9869; Gagne, Jonathan/0000-0002-2592-9612; Bhattacharjee, Shambo/0000-0002-0862-9108 NR 45 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 20 PY 2016 VL 830 IS 2 AR L28 DI 10.3847/2041-8205/830/2/L28 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA2XE UT WOS:000386459000001 ER PT J AU Cyburt, RH Amthor, AM Heger, A Johnson, E Keek, L Meisel, Z Schatz, H Smith, K AF Cyburt, R. H. Amthor, A. M. Heger, A. Johnson, E. Keek, L. Meisel, Z. Schatz, H. Smith, K. TI DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; X-rays: bursts ID ACCRETING NEUTRON-STARS; THERMONUCLEAR REACTION-RATES; WEAK INTERACTION RATES; RP-PROCESS; RADIUS EXPANSION; RATE TABLES; HYDROGEN; MASS; NUCLEOSYNTHESIS; FLASHES AB X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,gamma),(alpha,gamma), and (alpha, p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a singlezone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models. C1 [Cyburt, R. H.; Keek, L.; Schatz, H.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Cyburt, R. H.; Heger, A.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Amthor, A. M.] Bucknell Univ, Dept Phys & Astron, Lewisburg, PA 17837 USA. [Heger, A.] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Heger, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, A.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Ctr Nucl Astrophys, Shanghai 200240, Peoples R China. [Johnson, E.; Keek, L.; Schatz, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Meisel, Z.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Keek, L.] NASA, CRESST, GSFC, Greenbelt, MD 20771 USA. [Keek, L.] NASA, Xray Astrophys Lab, GSFC, Greenbelt, MD 20771 USA. [Smith, K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cyburt, RH (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.; Cyburt, RH (reprint author), Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. FU National Science Foundation [PHY-02-016783, PHY-08-22648, PHY-1430152]; ARC Future Fellowship [FT120100363]; US Department of Energy [SC0005012]; NASA [NNG06EO90A] FX We thank R. Ferguson, M. Klein, and S. Warren for help with the data analysis, F.-K. Thielemann for providing the network solver, and L. Bildsten for contributions to the one-zone model. This material is based upon work supported by the National Science Foundation under Grant Numbers PHY-02-016783, PHY-08-22648, and PHY-1430152 (JINA Center for the Evolution of the Elements). A.H. was supported by an ARC Future Fellowship (FT120100363) and the US Department of Energy (SC0005012). L.K. is supported by NASA under award number NNG06EO90A. NR 65 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2016 VL 830 IS 2 AR 55 DI 10.3847/0004-637X/830/2/55 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ8MN UT WOS:000386124600001 ER PT J AU McIntyre, ABR Rizzardi, L Yu, AM Alexander, N Rosen, GL Botkin, DJ Stahl, SE John, KK Castro-Wallace, SL McGrath, K Burton, AS Feinberg, AP Mason, CE AF McIntyre, Alexa B. R. Rizzardi, Lindsay Yu, Angela M. Alexander, Noah Rosen, Gail L. Botkin, Douglas J. Stahl, Sarah E. John, Kristen K. Castro-Wallace, Sarah L. McGrath, Ken Burton, Aaron S. Feinberg, Andrew P. Mason, Christopher E. TI Nanopore sequencing in microgravity SO NPJ MICROGRAVITY LA English DT Article ID SPACE-FLIGHT; RNA MODIFICATIONS; QUERY; TIME; VIRULENCE AB Rapid DNA sequencing and analysis has been a long-sought goal in remote research and point-of-care medicine. In microgravity, DNA sequencing can facilitate novel astrobiological research and close monitoring of crew health, but spaceflight places stringent restrictions on the mass and volume of instruments, crew operation time, and instrument functionality. The recent emergence of portable, nanopore-based tools with streamlined sample preparation protocols finally enables DNA sequencing on missions in microgravity. As a first step toward sequencing in space and aboard the International Space Station (ISS), we tested the Oxford Nanopore Technologies MinION during a parabolic flight to understand the effects of variable gravity on the instrument and data. In a successful proof-of-principle experiment, we found that the instrument generated DNA reads over the course of the flight, including the first ever sequenced in microgravity, and additional reads measured after the flight concluded its parabolas. Here we detail modifications to the sample-loading procedures to facilitate nanopore sequencing aboard the ISS and in other microgravity environments. We also evaluate existing analysis methods and outline two new approaches, the first based on a wave-fingerprint method and the second on entropy signal mapping. Computationally light analysis methods offer the potential for in situ species identification, but are limited by the error profiles (stays, skips, and mismatches) of older nanopore data. Higher accuracies attainable with modified sample processing methods and the latest version of flow cells will further enable the use of nanopore sequencers for diagnostics and research in space. C1 [McIntyre, Alexa B. R.; Yu, Angela M.] Triinst Training Program Computat Biol & Med, New York, NY USA. [McIntyre, Alexa B. R.; Alexander, Noah; Mason, Christopher E.] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA. [Rizzardi, Lindsay; Feinberg, Andrew P.] Johns Hopkins Univ, Sch Med, Ctr Epigenet, Baltimore, MD 21205 USA. [Rosen, Gail L.] Drexel Univ, Dept Elect & Comp Engn, Philadelphia, PA 19104 USA. [Botkin, Douglas J.; Stahl, Sarah E.] JES Tech, Houston, TX USA. [John, Kristen K.; Burton, Aaron S.] NASA, Johnson Space Ctr, Astromat Res & Explorat Sci Div, Explorat Integrat & Sci Directorate, Houston, TX 77058 USA. [John, Kristen K.] NASA, Johnson Space Ctr, Postdoctoral Program, Houston, TX USA. [Castro-Wallace, Sarah L.] NASA, Johnson Space Ctr, Biomed Res & Environm Sci Div, Houston, TX USA. [McGrath, Ken] Univ Queensland, Australian Genome Res Facil, Gehrmann Labs, St Lucia, Qld, Australia. [Mason, Christopher E.] HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsau, New York, NY 10021 USA. [Mason, Christopher E.] Feil Family Brain & Mind Res Inst BMRI, New York, NY 10065 USA. RP Mason, CE (reprint author), Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA.; Feinberg, AP (reprint author), Johns Hopkins Univ, Sch Med, Ctr Epigenet, Baltimore, MD 21205 USA.; Burton, AS (reprint author), NASA, Johnson Space Ctr, Astromat Res & Explorat Sci Div, Explorat Integrat & Sci Directorate, Houston, TX 77058 USA.; Mason, CE (reprint author), HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsau, New York, NY 10021 USA.; Mason, CE (reprint author), Feil Family Brain & Mind Res Inst BMRI, New York, NY 10065 USA. EM afeinberg@jhu.edu; chm2042@med.cornell.edu OI Rizzardi, Lindsay/0000-0002-2866-9625 NR 28 TC 0 Z9 0 U1 13 U2 13 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 2373-8065 J9 NPJ MICROGRAVITY JI NPJ Microgravity PD OCT 20 PY 2016 VL 2 AR 16035 DI 10.1038/npjmgrav.2016.35 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DZ6KV UT WOS:000385972200001 ER PT J AU Mallick, K Trebs, I Boegh, E Giustarini, L Schlerf, M Drewry, DT Hoffmann, L von Randow, C Kruijt, B Araujo, A Saleska, S Ehleringer, JR Domingues, TF Ometto, JPHB Nobre, AD de Moraes, OLL Hayek, M Munger, JW Wofsy, SC AF Mallick, Kaniska Trebs, Ivonne Boegh, Eva Giustarini, Laura Schlerf, Martin Drewry, Darren T. Hoffmann, Lucien von Randow, Celso Kruijt, Bart Araujo, Alessandro Saleska, Scott Ehleringer, James R. Domingues, Tomas F. Ometto, Jean Pierre H. B. Nobre, Antonio D. Leal de Moraes, Osvaldo Luiz Hayek, Matthew Munger, J. William Wofsy, Steven C. TI Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID MODELING STOMATAL CONDUCTANCE; TROPICAL FOREST; SURFACE-TEMPERATURE; ENERGY-BALANCE; BOUNDARY-LAYER; LAND-SURFACE; EVAPOTRANSPIRATION RATES; DECIDUOUS FOREST; CARBON-CYCLE; RAIN-FOREST AB Canopy and aerodynamic conductances (g(C) and g(A)) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (lambda E-T) and evaporation (lambda E-E) flux components of the terrestrial latent heat flux (lambda E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (T-R) into an integrated framework of the Penman-Monteith and Shuttleworth-Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on lambda E-T and lambda E-E over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a T-R-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between g(C), lambda E-T, and atmospheric vapor pressure deficit (D-A), without using any leaf-scale empirical parameterizations for the modeling. The T-R-based model shows minor biophysical control on lambda E-T during the wet (rainy) seasons where lambda E-T becomes predominantly radiation driven and net radiation (RN) determines 75 to 80% of the variances of lambda E-T. However, biophysical control on lambda E-T is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65% of the variances of lambda E-T, and indicates lambda E-T to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in g(A) between forests and pastures, very similar canopy-atmosphere "coupling" was found in these two biomes due to soil moistureinduced decrease in g(C) in the pasture. This revealed the pragmatic aspect of the T-R-driven model behavior that exhibits a high sensitivity of g(C) to per unit change in wetness as opposed to g(A) that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between lambda E-T and g(C) during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by g(A) for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of g(C) and g(A) to changes in atmospheric radiation, D-A, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land-surface-atmosphere exchange parameterizations across a range of spatial scales. C1 [Mallick, Kaniska; Trebs, Ivonne; Giustarini, Laura; Schlerf, Martin; Hoffmann, Lucien] Luxembourg Inst Sci & Technol, Dept Environm Res & Innovat, L-4422 Belvaux, Luxembourg. [Boegh, Eva] Roskilde Univ, Dept Sci & Environm, Roskilde, Denmark. [Drewry, Darren T.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [von Randow, Celso; Ometto, Jean Pierre H. B.; Nobre, Antonio D.] Ctr Ciencia Sistema Terr, INPE, Sao Jose Dos Campos, SP, Brazil. [Kruijt, Bart] Wageningen Environm Res ALTERRA, Wageningen, Netherlands. [Araujo, Alessandro] Empresa Brasileira Pesquisa Agr EMBRAPA, Belem, Para, Brazil. [Saleska, Scott] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA. [Ehleringer, James R.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA. [Domingues, Tomas F.] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Sao Paulo, SP, Brazil. [Leal de Moraes, Osvaldo Luiz] Ctr Nacl Monitoramento & Alertas Desastres Nat, Sao Paulo, SP, Brazil. [Hayek, Matthew; Munger, J. William; Wofsy, Steven C.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Drewry, Darren T.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. RP Mallick, K; Trebs, I (reprint author), Luxembourg Inst Sci & Technol, Dept Environm Res & Innovat, L-4422 Belvaux, Luxembourg. EM kaniska.mallick@gmail.com; ivonne.trebs@list.lu RI Munger, J/H-4502-2013; Trebs, Ivonne/L-9125-2013; OI Munger, J/0000-0002-1042-8452; Von Randow, Celso/0000-0003-1045-4316 FU Luxembourg Institute of Science and Technology (LIST); German Science Foundation (DFG) [FOR 1598]; BELSPO; FNR; Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX This study was funded by the Luxembourg Institute of Science and Technology (LIST). The developed modeling framework contributes to the Catchments As Organized Systems (CAOS) Phase-2 research group (FOR 1598) funded by the German Science Foundation (DFG) and to the HiWET (High-resolution modelling and monitoring of Water and Energy Transfers in wetland ecosystems) consortium funded by BELSPO and FNR. We sincerely thank Andrew Jarvis (Lancaster University, UK), Monica Garcia (Technical University of Denmark, Denmark), and Georg Wohlfahrt (University of Innsbruck, Austria) for very helpful discussions and edits of the manuscript. We are grateful to all Brazilian and international collaborators and all the funding agencies that have contributed to the Large-scale Biosphere Atmosphere Experiment in Amazonia (LBA). The authors are indebted to Pavel Kabat, Antonio Ocimar Manzi, David R. Fitzjarrald, Julio Tota, Humberto Ribeiro da Rocha, Michael Goulden, Maarten J. Waterloo, and Luiz Martinelli for planning, coordinating, conducting, and evaluating the eddy covariance, meteorological, and leaf-gas exchange measurements at the LBA sites. We are particularly grateful to all field technicians whose hard work was the key ingredient to establishing the quality of the datasets used in this paper. The authors declare no conflict of interest. Darren T. Drewry acknowledges the support of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 102 TC 1 Z9 1 U1 17 U2 17 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PD OCT 19 PY 2016 VL 20 IS 10 BP 4237 EP 4264 DI 10.5194/hess-20-4237-2016 PG 28 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA EA4OR UT WOS:000386592900001 ER PT J AU Thakkar, H Eastman, S Hajari, A Rownaghi, AA Knox, JC Rezaei, F AF Thakkar, Harshul Eastman, Stephen Hajari, Amit Rownaghi, Ali A. Knox, James C. Rezaei, Fateme TI 3D-Printed Zeolite Monoliths for CO2 Removal from Enclosed Environments SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE 3D-printed monolith; enclosed-environments; CO2 removal from air; adsorption; zeolite 5A; zeolite 13X ID CARBON HONEYCOMB MONOLITH; CAPTURE; PERFORMANCE; ADSORBENTS; AIR; ADSORPTION AB Structured adsorbents, especially in the form of monolithic contactors, offer an excellent gassolid contacting strategy for the development of practical and scalable CO2 capture technologies. In this study, the fabrication of three-dimensional (3D)-printed 13X and 5A zeolite monoliths with novel structures and their use in CO2 removal from air are reported. The physical and structural properties of these printed monoliths are evaluated and compared with their powder counterparts. Our results indicate that 3D-printed monoliths with zeolite loadings as high as 90 wt % exhibit adsorption uptake that is comparable to that of powder sorbents. The adsorption capacities of 5A and 13X monoliths were found to be 1.59 and 1.60 mmol/g, respectively, using 5000 ppm (0.5%) CO2 in nitrogen at room temperature. The dynamic CO2/N-2 breakthrough experiments show relatively fast dynamics for monolithic structures. In addition, the printed zeolite monoliths show reasonably good mechanical stability that can eventually prevent attrition and dusting issues commonly encountered in traditional pellets and beads packing systems. The 3D printing technique offers an alternative, cost-effective, and facile approach to fabricate structured adsorbents with tunable structural, chemical, and mechanical properties for use in gas separation processes. C1 [Thakkar, Harshul; Eastman, Stephen; Hajari, Amit; Rownaghi, Ali A.; Rezaei, Fateme] Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA. [Knox, James C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Rezaei, F (reprint author), Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA. EM rezaeif@mst.edu FU NASA-EPSCoR [NNX15AK38A] FX This work was financially supported by NASA-EPSCoR (No. NNX15AK38A). The authors thank Dr. Rahaman's laboratory for using their 3D printer and Materials Research Center (MRC) of Missouri S&T for SEM and XRD. The authors also thank Dr. Karren More at ORNL for helping with the SEM images, through CNMS User Proposal No. CNMS2015-339. NR 43 TC 2 Z9 2 U1 30 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD OCT 19 PY 2016 VL 8 IS 41 BP 27753 EP 27761 DI 10.1021/acsami.6b09647 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DZ6SO UT WOS:000385992400038 ER PT J AU Wilcox, EM Thomas, RM Praveen, PS Pistone, K Bender, FAM Ramanathan, V AF Wilcox, Eric M. Thomas, Rick M. Praveen, Puppala S. Pistone, Kristina Bender, Frida A. -M. Ramanathan, Veerabhadran TI Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE atmospheric turbulence; cloud cover; aerosols; radiative forcing; autonomous unmanned aerial vehicles ID UNMANNED AERIAL VEHICLES; NORTHERN INDIAN-OCEAN; CLOUD COVER; VERTICAL PROFILES; AEROSOL; SMOKE; POLLUTION; STRATOCUMULUS; MICROPHYSICS; PERFORMANCE AB The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events. C1 [Wilcox, Eric M.] Desert Res Inst, Div Atmospher Sci, Reno, NV 89512 USA. [Thomas, Rick M.; Praveen, Puppala S.; Pistone, Kristina; Ramanathan, Veerabhadran] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Clouds Chem & Climate, La Jolla, CA 92093 USA. [Thomas, Rick M.] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England. [Praveen, Puppala S.] Int Ctr Integrated Mt Dev, Kathmandu, Nepal. [Pistone, Kristina] NASA, Ames Res Ctr, Univ Space Res Assoc, Moffett Field, CA 94035 USA. [Bender, Frida A. -M.] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. [Bender, Frida A. -M.] Stockholm Univ, Bolin Ctr Climate Res, S-10691 Stockholm, Sweden. RP Wilcox, EM (reprint author), Desert Res Inst, Div Atmospher Sci, Reno, NV 89512 USA.; Thomas, RM; Ramanathan, V (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Ctr Clouds Chem & Climate, La Jolla, CA 92093 USA.; Thomas, RM (reprint author), Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England. EM Eric.Wilcox@dri.edu; r.thomas@bham.ac.uk; vramanathan@ucsd.edu FU National Science Foundation [NSF-0721142]; Desert Research Institute; National Aeronautics and Space Administration [NNX11AG89G] FX We thank Hung Nguyen for the expert project and flight management for CARDEX. The CARDEX campaign is supported by National Science Foundation Grant NSF-0721142 and was conducted by Scripps Institution of Oceanography with V. Ramanathan as the principal investigator. E.M.W. acknowledges support from the Desert Research Institute to participate in CARDEX, as well as from National Aeronautics and Space Administration Grant NNX11AG89G. NR 38 TC 0 Z9 0 U1 16 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 18 PY 2016 VL 113 IS 42 BP 11794 EP 11799 DI 10.1073/pnas.1525746113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DZ1PN UT WOS:000385610400059 PM 27702889 ER PT J AU Tompson, SR AF Tompson, Sara R. TI The Pope of Physics: Enrico Fermi and the Birth of the Atomic Age. SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD OCT 15 PY 2016 VL 141 IS 17 BP 107 EP 107 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA EJ6SJ UT WOS:000393348800262 ER PT J AU Yayathi, S Walker, W Doughty, D Ardebili, H AF Yayathi, Sandeep Walker, William Doughty, Daniel Ardebili, Haleh TI Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium ion battery; Thermal runaway; Battery safety; Accelerating rate calorimetry; Total energy release ID ACCELERATING RATE CALORIMETRY; MICROGRAVITY CONDITIONS; INTERCALATED GRAPHITE; HIGH-POWER; CELLS; MODEL; OVERCHARGE; STABILITY; PROPAGATION; PERFORMANCE AB Lithium ion (Li-ion) batteries provide low mass and energy dense solutions necessary for space exploration, but thermal related safety concerns impede the utilization of Li-ion technology for human applications. Experimental characterization of thermal runaway energy release with accelerated rate calorimetry supports safer thermal management systems. 'Standard' accelerated rate calorimetry setup provides means to measure the addition of energy exhibited through the body of a Li-ion cell. This study considers the total energy generated during thermal runaway as distributions between cell body and hot gases via inclusion of a unique secondary enclosure inside the calorimeter; this closed system not only contains the cell body and gaseous species, but also captures energy release associated with rapid heat transfer to the system unobserved by measurements taken on the cell body. Experiments include Boston Power Swing 5300, Samsung 18650-26F and MoliCel 18650-J Li-ion cells at varied states-of-charge. An inverse relationship between state-of-charge and onset temperature is observed. Energy contained in the cell body and gaseous species are successfully characterized; gaseous energy is minimal. Significant additional energy is measured with the heating of the secondary enclosure. Improved calorimeter apparatus including a secondary enclosure provides essential capability to measuring total energy release distributions during thermal runaway. Published by Elsevier B.V. C1 [Yayathi, Sandeep; Walker, William] NASA Johnson Space Ctr, 2101 NASA Rd 1, Houston, TX 77058 USA. [Walker, William; Ardebili, Haleh] Univ Houston, 4800 Calhoun Rd, Houston, TX 77004 USA. [Doughty, Daniel] Battery Safety Consulting Inc, 139 Big Horn Ridge Dr NE, Albuquerque, NM 87122 USA. RP Walker, W (reprint author), NASA Johnson Space Ctr, Engn Directorate, Struct Engn Div, 2101 NASA Rd 1, Houston, TX 77058 USA. EM william.walker@nasa.gov FU NASA JSC Energy Systems Test Area (ESTA); NASA Engineering and Safety Center (NESC) FX The authors would like to express deepest gratitude for the support of Dr. Christopher Iannello, the NASA Engineering and Safety Center (NESC) and the NASA JSC Energy Systems Test Area (ESTA) team members. Special thanks to the Thermal Hazard Technology (THT) test team. NR 52 TC 1 Z9 1 U1 24 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD OCT 15 PY 2016 VL 329 BP 197 EP 206 DI 10.1016/j.jpowsour.2016.08.078 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DY1KB UT WOS:000384852800021 ER PT J AU Mahjoub, A Schwell, M Carrasco, N Benilan, Y Cernogora, G Szopa, C Gazeau, MC AF Mahjoub, Ahmed Schwell, Martin Carrasco, Nathalie Benilan, Yves Cernogora, Guy Szopa, Cyril Gazeau, Marie-Claire TI Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Aromatics; Titan's atmosphere; Aerosols; L2DI-MS ID ULTRAVIOLET-ABSORPTION-SPECTRA; OPTICAL INDEXES; ORGANIC-MATTER; GAS-PHASE; RF PLASMA; THOLINS; SPECTROSCOPY; CHEMISTRY; HAZE; HYDROCARBONS AB The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 mu m suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N-2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a lambda=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine. (C) 2016 Published by Elsevier Ltd. C1 [Mahjoub, Ahmed; Schwell, Martin; Benilan, Yves; Gazeau, Marie-Claire] Univ Paris Est Creteil, LISA UMR CNRS 7583, 61 Ave Gen Gaulle, F-94010 Creteil, France. [Mahjoub, Ahmed; Schwell, Martin; Benilan, Yves; Gazeau, Marie-Claire] Univ Paris Diderot, Inst Pierre Simon Laplace, 61 Ave Gen Gaulle, F-94010 Creteil, France. [Carrasco, Nathalie; Cernogora, Guy; Szopa, Cyril] Univ Paris 06, Univ Versailles St Quentin, CNRS INSU, LATMOS IPSL, 11 Bd Alembert, F-78280 Guyancourt, France. [Carrasco, Nathalie; Szopa, Cyril] Inst Univ France, Paris, France. [Mahjoub, Ahmed] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mahjoub, A (reprint author), Univ Paris Est Creteil, LISA UMR CNRS 7583, 61 Ave Gen Gaulle, F-94010 Creteil, France.; Mahjoub, A (reprint author), Univ Paris Diderot, Inst Pierre Simon Laplace, 61 Ave Gen Gaulle, F-94010 Creteil, France.; Mahjoub, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM ahmed.mahjoub@lisa.u-pec.fr RI Carrasco, Nathalie/D-2365-2012 OI Carrasco, Nathalie/0000-0002-0596-6336 FU Universite Creteil Paris 12; European Research Council (ERC Starting Grant PRIMCHEM) [636829] FX Dr. Mahjoub would like to thank Universite Creteil Paris 12 for financial support. NC acknowledges the European Research Council for their financial support (ERC Starting Grant PRIMCHEM, Grant agreement no. 636829). NR 74 TC 0 Z9 0 U1 17 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD OCT 15 PY 2016 VL 131 BP 1 EP 13 DI 10.1016/j.pss.2016.05.003 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY1LT UT WOS:000384857200001 ER PT J AU Managadze, GG Engel, MH Getty, S Wurz, P Brinckerhoff, WB Shokolov, AG Sholin, GV Terent'ev, SA Chumikov, AE Skalkin, AS Blank, VD Prokhorov, VM Managadze, NG Luchnikov, KA AF Managadze, George G. Engel, Michael H. Getty, Stephanie Wurz, Peter Brinckerhoff, William B. Shokolov, Anatoly G. Sholin, Gennady V. Terent'ev, Sergey A. Chumikov, Alexander E. Skalkin, Alexander S. Blank, Vladimir D. Prokhorov, Vyacheslav M. Managadze, Nina G. Luchnikov, Konstantin A. TI Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory SO PLANETARY AND SPACE SCIENCE LA English DT Article ID BIOMOLECULAR CHIRALITY; MURCHISON METEORITE; SHOCK SYNTHESIS; ORIGIN; SELECTION; COMETARY; FIELDS; VAPOR AB We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Managadze, George G.; Chumikov, Alexander E.; Managadze, Nina G.; Luchnikov, Konstantin A.] Space Res Inst, Profsoyuznaya St 84-32, Moscow 117997, Russia. [Engel, Michael H.] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA. [Getty, Stephanie; Brinckerhoff, William B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wurz, Peter] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Shokolov, Anatoly G.; Skalkin, Alexander S.] Cent Res Inst Machine Bldg, Moscow, Russia. [Sholin, Gennady V.] NRC Kurchatov Inst, Moscow, Russia. [Blank, Vladimir D.; Prokhorov, Vyacheslav M.] Technol Inst Super Hard & Novel Carbon Mat, Moscow, Russia. RP Wurz, P (reprint author), Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. EM peter.wurz@space.unibe.ch FU Presidium of the Russian Academy of Sciences [22]; Swiss National Science Foundation [200020_153047] FX We thank Dr. A.A. Ignatov, Dr. A.I. Rukhadze, Dr. V.A. Avetisov, Dr. A.S. Brodskii, Dr. A. Riedo, Dr. M. Tulej, Dr. L.M. Zelenyi, Dr. R. R. Nazirov, Dr. A.V. Zakharov, Dr. L. Kelner, and Dr. Yu. M. Lipnitskii for useful discussions and support, Dr. V.A. Davankov for valuable remarks, A.I. Kuznetsov and D.A. Moiseenko for their assistance. Supported by the Presidium of the Russian Academy of Sciences (Grant no. 22) and the Swiss National Science Foundation (Grant no. 200020_153047). NR 45 TC 0 Z9 0 U1 11 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD OCT 15 PY 2016 VL 131 BP 70 EP 78 DI 10.1016/j.pss.2016.07.005 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY1LT UT WOS:000384857200007 ER PT J AU Rapin, W Meslin, PY Maurice, S Vaniman, D Nachon, M Mangold, N Schroder, S Gasnault, O Forni, O Wiens, RC Martinez, GM Cousin, A Sautter, V Lasue, J Rampe, EB Archer, D AF Rapin, W. Meslin, P. -Y. Maurice, S. Vaniman, D. Nachon, M. Mangold, N. Schroder, S. Gasnault, O. Forni, O. Wiens, R. C. Martinez, G. M. Cousin, A. Sautter, V. Lasue, J. Rampe, E. B. Archer, D. TI Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Mars; calcium sulfate; bassanite; LIBS; hydrogen; ChemCam ID CHEMCAM INSTRUMENT SUITE; OMEGA/MARS EXPRESS; GYPSUM; ANHYDRITE; STABILITY; SEDIMENTS; PHASE; BASIN; UNIT AB In-situ analyses reveal the presence of hydrogen within calcium sulfate veins crosscutting the sediments found in Gale crater. Laboratory experiments were performed to calibrate the hydrogen signal measured by laser induced breakdown spectroscopy (LIBS) in a range applicable to martian data. The analyses indicate that all veins targeted so far at Gale consist predominantly of bassanite which most likely formed by dehydration of gypsum. This scenario suggests that the percolating water produced gypsum, possibly by hydration of anhydrite in aqueous solution, and remained at temperatures below 60 degrees C at that time. Desiccating conditions followed, consistent with a hyperarid climate and favored by burial or impacts. Additionally, anhydrite with lesser bassanite has been found by XRD in samples of sediments hosting the veins. Our result suggests bassanite is likely found in the veins and anhydrite may be more common as a fine-grained component within the sediments. (C) 2016 Elsevier B.V. All rights reserved. C1 [Rapin, W.; Meslin, P. -Y.; Maurice, S.; Gasnault, O.; Forni, O.; Cousin, A.; Lasue, J.] Univ Toulouse, UPS OMP, Toulouse, France. [Rapin, W.; Meslin, P. -Y.; Maurice, S.; Schroder, S.; Gasnault, O.; Forni, O.; Cousin, A.; Lasue, J.] CNRS, Inst Rech Astrophys & Planetol, UMR 5277, Toulouse, France. [Vaniman, D.] Planetary Sci Inst, Tucson, AZ USA. [Nachon, M.; Mangold, N.] Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, UMR6112, Nantes, France. [Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Martinez, G. M.] Univ Michigan, Ann Arbor, MI 48109 USA. [Sautter, V.] Museum Natl Hist Nat, Lab Mineral & Cosmochim Museum, Paris, France. [Rampe, E. B.] NASA Johnson Space Ctr, Aerodyne Ind, Houston, TX USA. [Archer, D.] NASA Johnson Space Ctr, Houston, TX USA. RP Rapin, W (reprint author), IRAP CNRS, 9 Ave Colonel Roche, F-31028 Toulouse, France. EM william.rapin@irap.omp.eu FU Universite Paul Sabatier, Institut de Recherche en Astrophysique et Planetologie (IRAP); CNES; NASA Mars Exploration Program FX This research was funded by Universite Paul Sabatier as part of a PhD thesis, and experiments were conducted at Institut de Recherche en Astrophysique et Planetologie (IRAP) with support from CNES. Funding for MSL and ChemCam operations and science in the US were provided by the NASA Mars Exploration Program. Funding for ChemCam operations in France was provided by CNES. The authors gratefully acknowledge the support of all of the people at JPL involved in making MSL a successful mission. The Raman spectroscopy analysis to assess the purity of the calcium sulfate pellets was performed by Olivier Beyssac and Sylvain Bernard from the Institut de Mineralogie, de Physique des Materiaux et de Cosmochimie (IMPMC). The authors thankfully recognize their valuable help. The authors also thank Mikhail Zolotov and one anonymous reviewer for their helpful comments. NR 53 TC 2 Z9 2 U1 32 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 15 PY 2016 VL 452 BP 197 EP 205 DI 10.1016/j.epsl.2016.07.045 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DV5YE UT WOS:000383005800019 ER PT J AU Richter, A Ivins, E Lange, H Mendoza, L Schroder, L Hormaechea, JL Casassa, G Marderwald, E Fritsche, M Perdomo, R Horwath, M Dietrich, R AF Richter, A. Ivins, E. Lange, H. Mendoza, L. Schroeder, L. Hormaechea, J. L. Casassa, G. Marderwald, E. Fritsche, M. Perdomo, R. Horwath, M. Dietrich, R. TI Crustal deformation across the Southern Patagonian Icefield observed by GNSS SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE crustal deformation; glacial-isostatic adjustment; GNSS; Patagonia ID RIDGE SUBDUCTION REGION; ANTARCTIC PENINSULA; ARGENTINA; CHILE; GPS; HOLOCENE; EVOLUTION; HISTORY; MODELS; MOTION AB Geodetic GNSS observations at 43 sites well distributed over the Southern Patagonian Icefield region yield site velocities with a mean accuracy of 1 mm/a and 6 mm/a for the horizontal and vertical components, respectively. These velocities are analyzed to reveal the magnitudes and patterns of vertical and horizontal present-day crustal deformation as well as their primary driving processes. The observed vertical velocities confirm a rapid uplift, with rates peaking at 41 mmia, causally related to glacial-isostatic adjustment (GIA). They yield now an unambiguous preference between two competing GIA models. Remaining discrepancies between the preferred model and our observations point toward an effective upper mantle viscosity even lower than 1.6 . 10(18) Pa s and effects of lateral rheological heterogeneities. An analysis of the horizontal strain and strain-rate fields reveals some complex superposition, with compression dominating in the west and extension in the east. This deformation field suggests significant contributions from three processes: GIA, a western interseismic tectonic deformation field related to plate subduction, and an extensional strain-rate field related to active Patagonian slab window tectonics. (C) 2016 Elsevier B.V. All rights reserved. C1 [Richter, A.; Lange, H.; Schroeder, L.; Fritsche, M.; Horwath, M.; Dietrich, R.] Tech Univ Dresden, Inst Planetare Geodasie, Dresden, Germany. [Richter, A.; Mendoza, L.; Hormaechea, J. L.; Marderwald, E.; Perdomo, R.] Univ Nacl La Plata, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, Argentina. [Richter, A.; Mendoza, L.; Hormaechea, J. L.; Marderwald, E.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Ivins, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hormaechea, J. L.] Estn Astron Rio Grande, Rio Grande, Argentina. [Casassa, G.] Geoestudios, Santiago, Chile. [Casassa, G.] Univ Magallanes, Punta Arenas, Chile. [Fritsche, M.] GFZ German Res Ctr Geosci, Potsdam, Germany. RP Richter, A (reprint author), Tech Univ Dresden, Inst Planetare Geodasie, Dresden, Germany. EM andreas.richter@tu-dresden.de RI Ivins, Erik/C-2416-2011; OI Hormaechea, Jose Luis/0000-0003-4533-3282 FU German Research Foundation DFG [RI 2340/1-1, DI 473/40-1]; Jet Propulsion Laboratory, California Institute of Technology, by the Cryosphere Program; Earth Surface and Interior Focus Area as part of GRACE Science; Earth Surface and Interior Focus Area as part of NASA Sea-level Change Teams; administrations of Parque Nacional Los Glaciares; administrations of Parque Nacional Torres del Paine; administrations of DIFROL; administrations of GRACE Science FX The German part of the project was funded by the German Research Foundation DFG (grants RI 2340/1-1, DI 473/40-1). E. Ivins was funded at the Jet Propulsion Laboratory, California Institute of Technology, by the Cryosphere Program, the Earth Surface and Interior Focus Area and as part of both the GRACE Science and NASA Sea-level Change Teams. We thank Gerardo Connon, Luis Barbero, Anja Wendt, Andres Rivera, Rodrigo Traub, Marcelo Arevalo and Hans Silva for their valuable help in the field. We thank the administrations of Parque Nacional Los Glaciares, Parque Nacional Torres del Paine, CONAF and DIFROL for support, advice and permission of our field activities. Logistic support was provided by Prefectura Naval Lago Argentine, Estancia Cristina, Patagonia Expeditions El Chalten, Hosteria Grey and the crews of motor boat Soberania and ferry boat Integracion. We thank two anonymous reviewers and the editor Dr. An Yin for their valuable suggestions, which helped to improve this paper. NR 54 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 15 PY 2016 VL 452 BP 206 EP 215 DI 10.1016/j.epsl.2016.07.042 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DV5YE UT WOS:000383005800020 ER PT J AU Ma, WP Jacobs, G Sparks, DE Klettlinger, JLS Yen, CH Davis, BH AF Ma, Wenping Jacobs, Gary Sparks, Dennis E. Klettlinger, Jennifer L. S. Yen, Chia H. Davis, Burtron H. TI Fischer-Tropsch synthesis and water gas shift kinetics for a precipitated iron catalyst SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Syngas Convention on Fuels and Chemicals from Synthesis Gas - State of the Art 2 CY MAR 29-APR 01, 2015 CL Cape Town, SOUTH AFRICA SP Univ Cape Town, Natl DST NRF Ctr Excellence Catalysis, Catalysis Soc S Africa DE Fischer-Tropsch synthesis; Water gas shift reaction; Fe catalyst; Kinetics; CO2 inhibition; Water inhibition ID INTRINSIC KINETICS; OXIDE CATALYSTS; CARBON-MONOXIDE; HYDROGENATION AB A large number of kinetic data points (83 sets) was obtained over a wide range of CO conversion (7-90%), pressure (1.3-2.5 MPa) and H-2/CO ratio (0.67-1.5) with an iron catalyst (100 Fe/5.1 Si/1.25 K). The kinetics of the catalyst in the low (X-co <70%) and high conversion (X-co >70%) regions were studied separately. Twenty six Fischer-Tropsch synthesis (FTS) and water gas shift (WGS) kinetic models were tested and discriminated. Water and CO2 inhibition was evaluated. While all thirteen FTS models gave a satisfactory fit, the new FTS models that included CO2 inhibition surpassed the others. Water inhibition of the FTS rate was insignificant over both low and high conversion ranges. For the WGS kinetics of the iron catalyst, a newly constructed empirical model and one from the literature provided the best fits of the WGS rates, while nine mechanistic models and one power law WGS model were unable to satisfactorily fit the WGS kinetic data. Water did not significantly limit the WGS rate and CO2 only inhibited the rate at high CO conversions. The equations obtained for the low and high CO conversion ranges varied greatly. The errors for the models for 85% of the FTS and WGS data points were less than 10%, and the errors of the remaining points fell in the range of 10-15%. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ma, Wenping; Jacobs, Gary; Sparks, Dennis E.; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. [Klettlinger, Jennifer L. S.; Yen, Chia H.] NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. RP Davis, BH (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM burtron.davis@uky.edu NR 37 TC 0 Z9 0 U1 18 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD OCT 15 PY 2016 VL 275 BP 49 EP 58 DI 10.1016/j.cattod.2016.01.006 PG 10 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA DU7UO UT WOS:000382420300009 ER PT J AU Mannucci, AJ Hagan, ME Vourlidas, A Huang, CY Verkhoglyadova, OP Deng, Y AF Mannucci, Anthony J. Hagan, Maura E. Vourlidas, Angelos Huang, Cheryl Y. Verkhoglyadova, Olga P. Deng, Yue TI Scientific challenges in thermosphere-ionosphere forecasting - conclusions from the October 2014 NASA JPL community workshop SO JOURNAL OF SPACE WEATHER AND SPACE CLIMATE LA English DT Editorial Material DE Ionosphere (general); Thermosphere; Storm; Interplanetary Coronal Mass Ejection (CME); Heliosphere ID CORONAL MASS EJECTIONS; TOTAL ELECTRON-CONTENT; HEIGHT-INTEGRATED PEDERSEN; SOLAR-WIND STREAMS; MAGNETIC-FLUX ROPE; INTERPLANETARY ORIGIN; NUMERICAL SIMULATIONS; TIME-GCM; SPACE; STORMS AB Interest in forecasting space weather in the thermosphere and ionosphere (T-I) led to a community workshop held at NASA's Jet Propulsion Laboratory in October, 2014. The workshop focus was "Scientific Challenges in Thermosphere-Ionosphere Forecasting'' to emphasize that forecasting presumes a sufficiently advanced state of scientific knowledge, yet one that is still evolving. The purpose of the workshop, and this topical issue that arose from the workshop, was to discuss research frontiers that will lead to improved space weather forecasts. Three areas are discussed in some detail in this paper: (1) the role of lower atmosphere forcing in the response of the T-I to geomagnetic disturbances; (2) the significant deposition of energy at polar latitudes during geomagnetic disturbances; and (3) recent developments in understanding the propagation of coronal mass ejections through the heliosphere and prospects for forecasting the north-south component of the interplanetary magnetic field (IMF) using observations at the Lagrangian L-5 point. We describe other research presented at the workshop that appears in the topical issue. The possibility of establishing a "positive feedback loop'' where improved scientific knowledge leads to improved forecasts is described C1 [Mannucci, Anthony J.; Verkhoglyadova, Olga P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hagan, Maura E.] Utah State Univ, Logan, UT 84322 USA. [Vourlidas, Angelos] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Huang, Cheryl Y.] US Air Force, Res Lab, Kirtland AFB, NM 87117 USA. [Deng, Yue] Univ Texas Arlington, Arlington, TX 76029 USA. RP Mannucci, AJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM anthony.j.mannucci@jpl.nasa.gov RI Vourlidas, Angelos/C-8231-2009 OI Vourlidas, Angelos/0000-0002-8164-5948 FU NASA/NSF; National Center for Atmospheric Research (NCAR) under National Science Foundation (NSF); U.S. Participating Investigator (USPI) Program under NASA [NNX12AD26G]; internal APL funds; Air Force Office of Scientific Research [LRIR 14 RV11COR] FX Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Sponsorship of the NASA/NSF Partnership for Collaborative Space Weather Modeling is gratefully acknowledged. MH thanks K. Hausler for the TIME-GCM figures. MH was supported by the National Center for Atmospheric Research (NCAR) under the sponsorship of the National Science Foundation (NSF) and by the U.S. Participating Investigator (USPI) Program under NASA Grant NNX12AD26G. AV was supported by internal APL funds. CH acknowledges the support of the Air Force Office of Scientific Research under Grant LRIR 14 RV11COR. NR 88 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2115-7251 J9 J SPACE WEATHER SPAC JI J. Space Weather Space Clim. PD OCT 14 PY 2016 VL 6 AR E01 DI 10.1051/swsc/2016030 PG 10 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EI9BS UT WOS:000392802900001 ER PT J AU Jethva, H Torres, O Remer, L Redemann, J Livingston, J Dunagan, S Shinozuka, Y Kacenelenbogen, M Rosenheimer, MS Spurr, R AF Jethva, Hiren Torres, Omar Remer, Lorraine Redemann, Jens Livingston, John Dunagan, Stephen Shinozuka, Yohei Kacenelenbogen, Meloe Rosenheimer, Michal Segal Spurr, Rob TI Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID SENSITIVITY-ANALYSIS; ABSORBING AEROSOLS; LIDAR MEASUREMENTS; COLUMN CLOSURE; WATER-VAPOR; SAFARI 2000; ACE-ASIA; LAYERS; SPECTROMETER; C-130 AB We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals. C1 [Jethva, Hiren] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD 21044 USA. [Jethva, Hiren; Torres, Omar] NASA, Goddard Space Flight Ctr, Earth Sci Div, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [Remer, Lorraine] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Redemann, Jens; Dunagan, Stephen] NASA, Ames Res Ctr, Earth Sci Div, Moffett Field, CA 94035 USA. [Livingston, John] SRI Int, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. [Shinozuka, Yohei; Kacenelenbogen, Meloe; Rosenheimer, Michal Segal] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Spurr, Rob] RT Solut, Cambridge, MA 02138 USA. RP Jethva, H (reprint author), Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD 21044 USA.; Jethva, H (reprint author), NASA, Goddard Space Flight Ctr, Earth Sci Div, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. EM hiren.t.jethva@nasa.gov NR 30 TC 0 Z9 0 U1 4 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD OCT 14 PY 2016 VL 9 IS 10 BP 5053 EP 5062 DI 10.5194/amt-9-5053-2016 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8VJ UT WOS:000385409400001 ER PT J AU Darr, S Dong, J Glikin, N Hartwig, J Majumdar, A Leclair, A Chung, J AF Darr, Samuel Dong, Jun Glikin, Neil Hartwig, Jason Majumdar, Alok Leclair, Andre Chung, Jacob TI The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown SO NPJ MICROGRAVITY LA English DT Article ID CRITICAL HEAT-FLUX; QUENCHING EXPERIMENTS; FLOW; TUBE; MICROGRAVITY AB Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity. C1 [Darr, Samuel; Dong, Jun; Glikin, Neil; Chung, Jacob] Univ Florida, Dept Mech & Aerosp Engineer, Gainesville, FL 32611 USA. [Hartwig, Jason] NASA, Power & In Space Prop Branch, Glenn Res Ctr, Cleveland, OH USA. [Majumdar, Alok; Leclair, Andre] NASA, Marshall Spaceflight Ctr, Huntsville, AL USA. RP Chung, J (reprint author), Univ Florida, Dept Mech & Aerosp Engineer, Gainesville, FL 32611 USA. EM jnchung@ufl.edu OI Darr, Samuel/0000-0002-1891-405X NR 31 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 2373-8065 J9 NPJ MICROGRAVITY JI NPJ Microgravity PD OCT 13 PY 2016 VL 2 AR 16033 DI 10.1038/npjmgrav.2016.33 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY6EB UT WOS:000385198100001 ER PT J AU Vernikos, J Walter, N Worms, JC Blanc, S AF Vernikos, Joan Walter, Nicolas Worms, Jean Claude Blanc, Stephane TI THESEUS: The European research priorities for human exploration of space SO NPJ MICROGRAVITY LA English DT Editorial Material ID PHYSICAL INACTIVITY C1 [Vernikos, Joan] NASA HQ, Life Sci, Washington, DC USA. [Walter, Nicolas; Worms, Jean Claude] European Sci Fdn, Strasbourg, France. [Blanc, Stephane] Univ Strasbourg, IPHC, Strasbourg, France. [Blanc, Stephane] CNRS, UMR7178, Strasbourg, France. RP Blanc, S (reprint author), Univ Strasbourg, IPHC, Strasbourg, France.; Blanc, S (reprint author), CNRS, UMR7178, Strasbourg, France. EM stephane.blanc@iphc.cnrs.fr NR 7 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 2373-8065 J9 NPJ MICROGRAVITY JI NPJ Microgravity PD OCT 13 PY 2016 VL 2 AR 16034 DI 10.1038/npjmgrav.2016.34 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY6EB UT WOS:000385198100002 ER PT J AU Thorson, JT Rindorf, A Gao, J Hanselman, DH Winker, H AF Thorson, James T. Rindorf, Anna Gao, Jin Hanselman, Dana H. Winker, Henning TI Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE density-dependent habitat selection; ideal-free distribution; basin model; spatio-temporal; meta-analysis ID COD GADUS-MORHUA; IDEAL FREE DISTRIBUTION; HABITAT SELECTION; GEOGRAPHIC-DISTRIBUTION; POPULATION-DYNAMICS; STOCK ASSESSMENT; CLIMATE-CHANGE; SOUTHERN GULF; ST-LAWRENCE; ABUNDANCE AB The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution theory) or the basin model (BM; positive abundance-area relationship, supported by density-dependent habitat selection theory). The BM implies that fishes move towards preferred habitat as the population declines. We estimate the average relationship using bottom trawl data for 92 fish species from six marine regions, to determine whether the BM or PDM provides a better description for sea-bottom-associated fishes. We fit a spatio-temporal model and estimate changes in effective area occupied and abundance, and combine results to estimate the average abundance-area relationship as well as variability among taxa and regions. The average relationship is weak but significant (0.6% increase in area for a 10% increase in abundance), whereas only a small proportion of species-region combinations show a negative relationship (i.e. shrinking area when abundance increases). Approximately one-third of combinations (34.6%) are predicted to increase in area more than 1% for every 10% increase in abundance. We therefore infer that population density generally changes faster than effective area occupied during abundance changes. Gadiformes have the strongest estimated relationship (average 1.0% area increase for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea-bottom-associated fishes, and that many individual populations merit cautious management during population declines, because a compressed range may increase the efficiency of harvest. C1 [Thorson, James T.; Gao, Jin] NOAA, Fisheries Resource Assessment & Monitoring Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. [Rindorf, Anna] Tech Univ Denmark DTU, DTU Aqua Natl Inst Aquat Resources, Jaegersborg 1, DK-2920 Charlottenlund, Denmark. [Gao, Jin] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. [Hanselman, Dana H.] NOAA, Auke Bay Lab, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK USA. [Winker, Henning] Kirstenbosch Res Ctr, SANBI, ZA-7735 Claremont, South Africa. [Winker, Henning] Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat SEEC, Private Bag X3, ZA-7701 Rondebosch, South Africa. RP Thorson, JT (reprint author), NOAA, Fisheries Resource Assessment & Monitoring Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. EM james.thorson@noaa.gov OI Thorson, James/0000-0001-7415-1010 FU NOAA Habitat Assessment Improvement Project [15-027] FX J.G. was supported by NOAA Habitat Assessment Improvement Project no. 15-027. NR 40 TC 1 Z9 1 U1 4 U2 4 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8452 EI 1471-2954 J9 P ROY SOC B-BIOL SCI JI Proc. R. Soc. B-Biol. Sci. PD OCT 12 PY 2016 VL 283 IS 1840 AR 20161853 DI 10.1098/rspb.2016.1853 PG 10 WC Biology; Ecology; Evolutionary Biology SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GA EA3GN UT WOS:000386490000017 ER PT J AU Hanasaki, N Yoshikawa, S Kakinuma, K Kanae, S AF Hanasaki, Naota Yoshikawa, Sayaka Kakinuma, Kaoru Kanae, Shinjiro TI A seawater desalination scheme for global hydrological models SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID WATER-RESOURCES; FUTURE CHALLENGES; INTEGRATED MODEL; AVAILABILITY; PATHWAYS; SCARCITY; DEMAND; GROWTH; SCALE AB Seawater desalination is a practical technology for providing fresh water to coastal arid regions. Indeed, the use of desalination is rapidly increasing due to growing water demand in these areas and decreases in production costs due to technological advances. In this study, we developed a model to estimate the areas where seawater desalination is likely to be used as a major water source and the likely volume of production. The model was designed to be incorporated into global hydrological models (GHMs) that explicitly include human water usage. The model requires spatially detailed information on climate, income levels, and industrial and municipal water use, which represent standard input/output data in GHMs. The model was applied to a specific historical year (2005) and showed fairly good reproduction of the present geographical distribution and national production of desalinated water in the world. The model was applied globally to two periods in the future (2011-2040 and 2041-2070) under three distinct socioeconomic conditions, i.e., SSP (shared socioeconomic pathway) 1, SSP2, and SSP3. The results indicate that the usage of seawater desalination will have expanded considerably in geographical extent, and that production will have increased by 1.4-2.1-fold in 2011-2040 compared to the present (from 2.8 x 10(9) m(3) yr(-1) in 2005 to 4.0-6.0 x 10(9) m(3) yr(-1)), and 6.7-17.3-fold in 2041-2070 (from 18.7 to 48.6 x 10(9) m(3) yr(-1)). The estimated global costs for production for each period are USD 1.1-10.6 x 10(9) (0.002-0.019% of the total global GDP), USD 1.6-22.8 x 10(9) (0.001-0.020 %), and USD 7.5-183.9 x 10(9) (0.002-0.100 %), respectively. The large spreads in these projections are primarily attributable to variations within the socioeconomic scenarios. C1 [Hanasaki, Naota] Natl Inst Environm Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan. [Hanasaki, Naota] Int Inst Appl Syst Anal, Schlosspl 1, Laxenburg, Austria. [Yoshikawa, Sayaka; Kakinuma, Kaoru; Kanae, Shinjiro] Tokyo Inst Technol, Dept Civil & Environm Engn, Meguro Ku, 2-12-1-M1-6 Ookayama, Tokyo, Japan. [Kakinuma, Kaoru] Columbia Univ, Earth Inst, Ctr Climate Syst Res, 2880 Broadway, New York, NY USA. [Kakinuma, Kaoru] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. RP Hanasaki, N (reprint author), Natl Inst Environm Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan.; Hanasaki, N (reprint author), Int Inst Appl Syst Anal, Schlosspl 1, Laxenburg, Austria. EM hanasaki@nies.go.jp RI Hanasaki, Naota/C-2932-2009; Kanae, Shinjiro/E-5606-2010 OI Hanasaki, Naota/0000-0002-5092-7563; Kanae, Shinjiro/0000-0002-3176-4957 FU CREST, Japan Science and Technology Agency; JSPS KAKENHI [25820230, 15H04047, 16H06291]; Ministry of the Environment, Japan FX This work was mainly supported by CREST, Japan Science and Technology Agency. N. Hanasaki acknowledges the support of JSPS KAKENHI grant number 25820230 and the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan. S. Yoshikawa, K. Kakinuma, and S. Kanae acknowledge the support of JSPS KAKENHI Grant number 15H04047 and 16H06291. The authors are grateful to three anonymous reviewers, Yoshie Maeda, and Yaling Liu for helpful suggestions. The present work was partially developed within the framework of theWater Futures and Solutions initiative at IIASA and the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) by the Water Scarcity Assessment: Methodology and Application working group. Map colors are based on www.colorbrewer.org, by Cynthia A. Brewer of Pennsylvania State University. NR 30 TC 0 Z9 0 U1 5 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PD OCT 12 PY 2016 VL 20 IS 10 BP 4143 EP 4157 DI 10.5194/hess-20-4143-2016 PG 15 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA EA3EB UT WOS:000386481400001 ER PT J AU Tan, ZL Zhuang, QL Henze, DK Frankenberg, C Dlugokencky, E Sweeney, C Turner, AJ Sasakawa, M Machida, T AF Tan, Zeli Zhuang, Qianlai Henze, Daven K. Frankenberg, Christian Dlugokencky, Ed Sweeney, Colm Turner, Alexander J. Sasakawa, Motoki Machida, Toshinobu TI Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID COMPARISON PROJECT WETCHIMP; ATMOSPHERIC METHANE; GROWTH-RATE; ANTHROPOGENIC EMISSIONS; SIBERIAN SHELF; CH4 EMISSIONS; PRESENT STATE; CO2; NORTH; SCIAMACHY AB Understanding methane emissions from the Arctic, a fast-warming carbon reservoir, is important for projecting future changes in the global methane cycle. Here we optimized methane emissions from north of 60 degrees N (pan-Arctic) regions using a nested-grid high-resolution inverse model that assimilates both high-precision surface measurements and column-average SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrphY (SCIAMACHY) satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated with six biogeochemical models. In our estimates, in 2005, global methane emissions were in the range of 496.4-511.5 Tg yr(-1), and pan-Arctic methane emissions were in the range of 11.9-28.5 Tg yr(-1). Methane emissions from pan-Arctic wetlands and lakes were 5.5-14.2 and 2.4-14.2 Tg yr(-1), respectively. Methane emissions from Siberian wetlands and lakes are the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the un-certainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions, but it is possible to identify high lake emissions from some specific regions. In contrast to global inversions, high-resolution nested-grid inversions perform better in estimating near-surface methane concentrations. C1 [Tan, Zeli; Zhuang, Qianlai] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Tan, Zeli; Zhuang, Qianlai] Purdue Univ, Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA. [Zhuang, Qianlai] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Henze, Daven K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dlugokencky, Ed; Sweeney, Colm] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA. [Turner, Alexander J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Sasakawa, Motoki; Machida, Toshinobu] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. RP Zhuang, QL (reprint author), Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA.; Zhuang, QL (reprint author), Purdue Univ, Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA.; Zhuang, QL (reprint author), Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. EM qzhuang@purdue.edu RI Chem, GEOS/C-5595-2014; Frankenberg, Christian/A-2944-2013 OI Frankenberg, Christian/0000-0002-0546-5857 FU NASA [NASA-NNX09AI26G]; Department of Energy (DOE) [DE-FG02-08ER64599]; NSF Division of Information and Intelligent Systems [NSF-1028291]; NSF [NSF-0630319]; Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231]; NOAA [NA14OAR4310136]; DOE Computational Science Graduate Fellowship (CSGF) FX We would like to thank the two anonymous reviewers for their thorough and constructive reviews. Many thanks are given to the WETCHIMP investigators for making their simulations of wetland methane emissions available. We appreciate the help from Guang-Dih Lei and Bhagirath M. Trivedi at NASA and Robert Yantosca at Harvard for processing nested-grid GOES-5 met data, and the help from Christoph A. Keller at Harvard for processing nested-grid emission data by HEMCO. This study is supported through projects funded to Qianlai Zhuang by the NASA Land Use and Land Cover Change Program (NASA-NNX09AI26G), the Department of Energy (DOE) (DE-FG02-08ER64599), the NSF Division of Information and Intelligent Systems (NSF-1028291), and the NSF Carbon and Water in the Earth Program (NSF-0630319). This research is also in part supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of their Earth System Modeling Program. Daven K. Henze acknowledges NOAA grant no. NA14OAR4310136. Alexander J. Turner was supported by a DOE Computational Science Graduate Fellowship (CSGF). The supercomputing resource is provided by the Rosen Center for Advanced Computing at Purdue University. NR 100 TC 0 Z9 0 U1 11 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD OCT 12 PY 2016 VL 16 IS 19 BP 12649 EP 12666 DI 10.5194/acp-16-12649-2016 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8TG UT WOS:000385403300001 ER PT J AU Muller, D Bockmann, C Kolgotin, A Schneidenbach, L Chemyakin, E Rosemann, J Znak, P Romanov, A AF Mueller, Detlef Boeckmann, Christine Kolgotin, Alexei Schneidenbach, Lars Chemyakin, Eduard Rosemann, Julia Znak, Pavel Romanov, Anton TI Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID AEROSOL-SIZE DISTRIBUTION; BACKSCATTER LIDAR DATA; MULTIWAVELENGTH LIDAR; RAMAN-LIDAR; TROPOSPHERIC AEROSOL; REGULARIZATION METHOD; INTEGRAL EQUATIONS; OPTICAL-DATA; PARAMETERS; RETRIEVAL AB We present a summary on the current status of two inversion algorithms that are used in EARLINET (European Aerosol Research Lidar Network) for the inversion of data collected with EARLINET multiwavelength Raman lidars. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. Development of these two algorithms started in 2000 when EARLINET was founded. The algorithms are based on a manually controlled inversion of optical data which allows for detailed sensitivity studies. The algorithms allow us to derive particle effective radius as well as volume and surface area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light absorption needs to be known with high accuracy. It is an extreme challenge to retrieve the real part with an accuracy better than 0.05 and the imaginary part with accuracy better than 0.005-0.1 or +/- 50 %. Single-scattering albedo can be computed from the retrieved microphysical parameters and allows us to categorize aerosols into high-and low-absorbing aerosols. On the basis of a few exemplary simulations with synthetic optical data we discuss the current status of these manually operated algorithms, the potentially achievable accuracy of data products, and the goals for future work. One algorithm was used with the purpose of testing how well microphysical parameters can be derived if the real part of the complex refractive index is known to at least 0.05 or 0.1. The other algorithm was used to find out how well microphysical parameters can be derived if this constraint for the real part is not applied. The optical data used in our study cover a range of Angstrom exponents and extinction-to-backscatter (lidar) ratios that are found from lidar measurements of various aerosol types. We also tested aerosol scenarios that are considered highly unlikely, e.g. the lidar ratios fall outside the commonly accepted range of values measured with Raman lidar, even though the underlying microphysical particle properties are not uncommon. The goal of this part of the study is to test the robustness of the algorithms towards their ability to identify aerosol types that have not been measured so far, but cannot be ruled out based on our current knowledge of aerosol physics. We computed the optical data from monomodal logarithmic particle size distributions, i.e. we explicitly excluded the more complicated case of bimodal particle size distributions which is a topic of ongoing research work. Another constraint is that we only considered particles of spherical shape in our simulations. We considered particle radii as large as 7-10 mu m in our simulations where the Potsdam algorithm is limited to the lower value. We considered optical-data errors of 15% in the simulation studies. We target 50% uncertainty as a reasonable threshold for our data products, though we attempt to obtain data products with less uncertainty in future work. C1 [Mueller, Detlef] Univ Hertfordshire, Sch Phys Astron & Math, Hatfield, Herts, England. [Boeckmann, Christine; Rosemann, Julia] Univ Potsdam, Inst Math, Neuen Palais 10, D-14469 Potsdam, Germany. [Kolgotin, Alexei] Phys Instrumentat Ctr, Troitsk, Russia. [Chemyakin, Eduard] NASA, Langley Res Ctr, Sci Syst & Applicat Inc, Hampton, VA 23665 USA. [Znak, Pavel] St Petersburg Univ, VA Fock Inst Phys, Ulyanovskaya 1, St Petersburg 198504, Russia. [Romanov, Anton] Natl Univ Sci & Technol, Moscow, Russia. [Schneidenbach, Lars] Univ Potsdam, Inst Comp Sci, Neuen Palais 10, D-14469 Potsdam, Germany. RP Muller, D (reprint author), Univ Hertfordshire, Sch Phys Astron & Math, Hatfield, Herts, England. EM d.mueller@herts.ac.uk RI Znak, Pavel/Q-6700-2016 OI Znak, Pavel/0000-0002-3555-1414 FU European Union [EVR1-CT-1999-40003, 289923 - ITaRS, 654109]; EU [RICA-025991]; DAAD project "Ostpartnerschaften" of Potsdam University FX This work has been supported since 2000 under Grant No. EVR1-CT-1999-40003 (EARLINET project) of the Environment Program of the European Union and Grant No. RICA-025991 (EARLINET-ASOS project) of the 6th Framework EU program. The work has been supported partially by the European Union Seventh Framework Program for research, technological development, and demonstration under grant agreement No. 289923 - ITaRS and by DAAD project "Ostpartnerschaften" of Potsdam University. Finally, this work received partial funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654109 (Actris). NR 49 TC 1 Z9 1 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD OCT 12 PY 2016 VL 9 IS 10 BP 5007 EP 5035 DI 10.5194/amt-9-5007-2016 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8UW UT WOS:000385408000001 ER PT J AU Johlander, A Schwartz, SJ Vaivads, A Khotyaintsev, YV Gingell, I Peng, IB Markidis, S Lindqvist, PA Ergun, RE Marklund, GT Plaschke, F Magnes, W Strangeway, RJ Russell, CT Wei, H Torbert, RB Paterson, WR Gershman, DJ Dorelli, JC Avanov, LA Lavraud, B Saito, Y Giles, BL Pollock, CJ Burch, JL AF Johlander, A. Schwartz, S. J. Vaivads, A. Khotyaintsev, Yu. V. Gingell, I. Peng, I. B. Markidis, S. Lindqvist, P. -A. Ergun, R. E. Marklund, G. T. Plaschke, F. Magnes, W. Strangeway, R. J. Russell, C. T. Wei, H. Torbert, R. B. Paterson, W. R. Gershman, D. J. Dorelli, J. C. Avanov, L. A. Lavraud, B. Saito, Y. Giles, B. L. Pollock, C. J. Burch, J. L. TI Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLISIONLESS SHOCK; BOW SHOCK; MACH NUMBER; PLASMA; SIMULATIONS; NORMALS AB Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples. C1 [Johlander, A.; Vaivads, A.; Khotyaintsev, Yu. V.] Swedish Inst Space Phys, S-75121 Uppsala, Sweden. [Johlander, A.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Schwartz, S. J.] Imperial Coll London, Blackett Lab, London SW7 2AZ, England. [Schwartz, S. J.; Ergun, R. E.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Peng, I. B.; Markidis, S.; Lindqvist, P. -A.; Marklund, G. T.] KTH Royal Inst Technol, S-11428 Stockholm, Sweden. [Plaschke, F.; Magnes, W.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Strangeway, R. J.; Russell, C. T.; Wei, H.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Torbert, R. B.] Univ New Hampshire, Durham, NH 03824 USA. [Paterson, W. R.; Gershman, D. J.; Dorelli, J. C.; Avanov, L. A.; Giles, B. L.; Pollock, C. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gershman, D. J.] Univ Maryland, College Pk, MD 20742 USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, F-31028 Toulouse, France. [Lavraud, B.] CNRS, UMR 5277, F-31400 Toulouse, France. [Saito, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan. [Burch, J. L.] Inst Space & Astronaut Sci, San Antonio, TX 78238 USA. RP Johlander, A (reprint author), Swedish Inst Space Phys, S-75121 Uppsala, Sweden.; Johlander, A (reprint author), Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU CNES; CNRS; Leverhulme Trust Research Fellowship; Swedish National Space Board [139/12, 97/13] FX We thank the entire MMS team and instrument PIs for data access and support. The IRAP contribution to MMS was funded by CNES and CNRS. S. J. S. gratefully acknowledges the receipt of a Leverhulme Trust Research Fellowship. This study was supported by Swedish National Space Board Contracts No. 139/12 and No. 97/13. NR 28 TC 1 Z9 1 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 12 PY 2016 VL 117 IS 16 AR 165101 DI 10.1103/PhysRevLett.117.165101 PG 5 WC Physics, Multidisciplinary SC Physics GA DZ1ZQ UT WOS:000385641500003 PM 27792387 ER PT J AU Merlin, G Riedi, J Labonnote, LC Cornet, C Davis, AB Dubuisson, P Desmons, M Ferlay, N Parol, F AF Merlin, Guillaume Riedi, Jerome Labonnote, Laurent C. Cornet, Celine Davis, Anthony B. Dubuisson, Phillipe Desmons, Marine Ferlay, Nicolas Parol, Frederic TI Cloud information content analysis of multi-angular measurements in the oxygen A-band: application to 3MI and MSPI SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID MOLECULAR LINE ABSORPTION; SCATTERING ATMOSPHERE; GEOMETRICAL THICKNESS; POLARIZED-LIGHT; TOP PRESSURE; PART II; MODIS; RETRIEVAL; SATELLITE; POLDER AB Information content analyses on cloud top altitude (CTOP) and geometrical thickness (CGT) from multi-angular A-band measurements in the case of monolayer homogeneous clouds are conducted. In the framework of future multi-angular radiometer development, we compared the potential performances of the 3MI (Multiviewing, Multi-channel and Multi-polarization Imaging) instrument developed by EUMETSAT, which is an extension of POLDER/PARASOL instrument and MSPI (Multiangle SpectroPolarimetric Imager) developed by NASA's Jet Propulsion Laboratory. Quantitative information content estimates were realized for thin, moderately opaque and opaque clouds for different surface albedo and viewing geometry configurations. Analyses show that retrieval of CTOP is possible with a high accuracy in most of the cases investigated. Retrieval of CGT is also possible for optically thick clouds above a black surface, at least when CGT >1-2 km and for thin clouds for CGT > 2-3 km. However, for intermediate optical thicknesses (COT similar or equal to 4), we show that the retrieval of CGT is not simultaneously possible with CTOP. A comparison between 3MI and MSPI shows a higher information content for MSPI's measurements, traceable to a thinner filter inside the oxygen A-band, yielding higher signal-to-noise ratio for absorption estimation. Cases of cloud scenes above bright surfaces are more complex but it is shown that the retrieval of CTOP remains possible in almost all situations while the information content on CGT appears to be insufficient in many cases, particularly for COT <4 and CGT <2-3 km. C1 [Merlin, Guillaume; Riedi, Jerome; Labonnote, Laurent C.; Cornet, Celine; Dubuisson, Phillipe; Desmons, Marine; Ferlay, Nicolas; Parol, Frederic] Univ Lille 1, Lab Opt Atmospher, Sci & Technol, Villeneuve Dascq, France. [Davis, Anthony B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Riedi, J (reprint author), Univ Lille 1, Lab Opt Atmospher, Sci & Technol, Villeneuve Dascq, France. EM jerome.riedi@univ-lille1.fr FU CNES; NASA's SMD/ESD; Region Nord-Pas de Calais FX The authors are grateful for financial support from CNES as well as NASA's SMD/ESD (several programmes managed by H. Maring, K. Jucks and R. Eckman). They also thank Dave Diner, Jay Herman and Yuequi Yang for fruitful discussions. Guillaume Merlin is supported by a PhD grad from CNES and Region Nord-Pas de Calais. NR 53 TC 0 Z9 0 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD OCT 11 PY 2016 VL 9 IS 10 BP 4977 EP 4995 DI 10.5194/amt-9-4977-2016 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8UT UT WOS:000385407600001 ER PT J AU Alonzo, M Van Den Hoek, J Ahmed, N AF Alonzo, Michael Van Den Hoek, Jamon Ahmed, Nabil TI Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis SO SCIENTIFIC REPORTS LA English DT Article ID FOREST COVER LOSS; EXTRACTIVE INDUSTRIES; SUSPENDED-SOLIDS; DETECTING TRENDS; LANDSAT IMAGERY; VEGETATION; SEGMENTATION; ALGORITHMS; INDONESIA; QUALITY AB The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world's largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to "peer through" atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km(2) of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson's r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events. C1 [Alonzo, Michael] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Alonzo, Michael] Amer Univ, Dept Environm Sci, Washington, DC 20016 USA. [Van Den Hoek, Jamon] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Geog & Geospatial Sci, Corvallis, OR 97331 USA. [Ahmed, Nabil] London Metropolitan Univ, Cass Sch Architecture, London, England. RP Alonzo, M (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA.; Alonzo, M (reprint author), Amer Univ, Dept Environm Sci, Washington, DC 20016 USA. EM michael.g.alonzo@nasa.gov NR 58 TC 1 Z9 1 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 11 PY 2016 VL 6 AR 35129 DI 10.1038/srep35129 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY2MT UT WOS:000384927400001 PM 27725748 ER PT J AU Gheller, C Vazza, F Bruggen, M Alpaslan, M Holwerda, BW Hopkins, AM Liske, J AF Gheller, C. Vazza, F. Brueggen, M. Alpaslan, M. Holwerda, B. W. Hopkins, A. M. Liske, J. TI Evolution of cosmic filaments and of their galaxy population from MHD cosmological simulations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; intergalactic medium; large-scale structure of Universe ID MASS ASSEMBLY GAMA; HOT INTERGALACTIC MEDIUM; LARGE-SCALE STRUCTURE; MAGNETIC-FIELDS; STAR-FORMATION; DARK-MATTER; HYDRODYNAMICAL SIMULATIONS; ELLIPTIC GALAXIES; RAM PRESSURE; SHOCK-WAVES AB Despite containing about a half of the total matter in the Universe, at most wavelengths the filamentary structure of the cosmic web is difficult to observe. In this work, we use large unigrid cosmological simulations to investigate how the geometrical, thermodynamical and magnetic properties of cosmological filaments vary with mass and redshift (z <= 1). We find that the average temperature, length, volume and magnetic field of filaments scales well with their total mass. This reflects the role of self-gravity in shaping their properties and enables statistical predictions of their observational properties based on their mass. We also focus on the properties of the simulated population of galaxy-sized haloes within filaments, and compare their properties to the results obtained from the spectroscopic GAMA survey. Simulated and observed filaments with the same length are found to contain an equal number of galaxies, with very similar distribution of masses. The total number of galaxies within each filament and the total/average stellar mass in galaxies can now be used to predict also the large-scale properties of the gas in the host filaments across tens or hundreds of Mpc in scale. These results are the first steps towards the future use of galaxy catalogues in order to select the best targets for observations of the warm-hot intergalactic medium. C1 [Gheller, C.] ETHZ CSCS, Via Trevano 131, CH-6900 Lugano, Switzerland. [Vazza, F.; Brueggen, M.; Liske, J.] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. [Vazza, F.] INAF Ist Radio Astron, Via Gobetti 101, I-40129 Bologna, Italy. [Alpaslan, M.] NASA, Ames Res Ctr, N232, Moffett Field, CA 94035 USA. [Holwerda, B. W.] Leiden Univ, Sterrenwacht Leiden, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Hopkins, A. M.] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. RP Gheller, C (reprint author), ETHZ CSCS, Via Trevano 131, CH-6900 Lugano, Switzerland. EM cgheller@cscs.ch; franco.vazza@hs.uni-hamburg.de OI Holwerda, Benne/0000-0002-4884-6756 FU Chronos project [ch2, s585]; Deutsche Forschungsgemeinschaft (DFG) [VA 876/3-1]; DFG [FOR1254]; NASA; STFC (UK); ARC (Australia); AAO; ESO Telescopes at the La Silla Paranal Observatory [179.A-2004] FX Computations accomplished in this work were performed using the ENZO code (http://enzo-project.org), which is the product of a collaborative effort of scientists at many universities and national laboratories. We gratefully acknowledge the ENZO development group for providing helpful and well-maintained online documentation and tutorials. We also acknowledge ETHZ-CSCS1 for the use of the Piz Daint systems in the Chronos project ID ch2 and s585, and of the Piz Dora system for data processing and visualization. We would like to thank Jean Favre for the support on VISIT and Maria Grazia Giuffreda for her valuable technical assistance at CSCS. FV acknowledges personal support from the grant VA 876/3-1 from the Deutsche Forschungsgemeinschaft (DFG). FV and MB acknowledge partial support from the grant FOR1254 from DFG. We also acknowledge the use of computing resources under allocations no. 7006 and 9016 (FV) and 9059 (MB) on supercomputers at the NIC of the Forschungszentrum Julich. MA is funded by an appointment to the NASA Postdoctoral Program at Ames Research Centre, administered by Universities Space Research Association through a contract with NASA. GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programs including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/. The VISTA VIKING data used in this paper is based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 179.A-2004. NR 61 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2016 VL 462 IS 1 BP 448 EP 463 DI 10.1093/mnras/stw1595 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW3BI UT WOS:000383516700059 ER PT J AU Contopoulos, I Kazanas, D Papadopoulos, DB AF Contopoulos, I. Kazanas, D. Papadopoulos, D. B. TI The magnetic Rayleigh-Taylor instability in astrophysical discs SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; MHD ID BLACK-HOLE; ACCRETION DISKS; COSMIC BATTERY; JETS; ELECTRODYNAMICS; FIELD AB This is our first study of the magnetic Rayleigh Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power. C1 [Contopoulos, I.] Acad Athens, Res Ctr Astron & Appl Math, Athens 11527, Greece. [Contopoulos, I.] Natl Res Nucl Univ, Moscow 115409, Russia. [Kazanas, D.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Code 661, Greenbelt, MD 20771 USA. [Papadopoulos, D. B.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece. RP Contopoulos, I (reprint author), Acad Athens, Res Ctr Astron & Appl Math, Athens 11527, Greece.; Contopoulos, I (reprint author), Natl Res Nucl Univ, Moscow 115409, Russia. EM icontop@academyofathens.gr FU General Secretariat for Research and Technology of Greece; European Social Fund FX This work was supported by the General Secretariat for Research and Technology of Greece and the European Social Fund in the framework of Action 'Excellence'. NR 22 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2016 VL 462 IS 1 BP 565 EP 575 DI 10.1093/mnras/stw1565 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW3BI UT WOS:000383516700069 ER PT J AU Garcia, JA Fabian, AC Kallman, TR Dauser, T Parker, ML McClintock, JE Steiner, JF Wilms, J AF Garcia, Javier A. Fabian, Andrew C. Kallman, Timothy R. Dauser, Thomas Parker, Michael L. McClintock, Jeffrey E. Steiner, James F. Wilms, Joern TI The effects of high density on the X-ray spectrum reflected from accretion discs around black holes SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; atomic processes; line: formation; radiative transfer; relativistic processes; X-rays: general ID ACTIVE GALACTIC NUCLEI; K-SHELL PHOTOABSORPTION; ENERGY-DISTRIBUTIONS; SUZAKU OBSERVATIONS; XMM-NEWTON; GX 339-4; SOFT EXCESS; HARD STATE; CYGNUS X-1; IRON LINES AB Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter xi, which is the ratio of the incident flux to the gas density. The density is typically fixed at n(e) = 10(15) cm(-3). Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for n(e) greater than or similar to 10(17) cm(-3) that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies less than or similar to 2 keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available. C1 [Garcia, Javier A.; McClintock, Jeffrey E.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Fabian, Andrew C.; Parker, Michael L.] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Kallman, Timothy R.] NASA Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Dauser, Thomas; Wilms, Joern] Univ Erlangen Nurnberg, Remeis Observ, Sternwartstr 7, D-96049 Bamberg, Germany. [Dauser, Thomas; Wilms, Joern] Univ Erlangen Nurnberg, ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Steiner, James F.] MIT, Kavli Inst Astrophys & Space Res, 70 Vassar St, Cambridge, MA 02139 USA. RP Garcia, JA (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM javier@head.cfa.harvard.edu; acf@ast.cam.ac.uk RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 FU CGPS grant from the Smithsonian Institution; ERC [340442]; Einstein Fellowship [PF5-160144] FX We thank the anonymous referee for their positive and useful comments, and Laura Brenneman for insightful discussions. JG and JEM acknowledge the support of a CGPS grant from the Smithsonian Institution. ACF acknowledges ERC Advanced Grant 340442 Feedback. JFS has been supported by the Einstein Fellowship grant PF5-160144. NR 73 TC 3 Z9 3 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2016 VL 462 IS 1 BP 751 EP 760 DI 10.1093/mnras/stw1696 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW3BI UT WOS:000383516700083 ER PT J AU De Pasquale, M Page, MJ Kann, DA Oates, SR Schulze, S Zhang, B Cano, Z Gendre, B Malesani, D Rossi, A Troja, E Piro, L Boer, M Stratta, G Gehrels, N AF De Pasquale, M. Page, M. J. Kann, D. A. Oates, S. R. Schulze, S. Zhang, B. Cano, Z. Gendre, B. Malesani, D. Rossi, A. Troja, E. Piro, L. Boer, M. Stratta, G. Gehrels, N. TI The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gamma-ray burst: general; gamma-ray burst: individual: GRB 130427A ID LIGHT CURVES; BURST AFTERGLOWS; TELESCOPE OBSERVATIONS; STAR-FORMATION; CENTRAL ENGINE; VIEWING ANGLE; GEV EMISSION; JET BREAKS; BROAD-BAND; SWIFT-ERA AB GRB 130427A was the brightest gamma-ray burst detected in the last 30 yr. With an equivalent isotropic energy output of 8.5 x 10(53) erg and redshift z = 0.34, it uniquely combined very high energetics with a relative proximity to Earth. As a consequence, its X-ray afterglow has been detected by sensitive X-ray observatories such as XMM-Newton and Chandra for a record-breaking baseline longer than 80 million seconds. We present the X-ray light curve of this event over such an interval. The light curve shows a simple power-law decay with a slope alpha = 1.309 +/- 0.007 over more than three decades in time (47 ks-83 Ms). We discuss the consequences of this result for a few models proposed so far to interpret GRB 130427A, and more in general the significance of this outcome in the context of the standard forward shock model. We find that this model has difficulty in explaining our data, in both cases of constant density and stellar-wind circumburst media, and requires far-fetched values for the physical parameters involved. C1 [De Pasquale, M.; Page, M. J.; Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Holmbury Rd, Dorking RH5 6NT, Surrey, England. [De Pasquale, M.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Via U Malfa 153, I-90146 Palermo, Italy. [De Pasquale, M.] Ist Euro Mediterraneo Sci & Tecnol, Via Michele Miraglia 20, I-90139 Palermo, Italy. [Kann, D. A.] Thuringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany. [Oates, S. R.] CSIC, Inst Astrofis Andalucia, Glorieta Astron, E-18008 Granada, Spain. [Schulze, S.] Millennium Inst Astrophys, Vicuna Mackenna 4860, Santiago 7820436, Chile. [Schulze, S.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Vicuna Mackenna 4860, Santiago 7820436, Chile. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Cano, Z.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Gendre, B.] Univ Virgin Isl, 2 John Brewers Bay, St Thomas, VI 00802 USA. [Gendre, B.] Etelman Observ, St Thomas, VI 00802 USA. [Malesani, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. [Rossi, A.] Ist Astrofis Spaziale & Fis Cosm Bologna INAF, Via P Gobetti 101, I-40129 Bologna, Italy. [Troja, E.; Gehrels, N.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Piro, L.] Inst Space Astrophys & Planetol, Via F Del Cavaliere 100, I-00133 Rome, Italy. [Gendre, B.; Boer, M.] CNRS, ARTEMIS, Blvd Observ,CS 34229, F-06304 Nice 4, France. [Stratta, G.] Univ Urbino, Dept Phys, VS Chiara 27, I-61029 Urbino, Italy. RP De Pasquale, M (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury Rd, Dorking RH5 6NT, Surrey, England.; De Pasquale, M (reprint author), Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Via U Malfa 153, I-90146 Palermo, Italy.; De Pasquale, M (reprint author), Ist Euro Mediterraneo Sci & Tecnol, Via Michele Miraglia 20, I-90139 Palermo, Italy. EM m.depasquale@ucl.ac.uk; s.oates@warwick.ac.uk OI Gendre, Bruce/0000-0002-9077-2025 FU PRIN-INAF [2012/13]; Premiale LBT; NASA [NNX13AD28A, NNX15AP95A]; FIGARONet collaborative network; Agence Nationale de la Recherche [ANR-14-CE33]; TLS Tautenburg; Ida; Instrument Center for Danish Astrophysics (IDA); Italian Ministry of Education, University and Research (MIUR) [FIRB 2012 RBFR12PM1F]; UK Space Agency; Spanish Ministry [AYA2012-39727-C03-01]; Icelandic Research Fund (IRF) FX MDP thanks Lara Nava and Daisuke Kawata for helpful discussions and references, Alice Breeveld for her helping hand, and his friends Marco D'Alessandro, John Moore, Ernesto Amato, Peter Rockhill, Peter Veasny, Alexander J. Zech, and Pierluigi Cox for their encouragement. AR acknowledge support from PRIN-INAF 2012/13 and from Premiale LBT 2013. BG acknowledges financial support of the NASA through the NASA Award NNX13AD28A and the NASA Award NNX15AP95A. Part of this work is under the auspice of the FIGARONet collaborative network, supported by the Agence Nationale de la Recherche, programme ANR-14-CE33. DAK acknowledges support by TLS Tautenburg in form of a research stipend. DM acknowledges support from Ida as well as financial support from Instrument Center for Danish Astrophysics (IDA). GS acknowledge the financial support of the Italian Ministry of Education, University and Research (MIUR) through grant FIRB 2012 RBFR12PM1F. MDP and MJP acknowledge support from the UK Space Agency. SRO acknowledges the support of the Spanish Ministry, Project Number AYA2012-39727-C03-01. ZC gratefully acknowledges financial support from the Icelandic Research Fund (IRF). NR 98 TC 0 Z9 0 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2016 VL 462 IS 1 BP 1111 EP 1122 DI 10.1093/mnras/stw1704 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW3BI UT WOS:000383516700112 ER PT J AU Szypryt, P Mazin, BA Ulbricht, G Bumble, B Meeker, SR Bockstiegel, C Walter, AB AF Szypryt, P. Mazin, B. A. Ulbricht, G. Bumble, B. Meeker, S. R. Bockstiegel, C. Walter, A. B. TI High quality factor platinum silicide microwave kinetic inductance detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID ARRAYS; INSTRUMENT; ARCONS; NIKA2 AB We report on the development of microwave kinetic inductance detectors (MKIDs) using platinum silicide as the sensor material. MKIDs are an emerging superconducting detector technology, capable of measuring the arrival times of single photons to better than two microseconds and their energies to around ten percent. Previously, MKIDs have been fabricated using either substoichiometric titanium nitride or aluminum, but TiN suffers from the spatial inhomogeneities in the superconducting critical temperature and Al has a low kinetic inductance fraction, causing low detector sensitivity. To address these issues, we have instead fabricated the PtSi microresonators with the superconducting critical temperatures of 944 +/- 12 mK and high internal quality factors (Qi greater than or similar to 106). These devices show typical quasiparticle lifetimes of tau(qp) approximate to 30-40 mu s and spectral resolution, R = lambda/Delta lambda, of 8 at 406.6 nm. We compare PtSi MKIDs to those fabricated with TiN and detail the substantial advantages that PtSi MKIDs have to offer. Published by AIP Publishing. C1 [Szypryt, P.; Mazin, B. A.; Ulbricht, G.; Meeker, S. R.; Bockstiegel, C.; Walter, A. B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bumble, B.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Szypryt, P (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM pszypryt@physics.ucsb.edu OI Ulbricht, Gerhard/0000-0002-6497-3763 FU NASA Space Technology Research Fellowship (NSTRF) FX This work was supported by a NASA Space Technology Research Fellowship (NSTRF). Fabrication was done in the UCSB Nanofabrication Facility. The authors would like to thank the Las Cumbres Observatory Global Telescope (LCOGT) network for assisting in broadband quantum efficiency measurements and Omid Noroozian for providing archival noise data. NR 20 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 10 PY 2016 VL 109 IS 15 AR 151102 DI 10.1063/1.4964665 PG 4 WC Physics, Applied SC Physics GA EA3VI UT WOS:000386534800002 ER PT J AU Burleigh, MR Richey, CR Rinehart, SA Quijada, MA Wollack, EJ AF Burleigh, M. R. Richey, C. R. Rinehart, S. A. Quijada, M. A. Wollack, E. J. TI Spectrometer baseline control via spatial filtering SO APPLIED OPTICS LA English DT Article ID FOURIER-TRANSFORM SPECTROSCOPY; FIELD DIFFRACTION PATTERNS; TERTIARY INTERFEROGRAMS; FRAUNHOFER DIFFRACTION; SEMICIRCULAR APERTURES; MULTIPLE REFLECTIONS; SPECTRA; REDUCTION; SILICON AB An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided. C1 [Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Burleigh, M. R.] Embry Riddle Aeronaut Univ, Daytona Beach, FL 32114 USA. RP Wollack, EJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM edward.j.wollack@nasa.gov RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU National Aeronautics and Space Administration (NASA) Astronomy Physics Research and Analysis (APRA) [NNH09ZDA001N]; Goddard Space Flight Center (GSFC) Internal Research and Development (IRAD) FX National Aeronautics and Space Administration (NASA) Astronomy Physics Research and Analysis (APRA) (NNH09ZDA001N); Goddard Space Flight Center (GSFC) Internal Research and Development (IRAD). NR 33 TC 0 Z9 0 U1 3 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD OCT 10 PY 2016 VL 55 IS 29 BP 8201 EP 8206 DI 10.1364/AO.55.008201 PG 6 WC Optics SC Optics GA DZ3AQ UT WOS:000385715900010 PM 27828063 ER PT J AU Liu, X Yang, QG Li, H Jin, ZH Wu, W Kizer, S Zhou, DK Yang, P AF Liu, Xu Yang, Qiguang Li, Hui Jin, Zhonghai Wu, Wan Kizer, Susan Zhou, Daniel K. Yang, Ping TI Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region SO APPLIED OPTICS LA English DT Article ID MONTE-CARLO CALCULATIONS; DISCRETE-ORDINATE-METHOD; ATMOSPHERE-OCEAN SYSTEM; MULTIPLE-SCATTERING; INHOMOGENEOUS ATMOSPHERES; PLANETARY-ATMOSPHERES; POLARIZED-LIGHT; ABSORBING GAS; CIRRUS CLOUDS; BIDIRECTIONAL REFLECTANCE AB A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTM-SOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(-1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(-3) mW/cm(2)/sr/cm(-1) and the relative error is typically less than 0.2%. (C) 2016 Optical Society of America C1 [Liu, Xu; Zhou, Daniel K.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Liu, X (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM xu.liu-1@nasa.gov RI Yang, Ping/B-4590-2011 FU National Aeronautics and Space Administration (NASA) FX National Aeronautics and Space Administration (NASA). NR 120 TC 1 Z9 1 U1 3 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD OCT 10 PY 2016 VL 55 IS 29 BP 8236 EP 8247 DI 10.1364/AO.55.008236 PG 12 WC Optics SC Optics GA DZ3AQ UT WOS:000385715900015 PM 27828068 ER PT J AU Hell, N Brown, GV Wilms, J Grinberg, V Clementson, J Liedahl, D Porter, FS Kelley, RL Kilbourne, CA Beiersdorfer, P AF Hell, N. Brown, G. V. Wilms, J. Grinberg, V. Clementson, J. Liedahl, D. Porter, F. S. Kelley, R. L. Kilbourne, C. A. Beiersdorfer, P. TI LABORATORY MEASUREMENTS OF THE K-SHELL TRANSITION ENERGIES IN L-SHELL IONS OF SI AND S SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic data; methods: laboratory: atomic; X-rays: binaries; X-rays: general ID X-RAY SPECTROSCOPY; CHANDRA GRATING SPECTROSCOPY; FLEXIBLE ATOMIC CODE; HIGHLY-CHARGED IONS; ELECTRON-BEAM; VELA X-1; ABSORPTION-LINES; CALORIMETER SPECTROMETER; ISOELECTRONIC SEQUENCE; XRS MICROCALORIMETER AB We have measured the energies of the strongest 1s-2l (l = s, p) transitions in He-through Ne-like silicon and sulfur ions to an accuracy of < 1 eV using the Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree-Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high-mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high-energy transmission grating has made it possible to measure Doppler shifts of 100 km s(-1). The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's 100 km s(-1) limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. We show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1. C1 [Hell, N.; Wilms, J.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany. [Hell, N.; Brown, G. V.; Clementson, J.; Liedahl, D.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Grinberg, V.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.] NASA GSFC, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Hell, N (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany.; Hell, N (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM natalie.hell@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013; Porter, Frederick/D-3501-2012 OI Wilms, Joern/0000-0003-2065-5410; Porter, Frederick/0000-0002-6374-1119 FU US DOE [DE-AC52-07NA27344]; NASA [NNX/2AH84G, NAS8-03060]; Bundesministerium fur Wirtschaft und Technologie [DLR 50 OR 1113]; European Space Agency [4000114313/15/NL/CB]; NASA through the Smithsonian Astrophysical Observatory (SAO) [SV3-73016] FX This work was performed by LLNL under the auspices of the US DOE under Contract DE-AC52-07NA27344. It was supported by NASA work orders NNX/2AH84G; by the Bundesministerium fur Wirtschaft und Technologie under grant number DLR 50 OR 1113; by the European Space Agency under contract No. 4000114313/15/NL/CB; and by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for support of the Chandra X-ray Center (CXC) and Science Instruments. CXC is operated by SAO for and on the behalf of NASA under contract NAS8-03060. This research has made use of ISIS functions provided by ECAP/Remeis observatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/). We thank John E. Davis for providing the s1xfig module used for creating the presented plots. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA) and the University of Cambridge (UK). NR 81 TC 0 Z9 0 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2016 VL 830 IS 1 AR 26 DI 10.3847/0004-637X/830/1/26 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ1XA UT WOS:000385633900009 ER PT J AU Kane, SR Hill, ML Kasting, JF Kopparapu, RK Quintana, EV Barclay, T Batalha, NM Borucki, WJ Ciardi, DR Haghighipour, N Hinkel, NR Kaltenegger, L Selsis, F Torres, G AF Kane, Stephen R. Hill, Michelle L. Kasting, James F. Kopparapu, Ravi Kumar Quintana, Elisa V. Barclay, Thomas Batalha, Natalie M. Borucki, William J. Ciardi, David R. Haghighipour, Nader Hinkel, Natalie R. Kaltenegger, Lisa Selsis, Franck Torres, Guillermo TI A CATALOG OF KEPLER HABITABLE ZONE EXOPLANET CANDIDATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; astronomical databases: miscellaneous; planetary systems; techniques: photometric ID MAIN-SEQUENCE STARS; FALSE-POSITIVE PROBABILITIES; CARBON-DIOXIDE CLOUDS; EARTH-LIKE PLANETS; INNER EDGE; STELLAR MULTIPLICITY; TERRESTRIAL PLANETS; EXTRASOLAR PLANETS; SYSTEMS. I.; MASS STARS AB The NASA Kepler mission has discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrence rate of terrestrial-size planets within the Habitable Zone (HZ) of their host stars. Here we provide a list of HZ exoplanet candidates from the Kepler Q1-Q17 Data Release 24 data-vetting process. This work was undertaken as part of the Kepler HZ Working Group. We use a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ and 20 candidates with radii less than two Earth radii within the conservative HZ. We cross-match our HZ candidates with the stellar properties and confirmed planet properties from Data Release 25 to provide robust stellar parameters and candidate dispositions. We also include false-positive probabilities recently calculated by Morton et al. for each of the candidates within our catalogs to aid in their validation. Finally, we performed dynamical analysis simulations for multi-planet systems that contain candidates with radii less than two Earth radii as a step toward validation of those systems. C1 [Kane, Stephen R.; Hill, Michelle L.; Hinkel, Natalie R.] San Francisco State Univ, Dept Phys & Astron, 1600 Holloway Ave, San Francisco, CA 94132 USA. [Kasting, James F.] Penn State Univ, Dept Geosci, 443 Deike Bldg, University Pk, PA 16802 USA. [Kopparapu, Ravi Kumar] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Mail Stop 699-0 Bldg 34, Greenbelt, MD 20771 USA. [Quintana, Elisa V.; Barclay, Thomas; Batalha, Natalie M.; Borucki, William J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ciardi, David R.] NASA, Exoplanet Sci Inst, CALTECH, MS 100-22,770 South Wilson Ave, Pasadena, CA 91125 USA. [Haghighipour, Nader] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Hinkel, Natalie R.] Arizona State Univ, Sch Earth Space Explorat, Tempe, AZ 85287 USA. [Kaltenegger, Lisa] Cornell Univ, Carl Sagan Inst, Ithaca, NY 14853 USA. [Selsis, Franck] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS, B18N, Allee Geoffroy St Hilaire, F-33615 Pessac, France. [Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RP Kane, SR (reprint author), San Francisco State Univ, Dept Phys & Astron, 1600 Holloway Ave, San Francisco, CA 94132 USA. EM skane@sfsu.edu OI Ciardi, David/0000-0002-5741-3047; Kasting, James/0000-0003-4042-2067 FU NASA ADAP grant [NNX13AF20G]; NASA Astrobiology Institute; NASA [NNH05ZDA001C]; NASA Habitable Worlds grant [NNH14ZDA001N-HW]; agency's Science Mission Directorate FX The authors would like to thank the anonymous referee, whose comments greatly improved the quality of the paper. The authors also thank Douglas Caldwell and Timothy Morton for enlightening discussions regarding Kepler candidate validation. Nader Haghighipour acknowledges support from NASA ADAP grant NNX13AF20G. James Kasting and Ravi Kopparapu gratefully acknowledge funding from the NASA Astrobiology Institute's lead team, supported by NASA under cooperative agreement NNH05ZDA001C. Ravi Kopparapu also acknowledges support from NASA Habitable Worlds grant NNH14ZDA001N-HW. Kepler is NASA's 10th Discovery Mission and was funded by the agency's Science Mission Directorate. This research has made use of the NASA Exoplanet Archive and the ExoFOP site, which are operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This work has also made use of the Habitable Zone Gallery at hzgallery.org. The results reported herein benefited from collaborations and/or information exchange within NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate. NR 88 TC 1 Z9 1 U1 15 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2016 VL 830 IS 1 AR 1 DI 10.3847/0004-637X/830/1/1 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ2EP UT WOS:000385655400001 ER PT J AU Mason, JP Woods, TN Webb, DF Thompson, BJ Colaninno, RC Vourlidas, A AF Mason, James Paul Woods, Thomas N. Webb, David F. Thompson, Barbara J. Colaninno, Robin C. Vourlidas, Angelos TI RELATIONSHIP OF EUV IRRADIANCE CORONAL DIMMING SLOPE AND DEPTH TO CORONAL MASS EJECTION SPEED AND MASS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; Sun: activity; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: UV radiation ID SOLAR-FLARE; CMES; STEREO/EUVI; ENERGETICS AB Extreme ultraviolet (EUV) coronal dimmings are often observed in response to solar eruptive events. These phenomena can be generated via several different physical processes. For space weather, the most important of these is the temporary void left behind by a coronal mass ejection (CME). Massive, fast CMEs tend to leave behind a darker void that also usually corresponds to minimum irradiance for the cooler coronal emissions. If the dimming is associated with a solar flare, as is often the case, the flare component of the irradiance light curve in the cooler coronal emission can be isolated and removed using simultaneous measurements of warmer coronal lines. We apply this technique to 37 dimming events identified during two separate two-week periods in 2011. plus an event on 2010 August 7, analyzed in a previous paper. to parameterize dimming in terms of depth and slope. We provide statistics on which combination of wavelengths worked best for the flare-removal method, describe the fitting methods applied to the dimming light curves, and compare the dimming parameters with corresponding CME parameters of mass and speed. The best linear relationships found are nu(CME) [km/s] approximate to 2.36 x 10(6) [km/%] x s(dim) [%/s] m(CME) [g] approximate to 2.59 x 10(15) [g/%] x root d(dim) [%]. These relationships could be used for space weather operations of estimating CME mass and speed using near-real-time irradiance dimming measurements. C1 [Mason, James Paul; Woods, Thomas N.] Univ Colorado, Lab Atmospher & Space Phys, 3665 Discovery Dr, Boulder, CO 80303 USA. [Webb, David F.] Boston Coll, Inst Sci Res, Newton, MA 02458 USA. [Thompson, Barbara J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Colaninno, Robin C.] Naval Res Lab, Div Space Sci, Washington, DC 20009 USA. [Vourlidas, Angelos] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20732 USA. RP Mason, JP (reprint author), Univ Colorado, Lab Atmospher & Space Phys, 3665 Discovery Dr, Boulder, CO 80303 USA. EM james.mason@lasp.colorado.edu RI Vourlidas, Angelos/C-8231-2009; OI Vourlidas, Angelos/0000-0002-8164-5948; WOODS, THOMAS/0000-0002-2308-6797; Colaninno, Robin/0000-0002-3253-4205 FU NASA SDO project; NASA [NAS5-02140, S-136361-Y]; Navy grant [N00173-14-1-G014]; CNR funds FX The authors thank Jim Klimchuk for discussions about the physical motivation for mass-loss dimming, and Amir Caspi for identifying the need for a new mathematical derivation to establish the expected relationships between dimming and CME parameters. The CDAW CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. This research is supported by the NASA SDO project and NASA grant NAS5-02140. Author D.F. Webb was supported by Navy grant N00173-14-1-G014. Authors R.C. Colaninno and A. Vourlidas were supported by NASA contract S-136361-Y to the Naval Research Laboratory, and CNR funds. NR 35 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2016 VL 830 IS 1 AR 20 DI 10.3847/0004-637X/830/1/20 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ1XA UT WOS:000385633900003 ER PT J AU Duan, L Choudhari, MM Zhang, C AF Duan, Lian Choudhari, Meelan M. Zhang, Chao TI Pressure fluctuations induced by a hypersonic turbulent boundary layer SO JOURNAL OF FLUID MECHANICS LA English DT Article DE high-speed flow; turbulence simulation; turbulent boundary layers ID DIRECT NUMERICAL-SIMULATION; REYNOLDS-NUMBER; TUNNEL NOISE; CHANNEL FLOW; RADIATION; MOTION; TRANSITION; GENERATION; SCHEMES; FIELD AB Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analysed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean-velocity profiles and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The free-stream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the free-stream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity. C1 [Duan, Lian; Zhang, Chao] Missouri Univ Sci & Technol, Rolla, MO 65409 USA. [Choudhari, Meelan M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Duan, L (reprint author), Missouri Univ Sci & Technol, Rolla, MO 65409 USA. EM duanl@mst.edu RI Choudhari, Meelan/F-6080-2017 OI Choudhari, Meelan/0000-0001-9120-7362 FU Air Force Office of Scientific Research [FA9550-14-1-0170]; NASA Langley Research Center through the National Institute of Aerospace [NNLO9AA00A] FX This material is based on the work supported by the Air Force Office of Scientific Research with Award no. FA9550-14-1-0170, managed by Dr I. Leyva. The work was initiated under the support of NASA Langley Research Center under the Research Cooperative Agreement no. NNLO9AA00A (through the National Institute of Aerospace). The authors would like to thank Professor S. Schneider of Purdue University and Dr K. Casper of Sandia National Laboratory for providing their wind-tunnel measurements for comparison with DNS. Computational resources are provided by the NASA Advanced Supercomputing Division and the DoD High Performance Computing Modernization Program. NR 68 TC 0 Z9 0 U1 8 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD OCT 10 PY 2016 VL 804 BP 578 EP 607 DI 10.1017/jfm.2016.548 PG 30 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DX0WU UT WOS:000384087900031 ER PT J AU Fortenberry, RC Lee, TJ Francisco, JS AF Fortenberry, Ryan C. Lee, Timothy J. Francisco, Joseph S. TI Quantum Chemical Analysis of the CO-HNN+ Proton-Bound Complex SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID QUARTIC FORCE-FIELDS; VIBRATIONAL FREQUENCIES; SPECTROSCOPIC CONSTANTS; PROTOPLANETARY DISKS; CATION; HCO+; N2H+; ISOTOPOLOGUES; ACETYLENE AB Proton-bound complexes produce exceptionally bright vibrational modes for stretches involving the hydrogen atom. Binding a proton between various arrangements of N-2 and carbon monoxide molecules is known to produce such behavior, and there are four distinct structures involving N-2, CO, and a proton. The problem arises in that all four have the same mass and are, consequently, extremely difficult, if not impossible, to resolve experimentally. Fortunately, quantum chemical predictions have produced accurate descriptions of this bright mode and other spectral features for OCHCO+, NNHNN+, and NN-HCO+. The last of this family to be analyzed is CO-HNN+, which is done here. Utilizing high-level coupled cluster computations and quartic force fields, the bright vibrational mode of CO-HNN+ is shown to shift to the red, and the C-O bond is destabilized in this arrangement as opposed to the lower-energy NN-HCO+ isomer studied previously. Furthermore, the 1.87 D center-of-mass dipole moment, spectroscopic constants, and other anharmonic fundamental frequencies and intensities are produced for CO-HNN+ to assist in definitive experimental and even astrochemical classification of this and the other three related mass-57 proton-bound complexes. C1 [Fortenberry, Ryan C.] Georgia Southern Univ, Dept Chem & Biochem, Statesboro, GA 30460 USA. [Lee, Timothy J.] NASA, Ames Res Ctr, MS 245-1, Moffett Field, CA 94035 USA. [Francisco, Joseph S.] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Fortenberry, RC (reprint author), Georgia Southern Univ, Dept Chem & Biochem, Statesboro, GA 30460 USA. EM rfortenberry@georgiasouthem.edu RI Lee, Timothy/K-2838-2012 FU Georgia Southern University; National Aeronautics and Space Administration through NASA Astrobiology Institute under Science Mission Directorate [NNH13ZDA017C] FX R.C.F. acknowledges the start-up funds provided by Georgia Southern University that were utilized in this work. This work is also supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement Notice NNH13ZDA017C issued through the Science Mission Directorate. NR 50 TC 2 Z9 2 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 6 PY 2016 VL 120 IS 39 BP 7745 EP 7752 DI 10.1021/acs.jpca.6b07515 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DY2YZ UT WOS:000384959300018 PM 27643412 ER PT J AU Sainio, S Nordlund, D Gandhiraman, R Jiang, H Koehne, J Koskinen, J Meyyappan, M Laurila, T AF Sainio, S. Nordlund, D. Gandhiraman, R. Jiang, H. Koehne, J. Koskinen, J. Meyyappan, M. Laurila, T. TI What Does Nitric Acid Really Do to Carbon Nanofibers? SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ABSORPTION FINE-STRUCTURE; DIAMOND SURFACES; NANOTUBE GROWTH; GRAPHENE OXIDE; OXIDATION; FUNCTIONALIZATION; SPECTROSCOPY; ELECTRODES; EXCITATION; DOPAMINE AB Understanding the chemical nature of the surface of carbon nanofibers (CNF) is critical in assessing their fundamental properties and tailoring them for the right application. To gain such knowledge, we present here a detailed X-ray adsorption spectroscopy (XAS) study accompanied by high resolution transmission electron microscopy (TEM) micrographs of two morphologically different CNF pairs (tetrahedral amorphous carbon (ta-C) grown "open structured" fibers and traditional bamboo-like "closed structured" fibers), where the surface chemical properties and structural features of the fibers are investigated in depth and the effects of nitric acid treatment on the fibers are revealed. The morphology of the fiber and/or the original seed- and adhesion layers markedly affect the response of the fibers to the acid treatment. Results also show that the nitric acid treatment increases the observed se intensity and modifies the two types of fibers to become more-alike both structurally and with respect to their oxygen functionalities. The XAS and HRTEM results confirm that a short nitric acid treatment does not remove the Ni catalyst particle but, instead, oxidizes their surfaces, especially in the case of ta-C grown fibers. C1 [Sainio, S.; Laurila, T.] Aalto Univ, Sch Elect Engn, Dept Elect Engn & Automat, Espoo 02150, Finland. [Nordlund, D.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Gandhiraman, R.; Koehne, J.; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Jiang, H.] Aalto Univ, Sch Sci, Dept Appl Phys, Espoo 02150, Finland. [Koskinen, J.] Aalto Univ, Sch Chem Technol, Dept Mat Sci, Espoo 02150, Finland. RP Laurila, T (reprint author), Aalto Univ, Sch Elect Engn, Dept Elect Engn & Automat, Espoo 02150, Finland. EM tomi.laurila@aalto.fi RI Koskinen, Jari/J-3886-2014; Laurila, Tomi/B-2076-2013 FU Academy of Finland [285015, 285526] FX The authors T.L. and S.S. acknowledge funding from Academy of Finland (Grant Numbers 285015 and 285526). NR 39 TC 1 Z9 1 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 6 PY 2016 VL 120 IS 39 BP 22655 EP 22662 DI 10.1021/acs.jpcc.6b06353 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DY2YX UT WOS:000384959100060 ER PT J AU Marrero, JE Townsend-Small, A Lyon, DR Tsai, TR Meinardi, S Blake, DR AF Marrero, Josette E. Townsend-Small, Amy Lyon, David R. Tsai, Tracy R. Meinardi, Simone Blake, Donald R. TI Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; INTERCOMPARISON EXPERIMENT NOMHICE; METHANE EMISSIONS; UNITED-STATES; HUMAN HEALTH; AIR; OPERATIONS; OIL; COLORADO; BENZENE AB Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 +/- 4 and 60 +/- 4 kg h(-1). Hexane, the most abundantly emitted pollutant, ranged from 642 +/- 45 to 1070 +/- 340 kg h(-1). While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally. C1 [Marrero, Josette E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Townsend-Small, Amy] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Townsend-Small, Amy] Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA. [Lyon, David R.] Environm Def Fund, Austin, TX 78701 USA. [Tsai, Tracy R.] Picarro Inc, Santa Clara, CA 95054 USA. [Meinardi, Simone; Blake, Donald R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. RP Marrero, JE (reprint author), NASA, Ames Res Ctr, Atmospher Sci Branch, Mail Stop 245-5, Moffett Field, CA 94035 USA. EM josette.e.marrero@nasa.gov FU Environmental Defense Fund FX The authors would like to thank the following people for assistance with field work: Ramon Alvarez and Bob Harriss, Environmental Defense Fund; April Covington and Nigel Clark, University of West Virginia; Brian Lamb, Washington State University; Tom Ferrara and Touche Howard, GHD, Inc.; Rob Jackson and Morgan Gallagher, Duke University; Bob Talbot, University of Houston; Chris Rella, Connor Botkin, and David Steele, Picarro Inc.; and Brent Love and Gloria Liu, University of California, Irvine. Data collection was partially funded by Environmental Defense Fund. NR 54 TC 1 Z9 1 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 4 PY 2016 VL 50 IS 19 BP 10756 EP 10764 DI 10.1021/acs.est.6b02827 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DY1GC UT WOS:000384841900052 PM 27580823 ER PT J AU Sennett, N Marsat, S Buonanno, A AF Sennett, Noah Marsat, Sylvain Buonanno, Alessandra TI Gravitational waveforms in scalar-tensor gravity at 2PN relative order SO PHYSICAL REVIEW D LA English DT Article ID INSPIRALLING COMPACT BINARIES; POST-NEWTONIAN ORDER; GENERAL-RELATIVITY; BRANS-DICKE; RADIATION; SYSTEMS; PULSAR; ENERGY; FIELD AB We compute the gravitational waveform from a binary system in scalar-tensor gravity at 2PN relative order. We restrict our calculation to nonspinning binary systems on quasicircular orbits and compute the spin-weighted spherical modes of the radiation. The evolution of the phase of the waveform is computed in the time and frequency domains. The emission of dipolar radiation is the lowest-order dissipative process in scalar-tensor gravity. However, stringent constraints set by current astrophysical observations indicate that this effect is subdominant to quadrupolar radiation for most prospective gravitational-wave sources. We compute the waveform for systems whose inspiral is driven by: (a) dipolar radiation (e.g., binary pulsars or spontaneously scalarized systems) and (b) quadrupolar radiation (e.g., typical sources for space-based and ground-based detectors). For case (a), we provide complete results at 2PN, whereas for case (b), we must introduce unknown terms in the 2PN flux; these unknown terms are suppressed by constraints on scalar-tensor gravity. C1 [Sennett, Noah; Marsat, Sylvain; Buonanno, Alessandra] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Sennett, Noah; Marsat, Sylvain; Buonanno, Alessandra] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Potsdam, Germany. [Marsat, Sylvain] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. RP Sennett, N (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA.; Sennett, N (reprint author), Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Potsdam, Germany. EM nsennett@umd.edu FU NSF [PHY-1208881]; NASA [11-ATP-046]; NASA at the University of Maryland, College Park [NNX12AN10G] FX We are grateful to Ryan Lang for providing a Mathematica notebook containing the results of Ref. [21] and to Lijing Shao for useful discussions concerning current binary pulsar constraints. N. S. acknowledges support from NSF Grant No. PHY-1208881. S. M. acknowledges support from NASA Grant No. 11-ATP-046 and NASA Grant No. NNX12AN10G at the University of Maryland, College Park. N. S. thanks the Max Planck Institute for Gravitational Physics for its hospitality during the completion of this work. NR 62 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT 4 PY 2016 VL 94 IS 8 AR 084003 DI 10.1103/PhysRevD.94.084003 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DX8AD UT WOS:000384609600010 ER PT J AU Briscoe, DK Parker, DM Bograd, S Hazen, E Scales, K Balazs, GH Kurita, M Saito, T Okamoto, H Rice, M Polovina, JJ Crowder, LB AF Briscoe, D. K. Parker, D. M. Bograd, S. Hazen, E. Scales, K. Balazs, G. H. Kurita, M. Saito, T. Okamoto, H. Rice, M. Polovina, J. J. Crowder, L. B. TI Multi-year tracking reveals extensive pelagic phase of juvenile loggerhead sea turtles in the North Pacific SO MOVEMENT ECOLOGY LA English DT Article DE Loggerhead sea turtle; Migration; Foraging; Movement; Distribution; Pelagic ID REGIONAL MAGNETIC-FIELDS; LONG-DISTANCE MIGRATION; CARETTA-CARETTA; LEATHERBACK TURTLES; OCEAN; BEHAVIOR; HABITAT; ORIENTATION; DISPERSAL; MOVEMENT AB Background: The juvenile stage of loggerhead sea turtles (Caretta caretta) can last for decades. In the North Pacific Ocean, much is known about their seasonal movements in relation to pelagic habitat, yet understanding their multi-year, basin-scale movements has proven more difficult. Here, we categorize the large-scale movements of 231 turtles satellite tracked from 1997 to 2013 and explore the influence of biological and environmental drivers on basin-scale movement. Results: Results show high residency of juvenile loggerheads within the Central North Pacific and a moderate influence of the Earth's magnetic field, but no real-time environmental driver to explain migratory behavior. Conclusions: We suggest the Central North Pacific acts as important developmental foraging grounds for young juvenile loggerhead sea turtles, rather than just a migratory corridor. We propose several hypotheses that may influence the connectivity between western and eastern juvenile loggerhead foraging grounds in the North Pacific Ocean. C1 [Briscoe, D. K.] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA. [Parker, D. M.] NOAA, Joint Inst Marine & Atmospher Res, Newport, OR USA. [Bograd, S.; Hazen, E.; Scales, K.] NOAA, Environm Res Div, Natl Marine Fisheries Serv, Southwest Fisheries Sci Ctr, Monterey, CA USA. [Balazs, G. H.; Polovina, J. J.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI USA. [Kurita, M.; Okamoto, H.] Port Nagoya Publ Aquarium, Minato Ku, Nagoya, Aichi 4550033, Japan. [Saito, T.] Kochi Univ, Usa Marine Biol Inst, Usa Tosa, Kochi 7811164, Japan. [Rice, M.] Hawaii Preparatory Acad, 65-1692 Kohala Mt Rd, Kamuela, HI 96743 USA. [Crowder, L. B.] Stanford Univ, Ctr Ocean Solut, Monterey, CA USA. RP Briscoe, DK (reprint author), Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA. EM dbriscoe@stanford.edu OI Scales, Kylie/0000-0003-0843-0956 FU Crowder Lab at Hopkins Marine Station, Stanford University FX Funding for DKB was provided by the Crowder Lab at Hopkins Marine Station, Stanford University. NR 63 TC 0 Z9 0 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2051-3933 J9 MOV ECOL JI Mov. Ecol. PD OCT 3 PY 2016 VL 4 AR 23 DI 10.1186/s40462-016-0087-4 PG 12 WC Ecology SC Environmental Sciences & Ecology GA EM4VG UT WOS:000395310400001 PM 27729983 ER PT J AU Flanigan, D Johnson, BR Abitbol, MH Bryan, S Cantor, R Day, P Jones, G Mauskopf, P McCarrick, H Miller, A Zmuidzinas, J AF Flanigan, D. Johnson, B. R. Abitbol, M. H. Bryan, S. Cantor, R. Day, P. Jones, G. Mauskopf, P. McCarrick, H. Miller, A. Zmuidzinas, J. TI Magnetic field dependence of the internal quality factor and noise performance of lumped-element kinetic inductance detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID FILMS; SN AB We present a technique for increasing the internal quality factor of kinetic inductance detectors (KIDs) by nulling ambient magnetic fields with a properly applied magnetic field. The KIDs used in this study are made from thin-film aluminum, they are mounted inside a light-tight package made from bulk aluminum, and they are operated near 150 mK. Since the thin-film aluminum has a slightly elevated critical temperature (T-c = 1.4 K), it therefore transitions before the package (T-c = 1.2 K), which also serves as a magnetic shield. On cooldown, ambient magnetic fields as small as approximately 30 mu T can produce vortices in the thin-film aluminum as it transitions because the bulk aluminum package has not yet transitioned and therefore is not yet shielding. These vortices become trapped inside the aluminum package below 1.2K and ultimately produce low internal quality factors in the thin-film superconducting resonators. We show that by controlling the strength of the magnetic field present when the thin film transitions, we can control the internal quality factor of the resonators. We also compare the noise performance with and without vortices present, and find no evidence for excess noise beyond the increase in amplifier noise, which is expected with increasing loss. (C) 2016 Author(s). C1 [Flanigan, D.; Johnson, B. R.; Abitbol, M. H.; Jones, G.; McCarrick, H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Bryan, S.; Mauskopf, P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Cantor, R.] STAR Cryoelect, Santa Fe, NM 87508 USA. [Day, P.; Zmuidzinas, J.] Jet Prop Lab, Pasadena, CA 91109 USA. [Mauskopf, P.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Mauskopf, P.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Miller, A.] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Zmuidzinas, J.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. RP Flanigan, D (reprint author), Columbia Univ, Dept Phys, New York, NY 10027 USA. EM daniel.flanigan@columbia.edu FU NASA; Research Initiatives for Science and Engineering program at Columbia University FX R.C. was both an author and the owner of STAR Cryoelectronics, where the devices used in this study were fabricated. H.M. was supported by a NASA Earth and Space Sciences Fellowship. This research was supported, in part, by a grant from the Research Initiatives for Science and Engineering program at Columbia University to B.R.J. We thank the Xilinx University Program for their donation of FPGA hardware and software tools used in the readout system. NR 20 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 3 PY 2016 VL 109 IS 14 AR 143503 DI 10.1063/1.4964119 PG 4 WC Physics, Applied SC Physics GA DZ8WJ UT WOS:000386152800061 ER PT J AU Dolci, M Romero-Wolf, A Wissel, S AF Dolci, Marco Romero-Wolf, Andrew Wissel, Stephanie TI A lower bound on the number of cosmic ray events required to measure source catalogue correlations SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE ultra high energy cosmic rays; cosmic ray experiments; active galactic nuclei ID GALACTIC MAGNETIC-FIELD; TELESCOPE ARRAY EXPERIMENT; EXTRAGALACTIC OBJECTS; ARRIVAL DIRECTIONS; ROTATION MEASURES; NUCLEI; PHOTODISINTEGRATION; ANISOTROPY; EVOLUTION; SPECTRUM AB Recent analyses of cosmic ray arrival directions have resulted in evidence for a positive correlation with active galactic nuclei positions that has weak significance against an isotropic source distribution. In this paper, we explore the sample size needed to measure a highly statistically significant correlation to a parent source catalogue. We compare several scenarios for the directional scattering of ultra-high energy cosmic rays given our current knowledge of the galactic and intergalactic magnetic fields. We find significant correlations are possible for a sample of >1000 cosmic ray protons with energies above 60 EeV. C1 [Dolci, Marco; Romero-Wolf, Andrew] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Dolci, Marco] Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy. [Wissel, Stephanie] Univ Calif Los Angeles, Dept Phys & Astron, 475 Portola Plaza, Los Angeles, CA 90095 USA. [Wissel, Stephanie] Calif Polytech State Univ San Luis Obispo, Dept Phys, 1 Grand Ave, San Luis Obispo, CA 93407 USA. RP Dolci, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Dolci, M (reprint author), Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy. EM marco.dolci@polito.it; Andrew.Romero-Wolf@jpl.nasa.gov; swissel@calpoly.edu NR 55 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2016 IS 10 AR 028 DI 10.1088/1475-7516/2016/10/028 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EL4FZ UT WOS:000394578400012 ER PT J AU Ade, PAR Aghanim, N Akrami, Y Aluri, PK Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Basak, S Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Casaponsa, B Catalano, A Challinor, A Chamballu, A Chiang, HC Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Contreras, D Couchot, F Coulais, A Crill, BP Cruz, M Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fantaye, Y Ferguson, J Fernandez-Cobos, R Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Frolov, A Galeotta, S Galli, S Ganga, K Gauthier, C Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kim, J Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Liu, H Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Marinucci, D Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mikkelsen, K Mitra, S Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Pant, N Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Rotti, A Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Souradeep, T Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Trombetti, T Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zibin, JP Zonca, A AF Ade, P. A. R. Aghanim, N. Akrami, Y. Aluri, P. K. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Casaponsa, B. Catalano, A. Challinor, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Contreras, D. Couchot, F. Coulais, A. Crill, B. P. Cruz, M. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fantaye, Y. Ferguson, J. Fernandez-Cobos, R. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Gauthier, C. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kim, J. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Liu, H. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Marinucci, D. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mikkelsen, K. Mitra, S. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Pant, N. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Rotti, A. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Souradeep, T. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zibin, J. P. Zonca, A. CA Planck Collaboration TI Planck 2015 results XVI. Isotropy and statistics of the CMB SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; polarization; methods: data analysis; methods: statistical ID MICROWAVE-ANISOTROPY-PROBE; OBSERVATIONS COSMOLOGICAL INTERPRETATION; PRIMORDIAL NON-GAUSSIANITY; 5-YEAR WMAP DATA; COLD SPOT; BACKGROUND ANISOTROPY; SKY MAPS; MINKOWSKI FUNCTIONALS; SPHERICAL WAVELETS; POWER ASYMMETRY AB We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a wry large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold Spot" is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Gauthier, C.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, CNRS IN2P3, CEA Irfu, APC,AstroParticule & Cosmol,Observ Paris,Sorbonne, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Hanson, D.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Ferguson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Cruz, M.] Univ Cantabria, Dept Matemat Estadist & Computac, Avda Castros S-N, E-39005 Santander, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Contreras, D.; Scott, D.; Zibin, J. P.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Benoit-Levy, A.; Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Fantaye, Y.; Marinucci, D.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Liu, H.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, 17 Blegdamsvej, Copenhagen, Denmark. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Trombetti, T.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Aluri, P. K.; Mitra, S.; Pant, N.; Rotti, A.; Souradeep, T.] Pune Univ Campus, Post Bag 4, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91440 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Akrami, Y.; Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Mikkelsen, K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38205, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Casaponsa, B.; Curto, A.; Diego, J. M.; Fernandez-Cobos, R.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Molinari, D.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CEA DSM CNRS, IRFU,Serv Astrophys,Lab AIM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Gauthier, C.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Kim, J.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Liu, H.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Buildings, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA 94305 USA. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Akrami, Y.] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Banday, AJ (reprint author), CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France.; Banday, AJ (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM anthony.banday@irap.omp.eu RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Juvela, Mika/0000-0002-5809-4834; Molinari, Diego/0000-0002-7799-3915; Zacchei, Andrea/0000-0003-0396-1192; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Liu, Hao/0000-0003-4410-5827; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Stolyarov, Vladislav/0000-0001-8151-828X; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Huang, Zhiqi/0000-0002-1506-1063; Kurki-Suonio, Hannu/0000-0002-4618-3063 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esaint/web/planck/planch-collaboration. Some of the results in this paper have been derived using the HEALPix package. NR 157 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR Al6 DI 10.1051/0004-6361/201526681 PG 62 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200023 ER PT J AU Zhao, KL Wang, RH Burleigh, SC Sabbagh, A Wu, WW De Sanctis, M AF Zhao, Kanglian Wang, Ruhai Burleigh, Scott C. Sabbagh, Alaa Wu, Wenwei De Sanctis, Mauro TI Performance of Bundle Protocol for Deep-Space Communications SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS LA English DT Article ID FILE-DELIVERY PROTOCOL; TOLERANT NETWORKING; INTERPLANETARY INTERNET; DELAY; DTN; CHALLENGES; LINKS; TIME AB Delay/disruption tolerant networking (DTN) was developed to enable automated network communications despite frequent and lengthy link disruptions and long link delay. DTN communications rely heavily on a bundle protocol (BP) that uses the well-known approach of store and forward with optional custody transfer for which a node agrees to hold BP data units, bundles, in memory (or storage) until its successful reception is acknowledged by the next node. However, in the presence of long link disruptions, little work has been done regarding performance modeling of BP for reliable data transfer in deep-space communications. In this paper, we present a study of BP over a relay-based deep-space communications system, characterized by lengthy link disruptions accompanied by an extremely long propagation delay, lossy data links, and asymmetric channel rates. An analytical model is built to estimate the total delivery time of a file (message) that is transmitted as the contents of one or more BP bundles over a deep-space channel. A model is also built to characterize the dynamics of memory occupancy and release when BP is used for reliable data delivery in the presence of link disruptions. The constructed models are validated by running experiments using a test bed. C1 [Zhao, Kanglian] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China. [Wang, Ruhai; Sabbagh, Alaa] Lamar Univ, Elect Engn, POB 10029, Beaumont, TX 77710 USA. [Burleigh, Scott C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wu, Wenwei] Soochow Univ, Sch Elect & Informat Engn, 1 Shizi St, Suzhou 215006, Jiangsu, Peoples R China. [De Sanctis, Mauro] Univ Roma Tor Vergata, Dept Elect Engn, Via Politecn 1, I-00175 Rome, Italy. RP Wang, RH (reprint author), Lamar Univ, Elect Engn, POB 10029, Beaumont, TX 77710 USA. EM rwang@lamar.edu FU Future Networks Innovation Institute of Jiangsu Province, China [BY2013039-3-10]; National Natural Science Foundation of China [61401194]; Satellite Communication and Navigation Collaborative Innovation Center of Jiangsu Province, China [SatCN-201410, SatCN-201407] FX The research described in this paper was performed, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Government sponsorship is acknowledged. This work was supported, in part, by the Future Networks Innovation Institute of Jiangsu Province, China, for a Prospective Research Project on Future Networks under Grant BY2013039-3-10 and by the National Natural Science Foundation of China under Grant 61401194. This work was also supported, in part, by the Satellite Communication and Navigation Collaborative Innovation Center of Jiangsu Province, China, under Grants SatCN-201410 and SatCN-201407. NR 31 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9251 EI 1557-9603 J9 IEEE T AERO ELEC SYS JI IEEE Trans. Aerosp. Electron. Syst. PD OCT PY 2016 VL 52 IS 5 BP 2347 EP 2361 DI 10.1109/TAES.2016.150462 PG 15 WC Engineering, Aerospace; Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA EK5TM UT WOS:000393988800021 ER PT J AU Grecu, M Olson, WS Munchak, SJ Ringerud, S Liao, L Haddad, Z Kelley, BL McLaughlin, SF AF Grecu, Mircea Olson, William S. Munchak, Stephen Joseph Ringerud, Sarah Liao, Liang Haddad, Ziad Kelley, Bartie L. McLaughlin, Steven F. TI The GPM Combined Algorithm SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID RAIN-PROFILING ALGORITHM; TRMM PRECIPITATION RADAR; MICROWAVE RADIATIVE PROPERTIES; DROP SIZE DISTRIBUTION; PART II; MULTIPLE-SCATTERING; MELTING-LAYER; RADIOMETER; FREQUENCIES; RETRIEVALS AB In this paper, the operational Global Precipitation Measurement (GPM) mission combined radar-radiometer algorithm is thoroughly described. The operational combined algorithm is designed to reduce uncertainties in GPM Core Observatory precipitation estimates by effectively integrating complementary information from the GPM Dual-Frequency Precipitation Radar (DPR) and the GPM Microwave Imager (GMI) into an optimal, physically consistent precipitation product. Although similar in many respects to previously developed combined algorithms, the GPM combined algorithm has several unique features that are specifically designed to meet the GPM objectives of deriving, based on GPM Core Observatory information, accurate and physically consistent precipitation estimates from multiple spaceborne instruments, and ancillary environmental data from reanalyses. The algorithm features an optimal estimation framework based on a statistical formulation of the Gauss-Newton method, a parameterization for the nonuniform distribution of precipitation within the radar fields of view, a methodology to detect and account for multiple scattering in Ka-band DPR observations, and a statistical deconvolution technique that allows for an efficient sequential incorporation of radiometer information into DPR precipitation retrievals. C1 [Grecu, Mircea; Liao, Liang] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Grecu, Mircea] NASA GSFC, Atmospheres Lab, Greenbelt, MD USA. [Olson, William S.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21201 USA. [Olson, William S.; Munchak, Stephen Joseph; Ringerud, Sarah; Liao, Liang] NASA GSFC, Mesoscale Atmospher Proc Lab, 8800 Greenbelt Rd,MC 612, Greenbelt, MD 20771 USA. [Ringerud, Sarah] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Haddad, Ziad] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Kelley, Bartie L.; McLaughlin, Steven F.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Grecu, M (reprint author), NASA GSFC, Mesoscale Atmospher Proc Lab, 8800 Greenbelt Rd,MC 612, Greenbelt, MD 20771 USA. EM mircea.grecu-1@nasa.gov FU NASA PMM project [NNX13AF85G] FX This work was supported by the NASA PMM project (NNX13AF85G). The authors thank Drs. Ramesh Kakar (NASA headquarters) and Gail Skofronick-Jackson (GPM project scientist) for their support of this effort. The authors would also like to thank the PMM combined algorithm team members, Benjamin Johnson, Lin Tian, Kwo-Sen Kuo, and Hirohiko Masunaga, for their contributions to the overall algorithm development effort. In addition, the authors are grateful to Lawrence Woltz and NASA Precipitation Processing System personnel for their operational support, David Bolvin for his help with GPCP data, and Drs. Pierre Kirstetter and Chris Kidd for their insights into the use of MRMS and other ground validation products. The authors also thank Dr. Robin Hogan for making public the source code of the fast multiple-scattering model, and three anonymous reviewers for their comments and suggestions. NR 57 TC 0 Z9 0 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD OCT PY 2016 VL 33 IS 10 BP 2225 EP 2245 DI 10.1175/JTECH-D-16-0019.1 PG 21 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA EL3RG UT WOS:000394536000005 ER PT J AU Jain, RK Yeo, H Ho, JC Bhagwat, M AF Jain, Rohit K. Yeo, Hyeonsoo Ho, Jimmy C. Bhagwat, Mahendra TI An Assessment of RCAS Performance Prediction for Conventional and Advanced Rotor Configurations SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article ID AIRLOADS; DYNAMICS; MODEL; WAKE AB The U.S. Army's Rotorcraft Comprehensive Analysis System (RCAS) version 15.07 was validated for aerodynamic performance prediction for a variety of isolated rotor configurations in hover and forward flight. Validation cases included a wide variety of key rotor configurations, covering model scale and full scale, twist distributions (zero twist, moderate linear twist, nonlinear twist, and high nonlinear twist), tip shapes (rectangular, swept, swept-tapered, tapered, and anhedral), and flight conditions (hover to high-speed forward flight). A free-vortex wake model was used for hover performance, whereas a prescribed-vortex wake model was sufficient for moderate-to-high advance ratios. At low advance ratios, the increased rotor-wake interactions yielded less-accurate results using the prescribed wake. The validation study showed good correlation with test data using the best practices for the vortex wake modeling parameters. C1 [Jain, Rohit K.; Yeo, Hyeonsoo; Bhagwat, Mahendra] US Army Aviat Dev Directorate AFDD, Aviat & Missile Res Dev & Engn Ctr, Res Dev & Engn Command RDECOM, Moffett Field, CA 94035 USA. [Ho, Jimmy C.] Sci & Technol Corp, Ames Res Ctr, Moffett Field, CA USA. RP Jain, RK (reprint author), US Army Aviat Dev Directorate AFDD, Aviat & Missile Res Dev & Engn Ctr, Res Dev & Engn Command RDECOM, Moffett Field, CA 94035 USA. EM rkj238@gmail.com NR 51 TC 1 Z9 1 U1 0 U2 0 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 EI 2161-6027 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD OCT PY 2016 VL 61 IS 4 AR 042005 DI 10.4050/JAHS.61.042005 PG 12 WC Engineering, Aerospace SC Engineering GA EK7PY UT WOS:000394118900006 ER PT J AU Srivastava, PK Islam, T Singh, SK Petropoulos, GP Gupta, M Dai, Q AF Srivastava, Prashant K. Islam, Tanvir Singh, Sudhir K. Petropoulos, George P. Gupta, Manika Dai, Qiang TI Forecasting Arabian Sea level rise using exponential smoothing state space models and ARIMA from TOPEX and Jason satellite radar altimeter data SO METEOROLOGICAL APPLICATIONS LA English DT Article DE sea level rise; forecasting; exponential models; ARIMA; Arabian Sea ID CLIMATE-CHANGE; MARINE ECOSYSTEMS; MANGROVE FORESTS; FUTURE; THREATS AB Sea level rise is a threat to coastal habitation and is corroborating evidence for global warming. The present study investigated the combined use of quantitative forecasting methods for sea level rise using exponential smoothing state space models (ESMs) and an autoregressive integrated moving average (ARIMA) model fed with sea level data over 17 years (1994-2010). Two levels of ESMs were employed: double (model levels with trend) and triple (model levels, trend and seasonal decomposition). The overall data analysis revealed the better performance of ARIMA in terms of index of agreement (d = 0.79), root-mean-square error (RMSE = 32.8 mm) and mean absolute error (MAE = 25.55 mm) than the triple ESM (d = 0.76; RMSE = 39.86 mm; MAE = 35.02 mm) and double ESM(d = 0.14; RMSE = 52.71 mm; MAE = 45.99 mm) models. The present study results suggest that the rate of Arabian Sea level rise is high, and if this is not taken into consideration many coastal areas may become subject to climate-change-induced habitat loss in future. C1 [Srivastava, Prashant K.; Gupta, Manika] NASA, Hydrol Sci, Goddard Space Flight Ctr, Code 617,Room G208,Bldg 33, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi, Uttar Pradesh, India. [Islam, Tanvir] NASA, Jet Prop Lab, Pasadena, CA USA. [Islam, Tanvir] CALTECH, Pasadena, CA 91125 USA. [Singh, Sudhir K.] Univ Allahabad, K Banerjee Ctr Atmospher & Ocean Studies, Nehru Sci Ctr, IIDS, Allahabad, Uttar Pradesh, India. [Petropoulos, George P.] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth, Dyfed, Wales. [Dai, Qiang] Nanjing Normal Univ, Sch Geog Sci, Nanjing, Jiangsu, Peoples R China. RP Srivastava, PK (reprint author), NASA, Hydrol Sci, Goddard Space Flight Ctr, Code 617,Room G208,Bldg 33, Greenbelt, MD 20771 USA. EM prashant.k.srivastava@nasa.gov FU Banaras Hindu University FX The authors are grateful to the anonymous reviewers for their valuable feedback. Authors are also thankful to Colorado Center for Astrodynamics Research at the University of Colorado at Boulder, USA, for providing the altimeter data sets. The first author would like to acknowledge Banaras Hindu University for providing a seed grant. The views expressed here are those of the authors solely and do not constitute a statement of policy, decision, or position on behalf of NASA or the authors' affiliated institutions. NR 41 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1350-4827 EI 1469-8080 J9 METEOROL APPL JI Meteorol. Appl. PD OCT PY 2016 VL 23 IS 4 BP 633 EP 639 DI 10.1002/met.1585 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3VJ UT WOS:000393140000007 ER PT J AU Lew, BWP Apai, D Zhou, Y Schneider, G Burgasser, AJ Karalidi, T Yang, H Marley, MS Cowan, NB Bedin, LR Metchev, SA Radigan, J Lowrance, PJ AF Lew, Ben W. P. Apai, Daniel Zhou, Yifan Schneider, Glenn Burgasser, Adam J. Karalidi, Theodora Yang, Hao Marley, Mark S. Cowan, Nicolas B. Bedin, Luigi R. Metchev, Stanimir A. Radigan, Jacqueline Lowrance, Patrick J. TI CLOUD ATLAS: DISCOVERY OF PATCHY CLOUDS AND HIGH-AMPLITUDE ROTATIONAL MODULATIONS IN A YOUNG, EXTREMELY RED L-TYPE BROWN DWARF SO Astrophysical Journal Letters LA English DT Article DE brown dwarfs; stars: atmospheres; stars: individual (WISEP J004701.06+680352.1); stars: low-mass ID HUBBLE-SPACE-TELESCOPE; PROPER-MOTION SURVEY; DOR MOVING GROUP; L/T TRANSITION; BAND VARIABILITY; T DWARFS; WISE J104915.57-531906.1AB; PHOTOMETRIC VARIABILITY; SURFACE GRAVITY; MASS OBJECT AB Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs, but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here, we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-K-s = 2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy, we find a best-fit rotational period (13.20 +/- 0.14 hr) with a larger amplitude at 1.1 mu m than at 1.7 mu m. This is the third-largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentative trend between the wavelength dependence of relative amplitude, possibly proxy for small dust grains lofted in the upper atmosphere, and the likelihood of large-amplitude variability. By assuming forsterite as a haze particle, we successfully explain the wavelength-dependent amplitude with submicron-sized haze particle sizes of around 0.4 mu m. W0047 links the earlier spectral and later spectral type brown dwarfs in which rotational modulations have been observed; the large amplitude variations in this object make this a benchmark brown dwarf for the study of cloud properties close to the L/T transition. C1 [Lew, Ben W. P.; Apai, Daniel] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, 1640 E Univ Blvd, Tucson, AZ 85718 USA. [Apai, Daniel; Zhou, Yifan; Schneider, Glenn; Karalidi, Theodora; Yang, Hao] Univ Arizona, Dept Astron, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Apai, Daniel] NASA Nexus Exoplanet Syst Sci, Earths Other Solar Syst Team, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Burgasser, Adam J.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Naval Air Stn, Mountain View, CA 94035 USA. [Cowan, Nicolas B.] Amherst Coll, Dept Phys & Astron, Amherst, MA 01002 USA. [Bedin, Luigi R.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Metchev, Stanimir A.] Univ Western Ontario, Dept Phys & Astron, 1151 Richmond Ave, London, ON N6A 3K7, Canada. [Radigan, Jacqueline] Utah Valley Univ, Dept Phys, 800 West Univ Pkwy, Orem, UT 84058 USA. [Lowrance, Patrick J.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. RP Lew, BWP (reprint author), Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, 1640 E Univ Blvd, Tucson, AZ 85718 USA. EM wplew@lpl.arizona.edu OI Yang, Hao/0000-0002-9423-2333; Zhou, Yifan/0000-0003-2969-6040; Marley, Mark/0000-0002-5251-2943 FU Technology Research Initiative Fund (TRIF) Imaging Fellowship, University of Arizona; NASA through a grant from the Space Telescope Science Institute [14241]; NASA [NAS5-26555]; Space Telescope Science Institute [14241]; National Aeronautics and Space Administration; National Science Foundation FX We thank the anonymous referee for useful comments that improved the manuscript. We would like to thank Min Fang, Alex Bixel, Kevin Wagner, Belle Yu-Ya Huang, and Carol Yang for providing useful comments. Ben W.P. Lew is supported in part by the Technology Research Initiative Fund (TRIF) Imaging Fellowship, University of Arizona. Support for Program number 14241 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained in GO program 14241 at the Space Telescope Science Institute. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 49 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2016 VL 829 IS 2 AR L32 DI 10.3847/2041-8205/829/2/L32 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ7XH UT WOS:000393435500001 ER PT J AU Holst, M Sarbach, O Tiglio, M Vallisneri, M AF Holst, Michael Sarbach, Olivier Tiglio, Manuel Vallisneri, Michele TI THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS SO BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY LA English DT Article ID EINSTEIN CONSTRAINT EQUATIONS; MEAN-CURVATURE SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; BLACK-HOLE COLLISIONS; GENERAL-RELATIVITY; INITIAL DATA; CLOSED MANIFOLDS; FIELD-EQUATIONS; STABILITY; RADIATION AB On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein's prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detection of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole binaries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. Our emphasis is on the synergy between these disciplines and how mathematics, broadly understood, has historically played, and continues to play, a crucial role in the development of GW science. We focus on black holes, which are very pure mathematical solutions of Einstein's gravitational-field equations that are nevertheless realized in Nature and that provided the first observed signals. C1 [Holst, Michael] Univ Calif San Diego, Dept Phys, Dept Math, La Jolla, CA 92093 USA. Univ Michoacana, Inst Fis & Matemat, Edificio C-3,Ciudad Univ, Morelia 58040, Michoacan, Mexico. Univ Calif San Diego, Ctr Astrophys & Space Sci, Ctr Computat Math, La Jolla, CA 92093 USA. Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA. CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. CALTECH, TAPIR Grp, MC 350-17, Pasadena, CA 91125 USA. RP Holst, M (reprint author), Univ Calif San Diego, Dept Phys, Dept Math, La Jolla, CA 92093 USA. FU NSF [PHY-1500818, DMS/FRG-1262982, DMS/CM-1217175, PHY-1404569]; CONACyT [271904]; CIC grant; National Aeronautics and Space Administration FX We thank the reviewers as well as David Shoemaker, who read preliminary drafts, for their feedback and comments. This work was supported in part by NSF grants PHY-1500818, DMS/FRG-1262982, and DMS/CM-1217175 to the University of California at San Diego, by NSF grant PHY-1404569 to the California Institute of Technology, by CONACyT grant No. 271904, and by a CIC grant to Universidad Michoacana. Part of this research was performed at the Jet Propulsion Laboratory, under contract with the National Aeronautics and Space Administration. NR 154 TC 1 Z9 1 U1 1 U2 1 PU AMER MATHEMATICAL SOC PI PROVIDENCE PA 201 CHARLES ST, PROVIDENCE, RI 02940-2213 USA SN 0273-0979 EI 1088-9485 J9 B AM MATH SOC JI Bull. Amer. Math. Soc. PD OCT PY 2016 VL 53 IS 4 BP 513 EP 554 DI 10.1090/bull/1544 PG 42 WC Mathematics SC Mathematics GA EI8GY UT WOS:000392745400001 ER PT J AU de Fleurian, B Morlighem, M Seroussi, H Rignot, E van den Broeke, MR Munneke, PK Mouginot, J Smeets, PCJP Tedstone, AJ AF de Fleurian, Basile Morlighem, Mathieu Seroussi, Helene Rignot, Eric van den Broeke, Michiel R. Munneke, Peter Kuipers Mouginot, Jeremie Smeets, Paul C. J. P. Tedstone, Andrew J. TI A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID ICE-SHEET MOTION; SUBGLACIAL DRAINAGE; MASS-BALANCE; WATER-FLOW; ACCELERATION; TEMPERATURE; MECHANISMS; EVOLUTION; BOREHOLES; INTERIOR AB Basal sliding is a main control on glacier flow primarily driven by water pressure at the glacier base. The ongoing increase in surface melting of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here we examine the case of Russell Glacier, in West Greenland, where an extensive set of observations has been collected. These observations suggest that the recent increase in melt has had an equivocal impact on the annual velocity, with stable flow on the lower part of the drainage basin but accelerated flow above the Equilibrium Line Altitude (ELA). These distinct behaviors have been attributed to different evolutions of the subglacial draining system during and after the melt season. Here we use a high-resolution subglacial hydrological model forced by reconstructed surface runoff for the period 2008 to 2012 to investigate the cause of these distinct behaviors. We find that the increase in meltwater production at low elevation yields a more efficient drainage system compatible with the observed stagnation of the mean annual flow below the ELA. At higher elevation, the model indicates that the drainage system is mostly inefficient and is therefore strongly sensitive to an increase in meltwater availability, which is consistent with the observed increase in ice velocity. C1 [de Fleurian, Basile; Morlighem, Mathieu; Rignot, Eric; Mouginot, Jeremie] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Seroussi, Helene; Rignot, Eric] CALTECH, Jet Prop Lab, Pasadena, CA USA. [van den Broeke, Michiel R.; Munneke, Peter Kuipers; Smeets, Paul C. J. P.] Univ Utrecht, Inst Marine & Atmospher Res, Utrecht, Netherlands. [Tedstone, Andrew J.] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. RP de Fleurian, B (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM basile.defleurian@uib.no RI Van den Broeke, Michiel/F-7867-2011 OI Van den Broeke, Michiel/0000-0003-4662-7565 FU National Aeronautics and Space Administration FX This work was performed at the University of California Irvine and at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration. We acknowledge data from NASA's Operation IceBridge mission. Request for data should be made respectively to C.J.P.P. Smeets (C.J.P.P.Smeets@uu.nl) for pressure data at SHR, M.R. van den Broeke (M.R.vandenBroeke@uu.nl) for RACMO2 output, and P.W. Nienow (pnienow@staffmail.ed.ac.uk) for GPS velocities on Russell Glacier. We thank the reviewers for their constructive comments that helped to improve the manuscript quality. NR 47 TC 0 Z9 0 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD OCT PY 2016 VL 121 IS 10 DI 10.1002/2016JF003842 PG 15 WC Geosciences, Multidisciplinary SC Geology GA EI9LS UT WOS:000392830200012 ER PT J AU Adam, R Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bertincourt, B Bielewicz, P Bock, JJ Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Diego, JM Dole, H Donzelli, S Dure, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejser, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraudl, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Le Jenne, M Leahy, JP Lellouch, E Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggie, G Maino', D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Moreno, R Morgante, G Mortlock, D Moss, A Mottet, S Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rowan-Robinson, M Rusholme, B Sandri, M Santos, D Sauve, A Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vibert, L Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bertincourt, B. Bielewicz, P. Bock, J. J. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dure, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejser, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraudl, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jenne, M. Leahy, J. P. Lellouch, E. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggie, G. Maino', D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Moreno, R. Morgante, G. Mortlock, D. Moss, A. Mottet, S. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rowan-Robinson, M. Rusholme, B. Sandri, M. Santos, D. Sauve, A. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vibert, L. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results VII. High Frequency Instrument data processing: Time-ordered information and beams SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: data analysis; cosmic background radiation; instrumentation: detectors ID PRE-LAUNCH STATUS AB The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This paper describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The main pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the 2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraudl, Y.; Le Jenne, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Vitacura,763 0355 Casilla, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Ristorcelli, I.; Sauve, A.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dure, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino', D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20122 Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, 17 Blegdamsvej, Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,19001 Casilla, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Remazeilles, M.; Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.; Pointecouteau, E.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.; Pointecouteau, E.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Theoret Phys, Gustaf Hallstromin Katu 2, Helsinki 00100, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35141 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-0036 Rome, Italy. [Frailis, M.; Galeotta, S.; Maggie, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40147 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino', D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, Rome, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, Inst Neel, CNRS, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Bertincourt, B.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.; Vibert, L.] Univ Paris Sud 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91400 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Mottet, S.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dure, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Leahy, J. P.; Noviello, F.; Watson, R.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Moreno, R.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91400 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Lellouch, E.; Moreno, R.] Univ Paris Diderot, CNRS, LESIA, Observ Paris, 5 Pl J Janssen, F-92195 Meudon, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejser, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Sauve, A.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Crill, BP (reprint author), CALTECH, Pasadena, CA 91125 USA.; Desert, FX (reprint author), Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France.; Crill, BP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. EM bcrill@jpl.nasa.gov; francois-xavier.desert@obs.ujf-grenoble.fr RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017 OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Villa, Fabrizio/0000-0003-1798-861X; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; Watson, Robert/0000-0002-5873-0124; Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 53 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A7 DI 10.1051/0004-6361/201525844 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200017 ER PT J AU Adam, R Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bertincourt, B Bielewicz, P Bock, JJ Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Leahy, JP Lellouch, E Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Moreno, R Morgante, G Mortlock, D Moss, A Mottet, S Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rusholme, B Sandri, M Santos, D Sauve, A Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vibert, L Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bertincourt, B. Bielewicz, P. Bock, J. J. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Leahy, J. P. Lellouch, E. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Moreno, R. Morgante, G. Mortlock, D. Moss, A. Mottet, S. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rusholme, B. Sandri, M. Santos, D. Sauve, A. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vibert, L. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results VIII. High Frequency Instrument data processing: Calibration and maps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; surveys; methods: data analysis ID PRE-LAUNCH STATUS; MICROWAVE; POLARIZATION; MODEL AB This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI mission include almost five full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of T-CMB = 2.7255 +/- 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 +/- 1.5 mu K), which is approximatively 1 sigma higher than the WMAP measurement with a direction that is consistent between the two experiments. We describe the pipeline used to produce the maps of intensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS IN2P3,CEA Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter submillimeter Array, Alonso Cordova 3107, Santiago 7630355, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Sauve, A.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 92093 USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33005, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3174, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 124, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso Cordova 3107, Santiago 19001, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35141 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34143 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan 28, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, Inst Neel, CNRS, 25 Rue Martyrs, F-38054 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Bertincourt, B.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.; Vibert, L.] Univ Paris Sud 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Mottet, S.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Davies, R. D.; Davis, R. J.; Leahy, J. P.; Noviello, F.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Lellouch, E.; Moreno, R.] Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, 5 Pl J Janssen, F-92195 Meudon, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CNRS, Lab AIM, IRFU,Serv Astrophys,CEA DSM,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ, UPMC, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Sauve, A.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18001, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18003, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Perdereau, O; Tristram, M (reprint author), Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. EM perdereau@lal.in2p3.fr; tristram@lal.in2p3.fr RI Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Hivon, Eric/0000-0003-1880-2733; Toffolatti, Luigi/0000-0003-2645-7386 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 52 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A8 DI 10.1051/0004-6361/201525820 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200008 ER PT J AU Adam, R Ade, PAR Aghanim, N Alves, MIR Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, F Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihaen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Orlando, E Oxborrow, CA Paci, F Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Strong, AW Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Umana, G Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, F. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Orlando, E. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Strong, A. W. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Umana, G. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results X. Diffuse component separation: Foreground maps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; cosmology: observations; polarization; cosmic background radiation; diffuse radiation; Galaxy: general ID MICROWAVE-ANISOTROPY-PROBE; POWER SPECTRUM ESTIMATION; COSMIC-RAY PROPAGATION; LATITUDE MOLECULAR GAS; WMAP OBSERVATIONS; GALACTIC PLANE; BACKGROUND-RADIATION; DUST EMISSION; DATA RELEASE; MILKY-WAY AB Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7: 5 and 1 degrees. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4pK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Stompor, R.] Univ Paris Diderot, CEA Irfu, CNRS IN2P3, APC,AstroParticule & Cosrnol,Sorbonne Paris Cite, 10 Rue Alice Domori & Leonia Duqutet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavevdish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Offices, Atacama Large Millimeteri Submillimeter Array, Alonso Cordova 3107,Vitacura 763 0355 Casilla, Santiago, Chile. [Leonardi, R.] OGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron and Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dorns Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin katu 2a, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Calabrese, E.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartirnento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Discovery Ctr, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,Vitacura 19001 Casilla, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Southern Observ, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Southern Observ, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osserv 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-40127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40126 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E BassMi 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, Via Viderio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] LUCAA, Post Bag 4 Garieshkhind,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, F.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Noviello, F.; Remazeilles, M.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CEA DSM CNRS, IRFU,Serv Astrophys,Lab AIM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris 11, CNRS, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Strong, A. W.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nordic Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Univ Stockholm, AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, PH TH, Div Theory, Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, F.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, TRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Orlando, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Orlando, E.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Wehus, IK (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain.; Wehus, IK (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. EM i.k.wehus@astro.uio.no RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Valiviita, Jussi/0000-0001-6225-3693; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 126 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A10 DI 10.1051/0004-6361/201525967 PG 63 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200021 ER PT J AU Adam, R Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Basak, S Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Casaponsa, B Castex, G Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Francescht, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Le Jenne, M Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Racine, B Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Trombetti, T Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Basak, S. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Casaponsa, B. Castex, G. Catalano, A. Challinor, A. Chamballu, A. Chary, R-R. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Francescht, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jenne, M. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Racine, B. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results IX. Diffuse component separation: CMB maps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; polarization; cosmic background radiation; diffuse radiation ID PROBE WMAP OBSERVATIONS; POWER SPECTRUM ESTIMATION; POLARIZATION DATA; SKY MAPS; FULL-SKY; MICROWAVE; PLANCK; PARAMETERS; VARIANCE; TEMPLATE AB We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-topolarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Lambda cold dark matter model. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jenne, M.; Patanchon, G.; Piat, M.; Racine, B.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Vitacura,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Tone C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 0065, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Trombetti, T.] Univ Ferrara, Dipartimento Fis Sci & Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,Vitacura,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 0065, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Francescht, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Trombetti, T.; Valenziano, L.; Villa, F.; Zacchei, A.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Molinari, D.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R-R.; McGehee, P.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, Inst Neel, CNRS, 25 Rue Martyrs, F-38000 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Casaponsa, B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teer & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Ashdown, M (reprint author), Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England.; Ashdown, M (reprint author), Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. EM maja1@mrao.cam.acuk RI Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Piacentini, Francesco/0000-0002-5444-9327; Molinari, Diego/0000-0002-7799-3915; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. NR 64 TC 5 Z9 5 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A9 DI 10.1051/0004-6361/201525936 PG 42 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200019 ER PT J AU Adam, R Ade, PAR Aghanim, N Akrami, Y Alves, MIR Argueso, F Arnaud, M Arroja, F Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Basak, S Battaglia, P Battaner, E Battye, R Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bertincourt, B Bielewicz, P Bikmaev, I Bock, JJ Bohringer, H Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burenin, R Burigana, C Butler, RC Calabrese, E Cardoso, JF Carvalho, P Casaponsa, B Castex, G Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Chluba, J Chon, G Christensen, PR Church, S Clemens, M Clements, DL Colombi, S Colombo, LPL Combet, C Comis, B Contreras, D Couchot, F Coulais, A Crill, BP Cruz, M Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Di Valentino, E Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dunkley, J Dupac, X Efstathiou, G Eisenhardt, PRM Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Farhang, M Feeney, S Fergusson, J Fernandez-Cobos, R Feroz, F Finelli, F Florido, E Forni, O Frailis, M Fraisse, AA Franceschet, C Franceschi, E Frejsel, A Frolov, A Galeotta, S Galli, S Ganga, K Gauthier, C Genova-Santos, RT Gerbino, M Ghosh, T Giard, M Giraud-Heraud, Y Giusarma, E Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Grainge, KJB Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hamann, J Handley, W Hansen, FK Hanson, D Harrison, DL Heavens, A Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Ilic, S Jaffe, AH Jaffe, TR Jin, T Jones, WC Juvela, M Karakci, A Keihanen, E Keskitalo, R Khamitov, I Kiiveri, K Kim, J Kisner, TS Kneissl, R Knoche, J Knox, L Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lacasa, F Lagache, G Lahteenmaki, A Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Jeune, M Leahy, JP Lellouch, E Leonardi, R Leon-Tavares, J Lesgourgues, J Levrier, F Lewis, A Liguori, M Lilje, PB Lilley, M Linden-Vornle, M Lindholm, V Liu, H Lopez-Caniego, M Lubin, PM Ma, YZ Macias-Perez, JF Maggio, G Maino, D Mak, DSY Mandolesi, N Mangilli, A Marchini, A Marcos-Caballero, A Marinucci, D Maris, M Marshall, DJ Martin, PG Martinelli, M Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P McEwen, JD McGehee, P Mei, S Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Migliaccio, M Mikkelsen, K Millea, M Mitra, S Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Moreno, R Morgante, G Mortlock, D Moss, A Mottet, S Munchmeyer, M Munshi, D Murphy, JA Narimani, A Naselsky, P Nastasi, A Nati, F Natoli, P Negrello, M Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Olamaie, M Oppermann, N Orlando, E Oxborrow, CA Paci, F Pagano, L Pajot, F Paladini, R Pandolfi, S Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Peel, M Peiris, HV Pelkonen, VM Perdereau, O Perotto, L Perrott, YC Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pogosyan, D Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Racine, B Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Roman, M Romelli, E Rosset, C Rossetti, M Rotti, A Roudier, G d'Orfeuil, BR Rowan-Robinson, M Rubino-Martin, JA Ruiz-Granados, B Rumsey, C Rusholme, B Said, N Salvatelli, V Salvati, L Sandri, M Sanghera, HS Santos, D Saunders, RDE Sauve, A Savelainen, M Savini, G Schaefer, BM Schammel, MP Scott, D Seiffert, MD Serra, P Shellard, EPS Shimwell, TW Shiraishi, M Smith, K Souradeep, T Spencer, LD Spinelli, M Stanford, SA Stern, D Stolyarov, V Stompor, R Strong, AW Sudiwala, R Sunyaev, R Sutter, P Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Tavagnacco, D Terenzi, L Texier, D Toffolatti, L Tomasi, M Tornikoski, M Tramonte, D Tristram, M Troja, A Trombetti, T Tucci, M Tuovinen, J Turler, M Umana, G Valenziano, L Valiviita, J Van Tent, F Vassallo, T Vibert, L Vidal, M Viel, M Vielva, P Villa, F Wade, LA Walter, B Wandelt, BD Watson, R Wehus, IK Welikala, N Weller, J White, M White, SDM Wilkinson, A Yvon, D Zacchei, A Zibin, JP Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Akrami, Y. Alves, M. I. R. Argueeso, F. Arnaud, M. Arroja, F. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Basak, S. Battaglia, P. Battaner, E. Battye, R. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bertincourt, B. Bielewicz, P. Bikmaev, I. Bock, J. J. Boehringer, H. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burenin, R. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Carvalho, P. Casaponsa, B. Castex, G. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Chluba, J. Chon, G. Christensen, P. R. Church, S. Clemens, M. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Comis, B. Contreras, D. Couchot, F. Coulais, A. Crill, B. P. Cruz, M. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Di Valentino, E. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dunkley, J. Dupac, X. Efstathiou, G. Eisenhardt, P. R. M. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Farhang, M. Feeney, S. Fergusson, J. Fernandez-Cobos, R. Feroz, F. Finelli, F. Florido, E. Forni, O. Frailis, M. Fraisse, A. A. Franceschet, C. Franceschi, E. Frejsel, A. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Gauthier, C. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Giard, M. Giraud-Heraud, Y. Giusarma, E. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Grainge, K. J. B. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hamann, J. Handley, W. Hansen, F. K. Hanson, D. Harrison, D. L. Heavens, A. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Ilic, S. Jaffe, A. H. Jaffe, T. R. Jin, T. Jones, W. C. Juvela, M. Karakci, A. Keihanen, E. Keskitalo, R. Khamitov, I. Kiiveri, K. Kim, J. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lacasa, F. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Leahy, J. P. Lellouch, E. Leonardi, R. Leon-Tavares, J. Lesgourgues, J. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Lilley, M. Linden-Vornle, M. Lindholm, V. Liu, H. Lopez-Caniego, M. Lubin, P. M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Maino, D. Mak, D. S. Y. Mandolesi, N. Mangilli, A. Marchini, A. Marcos-Caballero, A. Marinucci, D. Maris, M. Marshall, D. J. Martin, P. G. Martinelli, M. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. McEwen, J. D. McGehee, P. Mei, S. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Migliaccio, M. Mikkelsen, K. Millea, M. Mitra, S. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Moreno, R. Morgante, G. Mortlock, D. Moss, A. Mottet, S. Muenchmeyer, M. Munshi, D. Murphy, J. A. Narimani, A. Naselsky, P. Nastasi, A. Nati, F. Natoli, P. Negrello, M. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Olamaie, M. Oppermann, N. Orlando, E. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paladini, R. Pandolfi, S. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Peel, M. Peiris, H. V. Pelkonen, V. -M. Perdereau, O. Perotto, L. Perrott, Y. C. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pogosyan, D. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Racine, B. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Roman, M. Romelli, E. Rosset, C. Rossetti, M. Rotti, A. Roudier, G. d'Orfeuil, B. Rouille Rowan-Robinson, M. Rubino-Martin, J. A. Ruiz-Granados, B. Rumsey, C. Rusholme, B. Said, N. Salvatelli, V. Salvati, L. Sandri, M. Sanghera, H. S. Santos, D. Saunders, R. D. E. Sauve, A. Savelainen, M. Savini, G. Schaefer, B. M. Schammel, M. P. Scott, D. Seiffert, M. D. Serra, P. Shellard, E. P. S. Shimwell, T. W. Shiraishi, M. Smith, K. Souradeep, T. Spencer, L. D. Spinelli, M. Stanford, S. A. Stern, D. Stolyarov, V. Stompor, R. Strong, A. W. Sudiwala, R. Sunyaev, R. Sutter, P. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Tavagnacco, D. Terenzi, L. Texier, D. Toffolatti, L. Tomasi, M. Tornikoski, M. Tramonte, D. Tristram, M. Troja, A. Trombetti, T. Tucci, M. Tuovinen, J. Turler, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, F. Vassallo, T. Vibert, L. Vidal, M. Viel, M. Vielva, P. Villa, F. Wade, L. A. Walter, B. Wandelt, B. D. Watson, R. Wehus, I. K. Welikala, N. Weller, J. White, M. White, S. D. M. Wilkinson, A. Yvon, D. Zacchei, A. Zibin, J. P. Zonca, A. CA Planck Collaboration TI Planck 2015 results I. Overview of products and scientific results SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; surveys; space vehicles: instruments; instrumentation: detectors ID ANGULAR POWER SPECTRUM; PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND TEMPERATURE; PRE-LAUNCH STATUS; COMPONENT SEPARATION; SKY MAPS; INTERSTELLAR DUST; POLARIZATION DATA; MAGNETIC-FIELD; ANISOTROPY AB The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Gauthier, C.; Giraud-Heraud, Y.; Karakci, A.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC AstroParticule & Cosmol, CNRS IN2P3, CEA Irfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.; Leon-Tavares, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Bauman Str 20, Kazan 420111, Republic Of Tat, Russia. [Fantaye, Y.; Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France. [Ilic, S.; Salvatelli, V.] Aix Marseille Univ, Ctr Phys Theor, 163 Ave Luminy, F-13288 Marseille, France. [Ashdown, M.; Curto, A.; Feroz, F.; Grainge, K. J. B.; Handley, W.; Hobson, M.; Jin, T.; Lasenby, A.; Olamaie, M.; Perrott, Y. C.; Rumsey, C.; Saunders, R. D. E.; Schammel, M. P.; Shimwell, T. W.; Stolyarov, V.] Univ Cam bridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Vitacura,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Farhang, M.; Hanson, D.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Ilic, S.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Sauve, A.] IRAP, CNRS, 9 Av Colonel Roche, BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Mei, S.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1 Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Melin, J. -B.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Pandolfi, S.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Manes Vej 30, DK-2100 Copenhagen, Denmark. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.; Tramonte, D.] Univ La Laguna ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Cruz, M.] Univ Cantabria, Dept Matemat Estadist & Computac, Avda Los Castros S-N, Santander, Spain. [Argueeso, F.] Univ Oviedo, Dept Matemat, Avda Calvo Sotelo S-N, Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kremlevskaya Str 18, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Contreras, D.; Narimani, A.; Scott, D.; Zibin, J. P.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Chluba, J.] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr 435, 3400 N Charles St, Baltimore, MD 21218 USA. [Benoit-Levy, A.; Elsner, F.; Peiris, H. V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Pogosyan, D.] Univ Alberta, Dept Phys, 11322-89 Ave, Edmonton, AB T6G 2G7, Canada. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.; Millea, M.; Stanford, S. A.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Naselsky, P.; Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.; Shiraishi, M.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Battaglia, P.; de Bernardis, P.; Gerbino, M.; Giusarma, E.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Said, N.; Salvatelli, V.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Franceschet, C.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.; Troja, A.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Battaglia, P.; Gregorio, A.; Romelli, E.; Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Fantaye, Y.; Marinucci, D.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Liu, H.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Kneissl, R.] ESO Vitacura, European Southern Observ, Alonso de Cordova 3107,Vitacura,Casilla 19001, Santiago, Chile. [Texier, D.] ESAC, European Space Agcy, Camino Bajo del Castillo S-N, Madrid, Spain. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] ESAC, European Space Agcy, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Mei, S.] Observ Paris, GEPI, Sect Meudon, 5 Pl J Janssen, F-92195 Meudon, France. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.; Walter, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA USA. [Kiiveri, K.; Kurki-Suonio, H.; Lahteenmaki, A.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [Lacasa, F.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, Sao Paulo, Brazil. [Umana, G.] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [Clemens, M.; de Zotti, G.; Negrello, M.] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Romelli, E.; Tavagnacco, D.; Viel, M.; Zacchei, A.] INAF, Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Ballardini, M.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Trombetti, T.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, Milan, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Paoletti, D.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Molinari, D.; Natoli, P.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Marchini, A.; Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.; Viel, M.] Natl Inst Nucl Phys, INFN, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Turler, M.] Univ Geneva, ISDC, Dept Astron, Ch Ecogia 16, CH-1290 Versoix, Switzerland. [Mitra, S.; Rotti, A.] IUCAA, Post Bag 4,Ganeshkhind,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Feeney, S.; Heavens, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Paladini, R.; Pearson, T. J.; Pelkonen, V. -M.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Aumont, J.; Bertincourt, B.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lacasa, F.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Nastasi, A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.; Serra, P.; Vibert, L.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Lilley, M.; Moneti, A.; Mottet, S.; Muenchmeyer, M.; Prunet, S.; Sutter, P.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Carvalho, P.; Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Mak, D. S. Y.; Migliaccio, M.; Sanghera, H. S.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Akrami, Y.; Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Mikkelsen, K.; Racine, B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.; Tramonte, D.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna, Tenerife, Spain. [Barreiro, R. B.; Casaponsa, B.; Curto, A.; Diego, J. M.; Fernandez-Cobos, R.; Gonzalez-Nuevo, J.; Herranz, D.; Marcos-Caballero, A.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, Santander, Spain. [Schammel, M. P.] Ist Nazl Astrofis, Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone RM, RM, Italy. [Arroja, F.; Bartolo, N.; Liguori, M.; Matarrese, S.; Shiraishi, M.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Eisenhardt, P. R. M.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Stern, D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Battye, R.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Ma, Y. -Z.; Noviello, F.; Pasian, F.; Peel, M.; Remazeilles, M.; Vidal, M.; Watson, R.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Carvalho, P.; Challinor, A.; Chluba, J.; Curto, A.; Efstathiou, G.; Grainge, K. J. B.; Gratton, S.; Handley, W.; Harrison, D. L.; Lasenby, A.; Mak, D. S. Y.; Migliaccio, M.; Sanghera, H. S.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; d'Orfeuil, B. Rouille; Spinelli, M.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, Paris, France. [Lellouch, E.; Moreno, R.] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, 5 Pl J Janssen, F-92195 Meudon, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU Serv Astrophys CEA DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Prof St,GSP-7, Moscow 117997, Russia. [Arroja, F.; Gauthier, C.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Kim, J.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.; Strong, A. W.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Burenin, R.] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Russia. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Liu, H.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Smith, K.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Farhang, M.] Shahid Beheshti Univ, Dept Phys, Tehran, Iran. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.; Lilley, M.; Mottet, S.] UPMC, Sorbonne Univ, UMR7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Burenin, R.; Sunyaev, R.] Russian Acad Sci, Space Res Inst, IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA 94305 USA. [Shimwell, T. W.] Sterrewacht Leiden, POB 9513, NL-2300 RA Leiden, Netherlands. [Calabrese, E.; Dunkley, J.; Welikala, N.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Hamann, J.] Univ Sydney, Sydney Inst Astron, Sch Phys, A28, Sydney, NSW 2006, Australia. [Khamitov, I.] TUBITAK Natl Observ, Akdeniz Univ Campus, TR-07058 Antalya, Turkey. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, S-10691 Stockholm, Sweden. [Hamann, J.; Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany. [Mei, S.] Univ Denis Diderot Paris 7, F-75205 Paris 13, France. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Ilic, S.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Sauve, A.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Stratospher Observ Infrared Astron, Univ Space Res Assoc, MS 232-11, Moffett Field, CA 94035 USA. [Dolag, K.; Weller, J.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.; Florido, E.; Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain. [Akrami, Y.; Martinelli, M.] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Orlando, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Orlando, E.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Lawrence, CR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM charles.lawrence@jpl.nasa.gov RI Lahteenmaki, Anne/L-5987-2013; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Savini, Giorgio/0000-0003-4449-9416; Martinelli, Matteo/0000-0002-6943-7732; Pierpaoli, Elena/0000-0002-7957-8993; Paoletti, Daniela/0000-0003-4761-6147; Huang, Zhiqi/0000-0002-1506-1063; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Molinari, Diego/0000-0002-7799-3915; Toffolatti, Luigi/0000-0003-2645-7386; Nati, Federico/0000-0002-8307-5088; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Liu, Hao/0000-0003-4410-5827; Hivon, Eric/0000-0003-1880-2733; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X FU CNES; CNRS/INSU-IN2P3; ASI; Danish Natural Research Council; ESA; CNES (France); CNRS/INSU-IN2P3INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); LFI; HFI FX Planck is a project of the European Space Agency in cooperation with the scientific community, which started in 1993. ESA led the project, developed the satellite, integrated the payload into it, and launched and operated the satellite. Two Consortia, comprising around 100 scientific institutes within Europe, the USA, and Canada, and funded by agencies from the participating countries, developed and operated the scientific instruments LFI and HFI. The Consortia are also responsible for scientific processing of the acquired data. The Consortia are led by the Principal Investigators: J.-L. Puget in France for HFI (funded principally by CNES and CNRS/INSU-IN2P3) and N. Mandolesi in Italy for LFI (funded principally via ASI). NASA's US Planck Project, based at JPL and involving scientists at many US institutions, contributes significantly to the efforts of these two Consortia. A third Consortium, led by H.U. Norgaard-Nielsen and supported by the Danish Natural Research Council, contributed to the reflector programme. These three Consortia, together with ESA's Planck Science Office, form the Planck Collaboration. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). We thank Diego Falceta-Goncalves for providing the technique for making the line-integral-convolution maps presented in Figs. 23 and 25. NR 127 TC 16 Z9 16 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A1 DI 10.1051/0004-6361/201527101 PG 38 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200030 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Castex, G Catalano, A Challinor, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Karakei, A Keihanen, E Keskitalo, R Kiiveri, K Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lindholm, V Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Welikala, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Castex, G. Catalano, A. Challinor, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Karakei, A. Keihanen, E. Keskitalo, R. Kiiveri, K. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lindholm, V. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Welikala, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XII. Full focal plane simulations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: data analysis; methods: numerical; cosmic background radiation ID MICROWAVE-ANISOTROPY-PROBE; STATISTICAL PROPERTIES; GALAXY CLUSTERS; BACKGROUND MAPS; SPINNING DUST; SKY MAPS; EMISSION; CATALOG; SEPARATION; MODEL AB We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Karakei, A.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC AstroParticule & Cosmol, CNRS IN2P3, CEA Irfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Vitacura,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, 91125 Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 92093 USA. [Rebolo, R.] CSIC, Madrid 0424, Spain. [Chamballu, A.; Melin, J. -B.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, CA 93106 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-00133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-000138 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] Osservatorio Astronom Roma, INAF, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osservatorio Astronom Trieste, INAF, Via GB Tiepolo 11, I-34127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, INFN, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Ganeshkhind,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, F-38000 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Sud 11, CNRS, Inst Astrophys Spatiale, UMR8617, Batiment 121, F-91898 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38205, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM IRFU,Serv Astrophys,CEA,DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Astro Space Ctr, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] UPMC, Sorbonne Univ, UMR7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Russia. [Calabrese, E.; Welikala, N.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Borrill, J (reprint author), Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 92093 USA.; Borrill, J (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM jdborrill@lbl.gov RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017 OI Valiviita, Jussi/0000-0001-6225-3693; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Pierpaoli, Elena/0000-0002-7957-8993; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Particular thanks are due to the extraordinary NERSC staff, who have supported the Planck mission for over a decade and who facilitated the production and distribution of FFP8 in numerous ways. NR 105 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A12 DI 10.1051/0004-6361/201527103 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200031 ER PT J AU Ade, PAR Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Basak, S Battaglia, P Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Burigana, C Butler, RC Calabrese, E Catalano, A Christensen, PR Colombo, LPL Cruz, M Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dore, O Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Finelli, F Frailis, M Franceschet, C Franceschi, E Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Keihanen, E Keskitalo, R Kiiveri, K Kisner, TS Knoche, J Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lindholm, V Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Meinhold, PR Mennella, A Migliaccio, M Mitra, S Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Nati, F Natoli, P Noviello, F Paci, F Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Pearson, TJ Perdereau, O Pettorino, V Piacentini, F Pointecouteau, E Polenta, G Pratt, GW Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Scott, D Stolyarov, V Stompor, R Suur-Uski, AS Sygnet, JF Tauber, JA Tavagnacco, D Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vassallo, T Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Yvon, D Zacchei, A Zibin, JP Zonca, A AF Ade, P. A. R. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battaglia, P. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Burigana, C. Butler, R. C. Calabrese, E. Catalano, A. Christensen, P. R. Colombo, L. P. L. Cruz, M. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dore, O. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Frailis, M. Franceschet, C. Franceschi, E. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Keihanen, E. Keskitalo, R. Kiiveri, K. Kisner, T. S. Knoche, J. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lindholm, V. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Meinhold, P. R. Mennella, A. Migliaccio, M. Mitra, S. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Nati, F. Natoli, P. Noviello, F. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Pearson, T. J. Perdereau, O. Pettorino, V. Piacentini, F. Pointecouteau, E. Polenta, G. Pratt, G. W. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Scott, D. Stolyarov, V. Stompor, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Tavagnacco, D. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vassallo, T. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Yvon, D. Zacchei, A. Zibin, J. P. Zonca, A. CA Planck Collaboration TI Planck 2015 results III. LFI systematic uncertainties SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; space vehicles: instruments; methods: data analysis ID LOW-FREQUENCY INSTRUMENT; PRIMORDIAL NON-GAUSSIANITY; STRAYLIGHT CONTAMINATION; ANGULAR RESOLUTION; TRADE-OFF; SKY MAPS; POLARIZATION; BISPECTRUM; MISSION AB We present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal ("null-maps"). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB E-modes in the multipole range 10-20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around 0.2 sigma on the reionization optical depth derived from the 70 GHz EE spectrum using the 30 and 353 GHz channels as foreground templates. At 30 GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes. C1 [Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, CNRS IN2P3, APC AstroParticule & Cosmol, CEA Irfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Tone C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] Ctr Estudios Fis Cosmos Aragon CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] Univ La Laguna ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Cruz, M.] Univ Cantabria, Dept Matemat Estadist & Computac, Avda Los Castros S-N, Santander 39005, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.; Zibin, J. P.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Battaglia, P.; de Bernardis, P.; Masi, S.; Pagano, L.; Piacentini, F.] Univ La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Franceschet, C.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Battaglia, P.; Gregorio, A.; Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-24128 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA USA. [Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00100, Finland. [Umana, G.] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Tavagnacco, D.; Vassallo, T.; Zacchei, A.] INAF, Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aumont, J.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Ducout, A.; Elsner, F.; Hivon, E.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38205, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Maffei, B.; Noviello, F.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Mangilli, A.; Perdereau, O.; Tristram, M.] Univ Paris 11, CNRS, LAL, IN2P3, Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] LERMA, CNRS, Observ Paris, 61 Ave Observ, F-75104 Paris, France. [Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, CEA DSM,Lab AIM,IRFU Serv Astrophys, Bat 709, F-91191 Gif Sur Yvette, France. [Catalano, A.; Macias-Perez, J. F.; Santos, D.] Univ Grenoble Alpes, IN2P3, CNRS, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. RI Colombo, Loris/J-2415-2016; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014 OI Piacentini, Francesco/0000-0002-5444-9327; Toffolatti, Luigi/0000-0003-2645-7386; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck_collaboration. Some of the results in this paper have been derived using the HEALPix package. NR 59 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A3 DI 10.1051/0004-6361/201526998 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200027 ER PT J AU Ade, PAR Aghanim, N Argueso, F Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Beichman, C Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bohringer, H Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Carvalho, P Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Clemens, M Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Leon-Tavares, J Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Negrello, M Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Sanghera, HS Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tornikoski, M Tristram, M Tucci, M Tuovinen, J Turler, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Walter, B Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Argueeso, F. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Beichman, C. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Boehringer, H. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Carvalho, P. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Clemens, M. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Leon-Tavares, J. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Negrello, M. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Sanghera, H. S. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tornikoski, M. Tristram, M. Tucci, M. Tuovinen, J. Turler, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Walter, B. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XXVI. The Second Planck Catalogue of Compact Sources SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE catalogs; cosmology: observations; radio continuum: general; submillimeter: general ID POINT-SOURCE DETECTION; DISCRETE OBJECT DETECTION; HERSCHEL REFERENCE SURVEY; ACTIVE GALACTIC NUCLEI; ASTRONOMICAL DATA SETS; FAST BAYESIAN-APPROACH; FLUX-DENSITY SCALE; ALL-SKY SURVEY; EXTRAGALACTIC SOURCES; NUMBER COUNTS AB The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second ( PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC). C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, APC AstroParticule & Cosmol, CNRS IN2P3, CEA Irfu,Observ Paris,Sorbonne Paris Site, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Mathe Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107, Santiago 7630355, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Beichman, C.; Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] Ctr Estudios Fis Cosmos Aragon CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ la Laguna, San Cristobal de la Laguna 38206, Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Argueeso, F.] Univ Oviedo, Dept Matemat, Avda Calvo Sotelo S-N, Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00131 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Kneissl, R.] European Southern Observ ESO Vitacura, Alonso de Cordova 3107,Vitacura,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.; Walter, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [Umana, G.] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [Clemens, M.; de Zotti, G.; Negrello, M.] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Nat Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Turler, M.] Univ Geneva, Dept Astron, ISDC, Ch Ecogia 16, CH-1290 Versoix, Switzerland. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, F-91405 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Carvalho, P.; Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sanghera, H. S.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Leon-Tavares, J.] Inst Nacl Astrofis Opt & Elect INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Carvalho, P.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sanghera, H. S.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 OHA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Boehringer, H.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ Studi E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst, IKI, Prof Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Lopez-Caniego, M (reprint author), European Space Agcy ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain.; Harrison, DL (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.; Lopez-Caniego, M (reprint author), Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, Santander, Spain.; Harrison, DL (reprint author), Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 OHA, England. EM dlh@ast.cam.ac.uk; mlopez@sciops.esa.int RI Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; OI Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); HEFCE FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and, RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. We are grateful to the H-ATLAS Executive Committee and primarily to the PIs, S. Eales and L. Dunne, for permission to use the unpublished H-ATLAS catalogue for the validation of the present catalogue. This research has made use of the "Aladin sky atlas" (Bonnarel et al. 2000), developed at CDS, Strasbourg Observatory, France. Part of this work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the HEFCE and funding from the STFC. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 85 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A26 DI 10.1051/0004-6361/201526914 PG 39 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200025 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Orlando, E Oxborrow, CA Paci, F Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Peel, M Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Strong, AW Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Umana, G Valenziano, L Valiviita, J Van Tent, F Vidal, M Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Orlando, E. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Peel, M. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Strong, A. W. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Umana, G. Valenziano, L. Valiviita, J. Van Tent, F. Vidal, M. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XXV. Diffuse low-frequency Galactic foregrounds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE diffuse radiation; ISM: general; radiation mechanisms: general; radio continuum: ISM; polarization; local insterstellar matter ID MICROWAVE-ANISOTROPY-PROBE; NORTH-POLAR SPUR; LARGE-MAGELLANIC-CLOUD; PERSEUS MOLECULAR-COMPLEX; BAYESIAN COMPONENT SEPARATION; CENTIMETER-WAVE CONTINUUM; COSMIC-RAY PROPAGATION; LAMBDA-ORIONIS RING; ALL-SKY SURVEY; RADIO-CONTINUUM AB We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H alpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (approximate to 30%) of H alpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I-v) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H Pi regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40 degrees > l > -90 degrees is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the "Fermi bubble/microwave haze", making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20 degrees long filament seen in H alpha at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2 sigma upper limit of 1.6% in the Perseus region. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, CNRS 1N2P3, CEA Irfu, APC,AstroParticule & Cosmol,Observ Paris,Sorbonne, 10 rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Vitacura,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9, Lote C,Torre C,4 Andar,Ed Parque Cidade Corp, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, 00560 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00185 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,Vitacura,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Mitra, S.] Pune Univ Campus, IUCAA, Post Bag 4, Pune 411007, Maharashtra, India. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38200, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CEA DSM CNRS, IRFU,Serv Astrophys,Lab AIM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris 11, CNRS, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Strong, A. W.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Buildings, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, TRAP, F-31028 Toulouse, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Orlando, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Orlando, E.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Dickinson, C; Leahy, JP (reprint author), Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM Clive.dickinson@manchester.ac.uk; j.p.leahy@manchester.ac.uk RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Kurki-Suonio, Hannu/0000-0002-4618-3063 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); ERC [307209]; STFC Consolidated Grant [ST/L000768/1] FX This paper is dedicated to the memory of the late Professor Rodney Deane Davies CBE FRS and Professor Richard John Davis OBE, both of whom contributed greatly to the Planck project. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. This research was supported by an ERC Starting (Consolidator) Grant (no. 307209) and STFC Consolidated Grant (no. ST/L000768/1). We have made extensive use of the HEALPix package and the IDL astronomy library. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 227 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A25 DI 10.1051/0004-6361/201526803 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200024 ER PT J AU Ade, PAR Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaglia, P Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Christensen, PR Colombi, S Colombo, LPL Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Novikov, D Novikov, I Paci, F Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Peel, M Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Pierpaoli, E Pietrobon, D Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renzi, A Rocha, G Romelli, E Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Tavagnacco, D Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Turler, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vassallo, T Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaglia, P. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Christensen, P. R. Colombi, S. Colombo, L. P. L. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Peel, M. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Pierpaoli, E. Pietrobon, D. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Romelli, E. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Tavagnacco, D. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Turler, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vassallo, T. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results V. LFI calibration SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; instrumentation: polarimeters; methods: data analysis ID PROBE WMAP OBSERVATIONS; SYSTEMATIC-ERROR LIMITS; PRE-LAUNCH STATUS; BEAM PROFILES; MICROWAVE; MAPS AB We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1 sigma (0.3% in amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. We provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, CNRS IN2P3, CEA Irfu, APC AstroParticule & Cosmol,Observ Paris,Sorbonne, 10 rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Leonardi, R.] CGEE, SCS Qd 9, Lote C,Torre C,4 Andar,Ed Parque Cidade Corp, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Battaglia, P.; de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Kunz, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Battaglia, P.; Gregorio, A.; Romelli, E.; Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00185 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 68692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 02540, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osserv 5, I-35131 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00185 Rome, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Romelli, E.; Tavagnacco, D.; Vassallo, T.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-43127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Turler, M.] Univ Geneva, ISDC, Dept Astron, Ch Ecogia 16, CH-1290 Versoix, Switzerland. [Mitra, S.] Pune Univ Campus, IUCAA, Post Bag 4, Pune 411007, Maharashtra, India. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, Batiment 121, Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38200, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Peel, M.; Remazeilles, M.; Watson, R.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA DSM CNRS, CEA Saclay, IRFU,Serv Astrophys,ab AIM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Santos, D.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Buildings, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Tomasi, M (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.; Tomasi, M (reprint author), IASF Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy. EM maurizio.tomasi@unimi.it RI Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; OI Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck_collaboration NR 45 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A5 DI 10.1051/0004-6361/201526632 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200022 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Battye, R Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrinll, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunzo, M Kurki-Suonio, H Lagache, G Lahteennmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri', A Melin, JB Mendes, L Mennella, A Migliaccio, M Mitrao, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Prate, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Turler, M Umana, G Valenziano, L Valiviita', J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Weller, J White, SDM Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Battye, R. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrinll, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunzo, M. Kurki-Suonio, H. Lagache, G. Lahteennmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri', A. Melin, J. -B. Mendes, L. Mennella, A. Migliaccio, M. Mitrao, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Prate, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Turler, M. Umana, G. Valenziano, L. Valiviita', J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Weller, J. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XXIV. Cosmology from Sunyaev-Zeldovich cluster counts SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmological parameters; large-scale structure of Universe ID BARYON ACOUSTIC-OSCILLATIONS; SOUTH-POLE TELESCOPE; HALO MASS FUNCTION; LOCAL GALAXY CLUSTERS; WEAK-LENSING MASSES; X-RAY; INTRACLUSTER MEDIUM; SCALING RELATIONS; PRECISION COSMOLOGY; HUBBLE CONSTANT AB We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1 - b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1 b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7 sigma) for the largest estimated value. We also examine constraints on extensions to the base flat Lambda CDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base Lambda CDM model. C1 [Bartlett, J. G.; Bucher, M.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteennmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteennmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Bartolo, N.; Kunzo, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,763 0355 Casilla, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Cardoso, J. -F.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrinll, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid 28006, Spain. [Chamballu, A.; Melin, J. -B.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunzo, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St,38100, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita', J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri', A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA USA. [Kurki-Suonio, H.; Lahteennmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita', J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-40127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri', A.; Pagano, L.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Turler, M.] Univ Geneva, Dept Astron, ISDC, Ch Ecogia 16, CH-1290 Versoix, Switzerland. [Mitrao, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunzo, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Migliaccio, M.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitrao, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Battye, R.; Bock, J. J.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Prate, G. W.] Univ Paris Diderot, CEA DSM, IRFU Serv Astrophys, Lab AIM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GS7, Moscow 117997, Russia. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Danese, L.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrinll, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA USA. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.; Weller, J.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 81679, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bonaldi, A (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM anna.bonaldi@manchester.ac.uk RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017 OI Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 103 TC 3 Z9 3 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A24 DI 10.1051/0004-6361/201525833 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200015 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Basak, S Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chiang, HC Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Feeney, S Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejse, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McEwen, JD McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Peiris, HV Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pogosyan, D Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Feeney, S. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejse, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McEwen, J. D. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Peiris, H. V. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pogosyan, D. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XVIII. Background geometry and topology of the Universe SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; cosmological parameters; gravitation; methods: data analysis; methods:statistical ID DODECAHEDRAL SPACE TOPOLOGY; BIANCHI-VIIH MODELS; WMAP DATA; SKY MAPS; COBE-DMR; COSMIC CRYSTALLOGRAPHY; COSMOLOGICAL MODELS; TOROIDAL UNIVERSE; CMB ANISOTROPY; MICROWAVE AB Maps of cosmic microwave background (CMB) temperature and polarization from the 2015 release of Planck data provide the highest quality full-sky view of the surface of last scattering available to date. This enables us to detect possible departures from a globally isotropic cosmology. We present the first searches using CMB polarization for correlations induced by a possible non-trivial topology with a fundamental domain that intersects, or nearly intersects, the last-scattering surface (at comoving distance chi(rec)), both via a direct scan for matched circular patterns at the intersections and by an optimal likelihood calculation for specific topologies. We specialize to flat spaces with cubic toroidal (T3) and slab (T1) topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology with a scale below the diameter of the last-scattering surface. The limits on the radius R-i of the largest sphere inscribed in the fundamental domain (at log-likelihood ratio Delta ln L > -5 relative to a simply-connected flat Planck best-fit model) are: R-i > 0.97 chi(rec) for the T3 cubic torus; and R-i > 0.56 chi(rec) for the T1 slab. The limit for the T3 cubic torus from the matched-circles search is numerically equivalent, R-i > 0.97 chi(rec) at 99% confidence level from polarization data alone. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting, where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component with a Bayes factor of at least 2.3 units of log-evidence. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to the Planck data requires an amplitude of -0.10 +/- 0.04 compared to the value of + 1 if the model were to be correct. In the physically motivated setting, where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (omega/H)(0) < 7.6 x 10(-10) (95% CL). C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-13 Paris, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci, Ctr Data, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Challinor, A.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.; Peiris, H. V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Scott, D.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Pogosyan, D.] Univ Alberta, Dept Phys, 11322-89 Ave, Edmonton, AB T6G 2G7, Canada. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Finelli, F.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Gruppuso, A.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, Inst Neel, CNRS, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-1072 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Ashdown, M.; Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Bat 709, F-1191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Feeney, S.; Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejse, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC 1E6BT, England. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA USA. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, AlbaNova, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Banday, A. J.; Bernard, J-P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18010, Spain. [Battaner, E.; Benabed, K.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Jaffe, AH (reprint author), Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. EM a.jaffe@imperial.ac.uk RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Kurki-Suonio, Hannu/0000-0002-4618-3063; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Valiviita, Jussi/0000-0001-6225-3693; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Canada Foundation for Innovation under Compute Canada; Government of Ontario; Ontario Research Fund Research Excellence; University of Toronto FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The authors thank Andrew Pontzen for computing Bianchi VIIh polarization templates for the best-fit models resulting from the analysis of temperature data. We acknowledge the UCL Legion High Performance Computing Facility (Legion@UCL) and associated support services in the completion of this work. Parts of the computations were performed on the Andromeda and Perseus clusters of the University of Geneva, as well as the Carver IBM iDataPlex, the Hopper Cray XE6, and the Edison Cray XC30 at NERSC, and on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund Research Excellence; and the University of Toronto. NR 107 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A18 DI 10.1051/0004-6361/201525829 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200012 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Arroja, F Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Chluba, J Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, A Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Florido, E Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kim, J Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Shiraishi, M Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Arroja, F. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Chluba, J. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, A. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Florido, E. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kim, J. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Shiraishi, M. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XIX. Constraints on primordial magnetic fields SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE magnetic fields; cosmic background radiation; early Universe ID MICROWAVE BACKGROUND ANISOTROPIES; CMB SPECTRAL DISTORTIONS; FARADAY-ROTATION; EARLY UNIVERSE; TEV BLAZARS; DENSITY PERTURBATIONS; CYCLOTRON EMISSION; RADIO-EMISSION; 1ES 0229+200; POLARIZATION AB We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B-1 (Mpc) < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B-1 (Mpc) < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B-1 (Mpc) < 2.0 nG and B-1 (Mpc) < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B-1 (Mpc) < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B-1 (Mpc) < 4.5 nG, whereas the compensated-scalar bispectrum gives B-1 (Mpc) < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B-1 (Mpc) < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfven waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, CNRS IN2P3,CEA Irfu,Observ Paris,APC, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Leonardi, R.] Ed Parque Cidade Corp, CGEE, Lote C, Torre C, SCS Qd 9,4o andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Bock, J. J.; Crill, B. P.; Dore, A.; Helou, G.; Hildebrandt, S. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Dore, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Chluba, J.] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr 435, 3400 N Charles St, Baltimore, MD 21218 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FIN-00014 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.; Shiraishi, M.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, ALMA MATER STUDIORUM, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-40127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, Inst Astrophys Spatiale, CNRS, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Molinari, D.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Arroja, F.; Bartolo, N.; Liguori, M.; Matarrese, S.; Shiraishi, M.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, A.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Leahy, J. P.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Chluba, J.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU Serv Astrophys,CEA DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Arroja, F.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Kim, J.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA 94305 USA. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.; Florido, E.; Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Paoletti, D (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy.; Paoletti, D (reprint author), INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. EM paoletti@iasfbo.inaf.it RI bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014 OI Pierpaoli, Elena/0000-0002-7957-8993; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Piacentini, Francesco/0000-0002-5444-9327; Molinari, Diego/0000-0002-7799-3915; Hivon, Eric/0000-0003-1880-2733; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; TERENZI, LUCA/0000-0001-9915-6379; Barreiro, Rita Belen/0000-0002-6139-4272 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http//www.cosmos.esa.int/web/planck/planck-collaboration. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. Some of the results in this paper have been derived using the HEALPix package. NR 171 TC 3 Z9 3 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A19 DI 10.1051/0004-6361/201525821 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200009 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdow, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P McGehee, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Patanchon, G Pearson, TJ Pelkonen, VM Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointccoutcau, E Polcnta, G Pratt, GW Prczcau, G Prunt, S Pugct, JL Rachcn, JP Rcach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Tcrcnzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovincn, J Umana, G Valcnziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdow, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. X. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J. M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. McGehee, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Pelkonen, V. M. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointccoutcau, E. Polcnta, G. Pratt, G. W. Prczcau, G. Prunct, S. Pugct, J. L. Rachcn, J. P. Rcach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. S. Sygnet, J. F. Tauber, J. A. Tcrcnzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovincn, J. Umana, G. Valcnziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XXVIII. The Planck Catalogue of Galactic cold clumps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: structure; local insterstellar matter; stars: formation ID INFRARED DARK CLOUDS; SMALL-MAGELLANIC-CLOUD; YOUNG STELLAR OBJECTS; MOLECULAR CLOUDS; MILKY-WAY; PRESTELLAR CORES; DUST TEMPERATURE; STAR-FORMATION; INITIAL HIGHLIGHTS; GAS TEMPERATURE AB We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity. The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds. C1 [Bucher, M.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS,IN2P3, APC,AstroParticule & Cosmol,Observ Paris,CEA,Lrfu, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polcnta, G.] Agenzia Spaziale Italiana Sci, Ctr Data, Via Politecn Snc, I-00133 Rome, Italy. Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdow, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointccoutcau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-112AP Toulouse 4, France. [Tuovincn, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Prczcau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachcn, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Benoit-Levy, A.; Elsner, F.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, SF-00100 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 00185 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria, I-16 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci, I-1 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-1 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] Planck Sci Off, ESAC, European Space Agcy, Caminobajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Tcrcnzi, L.] Univ Studi E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, Padua, Italy. [Polcnta, G.] Osserv Astron Roma, INAF, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Tcrcnzi, L.; Toffolatti, L.; Valcnziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. X.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Paladini, R.; Pearson, T. J.; Pelkonen, V. M.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble 1, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Mangilli, A.; Miville-Deschenes, M. A.; Pajot, F.; Pugct, J. L.; Remazeilles, M.] Univ Paris Sud 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Moneti, A.; Prunct, S.; Sygnet, J. F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prczcau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdow, M.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Lesgourgues, J.] Univ Savoie, LAPTh, CNRS, BP 110, F-74941 Annecy Le Vieux, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachcn, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Lesgourgues, J.] Ecole Polytech Fed Lausanne, SB ITP LPPC, CH-1015 Lausanne, Switzerland. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunct, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointccoutcau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Rcach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Montier, L (reprint author), IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-112AP Toulouse 4, France.; Montier, L (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM Ludovic.Montier@irap.orap.eu RI Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Pierpaoli, Elena/0000-0002-7957-8993; Hurier, Guillaume/0000-0002-1215-0706; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); J.A. (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A.; and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 112 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A28 DI 10.1051/0004-6361/201525819 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200007 ER PT J AU Ade, PAR Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Battaglia, P Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Castex, G Catalano, A Chamballu, A Christensen, PR Colombi, S Colombo, LPL Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Franceschet, C Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Juvela, M Keihanen, E Keskitalo, R Kiiveri, K Kisner, TS Knoche, J Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues', J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lindholm, V Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Montier, L Morgante, G Morisset, N Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Novikov, D Novikov, I Oppermann, N Paci, F Pagano, L Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Peel, M Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Pierpaoli, E Pietrobon, D Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renzi, A Rocha, G Romelli, E Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Tavagnacco, D Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Turler, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vassallo, T Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battaglia, P. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. F. Castex, G. Catalano, A. Chamballu, A. Christensen, P. R. Colombi, S. Colombo, L. P. L. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Franceschet, C. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Juvela, M. Keihanen, E. Keskitalo, R. Kiiveri, K. Kisner, T. S. Knoche, J. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lindholm, V. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Montier, L. Morgante, G. Morisset, N. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Oppermann, N. Paci, F. Pagano, L. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Peel, M. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Pierpaoli, E. Pietrobon, D. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Romelli, E. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Sutton, D. Suur-Uski, A. S. Sygnet, J. F. Tauber, J. A. Tavagnacco, D. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Turler, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vassallo, T. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results II. Low Frequency Instrument data processings SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE space vehicles: instruments; methods: data analysis; cosmic background radiation ID PRE-LAUNCH STATUS; POWER SPECTRUM; DATA SETS; MICROWAVE; MADAM; MAPS AB We present an updated description of the Planck Low Frequency Instrument (LFI) data processing pipeline, associated with the 2015 data release. We point out the places where our results and methods have remained unchanged since the 2013 paper and we highlight the changes made for the 2015 release, describing the products (especially timelines) and the ways in which they were obtained. We demonstrate that the pipeline is self-consistent (principally based on simulations) and report all null tests. For the first time, we present LFI maps in Stokes Q and U polarization. We refer to other related papers where more detailed descriptions of the LFI data processing pipeline may be found if needed. C1 [Bucher, M.; Cardoso, J. F.; Castex, G.; Curto, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Rosset, C.; Roudier, G.] Univ Paris Diderot, CNRS, Sorbonne Paris Cite,Observ Paris, APC,AstroParticule & Cosmol,IN2P3,CEA,Lrfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci, Ctr Data, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 OHE, England. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Calle Serrano 117, Madrid 28006, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, FIN-00014 Helsinki, Finland. [Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, ALMA MATER STUDIORUM, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Battaglia, P.; de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Franceschet, C.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Battaglia, P.; Gregorio, A.; Romelli, E.; Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] Planck Sci Off, European Space Agcy, ESAC, Caminobajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kiiveri, K.; Kurki-Suonio, H.; Lahteenmaki, A.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00078 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Romelli, E.; Tavagnacco, D.; Vassallo, T.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-34143 Trieste, Italy. [Ballardini, M.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00133 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Morisset, N.; Turler, M.] Univ Geneva, Dept Astron, ISDC, Ch Ecogia 16, CH-1290 Versoix, Switzerland. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble 1, CNRS, Inst Neel, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Puget, J. L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Prunet, S.; Sygnet, J. F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, POB 1029, N-0315 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Peel, M.; Remazeilles, M.; Watson, R.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Catalano, A.; Lamarre, J. M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, 61 Ave Observ, F-75014 Paris, France. [Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18003, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Zacchei, A (reprint author), Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-34143 Trieste, Italy. EM zacchei@oats.inaf.it RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016 OI Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Piacentini, Francesco/0000-0002-5444-9327; Nati, Federico/0000-0002-8307-5088; Pierpaoli, Elena/0000-0002-7957-8993; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.et/web/planck/. Finally, we thank Benjamin Walter for a careful reading of the manuscript. NR 58 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A2 DI 10.1051/0004-6361/201525818 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200006 ER PT J AU Ade, PAR Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewic, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chary, RR Christensen, PR Colombi, S Colombo, LPL Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Juvela, M Keihanen, E Keskitalo, R Kiiveri, K Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lindholm, V Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Novikov, D Novikov, I Paci, F Pagano, L Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Pierpaoli, E Pietrobon, D Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renzi, A Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vassallo, T Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewic, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Christensen, P. R. Colombi, S. Colombo, L. P. L. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Juvela, M. Keihanen, E. Keskitalo, R. Kiiveri, K. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lindholm, V. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Paci, F. Pagano, L. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Pierpaoli, E. Pietrobon, D. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vassallo, T. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results VI. LFI mapmaking SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; methods: data analysis ID 30 GHZ DATA; CMB EXPERIMENTS; NOISE; MAPS; MADAM AB This paper describes the mapmaking procedure applied to Planck Low Frequency Instrument (LFI) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of I, Q, and U Stokes components. For the first time, we present polarization maps at LFI frequencies. The mapmaking algorithm is based on a destriping technique, which is enhanced with a noise prior. The Galactic region is masked to reduce errors arising from bandpass mismatch and high signal gradients. We apply horn-uniform radiometer weights to reduce the effects of beam-shape mismatch. The algorithm is the same as used for the 2013 release, apart from small changes in parameter settings. We validate the procedure through simulations. Special emphasis is put on the control of systematics, which is particularly important for accurate polarization analysis. We also produce low-resolution versions of the maps and corresponding noise covariance matrices. These serve as input in later analysis steps and parameter estimation. The noise covariance matrices are validated through noise Monte Carlo simulations. The residual noise in the map products is characterized through analysis of half-ring maps, noise covariance matrices, and simulations. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,AstroParticule & Cosmol,CNRS,IN2P3,CEA,Irfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Bond, J. R.; Hanson, D.; Martin, P. G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewic, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 96153 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Calvo Sotelo S-N, Oviedo 33003, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M55, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Juvela, M.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, SF-00100 Helsinki, Finland. [Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] Planck Sci Off, ESAC, European Space Agcy, Camino Bajo Castillo S-N, Madrid 28000, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kiiveri, K.; Kurki-Suonio, H.; Lahteenmaki, A.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35141 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00078 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Pasian, F.; Vassallo, T.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble 1, Inst Neel, CNRS, 25 Rue Martyrs, F-38041 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Mangilli, A.; Puget, J. -L.; Remazeilles, M.] Univ Paris Sud 11, Inst Astrophys Spatiale, CNRS, UMR8617, Batiment 121, F-91400 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0037 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Naselsky, P.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Remazeilles, M.; Watson, R.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Lesgourgues, J.] Univ Savoie, LAPTh, CNRS, BP 110, F-74941 Annecy Le Vieux, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA,DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Lesgourgues, J.] Ecole Polytech Fed Lausanne, SB ITP LPPC, CH-1015 Lausanne, Switzerland. [Baccigalupi, C.; Bielewic, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewic, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Keihanen, E (reprint author), Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, SF-00100 Helsinki, Finland. EM elina.keihanen@helsinki.fi RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Stolyarov, Vladislav/0000-0001-8151-828X; Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Hivon, Eric/0000-0003-1880-2733; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STEC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); J.A. (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SERISSO (Switzerland); RCN (Norway); SEI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Office of Science of the US Department of Energy [DE-AC02-05CH11231]; PRACE-3IP project [FP7 RI-312763] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STEC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SERISSO (Switzerland); RCN (Norway); SEI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU), A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http//www.cosmos.eas.int/web/planck/planck-collaboration. Some of the results of this research have been achieved using the PRACE-3IP project (FP7 RI-312763) resource Sisu based in Finland at CSC. We thank CSC IT Center for Science Ltd (Finland) for computational resources, This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231, Iles work has made use of the Planck satellite simulation package (Level-S), which is assembled by the Max Planck Institute for Astrophysics Planck Analysis Centre (MPAC). Some of the results in this paper have been derived urine the HEALPix package. NR 43 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A6 DI 10.1051/0004-6361/201525813 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200004 ER PT J AU Ade, PAR Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Christensen, PR Colombi, S Colombo, LPL Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Juvela, M Keihanen, E Keskitalo, R Kiiveri, K Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lindholm, V Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangillin, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Novikov, D Novikov, I Paci, F Pagano, L Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Pierpaoli, E Pietrobon, D Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renzi, A Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Umana, G Valenziano, L Valiviita, J Van Tent, B Vassallo, T Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Christensen, P. R. Colombi, S. Colombo, L. P. L. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Juvela, M. Keihanen, E. Keskitalo, R. Kiiveri, K. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lindholm, V. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangillin, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Paci, F. Pagano, L. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Pierpaoli, E. Pietrobon, D. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vassallo, T. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results IV. Low Frequency Instrument beams and window functions SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: data analysis; cosmic background radiation; telescopes ID PRE-LAUNCH STATUS; LFI AB This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down to -30 dB at 70 GHz. It has been confirmed that the agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer band shapes. The total uncertainties in the effective beam window functions are 0.7% and 1% at 30 and 44 GHz, respectively (at l approximate to 600); and 0.5% at 70 GHz (at l approximate to 1000). C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Bond, J. R.; Hanson, D.; Martin, P. G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 91125, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid 28086, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1ZU, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, SF-00100 Helsinki, Finland. [Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] Planck Sci Off, ESAC, European Space Agcy, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kiiveri, K.; Kurki-Suonio, H.; Lahteenmaki, A.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Vassallo, T.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-34143 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Mangillin, A.; Puget, J. -L.; Remazeilles, M.] Univ Paris Sud 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91400 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-1072 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Remazeilles, M.; Watson, R.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Henrot-Versille, S.; Mangillin, A.; Perdereau, O.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM,IRFU,Serv Astrophys,CEA,DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, Div Theory, PII TII, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Sandri, M (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. EM sandri@iasfbo.inaf.it RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Hivon, Eric/0000-0003-1880-2733; Toffolatti, Luigi/0000-0003-2645-7386; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Pierpaoli, Elena/0000-0002-7957-8993; Juvela, Mika/0000-0002-5809-4834; Barreiro, Rita Belen/0000-0002-6139-4272; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Kurki-Suonio, Hannu/0000-0002-4618-3063 FU CNES; Italian Space Agency (ASI); INAF; Academy of Finland [253204, 256265, 257989, 283497]; PRACE-31P project [FP7 RI-312763]; Spanish Ministerio de Ciencia e Innovacion through the Plan Nacional del Espacio y Plan Nacional de Astronomia y Astrofisica; Space Agency of the German Aerospace Center (DLR) [50OP0901]; Max Planck Society; National Energy Research Scientific Computing Center; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; ESA; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); DoE (USA); CNRS/INSU-IN2P3-INP; ASI FX Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission operations are as follows. The European Space Agency (ESA) operates the satellite via its Mission Operations Centre located at ESOC (Darmstadt, Germany) and coordinates scientific operations via the Planck Science Office located at ESAC (Madrid, Spain). Two Consortia, comprising around 50 scientific institutes within Europe, the USA, and Canada, and funded by agencies from the participating countries, developed the scientific instruments LFI and HFI, and continue to operate them via Instrument Operations Teams located in Trieste (Italy) and Orsay (France). The Consortia are also responsible for scientific processing of the acquired data. The Consortia are led by the Principal Investigators: J.L. Puget in France for HFI (funded principally by CNES and CNRS/INSU-IN2P3-INP) and N. Mandolesi in Italy for LFI (funded principally via ASI). NASA US Planck Project, based at JPL and involving scientists at many US institutions, contributes significantly to the efforts of these two Consortia. The author list for this paper has been selected by the Planck Science Team, and is composed of individuals from all of the above entities who have made multi-year contributions to the development of the mission. It does not pretend to be inclusive of all contributions. The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, and USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI) and INAF. This work was supported by the Academy of Finland grants 253204, 256265, 257989, and 283497. We acknowledge that the results of this research have been achieved using the PRACE-31P project (FP7 RI-312763) resource Sisu based in Finland at CSC. We thank CSC IT Center for Science Ltd (Finland) for computational resources. We acknowledge financial support provided by the Spanish Ministerio de Ciencia e Innovacion through the Plan Nacional del Espacio y Plan Nacional de Astronomia y Astrofisica. We acknowledge the Max Planck Institute for Astrophysics Planck Analysis Centre (MPAC), funded by the Space Agency of the German Aerospace Center (DLR) under grant 50OP0901 with resources of the German Federal Ministry of Economics and Technology, and by the Max Planck Society. This work has made use of the Planck satellite simulation package (Level-S), which is assembled by the Max Planck Institute for Astrophysics Planck Analysis Centre (MPAC). We acknowledge financial support provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. Some of the results in this paper have been derived using the HEALPix package. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http//maw.cosmos.esa.int/web/planck/planck-collaboration. NR 49 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A4 DI 10.1051/0004-6361/201525809 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200003 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Barrena, R Bartlett, JG Bartolo, N Battaner, E Battye, R Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bikmaev, I Bohringer, H Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burenin, R Burigana, C Butler, RC Calabrese, E Cardoso, JF Carvalho, P Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Chon, G Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Dahle, H Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Doag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Eisenhardt, PRM Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fergusson, J Feroz, F Ferragamo, A Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Gai, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Grainge, KJB Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jin, T Jones, WC Juvela, M Keihanen, E Keskitalo, R Khamitov, I Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mak, DSY Mandolesi, N Mangilli, A Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P McGehee, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Mossl, A Munshi, D Murphy, JA Naselsky, P Nastasi, A Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Olamaie, M Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perron, YC Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rozo, E Rubino-Martin, JA Rumsey, C Rusholme, B Rykoff, ES Sandri, M Santos, D Saunders, RDE Savelainen, M Savini, G Schammel, MP Scott, D Seiffert, MD Shellard, EPS Shimwell, TW Spencer, LD Stanford, SA Stern, D Stolyarov, V Stompor, R Streblyanska, A Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tramonte, D Tristram, M Tucci, M Tuovinen, J Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK White, SDM Wright, EL Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Barrena, R. Bartlett, J. G. Bartolo, N. Battaner, E. Battye, R. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bikmaev, I. Boehringer, H. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burenin, R. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Carvalho, P. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Chon, G. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Dahle, H. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Doag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Eisenhardt, P. R. M. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fergusson, J. Feroz, F. Ferragamo, A. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Gai, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Grainge, K. J. B. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jin, T. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mak, D. S. Y. Mandolesi, N. Mangilli, A. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. McGehee, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Mossl, A. Munshi, D. Murphy, J. A. Naselsky, P. Nastasi, A. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Olamaie, M. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perron, Y. C. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rozo, E. Rubino-Martin, J. A. Rumsey, C. Rusholme, B. Rykoff, E. S. Sandri, M. Santos, D. Saunders, R. D. E. Savelainen, M. Savini, G. Schammel, M. P. Scott, D. Seiffert, M. D. Shellard, E. P. S. Shimwell, T. W. Spencer, L. D. Stanford, S. A. Stern, D. Stolyarov, V. Stompor, R. Streblyanska, A. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tramonte, D. Tristram, M. Tucci, M. Tuovinen, J. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. White, S. D. M. Wright, E. L. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; catalogs ID GALAXY CLUSTER SURVEY; DIGITAL SKY SURVEY; X-RAY-PROPERTIES; DISCRETE OBJECT DETECTION; INFRARED-SURVEY-EXPLORER; ASTRONOMICAL DATA SETS; FAST BAYESIAN-APPROACH; POLE TELESCOPE SURVEY; SCALING RELATIONS; COSMOLOGICAL CONSTRAINTS AB We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky survey of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing > 10(3) confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y-5R500 are robust to pressure-profile variation and beam systematics, but accurate conversion to Y-500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite, CEA Irfu,Observ Paris, APC,AstroParticule & Cosmol,CNRS IN2P3, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Bikmaev, I.] Acad Sci Tatarstan, Bauman Str 20, Kazan 420111, Russia. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Feroz, F.; Grainge, K. J. B.; Hobson, M.; Jin, T.; Lasenby, A.; Olamaie, M.; Perron, Y. C.; Rumsey, C.; Saunders, R. D. E.; Schammel, M. P.; Shimwell, T. W.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 7630355, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Mei, S.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, E-28049 Madrid, Spain. [Chamballu, A.; Melin, J. -B.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Ferragamo, A.; Streblyanska, A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON 38100, Canada. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kremlevskaya Str 18, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Mak, D. S. Y.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, Helsinki 00560, Finland. [Chiang, H. C.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Rozo, E.] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85721 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 95616 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, CA 93106 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Barrena, R.; Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.; Tramonte, D.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Mei, S.] Observ Paris, GEPI, Sect Meudon, 5 Pl J Janssen, F-92195 Meudon, France. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, 00560 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci, Rome 1, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] IPAG, F-38000 Grenoble, France. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, Inst Planetol & Astrophys Grenoble, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Nastasi, A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Sud 11, CNRS, Inst Astrophys Spatiale, UMR8617, Batiment 121, F-91898 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Gai, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Carvalho, P.; Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Barrena, R.; Dahle, H.; Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.; Tramonte, D.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Ferragamo, A.; Streblyanska, A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Schammel, M. P.] Ist Nazl Astrofis, Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, RM, Italy. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Eisenhardt, P. R. M.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Stern, D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Battye, R.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Carvalho, P.; Challinor, A.; Grainge, K. J. B.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Lesgourgues, J.] Univ Savoie, LAPTh, CNRS, BP 110, F-74941 Annecy Le Vieux, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA,DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Doag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Burenin, R.] Moscow Inst Phys & Technol, Inst Sky Per 9, Dolgoprudnyi 141700, Russia. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Lesgourgues, J.] Ecole Polytech Fed Lausanne, SB ITP LPPC, CH-1015 Lausanne, Switzerland. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Mossl, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Burenin, R.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Shimwell, T. W.] Sterrewacht Leiden, POB 9513, NL-2300 RA Leiden, Netherlands. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Khamitov, I.] TUBITAK Natl Observ, Akdeniz Univ Campus, TR-07058 Antalya, Turkey. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Wright, E. L.] Univ Calif Los Angeles, Astron, POB 951547, Los Angeles, CA 90095 USA. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Hempel, A.] Univ Andres Bello, Fac Ciencias Exactas, Dept Ciencias Fis, Santiago 8370134, Chile. [Mei, S.] Univ Denis Diderot Paris 7, F-75205 Paris 13, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Doag, K.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos 1 Fis Teor & Computac, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Sutton, D (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.; Sutton, D (reprint author), Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. EM sutton@ast.cam.ac.uk RI Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Pierpaoli, Elena/0000-0002-7957-8993; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Higher Education Funding Council for England; Science and Technology Facilities Council; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/plancks-collaboration. We thank Ian McCarthy for providing images and profiles of simulated clusters from cosmo-OWLS. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and the SIMBAD database, operated at CDS, Strasbourg, France This research made use of data retrieved from SDSS-III. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science; the SDSS-III web site is http://www.sdss3.ore/. This research has made use of data processed by the Centre d'Analyse de Donnees Etendues (http://www.cade.irap.omp.eu/) and has made use of the HEALPix pixelization software (http://healpix.sourceforge.net; Gorski et al. 2005). Some of this work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http: //www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council. NR 126 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A27 DI 10.1051/0004-6361/201525823 PG 38 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200010 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Butler, RC Calabrese, E Catalano, A Chamballu, A Chiang, HC Christensen, PR Churazov, E Clements, DL Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maggio, G Maino, D Mak, DSY Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Nati, F Natoli, P Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Welikala, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Butler, R. C. Calabrese, E. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Churazov, E. Clements, D. L. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maggio, G. Maino, D. Mak, D. S. Y. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Nati, F. Natoli, P. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Welikala, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaborartion TI Planck 2015 results XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: general; infrared: galaxies; large-scale structure of Universe; methods: data analysis ID SOUTH-POLE TELESCOPE; ANGULAR POWER SPECTRUM; DARK-MATTER HALOES; GALAXY CLUSTERS; STAR-FORMATION; COSMOLOGICAL PARAMETERS; SUBMILLIMETER GALAXIES; SZ; ANISOTROPIES; MODEL AB We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c(500) = 1.00(-0.15)(+0.18). This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6 sigma; (ii) 3 sigma; and (iii) 4 sigma. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is A(tSZ-CIB) = 1.2 +/- 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations. C1 [Bartlett, J. G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC AstroParticule & Cosmol, CNRS IN2P3, CEA Irfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Vitacura,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1 Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Bartolo, N.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Kneissl, R.] European Southern Observ ESO Vitacura, Alonso de Cordova 3107,Vitacura,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [Umana, G.] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [Burigana, C.; de Zotti, G.] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy. [Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, INFN, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Ganeshkhind,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris Sud 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91898 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Mak, D. S. Y.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Mak, D. S. Y.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] LERMA, CNRS, Observ Paris, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA,DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Churazov, E.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales. [Bouchet, F. R.] UPMC, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst, IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Hurier, G (reprint author), Univ Paris Sud 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91898 Orsay, France. EM ghurier@ias.u-psud.fr RI Churazov, Eugene/A-7783-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Langer, Mathieu/0000-0002-9088-2718; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Kurki-Suonio, Hannu/0000-0002-4618-3063 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU); French Agence Nationale de la Recherche [ANR-11-BD56-015] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. We also acknowledge the support of the French Agence Nationale de la Recherche under grant ANR-11-BD56-015. NR 104 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A23 DI 10.1051/0004-6361/201527418 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200034 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Battye, R Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chiang, HC Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Heavens, A Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Lewis, A Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Ma, YZ Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Marchini, A Maris, M Martin, PG Martinelli, M Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Narimani, A Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Salvatelli, V Sandri, M Santos, D Savelainen, M Savini, G Schaefer, BM Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Viel, M Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Battye, R. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Heavens, A. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Marchini, A. Maris, M. Martin, P. G. Martinelli, M. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Narimani, A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, . O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Salvatelli, V. Sandri, M. Santos, D. Savelainen, M. Savini, G. Schaefer, B. M. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Viel, M. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XIV. Dark energy and modified gravity SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dark energy; cosmic background radiation; cosmology: theory; gravitation ID BARYON ACOUSTIC-OSCILLATIONS; REDSHIFT-SPACE DISTORTIONS; MATTER POWER SPECTRUM; COSMOLOGICAL PERTURBATION-THEORY; MAIN GALAXY SAMPLE; HUBBLE CONSTANT; GROWTH-RATE; CFHTLENS; MODEL; CMB AB We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below similar to 2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ACDM. When testing models that also change perturbations (even when the background is fixed to ACDM), some tensions appear in a few scenarios: the maximum one found is similar to 2 sigma for Planck TT + lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3 sigma when external data sets are included. It however disappears when including CMB lensing. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, AstroParticule & Cosmol, Observatoire Paris, Sorbonne Paris Cite,APC,CNRS,IN2P3,CEA Irfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Salvatelli, V.] Aix Marseille Univ, Ctr Phys Theor, 163 Ave Luminy, F-13288 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91195 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 91195 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Ma, Y. -Z.; Narimani, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, SF-00100 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 91195 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 91195 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvatelli, V.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, Via A Valerio 2, Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Discovery Ctr, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] Planck Sci Off, ESAC, European Space Agcy, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Viel, M.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Marchini, A.; Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.; Viel, M.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Heavens, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0316 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Battye, R.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Ma, Y. -Z.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, . O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CNRS, Lab AIM, IRFU,Serv Astrophys,CEA DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 St Martin Dheres, France. [Van Tent, B.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ, UPMC, UMR7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA 94305 USA. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, Granada 18010, Spain. [Martinelli, M.] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Pettorino, V (reprint author), HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany.; Pettorino, V (reprint author), Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. EM v.pettorino@thphys.uni-heidelberg.de RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Huang, Zhiqi/0000-0002-1506-1063; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Piacentini, Francesco/0000-0002-5444-9327; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Martinelli, Matteo/0000-0002-6943-7732; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; Paoletti, Daniela/0000-0003-4761-6147 FU DFG TransRegio TRR33 grant "The Dark Universe"; Swiss NSF; ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX It is a pleasure to thank Luca Amendola, Emilio Bellini, Diego Blas, Sarah Bridle, Noemi Frusciante, Catherine Heymans, Alireza Hojjati, Bin Hu, Thomas Kitching, Niall MacCrann, Marco Raveri, Ignacy Sawicki, Alessandra Silvestri, Fergus Simpson, Christof Wetterich and Gongbo Zhao for interesting discussions on theories, external data sets and numerical codes. Part of the analysis for this paper was run on the Andromeda and Perseus clusters of the University of Geneva and on WestGrid computers in Canada. We deeply thank Andreas Malaspinas for invaluable help with the Andromeda and Perseus Clusters. This research was partly funded by the DFG TransRegio TRR33 grant on "The Dark Universe" and by the Swiss NSF. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 189 TC 11 Z9 11 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A14 DI 10.1051/0004-6361/201525814 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200005 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Basak, S Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chiang, HC Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Gallin, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Lewis, A Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Basak, S. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Gallin, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XV. Gravitational lensing SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gravitational lensing: weak; cosmological parameters; cosmic background radiation; large-scale structure of Universe; cosmology: observations ID BARYON ACOUSTIC-OSCILLATIONS; SOUTH-POLE TELESCOPE; HUBBLE CONSTANT; POWER SPECTRUM; CMB; GALAXIES; POLARIZATION; TEMPERATURE; EVOLUTION; DISTANCE AB We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 <= L <= 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the Lambda CDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination sigma(8) Omega(0.25)(m) = 0.591 +/- 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected because of dark energy in the concordance Lambda CDM model. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Vitacura,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Giraud-Heraud, Y.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] TRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24,Quai E Ansermet, CH-1241 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON MSR 0A3, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 93106 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Matarrese, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,Vitacura,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35141 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00136 Rome, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15,28, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, Inst Neel, CNRS, 25 Rue Martyrs, F-38401 Grenoble, France. [Dole, H.; Lagache, G.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Sud 11, CNRS, Inst Astrophys Spatiale, UMR8617, Batiment 121, F-91400 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Challinor, A.; Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0316 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Gallin, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91400 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA DSM, Lab AIM, IRFU Serv Astrophys,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Bailment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Bailment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA 94305 USA. [Calabrese, E.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teer & Cosmos, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teer & Computac 1, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Hanson, D (reprint author), Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.; Hanson, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.; Hanson, D (reprint author), McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. EM duncan.hanson@gmail.com RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Pierpaoli, Elena/0000-0002-7957-8993; Stolyarov, Vladislav/0000-0001-8151-828X; Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Hivon, Eric/0000-0003-1880-2733; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Science and Technology Facilities Council [ST/L000652/1]; European Research Council under the European Union's Seventh Framework Programme (FP)/ERC Grant [616170]; UK BIS National E-infrastructure capital grants FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. We acknowledge support from the Science and Technology Facilities Council [grant number ST/L000652/1]. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. [616170]. Part of this work was undertaken on the STFC DiRAC HPC Facilities at the University of Cambridge funded by UK BIS National E-infrastructure capital grants. NR 79 TC 10 Z9 10 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A15 DI 10.1051/0004-6361/201525941 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200020 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Basak, S Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borri, J Bouchet, FR Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Casaponsa, B Catalano, A Challinor, A Chamballu, A Chiang, HC Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Fernandez-Cobos, R Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Girad, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Ilic, S Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneiss, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Ma, YZ Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Marcos-Caballero, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Schaefer, BM Scott, D Seiffert, MD Shellard, EPS Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borri, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Casaponsa, B. Catalano, A. Challinor, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Fernandez-Cobos, R. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Girad, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Ilic, S. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneiss, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Marcos-Caballero, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Schaefer, B. M. Scott, D. Seiffert, M. D. Shellard, E. P. S. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI XXI. The integrated Sachs-Wolfe effect SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; large-scale structure of Universe; dark energy; galaxies: clusters: general; methods: data analysis ID PROBE WMAP OBSERVATIONS; LARGE-SCALE STRUCTURE; MICROWAVE BACKGROUND ANOMALIES; DARK ENERGY CONSTRAINTS; DIGITAL SKY SURVEY; CROSS-CORRELATION; DATA RELEASE; FINDING ALGORITHM; REDSHIFT SURVEY; POWER SPECTRUM AB This paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4 sigma where most of the signal-to-noise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at approximate to 3 sigma (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that Omega(Lambda) is detected at more than 3 sigma. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with Lambda CDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. We also explore the reconstruction of the ISW anisotropies caused by the large-scale structure traced by the 2MASS Photometric Redshift Survey (2MPZ) by directly inverting the density field into the gravitational potential field. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ilic, S.] Aix Marseille Univ, Ctr Phys Theor, 163 Ave Luminy, F-13288 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Tone C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Girad, M.; Ilic, S.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, 44001 44001, Spain. [Borri, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Crill, B. P.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneiss, R.] European So Observ, ESO Vitacura, Alonso Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Gruppuso, A.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, F-38000 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Casaponsa, B.; Curto, A.; Diego, J. M.; Fernandez-Cobos, R.; Gonzalez-Nuevo, J.; Herranz, D.; Marcos-Caballero, A.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 One Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Ma, Y. -Z.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.; Hanson, D.] CNRS, Lab Traitement & Commun Informat, CNRS, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borri, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94704 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA USA. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, AlbaNova, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Lesgourgues, J.] CERN, PH TH, Div Theory, 1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Girad, M.; Ilic, S.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teer & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Vielva, P (reprint author), Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. EM vielva@ifca.unican.es RI Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014 OI Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); UK BIS NEI grants; Advanced Computing at IFCA; e-Science team at IFCA FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. We acknowledge the computer resources, technical expertise and assistance provided by the Spanish Supercomputing Network (RES) node at Universidad de Cantabria, and the support provided by the Advanced Computing and e-Science team at IFCA. Part of this work was undertaken on the STFC COSMOS@DiRAC HPC Facilities at the University of Cambridge, funded by UK BIS NEI grants. NR 118 TC 2 Z9 2 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A21 DI 10.1051/0004-6361/201525831 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200014 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Arroja, F Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bondi, JR Borrillu, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Churchl, S Clements, DL Colombi, S Colombo, LPL Combet, C Contreras, D Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouillei, J Desert, FX Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Frolov, A Galeotta, S Galli, S Ganga, K Gauthier, C Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hamann, J Handley, W Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kim, J Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Lewis, A Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Ma, YZ Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martini, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munchmeyer, M Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paladini, R Pandolfi, S Paoletti, D Pasian, F Patanchon, G Pearson, TJ Peiris, HV Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Shiraishi, M Spencer, LD Stolyarov, V Stompori, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Trombetti, T Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK White, M Yvon, D Zacchei, A Zibin, JP Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Arroja, F. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bondi, J. R. Borrillu, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Churchl, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Contreras, D. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouillei, J. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Gauthier, C. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hamann, J. Handley, W. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kim, J. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martini, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munchmeyer, M. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paladini, R. Pandolfi, S. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Peiris, H. V. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Shiraishi, M. Spencer, L. D. Stolyarov, V. Stompori, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. White, M. Yvon, D. Zacchei, A. Zibin, J. P. Zonca, A. CA Planck Collaboration TI Planck 2015 results XX. Constraints on inflation SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: theory; early Universe; inflation ID PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND POLARIZATION; BARYON ACOUSTIC-OSCILLATIONS; LARGE-SCALE STRUCTURE; PRE-BIG-BANG; COSMOLOGICAL PERTURBATIONS; TENSOR PERTURBATIONS; EXPANDING UNIVERSE; NATURAL INFLATION; 2-FIELD INFLATION AB We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n(s) = 0.968 +/- 0.006 and tightly constrain its scale dependence to dn(s)/dln k = -0.003 +/- 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r(0).(002) < 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(phi) proportional to phi(2) and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R-2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth P-R (k) over the range of scales 0.008 Mpc(-1) less than or similar to k less than or similar to 0.1 Mpc(-1). At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l approximate to 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Lambda cold dark matter (Lambda CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is vertical bar alpha(non-adi)vertical bar < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouillei, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompori, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Sp Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Dole, H.; Handley, W.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Vitacura,763 0355 Casilla, Santiago, Chile. [Leonardi, R.; Sudiwala, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bondi, J. R.; Hanson, D.; Huang, Z.; Martini, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Gauthier, C.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrillu, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28049 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Pandolfi, S.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Manes Vej 30, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H41, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Contreras, D.; Ma, Y. -Z.; Scott, D.; Zibin, J. P.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.; Peiris, H. V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.; Shiraishi, M.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, ALMA MATER STUDIORUM, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-00133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-00133 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,Vitacura,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Trombetti, T.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Munchmeyer, M.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 28205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Molinari, D.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Arroja, F.; Bartolo, N.; Liguori, M.; Matarrese, S.; Shiraishi, M.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Ma, Y. -Z.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Handley, W.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU Serv Astrophys,CEA DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Arroja, F.; Gauthier, C.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Kim, J.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Benoit, A.; Munshi, D.; Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrillu, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep, Zelenchukskiy R, Russia. [Churchl, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA USA. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Hamann, J.] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, S-10691 Stockholm, Sweden. [Hamann, J.; Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bucher, M (reprint author), Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.; Finelli, F (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy.; Finelli, F (reprint author), Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. EM bucher@apc.univ-paris7.fr; finelli@iasfbo.inaf.it RI bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014 OI Pierpaoli, Elena/0000-0002-7957-8993; Valiviita, Jussi/0000-0001-6225-3693; Huang, Zhiqi/0000-0002-1506-1063; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Molinari, Diego/0000-0002-7799-3915; Zacchei, Andrea/0000-0003-0396-1192; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Hivon, Eric/0000-0003-1880-2733; Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Reach, William/0000-0001-8362-4094; Barreiro, Rita Belen/0000-0002-6139-4272 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Office of Science of the US Department of Energy [DE-AC02-05CH11231]; UK BIS National E-infrastructure capital grants FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. Part of this work was undertaken at the STFC DiRAC HPC Facilities at the University of Cambridge, funded by UK BIS National E-infrastructure capital grants. We gratefully acknowledge the IN2P3 Computer Center (http://cc.in2p3.fr) for providing a significant amount of the computing resources and services needed for this work. NR 280 TC 68 Z9 68 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A20 DI 10.1051/0004-6361/201525898 PG 65 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200018 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Arrojam, F Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chiang, HC Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Gauthier, C Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hamann, J Hansen, FK Hanson, D Harrison, DL Heavens, A Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kim, J Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lacasa, F Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Lesgourgues, J Levrier, F Lewis, A Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Marinucci, D Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munchmeyer, M Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Peiris, HV Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Racine, B Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Shellard, EPS Shiraishi, M Smith, K Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutter, P Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Troja, A Tucci, M Tuovinen, J Valenziano, L Valiyiita, J Van Tent, B Vielva, P Villas, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Arrojam, F. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Gauthier, C. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hamann, J. Hansen, F. K. Hanson, D. Harrison, D. L. Heavens, A. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kim, J. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lacasa, F. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Lesgourgues, J. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Marinucci, D. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munchmeyer, M. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Peiris, H. V. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Racine, B. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, E. P. S. Shiraishi, M. Smith, K. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutter, P. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Troja, A. Tucci, M. Tuovinen, J. Valenziano, L. Valiyiita, J. Van Tent, B. Vielva, P. Villas, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XVII. Constraints on primordial non-Gaussianity SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; cosmology: theory; early Universe; inflation; methods: data analysis ID MICROWAVE BACKGROUND BISPECTRUM; LARGE-SCALE STRUCTURE; 3-POINT CORRELATION-FUNCTION; PROBE WMAP OBSERVATIONS; MINKOWSKI FUNCTIONALS; POLARIZATION ANISOTROPIES; PARAMETER F(NL); FAST ESTIMATOR; POINT SOURCES; INFLATION AB The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone f(NL)(local) = 2.5 +/- 5.7, f(NL)(equil) = 16 +/- 70, and f(NL)(ortho) = 34 +/- 33 (68% CL, statistical). Combining temperature and polarization data we obtain f(NL)(local) = 0.8 +/- 5.0, f(NL)(equil) = 4 +/- 43, and f(NL)(ortho) = 26 +/- 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the "look elsewhere" effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g(NL)(local) = (9.0 +/- 7.7) x 10(4) (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the Lambda CDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Gauthier, C.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Racine, B.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Hanson, D.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.; Peiris, H. V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiyiita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.; Shiraishi, M.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis Sci & Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.; Troja, A.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Marinucci, D.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiyiita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [Lacasa, F.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, Brazil. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-40127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villas, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma, Sez Roma 1, Ist Nazl Fis Nucl, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Heavens, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lacasa, F.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Hivon, E.; Moneti, A.; Munchmeyer, M.; Prunet, S.; Sutter, P.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Arrojam, F.; Bartolo, N.; Liguori, M.; Matarrese, S.; Shiraishi, M.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ0, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CEA DSM, Lab AIM,IRFU Serv Astrophys,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Arrojam, F.; Gauthier, C.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Kim, J.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Smith, K.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 Via Pueblo Mall, Stanford, CA 94305 USA. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Hamann, J.] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Gudmundsson, J. E.] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden. [Hamann, J.; Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 18071, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bartolo, N (reprint author), Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.; Bartolo, N (reprint author), Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. EM bartolo@pd.infn.it RI Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Valiviita, Jussi/0000-0001-6225-3693; Huang, Zhiqi/0000-0002-1506-1063; Kurki-Suonio, Hannu/0000-0002-4618-3063 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); UK BIS NEI grants; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Canada Foundation for Innovation under Compute Canada; Government of Ontario; University of Toronto FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. Part of this work was undertaken on the STFC COSMOS@DiRAC HPC Facility at the University of Cambridge, funded by UK BIS NEI grants. We gratefully acknowledge IN2P3 Computer Center (http://cc.in2p3.fr) for providing a significant amount of the computing resources and services needed for the analysis with the binned bispectrum estimator. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge the IAP magique3 computer facilities. Some computations were performed on the GPC cluster at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, and the University of Toronto. NR 261 TC 17 Z9 17 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A17 DI 10.1051/0004-6361/201525836 PG 66 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200016 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Battye, R Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Chluba, J Christensen, PR Church, S Clements, DL Colombi, S Colombo, LPL Combet, C Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Di Valentino, E Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Farhang, M Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Gauthier, C Gerbino, M Ghosh, T Giard, M Giraud-Heraud, Y Giusarma, E Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hamann, J Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Lewis, A Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Marchini, A Maris, M Martin, PG Martinelli, M Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Migliaccio, M Millea, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G d'Orfeui, BR Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Said, N Salvatelli, V Salvati, L Sandri, M Santos, D Savelainen, M Savini, G Scott, D Seiffert, MD Serra, P Shellard, EPS Spencer, LD Spinelli, M Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Trombetti, T Tucci, M Tuovinen, J Turler, M Umana, G Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK White, M White, SDM Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Battye, R. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Chluba, J. Christensen, P. R. Church, S. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Di Valentino, E. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Farhang, M. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Gauthier, C. Gerbino, M. Ghosh, T. Giard, M. Giraud-Heraud, Y. Giusarma, E. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hamann, J. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Marchini, A. Maris, M. Martin, P. G. Martinelli, M. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Migliaccio, M. Millea, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. d'Orfeui, B. Rouille Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Said, N. Salvatelli, V. Salvati, L. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Seiffert, M. D. Serra, P. Shellard, E. P. S. Spencer, L. D. Spinelli, M. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Tucci, M. Tuovinen, J. Turler, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. White, M. White, S. D. M. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XIII. Cosmological parameters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmology: theory; cosmic background radiation; cosmological parameters ID PROBE WMAP OBSERVATIONS; BARYON ACOUSTIC-OSCILLATIONS; MICROWAVE BACKGROUND ANISOTROPIES; REDSHIFT-SPACE DISTORTIONS; SOUTH-POLE TELESCOPE; ANNIHILATING DARK-MATTER; SPT-SZ SURVEY; CMB SPECTRAL DISTORTIONS; ANGULAR POWER SPECTRUM; LARGE-SCALE STRUCTURE AB This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter Lambda CDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted "base Lambda CDM" in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H-0 = (67.8 +/- 0.9) km s(-1)Mpc(-1), a matter density parameter Omega(m) = 0.308 +/- 0.012, and a tilted scalar spectral index with ns = 0.968 +/- 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of tau = 0.066 +/- 0.016, corresponding to a reionization redshift of z(re) = 8.8(-1.4)(+1.7) These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base Lambda CDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find N-eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom, consistent with the value N-eff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to Sigma m(v) < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with vertical bar Omega(K)vertical bar < 0.005. Adding a tensor component as a single-parameter extension to base Lambda CDM we find an upper limit on the tensor-to-scalar ratio of r(0.002) < 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r(0.002) < 0.09 and disfavours inflationary models with a V(phi) proportional to phi(2) potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = -1.006 +/- 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base Lambda CDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base Lambda CDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base Lambda CDM cosmology. Apart from these tensions, the base Lambda CDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Gauthier, C.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci, Ctr Data, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Salvatelli, V.] Aix Marseille Univ, Ctr Phys Theor, 163 Ave Luminy, F-13288 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Farhang, M.; Hanson, D.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.; Shellard, E. P. S.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28049 Madrid, Spain. [Chamballu, A.; Melin, J. -B.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St,38100, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Chluba, J.] Johns Hopkins Univ, Bloomberg Ctr 435, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.; Millea, M.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Liguori, M.; Mandolesi, N.; Natoli, P.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Giusarma, E.; Masi, S.; Melchiorri, A.; Piacentini, F.; Said, N.; Salvatelli, V.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00185 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Trombetti, T.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Marchini, A.; Melchiorri, A.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, Ist Nazl Fis Nucl, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Turler, M.] Univ Geneva, Dept Astron, ISDC, Ch Ecogia 16, CH-1290 Versoix, Switzerland. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble 1, CNRS, Inst Neel, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.; Serra, P.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Battye, R.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Noviello, F.; Remazeilles, M.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Chluba, J.; Curto, A.; Efstathiou, G.; Gratton, S.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; d'Orfeui, B. Rouille; Spinelli, M.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Crill, B. P.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU, Serv Astrophys,CEA,DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.; Toffolatti, L.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Bailment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Bailment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Gauthier, C.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Farhang, M.] Shahid Beheshti Univ, Dept Phys, Tehran, Iran. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ UPMC, UMR7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Church, S.] Stanford Univ, Dept Phys, Varian Phys Bldg,382 via Pueblo Mall, Stanford, CA 94305 USA. [Calabrese, E.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Hamann, J.] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, AlbaNova, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Hamann, J.; Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Dolag, K.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 11071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teer & Computac 1, Granada 11071, Spain. [Martinelli, M.] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Efstathiou, G (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.; Efstathiou, G (reprint author), Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. EM gpe@ast.cam.ac.uk RI Lahteenmaki, Anne/L-5987-2013; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Hivon, Eric/0000-0003-1880-2733; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X; Huang, Zhiqi/0000-0002-1506-1063; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Martinelli, Matteo/0000-0002-6943-7732; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); European Research Council under the European Union's Seventh Framework Programme (FP)/ERC Grant [616170]; UK Science and Technology Facilities Council [ST/L000652/1]; UK BIS National E-infrastructure capital grants FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. [616170] and from the UK Science and Technology Facilities Council [grant number ST/L000652/1]. Part of this work was undertaken on the STFC DiRAC HPC Facilities at the University of Cambridge, funded by UK BIS National E-infrastructure capital grants, and on the Andromeda cluster of the University of Geneva. A large set of cosmological parameter constraints from different data combinations, and including many separate extensions to the 6-parameter base Lambda CDM model, are available at http://pla.esac.esa.int/pla/#cosmology. NR 369 TC 237 Z9 237 U1 5 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A13 DI 10.1051/0004-6361/201525830 PG 63 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200013 ER PT J AU Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Battye, R Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chiang, HC Christensen, PR Churazov, E Clements, DL Colombo, LPL Combet, C Comis, B Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejse, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Giard, M Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Holmes, WA Hornstrup, A Huffenberger, KM Hurier, G Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lacasa, F Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Macias-Perez, JF Maffei, B Maggie, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Melin, JB Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Noviello, F Novikov, D Novikov, I Paci, F Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Sauve, A Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tramonte, D Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Battye, R. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chiang, H. C. Christensen, P. R. Churazov, E. Clements, D. L. Colombo, L. P. L. Combet, C. Comis, B. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejse, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lacasa, F. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Macias-Perez, J. F. Maffei, B. Maggie, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Melin, J. -B. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Noviello, F. Novikov, D. Novikov, I. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Sauve, A. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tramonte, D. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XXII. A map of the thermal Sunyaev-Zeldovich effect SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE large-scale structure of Universe; cosmology: observations ID ANGULAR POWER SPECTRUM; SPT-SZ SURVEY; MICROWAVE BACKGROUND MAPS; POLE TELESCOPE SURVEY; GALAXY CLUSTERS; X-RAY; COSMOLOGICAL PARAMETERS; POINT SOURCES; DATA SETS; CMB AB We have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20 < l < 600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology. C1 [Bartlett, J. G.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,763 0355 Casilla, Santiago, Chile. [Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 2S1, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Sauve, A.] IRAP, CNRS, 9 Ave colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin 2, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Melin, J. -B.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.; Savelainen, M.; Suur-Uski, A. -S.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, 00014 Helsinki, Finland. [Chiang, H. C.; Colombo, L. P. L.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Genova-Santos, R. T.; Rubino-Martin, J. A.; Tramonte, D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Alonso Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo,S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [Lacasa, F.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, Brazil. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggie, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-40127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Perdereau, O.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Sez Roma 1, INFN, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, INFN, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lacasa, F.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris Sud 11, UMR 8617, CNRS, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Challinor, A.; Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.; Tramonte, D.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Holmes, W. A.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Battye, R.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Gorski, K. M.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Lesgourgues, J.] Univ Savoie, LAPTh, CNRS, BP 110, F-74941 Annecy Le Vieux, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Univ Paris Diderot, CEA DSM, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Combet, C.; Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Combet, C.; Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Astro Space Ctr, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Churazov, E.; Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejse, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [de Zotti, G.; Lesgourgues, J.] Ecole Polytech Fed Lausanne, SB ITP LPPC, CH-1015 Lausanne, Switzerland. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; Gonzalez-Nuevo, J.; Paci, F.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Munshi, D.; Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Sorbonne Univ, UMR7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str,84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-23 Geneva, Switzerland. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Sauve, A.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Remazeilles, M (reprint author), Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.; Remazeilles, M (reprint author), Univ Paris Sud 11, UMR 8617, CNRS, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France.; Remazeilles, M (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.; Comis, B (reprint author), Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. EM comis@lpscin2p3.fr; mathieu.remazeilles@manchester.ac.uk RI Lahteenmaki, Anne/L-5987-2013; Churazov, Eugene/A-7783-2013; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU CNES (France); CNRS/INSU-IN2P3-INP (France); ESA; ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); J.A. (Spain) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 108 TC 2 Z9 2 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A22 DI 10.1051/0004-6361/201525826 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200011 ER PT J AU Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chiang, HC Christensen, PR Clements, DL Colombo, LPL Combet, C Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Di Valentino, E Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Fergusson, J Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Gauthier, C Gerbino, M Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Hamann, J Hansen, FK Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Holmes, WA Hornstrup, A Huffenberger, KM Hurier, G Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kiiveri, K Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Leonardi, R Lesgourgues, J Levrier, F Lewis, A Liguori, M Lilje, PB Lilley, M Linden-Vornle, M Lindholm, V Lopez-Caniego, M Macias-Perez, JF Maffei, B Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Meinhold, PR Melchiorri, A Migliaccio, M Millea, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Mottet, S Munshi, D Murphy, JA Narimani, A Naselsky, P Nati, F Natoli, P Noviello, F Novikov, D Novikov, I Oxborrow, CA Paci, F Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G d'Orfeuil, BR Rubino-Martin, JA Rusholme, B Salvati, L Sandri, M Santos, D Savelainen, M Savini, G Scott, D Serra, P Spencer, LD Spinelli, M Stolyarov, V Stompor, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Trombetti, T Tucci, M Tuovinen, J Umana, G Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Combet, C. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Di Valentino, E. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fergusson, J. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Gauthier, C. Gerbino, M. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hamann, J. Hansen, F. K. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kiiveri, K. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Leonardi, R. Lesgourgues, J. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Lilley, M. Linden-Vornle, M. Lindholm, V. Lopez-Caniego, M. Macias-Perez, J. F. Maffei, B. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Meinhold, P. R. Melchiorri, A. Migliaccio, M. Millea, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Mottet, S. Munshi, D. Murphy, J. A. Narimani, A. Naselsky, P. Nati, F. Natoli, P. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Paci, F. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. d'Orfeuil, B. Rouille Rubino-Martin, J. A. Rusholme, B. Salvati, L. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Serra, P. Spencer, L. D. Spinelli, M. Stolyarov, V. Stompor, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Tucci, M. Tuovinen, J. Umana, G. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck 2015 results XI. CMB power spectra, likelihoods, and robustness of parameters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmological parameters; cosmology: observations; methods: data analysis; methods: statistical ID PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND POLARIZATION; ATACAMA COSMOLOGY TELESCOPE; SPT-SZ SURVEY; SOUTH-POLE TELESCOPE; MODE POLARIZATION; RESOLUTION MAPS; NUMBER COUNTS; DAMPING TAIL; ANISOTROPY AB This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l < 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the Lambda CDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n(s), is confirmed smaller than unity at more than 5 sigma from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline Lambda CDM cosmology this requires tau = 0.078 +/- 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the mu K-2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the Lambda CDM model, showing consistency with those established independently from temperature information alone. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Gauthier, C.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC AstroParticule & Cosmol, CEA Irfu, CNRS IN2P3,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Fergusson, J.] Univ Cam bridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] Ctr Estudios Fis Cosmos Aragon CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] Univ La Laguna ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Narimani, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Knox, L.; Millea, M.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kiiveri, K.; Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-40127 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Trombetti, T.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Gruppuso, A.; Paoletti, D.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] INFN, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.; Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Joseph Fourier Grenoble I, CNRS, Inst Neel, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Serra, P.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Lilley, M.; Moneti, A.; Mottet, S.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38205, Tenerife, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, Santander 93005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; d'Orfeuil, B. Rouille; Spinelli, M.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU Serv Astrophys,CEA DSM, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subat & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Prof St,GSP-7, Moscow 117997, Russia. [Gauthier, C.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Paci, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.; Di Valentino, E.; Lilley, M.; Mottet, S.] Sorbonne Univ UPMC, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Prof Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci Nizhnij Arkhyz, Special Astrophys Observ, Karachai Cherkessian Re 369167, Zelenchukskiy R, Russia. [Calabrese, E.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Hamann, J.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, S-10691 Stockholm, Sweden. [Hamann, J.; Lesgourgues, J.] CERN, Div Theory, PH TH, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bouchet, FR (reprint author), Inst Astrophys Paris, CNRS, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France.; Bouchet, FR (reprint author), Sorbonne Univ UPMC, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. EM bouchet@iap.fr RI Lahteenmaki, Anne/L-5987-2013; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Stolyarov, Vladislav/0000-0001-8151-828X FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. We further acknowledge the use of the CLASS Boltzmann code (Lesgourgues 2011) and the Monte Python package (Audren et al. 2013) in earlier stages of this work. The likelihood code and some of the validation work was built on the library pmclib from the CosmoPMC package (Kilbinger et al. 2011). This research used resources of the IN2P3 Computer Center (http://cc.in2p3.fr) as well as of the Planck-HFI DPC infrastructure hosted at the Institut d'Astrophysique de Paris (France) and financially supported by CNES. NR 148 TC 17 Z9 17 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A11 DI 10.1051/0004-6361/201526926 PG 99 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200026 ER PT J AU Aliu, E Archambault, S Archer, A Arlen, T Aune, T Barnacka, A Behera, B Beilicke, M Benbow, W Berger, K Bird, R Bottcher, M Bouvier, A Buchovecky, M Buckley, JH Bugaev, V Cardenzana, JV Cerruti, M Cesarini, A Chen, X Ciupik, L Collins-Hughes, E Connolly, MP Cui, W Dumm, J Eisch, JD Falcone, A Federici, S Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Griffin, S Griffiths, ST Grube, J Gyuk, G Hutten, M Hakansson, N Holder, J Hughes, G Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Kertzman, M Khassen, Y Kieda, D Krause, M Krawczynski, H Krennrich, F Lang, MJ Madhavan, AS Maier, G McArthur, S McCann, A Meagher, K Millis, J Moriarty, P Mukherjee, R Nieto, D de Bhroithe, AO Ong, RA Orr, M Otte, AN Pandel, D Park, N Pelassa, V Perkins, JS Pichel, A Pohl, M Popkow, A Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rousselle, J Rovero, AC Saxon, DB Sembroski, GH Shahinyan, K Sheidaei, F Skole, C Smith, AW Staszak, D Telezhinsky, I Theiling, M Todd, NW Tucci, JV Tyler, J Varlotta, A Vassiliev, VV Vincent, S Wakely, SP Weiner, OM Weinstein, A Welsing, R Wilhelm, A Williams, DA Zitzer, B Baring, MG Gonzalez, JB Cillis, AN Horan, D Paneque, D AF Aliu, E. Archambault, S. Archer, A. Arlen, T. Aune, T. Barnacka, A. Behera, B. Beilicke, M. Benbow, W. Berger, K. Bird, R. Bottcher, M. Bouvier, A. Buchovecky, M. Buckley, J. H. Bugaev, V. Cardenzana, J. V. Cerruti, M. Cesarini, A. Chen, X. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Cui, W. Dumm, J. Eisch, J. D. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Griffin, S. Griffiths, S. T. Grube, J. Gyuk, G. Huetten, M. Hakansson, N. Holder, J. Hughes, G. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Kertzman, M. Khassen, Y. Kieda, D. Krause, M. Krawczynski, H. Krennrich, F. Lang, M. J. Madhavan, A. S. Maier, G. McArthur, S. McCann, A. Meagher, K. Millis, J. Moriarty, P. Mukherjee, R. Nieto, D. de Bhroithe, A. O'Faolain Ong, R. A. Orr, M. Otte, A. N. Pandel, D. Park, N. Pelassa, V. Perkins, J. S. Pichel, A. Pohl, M. Popkow, A. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rousselle, J. Rovero, A. C. Saxon, D. B. Sembroski, G. H. Shahinyan, K. Sheidaei, F. Skole, C. Smith, A. W. Staszak, D. Telezhinsky, I. Theiling, M. Todd, N. W. Tucci, J. V. Tyler, J. Varlotta, A. Vassiliev, V. V. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Welsing, R. Wilhelm, A. Williams, D. A. Zitzer, B. Baring, M. G. Gonzalez, J. Becerra Cillis, A. N. Horan, D. Paneque, D. CA Veritas Collaboration TI Very high energy outburst of Markarian 501 in May 2009 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE BL Lacertae objects: individual: Mrk 501; gamma rays: galaxies ID BL-LACERTAE OBJECTS; LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; OPTICAL POLARIZATION PROPERTIES; EXTRAGALACTIC RADIO-SOURCES; ACTIVE GALACTIC NUCLEI; X-RAY; MULTIWAVELENGTH OBSERVATIONS; SPECTRAL VARIABILITY; INTERNAL SHOCKS AB The very high energy (VHE; E > 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 54 938-54 956), 2009, as part of an extensive multiwavelength campaign from radio to VHE. Strong VHE yray activity was detected on May 1st with Whipple and VERITAS, when the flux (E > 400 GeV) increased to 10 times the preflare baseline flux (3.9 x 10(-11) ph cm(-2) s(-1)), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15. This VHE flare showed a fast flux variation with an increase of a factor similar to 4 in 25 min, and a falling time of similar to 50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data. C1 [Aliu, E.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Archambault, S.; Griffin, S.; McCann, A.; Ragan, K.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Krawczynski, H.; Todd, N. W.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Arlen, T.; Aune, T.; Buchovecky, M.; Ong, R. A.; Popkow, A.; Rousselle, J.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Barnacka, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Behera, B.; Chen, X.; Federici, S.; Fleischhack, H.; Huetten, M.; Hughes, G.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Skole, C.; Telezhinsky, I.; Vincent, S.; Welsing, R.; Wilhelm, A.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Benbow, W.; Cerruti, M.; Fortin, P.; Galante, N.; Pelassa, V.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Berger, K.; Holder, J.; Saxon, D. B.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Berger, K.; Holder, J.; Saxon, D. B.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bird, R.; Collins-Hughes, E.; Khassen, Y.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Bottcher, M.] North West Univ, Ctr Space Res, Private Bag X6001, ZA-2520 Potchefstroom, South Africa. [Bouvier, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Cardenzana, J. V.; Eisch, J. D.; Krennrich, F.; Madhavan, A. S.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Cesarini, A.; Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway, Ireland. [Chen, X.; Federici, S.; Hakansson, N.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Theiling, M.; Tucci, J. V.; Varlotta, A.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA. [Gall, D.; Griffiths, S. T.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA. [Humensky, T. B.; Nieto, D.; Weiner, O. M.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kar, P.; Kieda, D.; Sheidaei, F.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Meagher, K.; Otte, A. N.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA. [Millis, J.] Anderson Univ, Dept Phys, 1100 East 5th St, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Dublin Rd, Galway, Ireland. [Pandel, D.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. [Park, N.; Staszak, D.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Perkins, J. S.; Gonzalez, J. Becerra; Cillis, A. N.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Pichel, A.; Rovero, A. C.; Cillis, A. N.] Inst Astron & Fis Espacio, Casilla Correo 67,Sucursal 28,C1428ZAA, Buenos Aires, DF, Argentina. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Phys Sci, Cork, Ireland. [Smith, A. W.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Zitzer, B.] Univ Maryland, College Pk, MD 20742 USA. [Zitzer, B.] NASA, GSFC, College Pk, MD 20742 USA. [Baring, M. G.] Rice Univ, Dept Phys & Astron, POB 1892, Houston, TX 77251 USA. [Gonzalez, J. Becerra] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gonzalez, J. Becerra] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Paneque, D.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Paneque, D.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. RP Pichel, A (reprint author), Inst Astron & Fis Espacio, Casilla Correo 67,Sucursal 28,C1428ZAA, Buenos Aires, DF, Argentina. EM anapichel@iafe.uba.ar OI Pandel, Dirk/0000-0003-2085-5586; Krause, Maria/0000-0001-7595-0914 FU US Department of Energy Office of Science; US National Science Foundation; Smithsonian Institution; NSERC in Canada; South African Research Chairs Initiative (SARChI) by National Research Foundation; Department of Science and Technology of South Africa FX This research is supported by grants from the US Department of Energy Office of Science, the US National Science Foundation and the Smithsonian Institution, and by NSERC in Canada. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible. The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. M.B. acknowledges support through the South African Research Chairs Initiative (SARChI) by the National Research Foundation and the Department of Science and Technology of South Africa. NR 86 TC 0 Z9 0 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A76 DI 10.1051/0004-6361/201628744 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200085 ER PT J AU Drummond, B Tremblin, P Baraffe, I Amundsen, DS Mayne, NJ Venot, O Goyal, J AF Drummond, B. Tremblin, P. Baraffe, I. Amundsen, D. S. Mayne, N. J. Venot, O. Goyal, J. TI The effects of consistent chemical kinetics calculations on the pressure-temperature profiles and emission spectra of hot Jupiters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: composition ID EXTRASOLAR GIANT PLANETS; HD 209458B; ATMOSPHERIC CIRCULATION; EQUILIBRIUM ABUNDANCES; MODEL ATMOSPHERES; BROWN DWARF; CHEMISTRY; 189733B; EXOPLANETS; PHOTOCHEMISTRY AB In this work we investigate the impact of calculating non-equilibrium chemical abundances consistently with the temperature structure for the atmospheres of highly-irradiated, close-in gas giant exoplanets. Chemical kinetics models have been widely used in the literature to investigate the chemical compositions of hot Jupiter atmospheres which are expected to be driven away from chemical equilibrium via processes such as vertical mixing and photochemistry. All of these models have so far used pressure temperature (P-T) profiles as fixed model input. This results in a decoupling of the chemistry from the radiative and thermal properties of the atmosphere, despite the fact that in nature they are intricately linked. We use a one-dimensional radiative-convective equilibrium model, ATMO, which includes a sophisticated chemistry scheme to calculate P-T profiles which are fully consistent with non-equilibrium chemical abundances, including vertical mixing and photochemistry. Our primary conclusion is that, in cases of strong chemical disequilibrium, consistent calculations can lead to differences in the P-T profile of up to 100 K compared to the P-T profile derived assuming chemical equilibrium. This temperature change can, in turn, have important consequences for the chemical abundances themselves as well as for the simulated emission spectra. In particular, we find that performing the chemical kinetics calculation consistently can reduce the overall impact of non-equilibrium chemistry on the observable emission spectrum of hot Jupiters. Simulated observations derived from non-consistent models could thus yield the wrong interpretation. We show that this behaviour is due to the non-consistent models violating the energy budget balance of the atmosphere. C1 [Drummond, B.; Tremblin, P.; Baraffe, I.; Amundsen, D. S.; Mayne, N. J.; Goyal, J.] Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Tremblin, P.] Ctr Etud Saclay, USR 3441, Maison Simulat, CEA,CNRS,INRIA,UPS,UVSQ, F-91191 Gif Sur Yvette, France. [Amundsen, D. S.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Amundsen, D. S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Baraffe, I.] Univ Lyon 1, Univ Lyon, ENS Lyon, CNRS,CRAL,UMR 5574, F-69007 Lyon, France. [Venot, O.] Katholieke Univ Leuven, Intituut Sterrenkunde, Celestijnenlaan 200D, B-3001 Leuven, Belgium. RP Drummond, B (reprint author), Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England. EM bdrummond@astro.ex.ac.uk FU European Research Council under European Community [247060-PEPS, 320478 TOFU]; University of Exeter; NASA Astrobiology Program through Nexus for Exoplanet System Science; Leverhulme Trust; University of Exeter College of Engineering, Mathematics and Physical Sciences studentship; BIS National E-Infrastructure capital grant [ST/K000373/1]; STFC DiRAC [ST/K0003259/1]; STFC; Large Facilities Capital Fund of BIS FX This work is partly supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 247060-PEPS and grant No. 320478 TOFU). B.D. thanks the University of Exeter for support through a Ph.D. studentship. D.S.A. acknowledges support from the NASA Astrobiology Program through the Nexus for Exoplanet System Science. N.J.M. and J.G.'s contributions were in part funded by a Leverhulme Trust Research Project Grant, and in part by a University of Exeter College of Engineering, Mathematics and Physical Sciences studentship. This work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National E-Infrastructure. This work also used the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter. NR 65 TC 3 Z9 3 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A69 DI 10.1051/0004-6361/20162.8799 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200090 ER PT J AU Eiroa, C Rebollido, I Montesinos, B Villaver, E Absil, O Henning, T Bayo, A Canovas, H Carmona, A Chen, C Ertel, S Iglesias, DP Launhardt, R Maldonado, J Meeus, G Moor, A Mora, A Mustill, AJ Olofsson, J Riviere-Marichalar, P Roberge, A AF Eiroa, C. Rebollido, I. Montesinos, B. Villaver, E. Absil, O. Henning, Th. Bayo, A. Canovas, H. Carmona, A. Chen, Ch. Ertel, S. Iglesias, D. P. Launhardt, R. Maldonado, J. Meeus, G. Moor, A. Mora, A. Mustill, A. J. Olofsson, J. Riviere-Marichalar, P. Roberge, A. TI Exocomet signatures around the A-shell star phi Leonis? SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planetary systems; stars: individual: phi Leo; comets: general; circumstellar matter ID PICTORIS CIRCUMSTELLAR DISK; LOCAL INTERSTELLAR-MEDIUM; BETA-PICTORIS; DEBRIS DISKS; ROTATIONAL VELOCITIES; NEARBY STARS; GAS; SYSTEM; MODEL; RESONANCES AB We present an intensive monitoring of high-resolution spectra of the Ca II K line in the A7IV shell star phi Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star beta Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around phi Leo. To our knowledge, with the exception of beta Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that phi Leo presents the richest environment with comet-like events known to date, second only to beta Pic. C1 [Eiroa, C.; Rebollido, I.; Villaver, E.; Canovas, H.; Meeus, G.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Montesinos, B.] CAB CSIC INTA, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Absil, O.] Univ Liege, FRS FNRS, STAR Inst, 19c Allee Six Aout, B-4000 Liege, Belgium. [Henning, Th.; Launhardt, R.] MPIA, Konigstuhl 17, D-69117 Heidelberg, Germany. [Bayo, A.; Iglesias, D. P.; Olofsson, J.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Valparaiso 5030, Chile. [Carmona, A.] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Chen, Ch.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21212 USA. [Ertel, S.] Univ Arizona, Dept Astron, Steward Observ, Tucson, AZ 85721 USA. [Maldonado, J.] INAF, Osservatorio Astron Palermo, I-90134 Palermo, Italy. [Moor, A.] Res Ctr Astron & Earth Sci, Konkoly Observ, POB 67, H-1525 Budapest, Hungary. [Mora, A.] ESA ESAC, Aurora Technol BV ESA, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Mustill, A. J.] Lund Univ, Dept Astron & Theoret Phys, Lund Observ, POB 43, S-22100 Lund, Sweden. [Riviere-Marichalar, P.] ESA ESAC, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Roberge, A.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. RP Eiroa, C (reprint author), Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. EM carlos.eiroa@uam.es FU Spanish grant [AYA 2014-55840-P]; ALMA/Conicyt Project [31130027] FX Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemmish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. H.C., C.E., G.M., B.M., I.R., and E.V. are supported by Spanish grant AYA 2014-55840-P. J.O. acknowledges support from ALMA/Conicyt Project 31130027. O.A. is F.R.S.-FNRS Research Associate. We thank the referee H. Beust for his constructive comments. NR 39 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR L1 DI 10.1051/0004-6361/201629514 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200125 ER PT J AU Fadda, D Jacobson, JD Appleton, PN AF Fadda, Dario Jacobson, Jeffery D. Appleton, Philip N. TI Transient effects in Herschel/PACS spectroscopy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: data analysis; techniques: spectroscopic; infrared: general ID DATA REDUCTION; ISOCAM DATA AB Context. The Ge: Ga detectors used in the PACS spectrograph onboard the Herschel space telescope react to changes of the incident flux with a certain delay. This generates transient effects on the resulting signal which can be important and last for up to an hour. Aims. The paper presents a study of the effects of transients on the detected signal and proposes methods to mitigate them especially in the case of the unchopped mode. Methods. Since transients can arise from a variety of causes, we classified them in three main categories: transients caused by sudden variations of the continuum due to the observational mode used; transients caused by cosmic ray impacts on the detectors; transients caused by a continuous smooth variation of the continuum during a wavelength scan. We propose a method to disentangle these effects and treat them separately. In particular, we show that a linear combination of three exponential functions is needed to fit the response variation of the detectors during a transient. An algorithm to detect, fit, and correct transient effects is presented. Results. The solution proposed to correct the signal for the effects of transients substantially improves the quality of the final reduction with respect to the standard methods used for archival reduction in the cases where transient effects are most pronounced. Conclusions. The programs developed to implement the corrections are offered through two new interactive data reduction pipelines in the latest releases of the Herschel Interactive Processing Environment. C1 [Fadda, Dario] Inst Astrofis Canarias, Tenerife 38205, Spain. [Fadda, Dario] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Jacobson, Jeffery D.; Appleton, Philip N.] CALTECH, NASA, Herschel Sci Ctr, MC 100-22, Pasadena, CA 91125 USA. RP Fadda, D (reprint author), Inst Astrofis Canarias, Tenerife 38205, Spain.; Fadda, D (reprint author), Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. EM darioflute@gmail.com; jdj@ipac.caltech.edu; apple@ipac.caltech.edu FU PACS FX The Herschel spacecraft was designed, built, tested, and launched under a contract to ESA managed by the Herschel/Planck Project team by an industrial consortium under the overall responsibility of the prime contractor Thales Alenia Space (Cannes), and including Astrium (Friedrichshafen) responsible for the payload module and for system testing at spacecraft level, Thales Alenia Space (Turin) responsible for the service module, and Astrium (Toulouse) responsible for the telescope, with in excess of a hundred subcontractors. HCSS and HIPE are a joint developments by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. We are grateful to the entire spectroscopy group of PACS for their help and support. In particular, we would like to acknowledge P. Royer and B. Vanderbusche for testing the pipeline and pointing out significant bugs, as well as A. Poglitsch, R. Vavrek, A. Contursi, and J. de Jong for many useful discussions. We thank K. Exter and the anonymous referee for their careful reading of the manuscript and very useful suggestions. We would like to thank B. Ali and R. Paladini for their constant support at the NASA Herschel Science Center. Finally, D.F. is indebted to Prof. I. Perez-Fournon for his support at the IAC in a particularly difficult moment of his scientific carrier. NR 13 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A90 DI 10.1051/0004-6361/201527612 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200035 ER PT J AU Nemravova, JA Harmanec, P Broz, M Vokrouhlicky, D Mourard, D Hummel, CA Cameron, C Matthews, JM Bolton, CT Bozic, H Chini, R Dembsky, T Engle, S Farrington, C Grunhut, JH Guenther, DB Guinan, EF Korcakova, D Koubsky, P Kricek, R Kuschnig, R Mayer, P McCook, GP Moffat, AFJ Nardetto, N Prsa, A Ribeiro, J Rowe, J Rucinski, S Skoda, P Slechta, M Tallon-Bosc, I Votruba, V Weiss, WW Wolf, M Zasche, P Zavala, RT AF Nemravova, J. A. Harmanec, P. Broz, M. Vokrouhlicky, D. Mourard, D. Hummel, C. A. Cameron, C. Matthews, J. M. Bolton, C. T. Bozic, H. Chini, R. Dembsky, T. Engle, S. Farrington, C. Grunhut, J. H. Guenther, D. B. Guinan, E. F. Korcakova, D. Koubsky, P. Kricek, R. Kuschnig, R. Mayer, P. McCook, G. P. Moffat, A. F. J. Nardetto, N. Prsa, A. Ribeiro, J. Rowe, J. Rucinski, S. Skoda, P. Slechta, M. Tallon-Bosc, I. Votruba, V. Weiss, W. W. Wolf, M. Zasche, P. Zavala, R. T. TI xi Tauri: a unique laboratory to study the dynamic interaction in a compact hierarchical quadruple system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: close; binaries: spectroscopic; binaries: eclipsing; stars: kinematics and dynamics; stars: fundamental parameters; supernovae: individual: xi Tauri ID PROTOTYPE OPTICAL INTERFEROMETER; ECLIPSING BINARIES; SPECKLE INTERFEROMETRY; EFFECTIVE TEMPERATURES; ORBITAL ELEMENTS; STELLAR-SYSTEMS; 3-BODY PROBLEM; TRIPLE STARS; EVOLUTION; SPECTRA AB Context. Compact hierarchical systems are important because the effects caused by the dynamical interaction among its members occur on a human timescale. These interactions play a role in the formation of close binaries through Kozai cycles with tides. One such system is Tauri: it has three hierarchical orbits: 7.14 d (eclipsing components Aa, Ab), 145 d (components Aa+Ab, B), and 51 yr (components Aa+Ab+B, C). Aims. We aim to obtain physical properties of the system and to study the dynamical interaction between its components. Methods. Our analysis is based on a large series of spectroscopic photometric (including space-borne) observations and long-baseline optical and infrared spectro-interferometric observations. We used two approaches to infer the system properties: a set of observation-specific models, where all components have elliptical trajectories, and an N-body model, which computes the trajectory of each component by integrating Newton's equations of motion. Results. The triple subsystem exhibits clear signs of dynamical interaction. The most pronounced are the advance of the apsidal line and eclipse timing variations. We determined the geometry of all three orbits using both observation-specific and N-body models. The latter correctly accounted for observed effects of the dynamical interaction, predicted cyclic variations of orbital inclinations, and determined the sense of motion of all orbits. Using perturbation theory, we demonstrate that prominent secular and periodic dynamical effects are explainable with a quadrupole interaction. We constrained the basic properties of all components, especially of members of the inner triple subsystem and detected rapid low-amplitude light variations that we attribute to co-rotating surface structures of component B. We also estimated the radius of component B. Properties of component C remain uncertain because of its low relative luminosity. We provide an independent estimate of the distance to the system. Conclusions. The accuracy and consistency of our results make Tau an excellent test bed for models of formation and evolution of hierarchical systems. C1 [Nemravova, J. A.; Harmanec, P.; Broz, M.; Vokrouhlicky, D.; Korcakova, D.; Kricek, R.; Mayer, P.; Wolf, M.; Zasche, P.] Charles Univ Prague, Astron Inst, Fac Math & Phys, Holesovickach 2, CR-18000 Prague 8, Troja, Czech Republic. [Mourard, D.; Nardetto, N.] OCA UNS CNRS, Lab Lagrange, UMR 7293, BP 4229, F-06304 Nice, France. [Hummel, C. A.; Grunhut, J. H.] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Cameron, C.] Cape Breton Univ, Dept Math Phys & Geol, 1250 Grand Lake Rd, Sydney, NS B1P 6L2, Canada. [Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Bolton, C. T.; Rucinski, S.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Bozic, H.] Univ Zagreb, Fac Geodesy, Hvar Observ, Kaciceva 26, Zagreb 10000, Croatia. [Chini, R.; Dembsky, T.] Ruhr Univ Bochum, Astron Inst, Univ Str 150, D-44780 Bochum, Germany. [Chini, R.] Univ Catolica Norte, Inst Astron, Angamos 0610,Casilla 1280, Antofagasta, Chile. [Engle, S.; Guinan, E. F.; McCook, G. P.; Prsa, A.] Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA. [Farrington, C.] CHARA Array, Mt Wilson Observ, Mt Wilson, CA 91023 USA. [Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Koubsky, P.; Skoda, P.; Slechta, M.; Votruba, V.] Acad Sci Czech Republic, Inst Astron, CS-25165 Ondrejov, Czech Republic. [Kricek, R.; Weiss, W. W.] Univ Vienna, Inst Astron, Turkenschanzstr 17, A-1180 Vienna, Austria. [Moffat, A. F. J.] Univ Montreal, Dept Phys, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Ribeiro, J.] Observ Inst Geog Exercito, R Venezuela 29 3 Esq, P-1500618 Lisbon, Portugal. [Rowe, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rowe, J.] SETI Inst, Mountain View, CA 94043 USA. [Tallon-Bosc, I.] Univ Lyon 1, Univ Lyon, Ecole Normale Super Lyon, CNRS,Ctr Rech Astrophys Lyon,UMR 5574, F-69230 St Genis Laval, France. [Zavala, R. T.] US Naval Observ, Flagstaff Stn, 10391 West Naval Observ Rd, Flagstaff, AZ 86005 USA. RP Nemravova, JA (reprint author), Charles Univ Prague, Astron Inst, Fac Math & Phys, Holesovickach 2, CR-18000 Prague 8, Troja, Czech Republic. EM jana.nemravova@gmail.com RI Votruba, Viktor/G-9058-2014; Skoda, Petr/G-9047-2014; Koubsky, Pavel/G-9031-2014; Slechta, Miroslav/G-9048-2014 OI Skoda, Petr/0000-0002-7434-9518; FU Czech Science Foundation [P209/10/0715, GA15-02112S]; Grant Agency of the Charles University [678212]; Office of Naval Research; Navy; National Science Foundation [AST-0908253]; W. M. Keck Foundation; NASA Exoplanet Science Institute; Georgia State University; Nordrhein-Westfalische Akademie der Wissenschaften; der Kunste in the framework of the academy programme by Federal Republic of Germany; state Nordrhein-Westfalen; Croatian Science Foundation [6212]; NSERC (Canada); FQRNT (Quebec); Czech Ministry of Education, Youth and Sports [LG14013] FX The research of J.N., M.W., and P.Z. was supported by grants P209/10/0715 and GA15-02112S of the Czech Science Foundation. The research of J.N. and P.H. was also supported by grant No. 678212 of the Grant Agency of the Charles University. The Navy Prototype Optical Interferometer is a joint project of the Naval Research Laboratory and the US Naval Observatory, in cooperation with Lowell Observatory and is funded by the Office of Naval Research and the Oceanographer of the Navy. The authors thank Jim Benson and the NPOI observational support staff, whose efforts made this project possible. This research has made use of the SIMBAD astronomical literature database, operated at CDS, Strasbourg, France. The CHARA Array is operated with support from the National Science Foundation through grant AST-0908253, the W. M. Keck Foundation, the NASA Exoplanet Science Institute, and from Georgia State University. This publication is supported as a project of the Nordrhein-Westfalische Akademie der Wissenschaften and der Kunste in the framework of the academy programme by the Federal Republic of Germany and the state Nordrhein-Westfalen. H.B. acknowledges financial support by Croatian Science Foundation under the project 6212 "Solar and Stellar Variability". The project is based on data obtained from the ESO Science Archive Facility under request number jnemravoya217453, on spectral data retrieved from the ELODIE archive at Observatoire de Haute-Provence (OHP), and on observations made at the South African Astronomical Observatory (SAAO). PZ wish to thank the staff at SAAO for their warm hospitality and help with the equipment. A.F.J.M. is grateful for financial assistance to NSERC (Canada) and FQRNT (Quebec). The observations with the MPG 2.2 m telescope were supported by the Czech Ministry of Education, Youth and Sports project LG14013 ("Tycho Brahe: Supporting Ground-based Astronomical Observations") during run P2 in May 2015. We acknowledge the use of the electronic database from the CDS, Strasbourg and electronic bibliography maintained by the NASA/ADS system. We acknowledge the constructive criticism by the referee Peter P. Eggleton, which helped us to improve the paper. NR 73 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A55 DI 10.1051/0004-0301/2016288 PG 47 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200095 ER PT J AU Weigelt, G Hofmann, KH Schertl, D Clementel, N Corcoran, MF Damineli, A de Wit, WJ Grellmann, R Groh, J Guieu, S Gull, T Heininger, M Hillier, DJ Hummel, CA Kraus, S Madura, T Mehner, A Merand, A Millour, F Moffat, AFJ Ohnaka, K Patru, F Petrov, RG Rengaswamy, S Richardson, ND Rivinius, T Scholler, M Teodoro, M Wittkowski, M AF Weigelt, G. Hofmann, K. -H. Schertl, D. Clementel, N. Corcoran, M. F. Damineli, A. de Wit, W. -J. Grellmann, R. Groh, J. Guieu, S. Gull, T. Heininger, M. Hillier, D. J. Hummel, C. A. Kraus, S. Madura, T. Mehner, A. Merand, A. Millour, F. Moffat, A. F. J. Ohnaka, K. Patru, F. Petrov, R. G. Rengaswamy, S. Richardson, N. D. Rivinius, T. Schoeller, M. Teodoro, M. Wittkowski, M. TI VLTI-AMBER velocity-resolved aperture-synthesis imaging of eta Carinae with a spectral resolution of 12 000 Studies of the primary star wind and innermost wind-wind collision zone SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: winds, outflows; stars: individual: eta Carinae; stars: massive; stars: mass-loss; binaries: general; techniques: interferometric ID RADIATIVE-TRANSFER SIMULATIONS; 2014.6 SPECTROSCOPIC EVENT; 1ST OVERTONE LINES; LONG-PERIOD BINARY; COLLIDING WINDS; HOMUNCULUS-NEBULA; STELLAR WIND; LIGHT-CURVE; DYNAMICAL ATMOSPHERE; IONIZATION STRUCTURE AB Context. The mass loss from massive stars is not understood well. eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of eta Car's primary star wind and wind-wind collision zone with a high spatial resolution of similar to 6 mas (similar to 14 au) and high spectral resolution of R = 12000. Methods. Observations of eta Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Br gamma 2.166 mu m emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately 140 to 376 km s(-1) measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of 277 km s(-1), the position angle of the symmetry axis of the fan is similar to 126 degrees. The fan-shaped structure extends approximately 8.0 mas (similar to 18.8 au) to the southeast and 5.8 mas (similar to 13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three-dimensional hydrodynamical, radiative transfer models of the massive interacting winds of eta Car. C1 [Weigelt, G.; Hofmann, K. -H.; Schertl, D.; Heininger, M.] Max Planck Inst Radio Astron, Hugel 69, D-53121 Bonn, Germany. [Clementel, N.] South African Astron Observ, POB 9, ZA-7935 Observatory, South Africa. [Corcoran, M. F.] CRESST, Greenbelt, MD 20771 USA. [Corcoran, M. F.] Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Corcoran, M. F.] Univ Space Res Assoc, 10211 Wincopin Circle,Suite 500, Columbia, MD 21044 USA. [Damineli, A.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Rua Matao 1226,Cidade Univ, BR-05508900 Sao Paulo, Brazil. [de Wit, W. -J.; Guieu, S.; Mehner, A.; Merand, A.; Rivinius, T.] European Southern Observ, Casilla 19001, Santiago 19, Chile. [Grellmann, R.] Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany. [Groh, J.] Univ Dublin, Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland. [Gull, T.; Madura, T.; Teodoro, M.] Goddard Space Flight Ctr, Astrophys Sci Div, Code 667, Greenbelt, MD 20771 USA. [Hillier, D. J.] Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA. [Hillier, D. J.] Univ Pittsburgh, Astrophys & Cosmol Ctr PITT PACC, Pittsburgh Particle Phys, 3941 OHara St, Pittsburgh, PA 15260 USA. [Hummel, C. A.; Schoeller, M.; Wittkowski, M.] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Kraus, S.] Univ Exeter, Astrophys Grp, Stocker Rd, Exeter EX4 4QL, Devon, England. [Millour, F.; Petrov, R. G.] Univ Nice Sophia Antipolis, Lab Lagrange, CNRS, Observ Cote Azur,UMR7293, F-06300 Nice, France. [Moffat, A. F. J.] Univ Montreal, Dept Phys, CP 6128 Succ A Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Moffat, A. F. J.] Univ Montreal, CRAQ, CP 6128 Succ A Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Ohnaka, K.] Univ Catolica Norte, Inst Astron, Ave Angamos 0610, Antofagasta, Chile. [Patru, F.] Osserv Astrofis Arcetri, 5 Largo Enr Fermi, I-50125 Florence, Italy. [Rengaswamy, S.] Indian Inst Astrophys, Koramangala 560034, Bengaluru, India. [Richardson, N. D.] Univ Toledo, Dept Phys & Astron, Ritter Observ, Toledo, OH 43606 USA. RP Weigelt, G (reprint author), Max Planck Inst Radio Astron, Hugel 69, D-53121 Bonn, Germany. EM weigelt@mpifr.de FU NSERC (Canada); FQRNT (Quebec); STFC Rutherford Fellowship [ST/J004030/1]; ERC [639889] FX We thank all ESO colleagues for the excellent collaboration. The telluric spectra used in this work for spectral calibration of the AMBER data were created from data that was kindly made available by the NSO/Kitt Peak Observatory. This publication makes use of the SIMBAD database operated at CDS, Strasbourg, France. We thank the referee for helpful suggestions. A.F.J.M. is grateful for financial aid from NSERC (Canada) and FQRNT (Quebec). S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant (Grant Agreement No. 639889). We thank Alexander Kreplin for helpful discussions. NR 87 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2016 VL 594 AR A106 DI 10.1051/0004-6361/201628832 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4MG UT WOS:000385832200093 ER PT J AU Matheou, G AF Matheou, Georgios TI Numerical discretization and subgrid-scale model effects on large-eddy simulations of a stable boundary layer SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE large-eddy simulation; numerical methods; stable boundary layer; Smagorinsky-Lilly SGS model; grid resolution ID FINITE-DIFFERENCE SCHEMES; TURBULENT CHANNEL FLOW; INCOMPRESSIBLE-FLOW; RESOLUTION; CONVECTION; SURFACE; FLUX; STRATIFICATION; COEFFICIENT; TRANSITION AB Aspects of a large-eddy simulation (LES) model performance are investigated in simulations of a moderately stable boundary layer. The LES utilizes the constant-coefficient Smagorinsky-Lilly subgrid-scale (SGS) closure. Three model parameters are considered: grid spacing, SGS model constant and order of accuracy (resolving power) of the advection discretization. Second-, fourth- and sixth-order fully conservative non-dissipative advection schemes are examined. All three model parameters considered significantly affect the LES results. Depending on the value of the model constant, two main error-producing mechanisms are identified. For high values of the model constant, spurious turbulence collapse, either during the short period of model spin-up, or for the entire simulation duration, is observed. Even though this spurious model characteristic was previously documented, and perhaps expected for low-resolution simulations, it depends on the order of the advection discretization, implying a significant discretization and SGS closure interaction. For low values of the model constant, numerical discretization errors dominate, leading to accumulation of energy at small scales and over-prediction of the magnitude of the surface heat flux. Differences in potential temperature profiles are well correlated with the surface heat flux. Overall, the fourth- and sixth-order schemes perform significantly better than the second-order scheme. The differences between the fourth- and sixth-order schemes are relatively small and the increased computational expense of the sixth-order scheme may not be effective in most applications, at least for the low-order statistics considered in this study. Even though the results of the Smagorinsky-Lilly closure show persistent dependence on all model parameters examined, for several parameter combinations the differences with respect to a reference simulation are small. Thus, in contrast to the conclusions of previous studies, the closure can accurately capture moderately stable flows. C1 [Matheou, Georgios] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Matheou, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM georgios.matheou@jpl.nasa.gov FU JPL Research and Technical Development Program; National Aeronautics and Space Administration FX The support of the JPL Research and Technical Development Program is acknowledged. The article was improved by the comments of three anonymous reviewers. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 68 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD OCT PY 2016 VL 142 IS 701 BP 3050 EP 3062 DI 10.1002/qj.2888 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EF9LF UT WOS:000390651000010 ER PT J AU Jones, JH AF Jones, John H. TI THOUGHTS AND REMINISCENCES ON EXPERIMENTAL TRACE ELEMENT PARTITIONING SO GEOCHEMICAL PERSPECTIVES LA English DT Article ID RARE-EARTH-ELEMENTS; FE-NI-S; HIGHLY SIDEROPHILE ELEMENTS; HIGH-SILICA RHYOLITES; EUCRITE PARENT BODY; HENRY LAW BEHAVIOR; ANGRA-DOS-REIS; IRON-METEORITES; CORE FORMATION; OXYGEN FUGACITY AB This perspective is a very personal account of the history Arid evolution of experimental trace element partitioning, although I cannot hope to exhaustively cover all aspects of this discipline. Therefore, I emphasise issues with which I am most familiar: (i) partitioning between mafic silicates and silicate melt; (ii) solid metal-liquid metal partitioning especially the effects of non-metals; and (iii) metal-silicate liquid partitioning. I first entered the field of experimental partitioning as a grad-student in the mid-1970's and so was able to see some of the growing pains of this discipline up close and personal. Also where appropriate, I will mention applications of experimental partitioning data to geologic and planetary problems. C1 [Jones, John H.] NASA Johnson Space Ctr, Houston, TX USA. RP Jones, JH (reprint author), NASA Johnson Space Ctr, Houston, TX USA. NR 204 TC 0 Z9 0 U1 3 U2 3 PU EUROPEAN ASSOC GEOCHEMISTRY PI PARIS CEDEX 05 PA IPGP-GOPEL-BUREAU 566, 1 RUE JUSSIEU, PARIS CEDEX 05, 75238, FRANCE SN 2223-7755 EI 2224-2759 J9 GEOCHEM PERSPECT JI Geochem. Perspect. PD OCT PY 2016 VL 5 IS 2 BP 147 EP 247 PG 101 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DZ5NJ UT WOS:000385908500001 ER PT J AU Aguilera-Gomez, C Chaname, J Pinsonneault, MH Carlberg, JK AF Aguilera-Gomez, Claudia Chaname, Julio Pinsonneault, Marc H. Carlberg, Joleen K. TI ON LITHIUM-RICH RED GIANTS. I. ENGULFMENT OF SUBSTELLAR COMPANIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planet-star interactions; stars: abundances; stars: chemically peculiar ID LOW-MASS STARS; SOLAR-TYPE STARS; MAIN-SEQUENCE; K-GIANTS; EVOLUTIONARY MODELS; BROWN DWARFS; PLANET ENGULFMENT; STELLAR EVOLUTION; GLOBULAR-CLUSTERS; RAPID ROTATORS AB A small fraction of red giants are known to be lithium (Li) rich, in contradiction with expectations from stellar evolutionary theory. A possible explanation for these atypical giants is the engulfment of an Li-rich planet or brown dwarf by the star. In this work, we model the evolution of Li abundance in canonical red giants including the accretion of a substellar mass companion. We consider a wide range of stellar and companion masses, Li abundances, stellar metallicities, and planetary orbital periods. Based on our calculations, companions with masses lower than 15 M-J dissolve in the convective envelope and can induce Li enrichment in regimes where extra mixing does not operate. Our models indicate that the accretion of a substellar companion can explain abundances up to A(Li) approximate to 2.2, setting an upper limit for Li-rich giants formed by this mechanism. Giants with higher abundances need another mechanism to be explained. For reasonable planetary distributions, we predict the Li abundance distribution of low-mass giants undergoing planet engulfment, finding that between 1% and 3% of them should have A(Li) >= 1.5. We show that depending on the stellar mass range, this traditional definition of Li-rich giants is misleading, as isolated massive stars would be considered anomalous while giants engulfing a companion would be set aside, flagged as normal. We explore the detectability of companion engulfment, finding that planets with masses higher than similar to 7 M-J produce a distinct signature, and that descendants of stars originating in the Li dip and low-luminosity red giants are ideal tests of this channel. C1 [Aguilera-Gomez, Claudia; Chaname, Julio] Pontificia Univ Catolica Chile, Inst Astrofis, Av Vicuna Mackenna 4860, Santiago 7820436, Chile. [Pinsonneault, Marc H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Carlberg, Joleen K.] NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. [Aguilera-Gomez, Claudia; Chaname, Julio] Millennium Inst Astrophys, Santiago, Chile. [Pinsonneault, Marc H.; Carlberg, Joleen K.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. RP Aguilera-Gomez, C (reprint author), Pontificia Univ Catolica Chile, Inst Astrofis, Av Vicuna Mackenna 4860, Santiago 7820436, Chile.; Aguilera-Gomez, C (reprint author), Millennium Inst Astrophys, Santiago, Chile. EM caguiler@astro.puc.cl FU CONICYT-PCHA Doctorado Nacional [2013-21130353]; Chilean Ministry for the Economy, Development, and Tourism's Programa Iniciativa Cientifica Milenio [IC120009]; Centro de Astronomia y Tecnologias Afines [PFB-06]; Proyecto FONDECYT Regular [1130373]; NASA [NNX15AF13G] FX We thank the anonymous referee for helpful suggestions to improve the presentation of our results and quality of this paper. Support for C.A.-G. is provided by CONICYT-PCHA Doctorado Nacional 2013-21130353. C.A.-G. and J.C. acknowledge support from the Chilean Ministry for the Economy, Development, and Tourism's Programa Iniciativa Cientifica Milenio, through grant IC120009 awarded to the Millenium Institute of Astrophysics (MAS) and from PFB-06 Centro de Astronomia y Tecnologias Afines. J.C. acknowledges support from Proyecto FONDECYT Regular 1130373. M.H.P. acknowledges support from NASA grant NNX15AF13G. J.K.C. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by the Universities Space Research Association under contract with NASA. NR 102 TC 1 Z9 1 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 127 DI 10.3847/0004-637X/829/2/127 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7BI UT WOS:000390484700007 ER PT J AU Burlaga, LF Ness, NF AF Burlaga, L. F. Ness, N. F. TI OBSERVATIONS OF THE INTERSTELLAR MAGNETIC FIELD IN THE OUTER HELIOSHEATH: VOYAGER 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: magnetic fields; Sun: heliosphere ID COSMIC-RAY MODULATION; IN-SITU OBSERVATIONS; SOLAR-WIND; BOW SHOCK; HELIOPAUSE; PLASMA; BOUNDARY; MODEL; FLOW; HELIOSPHERE AB New observations of the magnetic field B from approximate to 2014.7 through 2016.3288, together with the previous observations dating back to 2012 August 25, show that Voyager 1 continued to observe draped interstellar magnetic fields in the outer heliosheath. During this time, the direction of B was nearly constant (+/- 3 degrees), with no significant long-term trend. The slope of a linear least squares fit to the variation of the magnetic field strength B with time is (0.001 +/- 0.001) nT yr(-1), consistent with no net change, and the average B = (0.48 +/- 0.04) nT. The new observations show a second "disturbed interval" in which B was <= 1.2 < B > for approximate to 267 days. This interval began with a weak shock on 2014/236 (2014.6438), contained oscillations in B with a 28 day period, and possibly ended with a pressure balanced structure or a reverse shock. It is likely this disturbed interval was associated with Sun/solar wind disturbances that impacted the heliopause and produced disturbances that propagated into the outer heliosheath. A quiet interval containing weaker less variable B was observed from approximate to 2015.3700 until at least 2016.0. Unlike the previous quiet interval observed in the outer heliosheath, the direction of B did not change linearly and could not be extrapolated to the center of the IBEX ribbon. C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. [Ness, N. F.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. EM lburlagahsp@verizon.net FU NASA [NNX12A63G3G, NNG14PN24P] FX T. McClanahan, S. Kramer, and Robert Candey provided support in the processing of the data. D. Berdichevsky computed correction tables for the three sensors on each of the two magnetometers. N.F. Ness was supported by NASA grant NNX12A63G3G to the Catholic University of America. L.F. Burlaga was supported by NASA contract NNG14PN24P. NR 63 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 134 DI 10.3847/0004-637X/829/2/134 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7BI UT WOS:000390484700014 ER PT J AU Franse, J Bulbul, E Foster, A Boyarsky, A Markevitch, M Bautz, M Iakubovskyi, D Loewenstein, M McDonald, M Miller, E Randall, SW Ruchayskiy, O Smith, RK AF Franse, Jeroen Bulbul, Esra Foster, Adam Boyarsky, Alexey Markevitch, Maxim Bautz, Mark Iakubovskyi, Dmytro Loewenstein, Mike McDonald, Michael Miller, Eric Randall, Scott W. Ruchayskiy, Oleg Smith, Randall K. TI RADIAL PROFILE OF THE 3.5 keV LINE OUT TO R-200 IN THE PERSEUS CLUSTER SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; elementary particles; galaxies: clusters: individual (Perseus Cluster); line: identification; X-rays: galaxies: clusters ID X-RAY-EMISSION; DARK-MATTER; GALAXY CLUSTERS; GALACTIC-CENTER; SUZAKU; SPECTROSCOPY; CONSTRAINTS; COSMOLOGY; FILAMENTS; SPECTRA AB The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not reveal such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line. C1 [Franse, Jeroen] Leiden Univ, Leiden Observ, Niels Bohrweg 2, Leiden, Netherlands. [Franse, Jeroen; Boyarsky, Alexey] Leiden Univ, Inst Lorentz Theoret Phys, Niels Bohrweg 2, Leiden, Netherlands. [Bulbul, Esra; Bautz, Mark; McDonald, Michael; Miller, Eric] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Foster, Adam; Randall, Scott W.; Smith, Randall K.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Markevitch, Maxim] NASA, Goddard Space Flight Ctr, 880 Greenbelt Rd, Greenbelt, MD 20771 USA. [Iakubovskyi, Dmytro; Ruchayskiy, Oleg] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Iakubovskyi, Dmytro] Bogolyubov Inst Theoret Phys, Str 14-b, UA-03680 Kiev, Ukraine. [Loewenstein, Mike] NASA, CRESST, Greenbelt, MD 20771 USA. [Loewenstein, Mike] NASA, Xray Astrophys Lab, GSFC, Greenbelt, MD 20771 USA. [Loewenstein, Mike] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Franse, J (reprint author), Leiden Univ, Leiden Observ, Niels Bohrweg 2, Leiden, Netherlands.; Franse, J (reprint author), Leiden Univ, Inst Lorentz Theoret Phys, Niels Bohrweg 2, Leiden, Netherlands. FU De Sitter program at Leiden University; NWO; NASA [NNX14AF78G, NNX123AE77G, NNX15AE16G]; VILLUM FONDEN FX The authors thank Ondrej Urban for kindly sharing with us the coordinates of point sources detected in the Suzaku field-of-view; Larry David, Stefano Ettori, and Felipe Andrade-Santos for providing useful suggestions. The work of J.F. was supported by the De Sitter program at Leiden University with funds from NWO. This research is part of the Fundamentals of Science program at Leiden University. E.B. acknowledges support by NASA through contracts NNX14AF78G and NNX123AE77G. The work of R.S. was funded in part by NASA Grant NNX15AE16G. The work of D.I. was supported by a research grant from VILLUM FONDEN. NR 48 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 124 DI 10.3847/0004-637X/829/2/124 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7BI UT WOS:000390484700004 ER PT J AU Silverberg, SM Kowalski, AF Davenport, JRA Wisniewski, JP Hawley, SL Hilton, EJ AF Silverberg, Steven M. Kowalski, Adam F. Davenport, James R. A. Wisniewski, John P. Hawley, Suzanne L. Hilton, Eric J. TI KEPLER FLARES. IV. A COMPREHENSIVE ANALYSIS OF THE ACTIVITY OF THE dM4e STAR GJ 1243 SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: activity; stars: flare; stars: late-type; stars: low-mass ID WHITE-LIGHT FLARES; M-DWARFS; SPECTROSCOPIC SURVEY; FREQUENCY-DISTRIBUTIONS; DIFFERENTIAL ROTATION; OBSERVATIONAL DATA; STELLAR ACTIVITY; KINEMATIC GROUPS; LOW-MASS; NEARBY AB We present a comprehensive study of the active dM4e star GJ 1243. We use previous observations and ground-based echelle spectroscopy to determine that GJ 1243 is a member of the Argus association of field stars, suggesting it is similar to 30-50 Myr old. We analyze 11 months of 1 minute cadence data from Kepler, presenting Kepler flare frequency distributions, as well as determining correlations between flare energy, amplitude, duration, and decay time. We find that the exponent a of the power-law flare energy distribution varies in time, primarily due to completeness of sample and the low frequency of high-energy flares. We also find a deviation from a single power law at high energy. We use ground-based spectroscopic observations that were simultaneous with the Kepler data to provide simultaneous photometric and spectroscopic analysis of three low-energy flares, the lowest-energy dMe flares with detailed spectral analysis to date on any star. The spectroscopic data from these flares extend constraints for radiative hydrodynamic flare models to a lower energy regime than has previously been studied. We use this simultaneous spectroscopy and Kepler photometry to develop approximate conversions from the Kepler bandpass to the traditional U and B bands. This conversion will be a critical factor in comparing any Kepler flare analyses to the canon of previous ground-based flare studies. C1 [Silverberg, Steven M.; Wisniewski, John P.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Kowalski, Adam F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kowalski, Adam F.] NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. [Davenport, James R. A.] Western Washington Univ, Bellingham, WA 98225 USA. [Hawley, Suzanne L.; Hilton, Eric J.] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. RP Silverberg, SM (reprint author), Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. OI Davenport, James/0000-0002-0637-835X FU NASA Kepler Cycle 2 GO grant [NNX11AB71G]; NASA Kepler Cycle 3 GO grant [NNX12AC79G]; NSF grant [AST08-07205]; NASA Postdoctoral Program at the Goddard Space Flight Center; NASA [NAS5-26555]; UMCP GPHI Task [132]; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1501418]; NASA Science Mission directorate; NASA Office of Space Science [NNX13AC07G] FX We thank the referee for providing feedback that improved the content and clarity of this paper. We gratefully acknowledge support for this work from NASA Kepler Cycle 2 GO grant NNX11AB71G, NASA Kepler Cycle 3 GO grant NNX12AC79G. A.F.K. acknowledges the support from NSF grant AST08-07205, the NASA Postdoctoral Program at the Goddard Space Flight Center, adminstered by Oak Ridge Associated Universities through a contract with NASA, and from UMCP GPHI Task 132. J.R.A.D. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1501418. S.M.S. wishes to thank Evan A. Rich and Michael Malatesta for valuable discussion of spectral reduction and analysis, and Jonathan Gagne for valuable insights into BANYAN II.; This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-Hubble Space Telescope data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. NR 38 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 129 DI 10.3847/0004-637X/829/2/129 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7BI UT WOS:000390484700009 ER PT J AU Sparks, WB Hand, KP McGrath, MA Bergeron, E Cracraft, M Deustua, SE AF Sparks, W. B. Hand, K. P. McGrath, M. A. Bergeron, E. Cracraft, M. Deustua, S. E. TI PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: general ID WATER-VAPOR; SOUTH-POLE; ICE SHELL; ENCELADUS; CONSTRAINTS; OCEAN; LIFE; ENERGY; AURORA; MOON AB Roth et al. (2014a) reported evidence for plumes of water venting from a southern high latitude region on Europa: spectroscopic detection of off-limb line emission from the dissociation products of water. Here, we present Hubble Space Telescope direct images of Europa in the far-ultraviolet (FUV) as it transited the smooth face of Jupiter to measure absorption from gas or aerosols beyond the Europa limb. Out of 10 observations, we found 3 in which plume activity could be implicated. Two observations showed statistically significant features at latitudes similar to Roth et al., and the third at a more equatorial location. We consider potential systematic effects that might influence the statistical analysis and create artifacts, and are unable to find any that can definitively explain the features, although there are reasons to be cautious. If the apparent absorption features are real, the magnitude of implied outgassing is similar to that of the Roth et al. feature; however, the apparent activity appears more frequently in our data. C1 [Sparks, W. B.; Bergeron, E.; Cracraft, M.; Deustua, S. E.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Hand, K. P.] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [McGrath, M. A.] SETI Inst, 189 N Bernardo Ave, Mountain View, CA 94043 USA. RP Sparks, WB (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM sparks@stsci.edu OI Cracraft, Misty/0000-0002-7698-3002 FU STScI/AURA [NAS5-26555]; [HST GO-13438]; [HST GO/DD-13620]; [HST GO-13829] FX The data used in this paper were obtained using the Hubble Space Telescope, which is operated by STScI/AURA under grant NAS5-26555. We acknowledge support from grants associated with observing programs HST GO-13438, HST GO/DD-13620, and HST GO-13829. NR 28 TC 4 Z9 4 U1 7 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 121 DI 10.3847/0004-637X/829/2/121 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7BI UT WOS:000390484700001 ER PT J AU Wijesekera, HW Shroyer, E Tandon, A Ravichandran, M Sengupta, D Jinadasa, SUP Fernando, HJS Agrawal, N Arulananthan, K Bhat, GS Baumgartner, M Buckley, J Centurioni, L Conry, P Farrar, JT Gordon, AL Hormann, V Jarosz, E Jensen, TG Johnston, S Lankhorst, M Lee, CM Leo, LS Lozovatsky, I Lucas, AJ Mackinnon, J Mahadevan, A Nash, J Omand, MM Pham, H Pinkel, R Rainville, L Ramachandran, S Rudnick, DL Sarkar, S Send, U Sharma, R Simmons, H Stafffford, KM St Laurent, L Venayagamoorthy, K Venkatesan, R Teague, WJ Wang, DW Waterhouse, AF Weller, R Whalen, CB AF Wijesekera, Hemantha W. Shroyer, Emily Tandon, Amit Ravichandran, M. Sengupta, Debasis Jinadasa, S. U. P. Fernando, Harindra J. S. Agrawal, Neeraj Arulananthan, K. Bhat, G. S. Baumgartner, Mark Buckley, Jared Centurioni, Luca Conry, Patrick Farrar, J. Thomas Gordon, Arnold L. Hormann, Verena Jarosz, Ewa Jensen, Tommy G. Johnston, Shaun Lankhorst, Matthias Lee, Craig M. Leo, Laura S. Lozovatsky, Iossif Lucas, Andrew J. Mackinnon, Jennifer Mahadevan, Amala Nash, Jonathan Omand, Melissa M. Hieu Pham Pinkel, Robert Rainville, Luc Ramachandran, Sanjiv Rudnick, Daniel L. Sarkar, Sutanu Send, Uwe Sharma, Rashmi Simmons, Harper Stafffford, Kathleen M. St Laurent, Louis Venayagamoorthy, Karan Venkatesan, Ramasamy Teague, William J. Wang, David W. Waterhouse, Amy F. Weller, Robert Whalen, Caitlin B. TI ASIRI An Ocean-Atmosphere Initiative for Bay of Bengal SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID INDIA COASTAL CURRENT; SUMMER MONSOON; MIXED-LAYER; INTRASEASONAL VARIABILITY; SOUTHWEST MONSOON; INTERNAL WAVES; ARABIAN SEA; CIRCULATION; PREDICTION; TURBULENCE C1 [Wijesekera, Hemantha W.; Jarosz, Ewa; Jensen, Tommy G.; Teague, William J.; Wang, David W.] Naval Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS 39529 USA. [Shroyer, Emily; Nash, Jonathan] Oregon State Univ, Corvallis, OR 97331 USA. [Tandon, Amit; Buckley, Jared; Ramachandran, Sanjiv] Univ Massachusetts Dartmouth, Dartmouth, MA USA. [Ravichandran, M.] Indian Natl Ctr Ocean Informat Syst, Hyderabad, Andhra Pradesh, India. [Sengupta, Debasis; Bhat, G. S.] Indian Inst Sci, Bangalore, Karnataka, India. [Jinadasa, S. U. P.; Arulananthan, K.] Natl Aquat Resources Res & Dev Agcy, Colombo, Sri Lanka. [Fernando, Harindra J. S.; Conry, Patrick; Lozovatsky, Iossif; Sharma, Rashmi] Univ Notre Dame, Notre Dame, IN 46556 USA. [Agrawal, Neeraj; Sharma, Rashmi] Ctr Space Applicat, Ahmadabad, Gujarat, India. [Baumgartner, Mark; Farrar, J. Thomas; Mahadevan, Amala; St Laurent, Louis; Weller, Robert] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Centurioni, Luca; Hormann, Verena; Johnston, Shaun; Lankhorst, Matthias; Lucas, Andrew J.; Mackinnon, Jennifer; Hieu Pham; Pinkel, Robert; Rudnick, Daniel L.; Sarkar, Sutanu; Send, Uwe; Waterhouse, Amy F.; Whalen, Caitlin B.] Scripps Inst Oceanog, La Jolla, CA USA. [Lee, Craig M.; Stafffford, Kathleen M.] Univ Washington, Appl Phys Lab, Seattle, WA 98195 USA. [Gordon, Arnold L.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Omand, Melissa M.] Univ Rhode Isl, Narragansett, RI USA. [Simmons, Harper] Univ Alaska Fairbanks, Fairbanks, AK USA. [Venayagamoorthy, Karan] Colorado State Univ, Ft Collins, CO 80523 USA. [Venkatesan, Ramasamy] Natl Inst Ocean Technol, Madras, Tamil Nadu, India. RP Wijesekera, HW (reprint author), Naval Res Lab, Stennis Space Ctr, MS 39529 USA. EM hemantha.wijesekera@nrlssc.navy.mil RI Leo, Laura/J-9529-2013; Rudnick, Daniel/J-8948-2016; Farrar, John T./F-3532-2012 OI Leo, Laura/0000-0003-4103-6862; Rudnick, Daniel/0000-0002-2624-7074; Farrar, John T./0000-0003-3495-1990 FU U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI); U.S. Office of Naval Research (ONR) in Air-Sea Interactions in Northern Indian Ocean (ASIRI); U.S. Office of Naval Research (ONR) in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB); NASCar DRI of the ONR; Ministry of Earth Sciences of India; NOAA [NA10OAR4320156] FX This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air-Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI-RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India. Some of the drifters deployed during ASIRI were funded by NOAA Grant NA10OAR4320156: "The Global Drifter Program." NR 67 TC 1 Z9 1 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD OCT PY 2016 VL 97 IS 10 BP 1859 EP 1884 DI 10.1175/BAMS-D-14-00197.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED9QR UT WOS:000389208100009 ER PT J AU Petaja, T O'Connor, EJ Moisseev, D Sinclair, VA Manninen, AJ Vaananen, R von Lerber, A Thorntoton, JA Nicocoll, K Petersen, W Chandrasekar, V Smith, JN Winkler, PM Kruger, O Hakola, H Timonen, H Brus, D Laurila, T Asmi, E Riekkola, ML Mona, L Massoli, P Engelmann, R Komppppula, M Wang, J Kuang, CG Back, J Virtanen, A Levula, J Ritsche, M Hickmon, N AF Petaja, Tuukka O'Connor, Ewan J. Moisseev, Dmitri Sinclair, Victoctoctoria A. Manninen, Antttti J. Vaananen, Riikka von Lerber, Annakaisa Thorntoton, Joel A. Nicocoll, Keri Petersen, Walt Chandrasekar, V. Smith, James N. Winkler, Paul M. Krueger, Olaf Hakola, Hannele Timonen, Hilkka Brus, David Laurila, Tuomas Asmi, Eija Riekkola, Marja-Liisa Mona, Lucia Massoli, Paola Engelmann, Ronny Komppppula, Mika Wang, Jian Kuang, Chongai Baeck, Jaana Virtanen, Annele Levula, Janne Ritsche, Michael Hickmon, Nicki TI BAECC A FIELD CAMPAIGN TO ELUCIDATE THE IMPACT OF BIOGENIC AEROSOLS ON CLOUDS AND CLIMATE SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID NUCLEATION MODE PARTICLES; SECONDARY ORGANIC AEROSOL; GROUND-BASED OBSERVATIONS; BOREAL FOREST SITE; SULFURIC-ACID; SCOTS PINE; ATMOSPHERIC NUCLEATION; DOPPLER LIDAR; MASS-SPECTROMETER; CHERNOBYL FALLOUT C1 [Petaja, Tuukka; Moisseev, Dmitri; Sinclair, Victoctoctoria A.; Manninen, Antttti J.; Vaananen, Riikka; Chandrasekar, V.; Krueger, Olaf; Levula, Janne] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland. [O'Connor, Ewan J.; Moisseev, Dmitri; von Lerber, Annakaisa; Chandrasekar, V.; Hakola, Hannele; Timonen, Hilkka; Brus, David; Laurila, Tuomas; Asmi, Eija] Finnish Meteorol Inst, Helsinki, Finland. [O'Connor, Ewan J.; Nicocoll, Keri] Univ Reading, Dept Meteorol, Reading, Berks, England. [Thorntoton, Joel A.] Univ Washington, Seattle, WA 98195 USA. [Petersen, Walt] Natl Aeronaut & Space Adm, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA USA. [Chandrasekar, V.] Colorado State Univ, Ft Collins, CO 80523 USA. [Smith, James N.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Vaananen, Riikka; Smith, James N.] Univ Eastern Finland, Dept Appl Phys, Joensuu, Finland. [Smith, James N.] Univ Calif Irvine, Irvine, CA USA. [Winkler, Paul M.] Univ Vienna, Fac Phys, Vienna, Austria. [Riekkola, Marja-Liisa] Univ Helsinki, Dept Analyt Chem, Helsinki, Finland. [Mona, Lucia] Consiglio Nazl Ric Tito Scalo, Ist Metodol Anal Ambientale, Potenza, Italy. [Massoli, Paola] Inst Atmospher Sci & Climate ISAC, Bologna, Italy. [Massoli, Paola] Aerodyne Res Inc, Billerica, MA USA. [Engelmann, Ronny] Leibniz Inst Tropospher Res, Leipzig, Germany. [Komppppula, Mika] Finnish Meteorol Inst, Kuopio, Finland. [Wang, Jian; Kuang, Chongai] Brookhaven Natl Lab, Upton, NY 11973 USA. [Baeck, Jaana] Univ Helsinki, Dept Forest Sci, Helsinki, Finland. [Levula, Janne] Stn Measuring Ecosyst Atmosphere Relat II, Hyytiala, Finland. [Hickmon, Nicki] Argonne Natl Lab, Lemont, IL USA. RP Petaja, T (reprint author), Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland. EM tuukka.petaja@helsinki.fi RI Virtanen, Annele/E-7699-2010; Petaja, Tuukka/A-8009-2008; Brus, David/A-8296-2011; Smith, James/C-5614-2008; Wang, Jian/G-9344-2011; OI Virtanen, Annele/0000-0002-2917-5344; Petaja, Tuukka/0000-0002-1881-9044; Brus, David/0000-0002-8766-7873; Smith, James/0000-0003-4677-8224; Manninen, Antti/0000-0003-3437-9189; Back, Jaana/0000-0002-6107-667X; Sinclair, Victoria/0000-0002-2125-4726 FU Office of Science (BER), U.S. Department of Energy [DE-SC0011791, DE-SC0014469]; European Commission; European Research Council via NANO-DYNAMITE [616075]; Academy of Finland Centre of Excellence [272041]; KONE foundation [46-6817]; Nordforsk via Cryosphere-Atmosphere Interactions in a Changing Arctic Climate; CRAICC; TEKES in the CLEEN/MMEA programme; Ministry of Transport and Communication through ICOS-Finland; NASA Global Precipitation Measurement (GPM) mission ground validation program; ARM; U.S. Department of Energy, Office of Science and Technology [DE-AC02-06CH11357] FX This work was partly supported by the Office of Science (BER), U.S. Department of Energy via BAECC (Petaja), BAECC SNEX (Moisseev), DE-SC0011791 (Thornton), DE-SC0014469 (Smith), and ASR (Chandrasekar); European Commission via projects ACTRIS, ACTRIS-TNA, ACTRIS2, BACCHUS, and PEGASOS and European Research Council via NANO-DYNAMITE (616075); and Academy of Finland Centre of Excellence (Project 272041), KONE foundation (Grant 46-6817), Nordforsk via Cryosphere-Atmosphere Interactions in a Changing Arctic Climate, CRAICC, TEKES in the CLEEN/MMEA programme, and the Ministry of Transport and Communication through ICOS-Finland. The BAECC SNEX was also supported by NASA Global Precipitation Measurement (GPM) mission ground validation program. The deployment of AMF2 to Hyytiala was enabled and supported by ARM. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Assistant Secretary for Environmental Management, Office of Science and Technology, under Contract DE-AC02-06CH11357. The authors gratefully acknowledge the support of AMF2, SMEAR II, and the BAECC community for their support in initiating the BAECC campaign, its implementation, operation, and data analysis. NR 105 TC 1 Z9 1 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD OCT PY 2016 VL 97 IS 10 BP 1909 EP 1928 DI 10.1175/BAMS-D-14-00199.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED9QR UT WOS:000389208100011 ER PT J AU Vaivads, A Retino, A Soucek, J Khotyaintsev, YV Valentini, F Escoubet, CP Alexandrova, O Andre, M Bale, SD Balikhin, M Burgessl, D Camporeale, E Caprioli, D Chen, CHK Clacey, E Cully, CM De Keyser, J Eastwood, JP Fazakerley, AN Eriksson, S Goldstein, ML Graham, DB Haaland, S Hoshino, M Ji, H Karimabadi, H Kucharek, H Lavraud, B Marcucci, F Matthaeus, WH Moore, TE Nakamura, R Narita, Y Nemecek, Z Norgren, C Opgenoorth, H Palmroth, M Perrone, D Pinqon, JL Rathsman, P Rothkaeh, H Sahraoui, F Servidio, S Sorriso-Valvo, L Vainio, R Voros, Z Wimmer-Schweingruber, RF AF Vaivads, A. Retino, A. Soucek, J. Khotyaintsev, Yu. V. Valentini, F. Escoubet, C. P. Alexandrova, O. Andre, M. Bale, S. D. Balikhin, M. Burgessl, D. Camporeale, E. Caprioli, D. Chen, C. H. K. Clacey, E. Cully, C. M. De Keyser, J. Eastwood, J. P. Fazakerley, A. N. Eriksson, S. Goldstein, M. L. Graham, D. B. Haaland, S. Hoshino, M. Ji, H. Karimabadi, H. Kucharek, H. Lavraud, B. Marcucci, F. Matthaeus, W. H. Moore, T. E. Nakamura, R. Narita, Y. Nemecek, Z. Norgren, C. Opgenoorth, H. Palmroth, M. Perrone, D. Pinqon, J. -L. Rathsman, P. Rothkaeh, H. Sahraoui, F. Servidio, S. Sorriso-Valvo, L. Vainio, R. Voeroes, Z. Wimmer-Schweingruber, R. F. TI Turbulence Heating ObserveR - satellite mission proposal SO JOURNAL OF PLASMA PHYSICS LA English DT Article DE plasma heating; plasma properties; space plasma physics ID SOLAR-WIND; PLASMA TURBULENCE; TEMPERATURE ANISOTROPY; VLASOV SIMULATIONS; ELECTRON SCALES; ION; MAGNETOSHEATH; FLUCTUATIONS; FORESHOCK AB The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth's magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space - magnetosheath, shock, foreshock and pristine solar wind - featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the 'Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)'. THOR has been selected by European Space Agency (ESA) for the study phase. C1 [Vaivads, A.; Khotyaintsev, Yu. V.; Andre, M.; Graham, D. B.; Norgren, C.; Opgenoorth, H.] Swedish Inst Space Phys, S-75121 Uppsala, Sweden. [Retino, A.; Sahraoui, F.] Ecole Polytech, Lab Phys Plasmas, F-91128 Palaiseau, France. [Soucek, J.] Acad Sci Czech Republic, Inst Atmospher Phys, CZ-14131 Prague, Czech Republic. [Valentini, F.; Servidio, S.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, CS, Italy. [Escoubet, C. P.] European Space Agcy, Estec, NL-2200 AG Noordwijk, Netherlands. [Alexandrova, O.] Observ Paris, LESIA, F-92190 Meudon, France. [Bale, S. D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bale, S. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Balikhin, M.] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England. [Burgessl, D.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England. [Camporeale, E.] Ctr Math & Comp Sci CWI, NL-1090 GB Amsterdam, Netherlands. [Caprioli, D.] Princeton Univ, Dept Astrophys Sci, Ivy Lane, Princeton, NJ 08540 USA. [Chen, C. H. K.; Eastwood, J. P.] Imperial Coll London, Dept Phys, London SW7 2AZ, England. [Clacey, E.; Rathsman, P.] OHB Sweden, S-16440 Kista, Sweden. [Cully, C. M.] Univ Calgary, Dept Phys & Astron, Calgary, AB, Canada. [De Keyser, J.] Belgian Inst Space Aeron, Space Phys Div, Brussels, Belgium. [Fazakerley, A. N.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Eriksson, S.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Goldstein, M. L.; Moore, T. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Haaland, S.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Haaland, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Hoshino, M.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo, Japan. [Ji, H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ji, H.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. [Karimabadi, H.] SciberQuest, Del Mar, CA 92014 USA. [Kucharek, H.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Lavraud, B.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lavraud, B.] CNRS, UMR 5277, Toulouse, France. [Marcucci, F.] INAF IAPS, Rome, Italy. [Matthaeus, W. H.] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. [Nakamura, R.; Narita, Y.; Voeroes, Z.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Nemecek, Z.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague, Czech Republic. [Palmroth, M.] Finnish Meteorol Inst, Earth Observat Unit, Helsinki, Finland. [Perrone, D.] ESAC, European Space Agcy, Sci & Robot Explorat Directorate, Madrid, Spain. [Pinqon, J. -L.] CNRS, LPC2E, Lab Phys & Chim Environm & Espace, Orleans, France. [Rothkaeh, H.] Polish Acad Sci, Space Res Ctr, Warsaw, Poland. [Sorriso-Valvo, L.] UOS LICRYL Cosenza, Nanotec CNR, Cubo 31C, I-87036 Arcavacata Di Rende, CS, Italy. [Vainio, R.] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland. [Wimmer-Schweingruber, R. F.] Univ Kiel, Inst Expt & Appl Phys, Kiel, Germany. RP Vaivads, A (reprint author), Swedish Inst Space Phys, S-75121 Uppsala, Sweden. EM andris.vaivads@gmail.com RI Vainio, Rami/A-5590-2009; Bale, Stuart/E-7533-2011; Soucek, Jan/G-3424-2014; OI Vainio, Rami/0000-0002-3298-2067; Bale, Stuart/0000-0002-1989-3596; Soucek, Jan/0000-0003-0462-6804; Eriksson, Stefan/0000-0002-5619-1577 FU UK Space Agency [ST/N003322/1]; Agenzia Spaziale Italiana [ASI-INAF 2015-039-R.O]; IAPS/INAF, Rome; Belgian Science Policy Office through PRODEX PEA [4000116805]; Czech Science Foundation [16-04956S]; ESA PRODEX; CNRS; CNES; German Space Agency [50 00 1603]; Swedish National Space Board, Uppsala [232/15, 257/15]; Academy of Finland [267144]; European Research Council [682068-PRESTISSIMO, 200141-QuESpace]; ISSI team 'Kinetic Turbulence and Heating in the Solar wind'; FP7 project STORM; FP7 project SHOCK; Academy of Finland FX The THOR science team thanks the Swedish National Space Board for support to carry out a technical assessment phase study before the proposal submission. We acknowledge the useful discussion and comments from the THOR team (http://thor.irfu.se/team) and particularly D. Delcourt, D. Fontaine, A. Kis, G. Lapenta, M. Maksimovic, M. Opher, G. Paschmann, A. Petrukovic, S. Schwartz. We acknowledge: the support of the UK Space Agency through grant ST/N003322/1 to ICL; the support of Agenzia Spaziale Italiana through contract ASI-INAF 2015-039-R.O to University of Calabria, Italy and at IAPS/INAF, Rome; the support of the Belgian Science Policy Office through PRODEX PEA 4000116805 to BIRA-IASB; the support of the Czech Science Foundation through project 16-04956S to Charles University, Prague; the support of ESA PRODEX to IAP Prague; the support of CNRS and CNES to IRAP, LPP, LP2CE and LESIA; the support of the German Space Agency through grant 50 00 1603 to CAU; the support of Swedish National Space Board through grants 232/15 and 257/15 to IRF, Uppsala; the support of Academy of Finland through grant 267144 and European Research Council Consolidator through grant 682068-PRESTISSIMO to FMI; the support of ISSI team 'Kinetic Turbulence and Heating in the Solar wind'; the support of FP7 projects STORM and SHOCK. Vlasiator (http://vlasiator.fmi.fi) has been developed with the support of Academy of Finland and European Research Council Starting grant 200141-QuESpace. NR 28 TC 6 Z9 6 U1 4 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD OCT PY 2016 VL 82 AR 905820501 DI 10.1017/S0022377816000775 PN 5 PG 16 WC Physics, Fluids & Plasmas SC Physics GA EF5PZ UT WOS:000390383400011 ER PT J AU Hamawandi, B Noroozi, M Jayakumar, G Ergul, A Zahmatkesh, K Toprak, MS Radamson, HH AF Hamawandi, B. Noroozi, M. Jayakumar, G. Ergul, A. Zahmatkesh, K. Toprak, M. S. Radamson, H. H. TI Electrical properties of sub-100 nm SiGe nanowires SO JOURNAL OF SEMICONDUCTORS LA English DT Article DE SiGe; FIB; STL; pattern transfer lithography; nanowires ID SILICON NANOWIRES; LITHOGRAPHY AB In this study, the electrical properties of SiGe nanowires in terms of process and fabrication integrity, measurement reliability, width scaling, and doping levels were investigated. Nanowires were fabricated on SiGeon oxide (SGOI) wafers with thickness of 52 nm and Ge content of 47%. The first group of SiGe wires was initially formed by using conventional I-line lithography and then their size was longitudinally reduced by cutting with a focused ion beam (FIB) to any desired nanometer range down to 60 nm. The other nanowire group was manufactured directly to a chosen nanometer level by using sidewall transfer lithography (STL). It has been shown that the FIB fabrication process allows manipulation of the line width and doping level of nanowires using Ga atoms. The resistance of wires thinned by FIB was 10 times lower than STL wires which shows the possible dependency of electrical behavior on fabrication method. C1 [Hamawandi, B.; Noroozi, M.; Ergul, A.; Zahmatkesh, K.; Toprak, M. S.] KTH Royal Inst Technol, Funct Mat Div, Dept Mat & Nano Phys, Elect 229, SE-16440 Kista, Sweden. [Jayakumar, G.; Radamson, H. H.] KTH Royal Inst Technol, Dept Integrated Devices & Circuits, Elect 229, SE-16440 Kista, Sweden. [Ergul, A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Noroozi, M (reprint author), KTH Royal Inst Technol, Funct Mat Div, Dept Mat & Nano Phys, Elect 229, SE-16440 Kista, Sweden.; Radamson, HH (reprint author), KTH Royal Inst Technol, Dept Integrated Devices & Circuits, Elect 229, SE-16440 Kista, Sweden. EM noroozi@kth.se; rad@kth.se NR 16 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-4926 J9 J SEMICOND JI J. Semicond. PD OCT PY 2016 VL 37 IS 10 AR 102001 DI 10.1088/1674-4926/37/10/102001 PG 6 WC Physics, Condensed Matter SC Physics GA EF2GG UT WOS:000390142200002 ER PT J AU Tang, A Reck, T Chattopadhyay, G AF Tang, Adrian Reck, Theodore Chattopadhyay, Goutam TI CMOS System-on-Chip Techniques in Millimeter-Wave/THz Instruments and Communications for Planetary Exploration SO IEEE COMMUNICATIONS MAGAZINE LA English DT Article AB This article discusses the applicability of system-on-chip communication and radar and spectrometer millimeter-wave and terahertz solutions to the exploration of planets and moons in the outer solar system. Specifically discussed are techniques and calibration approaches on how to deal with the harsh deep space environment including temperature and radiation effects, as well as monitoring component and system health and reliability. C1 [Tang, Adrian; Reck, Theodore] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Chattopadhyay, Goutam] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91125 USA. [Chattopadhyay, Goutam] CALTECH, Jet Prop Lab, Div Phys Math & Astron, Pasadena, CA 91125 USA. RP Tang, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 11 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0163-6804 EI 1558-1896 J9 IEEE COMMUN MAG JI IEEE Commun. Mag. PD OCT PY 2016 VL 54 IS 10 BP 176 EP 182 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA EC8WE UT WOS:000388423000028 ER PT J AU Schmidt, JM Cairns, IH Gopalswamy, N Yashiro, S AF Schmidt, J. M. Cairns, Iver H. Gopalswamy, N. Yashiro, S. TI Coronal magnetic field profiles from shock-CME standoff distances SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS BOW SHOCK; FARADAY-ROTATION MEASUREMENTS; EJECTION-ASSOCIATED SHOCK; LOW MACH NUMBERS; MASS EJECTION; MHD SIMULATIONS; SOLAR-WIND; FLUX ROPE; MAGNETOHYDRODYNAMIC MODEL; LASCO OBSERVATIONS AB Coronagraphs observe coronal mass ejections (CMEs) and driven shocks in white light images. From these observations the shock's speed and the shock's standoff distance from the CME's leading edge can be derived. Using these quantities, theoretical relationships between the shock's Alfvenic Mach number MA and standoff distance, and empirical radial profiles for the solar wind velocity and number density, the radial magnetic field profile upstream of the shock can be calculated. These profiles cannot be measured directly. We test the accuracy of this method for estimating the radial magnetic field profile upstream of the shock by simulating a sample CME that occurred on 29 November 2013 using the three-dimensional (3-D) magnetohydrodynamic Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme code, retrieving shock-CME standoff distances from the simulation, and comparing the estimated and simulated radial magnetic field profiles. We find good agreement between the two profiles (within +/- 30%) between 1.8 and 10 R-circle dot.. Our simulations confirm that a linear relationship exists between the standoff distance and the inverse compression ratio at the shock. We also find very good agreement between the empirical and simulated radial profiles of the number density and speed of the solar wind and inner corona. C1 [Schmidt, J. M.; Cairns, Iver H.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Gopalswamy, N.; Yashiro, S.] NASA, GSFC, Greenbelt, MD USA. RP Schmidt, JM (reprint author), Univ Sydney, Sch Phys, Sydney, NSW, Australia. EM jschmidt@physics.usyd.edu.au OI Cairns, Iver/0000-0001-6978-9765 FU Australian Research Council; DoD MURI; NSF KDI; NASA ESTO-CT; NASA ESS FX We gratefully acknowledge financial support from the Australian Research Council. The carried out CME simulations used the Space Weather Modeling Framework, which was developed at the University of Michigan's Center for Space Environment Modeling. This development was funded by DoD MURI, NSF KDI, NASA ESTO-CT, and NASA ESS. The CME data needed for initiation were obtained from the CME catalogue cdaw.gsfc.nasa.gov/CME_list/. The solar surface magnetic field data needed for the reconstruction of the solar magnetic fields have been retrieved from wso.stanford.edu. NR 58 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9299 EP 9315 DI 10.1002/2016JA022956 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900001 ER PT J AU Malaspina, DM Wilson, LB AF Malaspina, David M. Wilson, Lynn B., III TI A database of interplanetary and interstellar dust detected by the Wind spacecraft SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND; WAVES; INSTRUMENT; IMPACTS; SIGNALS; GRAINS; VENUS; EARTH AB It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 mu m radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database. C1 [Malaspina, David M.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Wilson, Lynn B., III] NASA, Goddard Spaceflight Ctr, Greenbelt, MD USA. RP Malaspina, DM (reprint author), Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM David.Malaspina@colorado.edu FU NASA [NNX15AE84G]; Wind/WAVES team; NASA SPDF team FX The authors thank the Wind/WAVES team and the NASA SPDF team for their support. This work was funded by NASA award NNX15AE84G, from the NASA Heliophysics program Open Data-Development Element. The authors thank Paul J. Kellogg and Keith Goetz for valuable discussions. All Wind/WAVES/TDS data are currently being archived on SPDF/CDAweb (cdaweb.gsfc.nasa.gov). The Wind dust database is archived on SPDF/CDAweb (cdaweb.gsfc.nasa.gov). NR 35 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9369 EP 9377 DI 10.1002/2016JA023209 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900005 ER PT J AU Eriksson, E Vaivads, A Graham, DB Khotyaintsev, YV Yordanova, E Hietala, H Andre, M Avanov, LA Dorelli, JC Gershman, DJ Giles, BL Lavraud, B Paterson, WR Pollock, CJ Saito, Y Magnes, W Russell, C Torbert, R Ergun, R Lindqvist, PA Burch, J AF Eriksson, E. Vaivads, A. Graham, D. B. Khotyaintsev, Yu. V. Yordanova, E. Hietala, H. Andre, M. Avanov, L. A. Dorelli, J. C. Gershman, D. J. Giles, B. L. Lavraud, B. Paterson, W. R. Pollock, C. J. Saito, Y. Magnes, W. Russell, C. Torbert, R. Ergun, R. Lindqvist, P-A. Burch, J. TI Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HIGH-SPEED JETS; SOLAR-WIND; SUBSOLAR MAGNETOSHEATH; SCALE STRUCTURES; PLASMA; MAGNETOPAUSE; SHOCK AB Localized kinetic-scale regions of strong current are believed to play an important role in plasma thermalization and particle acceleration in turbulent plasmas. We present a detailed study of a strong localized current, 4900 nA m(-2), located at a fast plasma jet observed in the magnetosheath downstream of a quasi-parallel shock. The thickness of the current region is similar to 3 ion inertial lengths and forms at a boundary separating magnetosheath-like and solar wind-like plasmas. On ion scales the current region has the shape of a sheet with a significant average normal magnetic field component but shows strong variations on smaller scales. The dynamic pressure within the magnetosheath jet is over 3 times the solar wind dynamic pressure. We suggest that the current sheet is forming due to high velocity shears associated with the jet. Inside the current sheet we observe local electron acceleration, producing electron beams, along the magnetic field. However, there is no clear sign of ongoing reconnection. At higher energies, above the beam energy, we observe a loss cone consistent with part of the hot magnetosheath-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within the current sheet is similar to the one that occurs at shocks, where electron beams and loss cones are also observed. Therefore, electron beams observed in the magnetosheath do not have to originate from the bow shock but can also be generated locally inside the magnetosheath. C1 [Eriksson, E.; Vaivads, A.; Graham, D. B.; Khotyaintsev, Yu. V.; Yordanova, E.; Andre, M.] Swedish Inst Space Phys, Uppsala, Sweden. [Eriksson, E.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Hietala, H.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA. [Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gershman, D. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lavraud, B.] CNRS, IRAP, Toulouse, France. [Saito, Y.] JAXA, Chofu, Tokyo, Japan. [Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Torbert, R.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Ergun, R.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Lindqvist, P-A.] KTH Royal Inst Technol, Stockholm, Sweden. [Burch, J.] Southwest Res Inst, San Antonio, TX USA. RP Eriksson, E (reprint author), Swedish Inst Space Phys, Uppsala, Sweden.; Eriksson, E (reprint author), Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. EM elin.eriksson@irfu.se RI NASA MMS, Science Team/J-5393-2013; OI NASA MMS, Science Team/0000-0002-9504-5214; Hietala, Heli/0000-0002-3039-1255; Eriksson, Elin/0000-0003-4040-9663 FU NASA [NAS5-02099]; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR) [50 OC 0302]; Swedish Research Council [2013-4309]; International Space Science Institute (ISSI) in Bern, Switzerland; ISSI team Particle Acceleration in Solar Flares and Terrestrial Substorms; MMS team and instrument PIs FX We thank the entire MMS team and instrument PIs for data access and support. We also thank the OMNI data for giving us access to the solar wind data used in this study. We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for the use of data from the THEMIS mission. Specifically, K.H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. We thank S. Kokubun for the use of GEOTAIL MGF data. The authors acknowledge the support by the International Space Science Institute (ISSI) in Bern, Switzerland, and the ISSI team Particle Acceleration in Solar Flares and Terrestrial Substorms. We also thank T. Karlsson, W. Li, and A. Johlander for useful discussions. This work was supported by the Swedish Research Council, grant 2013-4309. MMS data are available at https://lasp.colorado.edu/mms/sdc/public. Themis, OMNI, and Geotail data are available at http://cdaweb.gsfc.nasa.gov/istp_public/. NR 30 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9608 EP 9618 DI 10.1002/2016JA023146 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900020 ER PT J AU Walker, SN Demekhov, AG Boardsen, SA Ganushkina, NY Sibeck, DG Balikhin, MA AF Walker, Simon N. Demekhov, Andrei G. Boardsen, Scott A. Ganushkina, Natalia Y. Sibeck, David G. Balikhin, Michael A. TI Cluster observations of non-time continuous magnetosonic waves SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL NOISE EMISSIONS; MAGNETIC-FIELD; ENERGETIC IONS; ELECTRIC-FIELD; ELF NOISE; PLASMA; MODE; MAGNETOSPHERE; PROTON; DISTRIBUTIONS AB Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non-temporally continuous emissions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements) are observed to occur periodically in the region +/- 10 degrees off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density. C1 [Walker, Simon N.; Balikhin, Michael A.] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England. [Demekhov, Andrei G.] Polar Geophys Inst, Apatity, Russia. [Demekhov, Andrei G.] RAS, Inst Appl Phys, Nizhnii Novgorod, Russia. [Boardsen, Scott A.] Univ Maryland, Goddard Planetary & Heliophys Inst, Baltimore, MD 21201 USA. [Boardsen, Scott A.; Sibeck, David G.] NASA, GSFC, Greenbelt, MD USA. [Ganushkina, Natalia Y.] Finnish Meteorol Inst, Helsinki, Finland. [Ganushkina, Natalia Y.] Univ Michigan, Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Walker, SN (reprint author), Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England. EM simon.walker@sheffield.ac.uk RI Demekhov, Andrei/F-1444-2016 OI Demekhov, Andrei/0000-0002-8062-8492 FU European Union Horizon 2020 Research and Innovation program [637302]; International Space Science Institute in Bern, Switzerland; ESA [STFCST/N002865/1]; Russian Science foundation; NASA prime contract [NAS5-01072]; Van Allen Probes mission FX The research performed by SNW, MAB, and NYG has received funding from the European Union Horizon 2020 Research and Innovation program under grant agreement 637302 PROGRESS. M.A.B., N.Y.G., and A.G.D. wish to thank the International Space Science Institute in Bern, Switzerland, for their support of the international team on "Analysis of Cluster Inner Magnetosphere Campaign data, in the application the dynamics of waves and wave-particle interaction within the outer radiation belt." M.A.B. also acknowledges funding for DWP Cluster operations from ESA and STFCST/N002865/1. The work of A.G.D. was supported by the Russian Science foundation. The contribution from S.A.B. undertaken at GSFC was supported by NASA prime contract NAS5-01072. D.G.S. acknowledges that portions of the work at NASA/GSFC were funded by the Van Allen Probes mission. The data analyzed in this paper are publicly available from the Cluster Science Archive (http://www.cosmos.esa.int/web/csa). NR 49 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9701 EP 9716 DI 10.1002/2016JA023287 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900026 ER PT J AU Harada, Y Andersson, L Fowler, CM Mitchell, DL Halekas, JS Mazelle, C Espley, J DiBraccio, GA McFadden, JP Brain, DA Xu, S Ruhunusiri, S Larson, DE Lillis, RJ Hara, T Livi, R Jakosky, BM AF Harada, Y. Andersson, L. Fowler, C. M. Mitchell, D. L. Halekas, J. S. Mazelle, C. Espley, J. DiBraccio, G. A. McFadden, J. P. Brain, D. A. Xu, S. Ruhunusiri, S. Larson, D. E. Lillis, R. J. Hara, T. Livi, R. Jakosky, B. M. TI MAVEN observations of electron-induced whistler mode waves in the Martian magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETOSHEATH LION ROARS; BOW SHOCK; PLASMA-WAVES; MAGNETIC RECONNECTION; SOLAR-WIND; MARS; UPSTREAM; FREQUENCY; CHORUS; ION AB We report on narrowband electromagnetic waves at frequencies between the local electron cyclotron and lower hybrid frequencies observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in the Martian induced magnetosphere. The peaked electric field wave spectra below the electron cyclotron frequency were first observed by Phobos-2 in the Martian magnetosphere, but the lack of magnetic field wave data prevented definitive identification of the wave mode and their generation mechanisms remain unclear. Analysis of electric and magnetic field wave spectra obtained by MAVEN demonstrates that the observed narrowband waves have properties consistent with the whistler mode. Linear growth rates computed from the measured electron velocity distributions suggest that these whistler mode waves can be generated by cyclotron resonance with anisotropic electrons. Large electron anisotropy in the Martian magnetosphere is caused by absorption of parallel electrons by the collisional atmosphere. The narrowband whistler mode waves and anisotropic electrons are observed on both open and closed field lines and have similar spatial distributions in MSO and planetary coordinates. Some of the waves on closed field lines exhibit complex frequency-time structures such as discrete elements of rising tones and two bands above and below half the electron cyclotron frequency. These MAVEN observations indicate that whistler mode waves driven by anisotropic electrons, which are commonly observed in intrinsic magnetospheres and at unmagnetized airless bodies, are also present at Mars. The wave-induced electron precipitation into the Martian atmosphere should be evaluated in future studies. C1 [Harada, Y.; Mitchell, D. L.; McFadden, J. P.; Xu, S.; Larson, D. E.; Lillis, R. J.; Hara, T.; Livi, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Andersson, L.; Fowler, C. M.; Brain, D. A.; Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Mazelle, C.] CNRS, IRAP, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, IRAP, Toulouse, France. [Espley, J.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Harada, Y (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM haraday@ssl.berkeley.edu OI Xu, Shaosui/0000-0002-5121-600X FU NASA MAVEN Project; French space agency CNES; NASA Postdoctoral Program; NASA FX The authors wish to acknowledge great support from the team members of the MAVEN mission. The research presented in this paper was funded by the NASA MAVEN Project and the French space agency CNES. G.A.D. was supported by a NASA Postdoctoral Program appointment at the NASA Goddard Space Flight Center, administered by Universities Space Research Association through a contract with NASA. MAVEN data are publicly available through the Planetary Data System (http://ppi.pds.nasa.gov/mission/MAVEN). NR 67 TC 2 Z9 2 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9717 EP 9731 DI 10.1002/2016JA023194 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900027 ER PT J AU de Soria-Santacruz, M Garrett, HB Evans, RW Jun, I Kim, W Paranicas, C Drozdov, A AF de Soria-Santacruz, M. Garrett, H. B. Evans, R. W. Jun, I. Kim, W. Paranicas, C. Drozdov, A. TI An empirical model of the high-energy electron environment at Jupiter SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SYNCHROTRON-RADIATION BELTS; MAGNETIC-FIELD; JOVIAN MAGNETOSPHERE; DIFFUSION-MODELS; CURRENT SHEET; IO; PIONEER-10; PARTICLES; ENCOUNTER; DETECTOR AB We present an empirical model of the energetic electron environment in Jupiter's magnetosphere that we have named the Galileo Interim Radiation Electron Model version-2 (GIRE2) since it is based on Galileo data from the Energetic Particle Detector (EPD). Inside 8R(J), GIRE2 adopts the previously existing model of Divine and Garrett because this region was well sampled by the Pioneer and Voyager spacecraft but poorly covered by Galileo. Outside of 8R(J), the model is based on 10 min averages of Galileo EPD data as well as on measurements from the Geiger Tube Telescope on board the Pioneer spacecraft. In the inner magnetosphere the field configuration is dipolar, while in the outer magnetosphere it presents a disk-like structure. The gradual transition between these two behaviors is centered at about 17R(J). GIRE2 distinguishes between the two different regions characterized by these two magnetic field topologies. Specifically, GIRE2 consists of an inner trapped omnidirectional model between 8 to 17R(J) that smoothly joins onto the original Divine and Garrett model inside 8R(J) and onto a GIRE2 plasma sheet model at large radial distances. The model provides a complete picture of the high-energy electron environment in the Jovian magnetosphere from similar to 1 to 50R(J). The present manuscript describes in great detail the data sets, formulation, and fittings used in the model and provides a discussion of the predicted high-energy electron fluxes as a function of energy and radial distance from the planet. C1 [de Soria-Santacruz, M.; Garrett, H. B.; Evans, R. W.; Jun, I.; Kim, W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Paranicas, C.] Johns Hopkins Univ, Appl Phys Lab, Baltimore, MD 21218 USA. [Drozdov, A.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. RP de Soria-Santacruz, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM Maria.de.Soria-Santacruz.Pich@jpl.nasa.gov RI Paranicas, Christopher/B-1470-2016 OI Paranicas, Christopher/0000-0002-4391-8255 FU National Aeronautics and Space Administration FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Contact M. de Soria-Santacruz (Maria.de.Soria-Santacruz.Pich@jpl.nasa.gov) about model availability. We acknowledge Galileo EPD data obtained from the Johns Hopkins University Applied Physics Laboratory (JHU/APL) and available in the Planetary Data System (https://pds.nasa.gov/), and Pioneer GTT data also from the Planetary Data System. The authors would like to acknowledge Jack Connerney and Krishan Khurana for providing their magnetic field models as well as for many useful discussions. NR 37 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9732 EP 9743 DI 10.1002/2016JA023059 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900028 ER PT J AU Menietti, JD Groene, JB Averkamp, TF Horne, RB Woodfield, EE Shprits, YY Pich, MD Gurnett, DA AF Menietti, J. D. Groene, J. B. Averkamp, T. F. Horne, R. B. Woodfield, E. E. Shprits, Y. Y. Pich, M. de Soria-Santacruz Gurnett, D. A. TI Survey of whistler mode chorus intensity at Jupiter SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA-WAVE OBSERVATIONS; ELECTRON ACCELERATION; MAGNETIC-FIELD; MIDDLE MAGNETOSPHERE; STEADY-STATE; IO TORUS; PRECIPITATION; INJECTIONS; SIGNATURES; DIFFUSION AB Whistler mode chorus emission is important in the acceleration of electrons and filling of the radiation belts at Jupiter. In this work chorus magnetic intensity levels (frequency-integrated spectral density, P-B) at Jupiter are comprehensively binned and parameterized. The frequency range of chorus under study extends from the lower hybrid frequency, f(lh), to f(ceq)/2 and f(ceq)/2< f< 0.8 f(ceq), where f(ceq) is the cyclotron frequency mapped to the magnetic equator. The goal is to obtain a quantized distribution of magnetic intensity for use in stochastic modeling efforts. Parametric fits of magnetic plasma wave intensity are obtained, including PB versus frequency, latitude, and L shell. The results indicate that Jupiter chorus occurrence probability and intensity are higher than those at Saturn, reaching values observed at Earth. Jovian chorus is observed over most local times, confined primarily to the range 8< L< 15, outside the high densities of the Io torus. The largest intensity levels are seen on the dayside; however, the sampling of chorus on the nightside is much less than on the dayside. Peak intensities occur near the equator with a weak dependence on magnetic latitude, lambda. We conclude that Jovian chorus average intensity levels are approximately an order of magnitude lower than those at Earth. In more isolated regions the intensities are comparable to those observed at Earth. The spatial range of the chorus emissions extends beyond that assumed in previous Jovian global diffusive models of wave-particle electron acceleration. C1 [Menietti, J. D.; Groene, J. B.; Averkamp, T. F.; Gurnett, D. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Horne, R. B.; Woodfield, E. E.] British Antarctic Survey, Cambridge, England. [Shprits, Y. Y.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Shprits, Y. Y.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Pich, M. de Soria-Santacruz] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Menietti, JD (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM john-menietti@uiowa.edu FU JPL [1415150]; NASA grant [NNX11AM36G]; STFC grant [ST/M00130X/1]; UK Natural Environment Research Council; National Aeronautics and Space Administration FX We wish to thank J. Barnholdt for clerical assistance and J. Chrisinger for help with many figures. J.D.M. acknowledges support from JPL contract 1415150 and NASA grant NNX11AM36G. R.B.H. and E.E.W. are funded through STFC grant ST/M00130X/1. R.B.H. is funded by the UK Natural Environment Research Council. M.S.-S.P. acknowledges research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Galileo PWS data are archived in calibrated, full resolution at the NASA Planetary Data System website:https://pds.nasa.gov/ds-view/pds/viewDataset.jsp?dsid=GO-J-PWS-2 -REDR-LPW-SA-FULL-V1.0. NR 36 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9758 EP 9770 DI 10.1002/2016JA022969 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900030 ER PT J AU Denton, RE Sonnerup, BUO Hasegawa, H Phan, TD Russell, CT Strangeway, RJ Giles, BL Torbert, RB AF Denton, R. E. Sonnerup, B. U. O. Hasegawa, H. Phan, T. D. Russell, C. T. Strangeway, R. J. Giles, B. L. Torbert, R. B. TI Reconnection guide field and quadrupolar structure observed by MMS on 16 October 2015 at 1307 UT SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETIC RECONNECTION; ANTIPARALLEL; MOTION AB We estimate the guide field near the X point, B-M0, for a magnetopause crossing by the Magnetospheric Multiscale (MMS) spacecraft at 1307 UT on 16 October 2015 that showed features of electron-scale reconnection. This component of the magnetic field is normal to the reconnection plane L-N containing the reconnection magnetic field, B-L, and the direction e(N) normal to the current sheet. The B-M field component appears to approximately have quadrupolar structure close to the X point. Using several different methods to estimate values of the guide field near the X point, some of which use an assumed quadrupolar symmetry, we find values ranging between -3.1 nT and -1.2 nT, with a nominal value of about -2.5 nT. The rough consistency of these values is evidence that the quadrupolar structure exists. C1 [Denton, R. E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Sonnerup, B. U. O.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Hasegawa, H.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Phan, T. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Giles, B. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Torbert, R. B.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. RP Denton, RE (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM richard.e.denton@dartmouth.edu RI Hasegawa, Hiroshi/A-1192-2007; NASA MMS, Science Team/J-5393-2013 OI Hasegawa, Hiroshi/0000-0002-1172-021X; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA [NNX14AC38G]; JSPS [KAKENHI15K05306] FX Work at Dartmouth was supported by NASA grant NNX14AC38G. H.H. was supported by JSPS Grant-in-Aid for Scientific Research KAKENHI15K05306. We thank Marc Swisdak and Phil Pritchett for helpful conversations. B.G. thanks Dan Gershman, Levon Avanov, and John Dorelli for help in advancing the quality of the FPI products. MMS data are available at https://lasp.colorado.edu/mms/sdc/public/links. See also the supporting information of Denton et al. [2016]. NR 14 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9880 EP 9887 DI 10.1002/2016JA023323 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900036 ER PT J AU Vernisse, Y Lavraud, B Eriksson, S Gershman, DJ Dorelli, J Pollock, C Giles, B Aunai, N Avanov, L Burch, J Chandler, M Coffey, V Dargent, J Ergun, RE Farrugia, CJ Genot, V Graham, DB Hasegawa, H Jacquey, C Kacem, I Khotyaintsev, Y Li, W Magnes, W Marchaudon, A Moore, T Paterson, W Penou, E Phan, TD Retino, A Russell, CT Saito, Y Sauvaud, JA Torbert, R Wilder, FD Yokota, S AF Vernisse, Y. Lavraud, B. Eriksson, S. Gershman, D. J. Dorelli, J. Pollock, C. Giles, B. Aunai, N. Avanov, L. Burch, J. Chandler, M. Coffey, V. Dargent, J. Ergun, R. E. Farrugia, C. J. Genot, V. Graham, D. B. Hasegawa, H. Jacquey, C. Kacem, I. Khotyaintsev, Y. Li, W. Magnes, W. Marchaudon, A. Moore, T. Paterson, W. Penou, E. Phan, T. D. Retino, A. Russell, C. T. Saito, Y. Sauvaud, J. -A. Torbert, R. Wilder, F. D. Yokota, S. TI Signatures of complex magnetic topologies from multiple reconnection sites induced by Kelvin-Helmholtz instability SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LATITUDE BOUNDARY-LAYER; SOLAR-WIND; MAGNETOSPHERIC MULTISCALE; CLUSTER OBSERVATIONS; NORTHWARD IMF; FIELD; MAGNETOPAUSE; PLASMA; VORTICES; WAVES AB The Magnetospheric Multiscale mission has demonstrated the frequent presence of reconnection exhausts at thin current sheets within Kelvin-Helmholtz (KH) waves at the flank magnetopause. Motivated by these recent observations, we performed a statistical analysis of the boundary layers on the magnetosheath side of all KH current sheets on 8 September 2015. We show 86% consistency between the exhaust flows and particle leakage in the magnetosheath boundary layers but further highlight the very frequent presence of additional boundary layer signatures that do not come from the locally observed reconnection exhausts. These additional electron and ion boundary layers, of various durations and at various positions with respect to the leading and trailing boundaries of the KH waves, signal connections to reconnection sites at other locations. Based on the directionality and extent of these layers, we provide an interpretation whereby complex magnetic topologies can arise within KH waves from the combination of reconnection in the equatorial plane and at midlatitudes in the Southern and Northern Hemispheres, where additional reconnection sites are expected to be triggered by the three-dimensional field lines interweaving induced by the KH waves at the flanks (owing to differential flow and magnetic field shear with latitude). The present event demonstrates that the three-dimensional development of KH waves can induce plasma entry (through reconnection at both midlatitude and equatorial regions) already sunward of the terminator where the instability remains in its linear stage. C1 [Vernisse, Y.; Lavraud, B.; Genot, V.; Jacquey, C.; Kacem, I.; Marchaudon, A.; Penou, E.; Sauvaud, J. -A.] Univ Paul Sabatier, Inst Rech Astrophys & Planetol, Toulouse, France. [Vernisse, Y.; Lavraud, B.; Jacquey, C.; Kacem, I.; Marchaudon, A.; Penou, E.; Sauvaud, J. -A.] Ctr Natl Rech Sci, Toulouse, France. [Eriksson, S.; Wilder, F. D.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Gershman, D. J.; Dorelli, J.; Pollock, C.; Giles, B.; Avanov, L.; Moore, T.; Paterson, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Gershman, D. J.; Avanov, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Aunai, N.; Dargent, J.; Retino, A.] Lab Phys Plasmas, Palaiseau, France. [Burch, J.] Southwest Res Inst, San Antonio, TX USA. [Chandler, M.; Coffey, V.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Farrugia, C. J.; Torbert, R.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Farrugia, C. J.; Torbert, R.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Khotyaintsev, Y.; Li, W.] Swedish Inst Space Phys, Uppsala, Sweden. [Hasegawa, H.; Yokota, S.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Magnes, W.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Phan, T. D.] Space Sci Lab, Berkeley, CA USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Russell, C. T.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. RP Vernisse, Y (reprint author), Univ Paul Sabatier, Inst Rech Astrophys & Planetol, Toulouse, France.; Vernisse, Y (reprint author), Ctr Natl Rech Sci, Toulouse, France. EM yoann.vernisse@irap.omp.eu RI Hasegawa, Hiroshi/A-1192-2007; NASA MMS, Science Team/J-5393-2013; OI Hasegawa, Hiroshi/0000-0002-1172-021X; NASA MMS, Science Team/0000-0002-9504-5214; Eriksson, Stefan/0000-0002-5619-1577 FU CNRS; CNES FX For MMS data visit https://lasp.colorado.edu/mms/sdc/public/. We thank all the MMS teams for their remarkable work and great hardware accomplishments. IRAP contribution to MMS was performed with the support of CNRS and CNES. NR 42 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 9926 EP 9939 DI 10.1002/2016JA023051 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900039 ER PT J AU Gershman, DJ Gliese, U Dorelli, JC Avanov, LA Barrie, AC Chornay, DJ MacDonald, EA Holland, MP Giles, BL Pollock, CJ AF Gershman, Daniel J. Gliese, Ulrik Dorelli, John C. Avanov, Levon A. Barrie, Alexander C. Chornay, Dennis J. MacDonald, Elizabeth A. Holland, Matthew P. Giles, Barbara L. Pollock, Craig J. TI The parameterization of microchannel-plate-based detection systems SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DETECTION EFFICIENCY; ELECTRONS AB The most common instrument for low-energy plasmas consists of a top-hat electrostatic analyzer (ESA) geometry coupled with a microchannel-plate-based (MCP-based) detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Here we develop a comprehensive mathematical description of particle detection systems. As a function of instrument azimuthal angle, we parameterize (1) particle scattering within the ESA and at the surface of the MCP, (2) the probability distribution of MCP gain for an incident particle, (3) electron charge cloud spreading between the MCP and anode board, and (4) capacitive coupling between adjacent discrete anodes. Using the Dual Electron Spectrometers on the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission as an example, we demonstrate a method for extracting these fundamental detection system parameters from laboratory calibration. We further show that parameters that will evolve in flight, namely, MCP gain, can be determined through application of this model to specifically tailored in-flight calibration activities. This methodology provides a robust characterization of sensor suite performance throughout mission lifetime. The model developed in this work is not only applicable to existing sensors but also can be used as an analytical design tool for future particle instrumentation. C1 [Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Giles, Barbara L.; Pollock, Craig J.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Gershman, Daniel J.; Avanov, Levon A.; Chornay, Dennis J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gliese, Ulrik] SGT Inc, Greenbelt, MD USA. [Barrie, Alexander C.] Millennium Engn & Integrat Co, Arlington, VA USA. RP Gershman, DJ (reprint author), NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA.; Gershman, DJ (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM daniel.j.gershman@nasa.gov FU Magnetospheric Multiscale mission [WBS 943396.05.03.02.10.01] FX The authors wish to thank both anonymous referees for their insightful and constructive comments. The authors further wish to thank the members of the FPI development, ground operations, and science teams for their feedback and support. This work was supported by the Magnetospheric Multiscale mission under WBS 943396.05.03.02.10.01. Data presented here are available upon request (daniel.j.gershman@nasa.gov) NR 28 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 10005 EP 10018 DI 10.1002/2016JA022563 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900044 ER PT J AU Tsurutani, BT Hajra, R Tanimori, T Takada, A Bhanu, R Mannucci, AJ Lakhina, GS Kozyra, JU Shiokawa, K Lee, LC Echer, E Reddy, RV Gonzalez, WD AF Tsurutani, B. T. Hajra, R. Tanimori, T. Takada, A. Bhanu, R. Mannucci, A. J. Lakhina, G. S. Kozyra, J. U. Shiokawa, K. Lee, L. C. Echer, E. Reddy, R. V. Gonzalez, W. D. TI Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID OUTER RADIATION BELT; ACTIVITY HILDCAA EVENTS; PITCH-ANGLE SCATTERING; INTERPLANETARY MAGNETIC-FIELD; VAN ALLEN RADIATION; HIGH-INTENSITY; LONG-DURATION; MIDDLE ATMOSPHERE; SOLAR-WIND; PARTICLE INTERACTIONS AB A new scenario is presented for the cause of magnetospheric relativistic electron decreases (REDs) and potential effects in the atmosphere and on climate. High-density solar wind heliospheric plasmasheet (HPS) events impinge onto the magnetosphere, compressing it along with remnant noon-sector outer-zone magnetospheric similar to 10-100 keV protons. The betatron accelerated protons generate coherent electromagnetic ion cyclotron (EMIC) waves through a temperature anisotropy (T-perpendicular to/T-|| > 1) instability. The waves in turn interact with relativistic electrons and cause the rapid loss of these particles to a small region of the atmosphere. A peak total energy deposition of similar to 3 x 10(20) ergs is derived for the precipitating electrons. Maximum energy deposition and creation of electron-ion pairs at 30-50 km and at > 30 km altitude are quantified. We focus the readers' attention on the relevance of this present work to two climate change mechanisms. Wilcox et al. (1973) noted a correlation between solar wind heliospheric current sheet (HCS) crossings and high atmospheric vorticity centers at 300 mb altitude. Tinsley et al. (1994) has constructed a global circuit model which depends on particle precipitation into the atmosphere. Other possible scenarios potentially affecting weather/climate change are also discussed. C1 [Tsurutani, B. T.; Mannucci, A. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Hajra, R.; Echer, E.; Gonzalez, W. D.] Inst Nacl Pesquisas Espacias, Sao Jose Dos Campos, Brazil. [Tanimori, T.; Takada, A.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Bhanu, R.; Lee, L. C.; Reddy, R. V.] Acad Sinica, Taipei, Taiwan. [Lakhina, G. S.] Indian Inst Geomagnetism, Navi Mumbai, India. [Kozyra, J. U.] Univ Michigan, Dept Space Phys, Ann Arbor, MI 48109 USA. [Kozyra, J. U.] Natl Sci Fdn, Washington, DC 20550 USA. [Shiokawa, K.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi, Japan. RP Tsurutani, BT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM bruce.t.tsurutani@jpl.nasa.gov OI Hajra, Rajkumar/0000-0003-0447-1531 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) through postdoctoral research fellowship at INPE; National Academy of Sciences, India; Brazilian CNPq agency [302583/2015-7]; Academia Sinica, Taiwan; JSPS KAKENHI [15H05815, 16H06286] FX We wish to thank J. Bortnik for useful discussions on magnetopause shadowing and S. Yagitani for searching for Geotail locations. Portions of the research were conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. B.T.T. would like to thank M. Honchell of the JPL Library for finding many of the references listed in this paper. The work of R.H. is financially supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) through postdoctoral research fellowship at INPE. G.S.L. thanks the National Academy of Sciences, India, for support under the NASI-Senior Scientist Platinum Jubilee Fellowship Scheme. Work done by J.U.K. was supported by the National Science Foundation through Independent Research and Development for staff. E.E. would like to thank to the Brazilian CNPq (302583/2015-7) agency for financial support. B.R. would like to thank Academia Sinica, Taiwan, for providing financial support through a postdoctoral research fellowship. Observations at Athabasca and Moshiri are supported by JSPS KAKENHI (15H05815 and 16H06286). Solar wind/interplanetary data at 1 min time resolution were obtained from the OMNI website (http://omniweb.gsfc.nasa.gov/). The AE (1 min), SYM-H (1 min) and Dst (1 h) geomagnetic indices were obtained from the World Data Center for Geomagnetism, Kyoto, Japan (http://wdc.kugi.kyoto-u.ac.jp). The integrated fluxes of relativistic > 0.6 and > 2.0 MeV electrons at geosynchronous orbit (L = 6.6) were taken by GOES 8 and GOES 12 satellite particle instrumentation. The data website is http://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html. The five vector/s Cluster magnetometer data were obtained from the Cluster Science Archive (CSA). The four vector/s magnetometer data from THEMIS was obtained from the SPDF CDAWeb. For the study of EMIC wave occurrence on the ground, we use data from the Nagoya University Institute for Space-Earth Environmental Research (ISEE) magnetometer network (http://stdb2.isee.nagoya-u.ac.jp/magne/index.html). We wish to thank the three reviewers for their extremely helpful and constructive comments. These helped improve our paper greatly. NR 160 TC 2 Z9 2 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 10130 EP 10156 DI 10.1002/2016JA022499 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900054 ER PT J AU Carter, BA Yizengaw, E Pradipta, R Weygand, JM Piersanti, M Pulkkinen, A Moldwin, MB Norman, R Zhang, K AF Carter, B. A. Yizengaw, E. Pradipta, R. Weygand, J. M. Piersanti, M. Pulkkinen, A. Moldwin, M. B. Norman, R. Zhang, K. TI Geomagnetically induced currents around the world during the 17 March 2015 storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PATRICKS DAY STORM; SUDDEN COMMENCEMENTS; SPACE WEATHER; NUMERICAL-SIMULATION; IONOSPHERIC RESPONSE; MAGNETOMETER ARRAY; CURRENT SYSTEMS; MAGNETIC-FIELD; EVENT; IRREGULARITIES AB Geomagnetically induced currents (GICs) represent a significant space weather issue for power grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patrick's Day storm. While significant GIC activity in the high-latitude regions due to storm time substorm activity is shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American and Southeast Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in Southeast Asia and during the main phase of the storm similar to 10 h later in South America. The SSC caused magnetic field variations at the equator in Southeast Asia that were twice the magnitude of those observed only a few degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The large equatorial magnetic field variations measured in South America are also examined, and the coincident solar wind data are used to investigate the causes of the sudden changes in the EEJ similar to 10 h into the storm. From this analysis it is concluded that sudden magnetopause current increases due to increases in the solar wind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current systems, are the primary drivers of equatorial GICs. C1 [Carter, B. A.; Norman, R.; Zhang, K.] RMIT Univ, SPACE Res Ctr, Melbourne, Vic, Australia. [Carter, B. A.; Yizengaw, E.; Pradipta, R.] Boston Coll, Inst Sci Res, Boston, MA USA. [Weygand, J. M.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA USA. [Piersanti, M.] Univ Aquila, Dipartimento Sci Fis & Chim, Laquila, Italy. [Pulkkinen, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Moldwin, M. B.] Univ Michigan, Dept Climate Space Sci & Engn, Ann Arbor, MI 48109 USA. [Zhang, K.] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou, Peoples R China. RP Carter, BA (reprint author), RMIT Univ, SPACE Res Ctr, Melbourne, Vic, Australia.; Carter, BA (reprint author), Boston Coll, Inst Sci Res, Boston, MA USA. EM brett.carter@rmit.edu.au FU Australian Research Council Linkage [LP130100243]; National Science Foundation [AGS1265651, AGS1450512] FX This research was partially supported by the Australian Research Council Linkage (LP130100243) and National Science Foundation (AGS1265651 and AGS1450512) grants. The results presented in this paper rely on data collected at magnetic observatories. We thank the national institutes that support them and INTERMAGNET for promoting high standards of magnetic observatory practice (www.intermagnet.org). The geomagnetic activity and solar wind data were obtained from NASA's OMNIWeb online facility (http://omniweb.gsfc.nasa.gov/). The authors would also like to acknowledge the open magnetometer data policies of AUTUMNX (http://autumn.athabascau.ca/), CARISMA, CANMOS (http://gsc.nrcan.gc.ca/geomag), the Technical University of Denmark (http://www.hspace.dtu.dk/english/Research/Scientific_data_and_models/Ma gnetic_Ground_Stations), GIMA (http://magnet.gi.alaska.edu/), MACCS, McMAC, STEP (maintained by Dr. Kanji Hayashi, hayashi@grl.s.u-tokyo.ac.jp, http://step-p.dyndns.org/similar to khay/), THEMIS, and the USGS (http://geomag.usgs.gov). NR 62 TC 0 Z9 0 U1 10 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2016 VL 121 IS 10 BP 10496 EP 10507 DI 10.1002/2016JA023344 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6LA UT WOS:000388965900077 ER PT J AU Hu, S Zeitlin, C Atwell, W Fry, D Barzilla, JE Semones, E AF Hu, S. Zeitlin, C. Atwell, W. Fry, D. Barzilla, J. E. Semones, E. TI Segmental interpolating spectra for solar particle events and in situ validation SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID RADIATION; EXPOSURE; HZETRN; MODEL AB It is a delicate task to accurately assess the impact of solar particle events (SPEs) on future long-duration human exploration missions. In the past, researchers have used several functional forms to fit satellite data for radiation exposure estimation. In this work we present a segmental power law interpolating algorithm to stream satellite data and get time series of proton spectra, which can be used to derive dosimetric quantities for any short period during which a single SPE or multiple SPEs occur. Directly using the corrected High Energy Proton and Alpha Detector fluxes of GOES, this method interpolates the intensity spectrum of a typical SPE to hundreds of MeV and extrapolates to the GeV level as long as sufficient particles are recorded in the high-energy sensors. The high-energy branch of the May 2012 SPE is consistent with the Band functional fitting, which is calibrated with ground level measurement. Modeling simulations indicate that the input spectrum of an SPE beyond 100 MeV is the major contributor for dose estimation behind the normal shielding thickness of spacecraft. Applying this method to the three SPEs that occurred in 2012 generates results consistent with two sets of in situ measurements, demonstrating that this approach could be a way to perform real-time dose estimation. This work also indicates that the galactic cosmic ray dose rate is important for accurately modeling the temporal profile of radiation exposure during an SPE. C1 [Hu, S.] KBRwyle, Science Technol & Engn, Houston, TX 77058 USA. [Zeitlin, C.; Barzilla, J. E.] Lockheed Martin Informat Syst & Global Solut, Houston, TX USA. [Zeitlin, C.; Fry, D.; Barzilla, J. E.; Semones, E.] NASA, Johnson Space Ctr, Houston, TX USA. RP Hu, S (reprint author), KBRwyle, Science Technol & Engn, Houston, TX 77058 USA. EM shaowen.hu-1@nasa.gov FU NASA Space Radiation Risk Assessment Project; NASA Johnson Space Center (JSC) Innovative Charge Account FX This study was supported by the NASA Space Radiation Risk Assessment Project and the NASA Johnson Space Center (JSC) Innovative Charge Account. S. H. is grateful for critical review by Steve R. Blattnig (Langley Research Center (LRC)), useful discussion with Allan Tylka and Juan Rodriguez about the use of GOES data, and instruction from Tony Slaba (LRC) and Kristina Rojdev (JSC) for HZETRN calculation. The proton flux data were obtained from the National Centers for Environmental Information website (http://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html), the dose rates of CRaTER detectors were acquired from the CRaTER website (http://craterweb.sr.unh.edu/), and the dose rates of RAD of MSL were provided by Dr. Cary Zeitlin. NR 42 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2016 VL 14 IS 10 BP 742 EP 753 DI 10.1002/2016SW001476 PG 12 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EC0PK UT WOS:000387802900005 ER PT J AU Norman, RB Mertens, CJ Slaba, TC AF Norman, R. B. Mertens, C. J. Slaba, T. C. TI Evaluating galactic cosmic ray environment models using RaD-X flight data SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID RADIATION-EXPOSURE; GCR ENVIRONMENTS; VALIDATION; TRANSPORT; HZETRN AB Galactic cosmic rays enter Earth's atmosphere after interacting with the geomagnetic field. The primary galactic cosmic rays spectrum is fundamentally changed as it interacts with Earth's atmosphere through nuclear and atomic interactions. At points deeper in the atmosphere, such as at airline altitudes, the radiation environment is a combination of the primary galactic cosmic rays and the secondary particles produced through nuclear interactions. The RaD-X balloon experiment measured the atmospheric radiation environment above 20 km during 2days in September 2015. These experimental measurements were used to validate and quantify uncertainty in physics-based models used to calculate exposure levels for commercial aviation. In this paper, the Badhwar-O'Neill 2014, the International Organization for Standardization 15390, and the German Aerospace Company galactic cosmic ray environment models are used as input into the same radiation transport code to predict and compare dosimetric quantities to RaD-X measurements. In general, the various model results match the measured tissue equivalent dose well, with results generated by the German Aerospace Center galactic cosmic ray environment model providing the best comparison. For dose equivalent and dose measured in silicon, however, the models were compared less favorably to the measurements. C1 [Norman, R. B.; Mertens, C. J.; Slaba, T. C.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Norman, RB (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM Ryan.B.Norman@nasa.gov RI Norman, Ryan/D-5095-2017 OI Norman, Ryan/0000-0002-9103-7225 FU NASA Science Mission Directorate FX The authors acknowledge the support from the NASA Science Mission Directorate under the Hands-On Project Experience (HOPE- 4) opportunity, which was the principal source of funding for the RaD-X balloon flight mission. The authors wish to thank the Sodankyla Geophysical Observatory which provided the Oulu neutron monitor count rates through their website http://cosmicrays.oulu.fi. All other data can be found in the figures, tables, and references. All data are available from the authors by request. NR 35 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2016 VL 14 IS 10 BP 764 EP 775 DI 10.1002/2016SW001401 PG 12 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EC0PK UT WOS:000387802900007 ER PT J AU Hands, ADP Ryden, KA Mertens, CJ AF Hands, A. D. P. Ryden, K. A. Mertens, C. J. TI The disappearance of the pfotzer-regener maximum in dose equivalent measurements in the stratosphere SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID ATMOSPHERIC RADIATION MODEL AB The NASA Radiation Dosimetry Experiment (RaD-X) successfully deployed four radiation detectors on a high-altitude balloon for a period of approximately 20 h. One of these detectors was the RaySure in-flight monitor, which is a solid-state instrument designed to measure ionizing dose rates to aircrew and passengers. Data from RaySure on RaD-X show absorbed dose rates rising steadily as a function of altitude up to a peak at approximately 60,000 feet, known as the Pfotzer-Regener maximum. Above this altitude absorbed dose rates level off before showing a small decline as the RaD-X balloon approaches its maximum altitude of around 125,000 feet. The picture for biological dose equivalent, however, is very different. At high altitudes the fraction of dose from highly ionizing particles increases significantly. Dose from these particles causes a disproportionate amount of biological damage compared to dose from more lightly ionizing particles, and this is reflected in the quality factors used to calculate the dose equivalent quantity. By calculating dose equivalent from RaySure data, using coefficients derived from previous calibrations, we show that there is no peak in the dose equivalent rate at the Pfotzer-Regener maximum. Instead, the dose equivalent rate keeps increasing with altitude as the influence of dose from primary cosmic rays becomes increasingly important. This result has implications for high altitude aviation, space tourism and, due to its thinner atmosphere, the surface radiation environment on Mars. C1 [Hands, A. D. P.; Ryden, K. A.] Univ Surrey, Surrey Space Ctr, Guildford, Surrey, England. [Mertens, C. J.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Hands, ADP (reprint author), Univ Surrey, Surrey Space Ctr, Guildford, Surrey, England. EM a.hands@surrey.ac.uk FU NASA Science Mission Directorate FX This work was funded by the NASA Science Mission Directorate under the Hands-On Project Experience (HOPE)-4 opportunity. The authors would like to express our gratitude to the whole RaD-X team at NASA Langley Research Center, who guided the RaD-X project to success and supported the inclusion of RaySure on the payload throughout. We would also like to thank Brad Gersey and Rick Wilkins at Prairie View University, and Tore Straume and Terry Lusby at NASA Ames Research Center, for taking responsibility for the RaySure monitor during various instrument cross-calibration experiments in the lead up to the RaD-X flight. The data used are included in the figures and can be made available on request by contacting the corresponding author. NR 19 TC 4 Z9 4 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2016 VL 14 IS 10 BP 776 EP 785 DI 10.1002/2016SW001402 PG 10 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EC0PK UT WOS:000387802900008 ER PT J AU Ridley, AJ De Zeeuw, DL Rastatter, L AF Ridley, A. J. De Zeeuw, D. L. Rastatter, L. TI Rating global magnetosphere model simulations through statistical data-model comparisons SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID IONOSPHERE-THERMOSPHERE MODEL; SOLAR-WIND PARAMETERS; MHD SIMULATION; CHALLENGE; MAGNETOHYDRODYNAMICS; PERFORMANCE; DEPENDENCE; COMMUNITY; RESPONSES; DYNAMICS AB The Community Coordinated Modeling Center (CCMC) was created in 2000 to allow researchers to remotely run simulations and explore the results through online tools. Since that time, over 10,000 simulations have been conducted at CCMC through their runs-on-request service. Many of those simulations have been event studies using global magnetohydrodynamic (MHD) models of the magnetosphere. All of these simulations are available to the general public to explore and utilize. Many of these simulations have had virtual satellites flown through the model to extract the simulation results at the satellite location as a function of time. This study used 662 of these magnetospheric simulations, with a total of 2503 satellite traces, to statistically compare the magnetic field simulated by models to the satellite data. Ratings for each satellite trace were created by comparing the root-mean-square error of the trace with all of the other traces for the given satellite and magnetic field component. The 1-5 ratings, with 5 being the best quality run, are termed stars. From these star ratings, a few conclusions were made: (1) Simulations tend to have a lower rating for higher levels of activity; (2) there was a clear bias in the B-z component of the simulations at geosynchronous orbit, implying that the models were challenged in simulating the inner magnetospheric dynamics correctly; and (3) the highest performing model included a coupled ring current model, which was about 0.15 stars better on average than the same model without the ring current model coupling. C1 [Ridley, A. J.; De Zeeuw, D. L.] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Rastatter, L.] Goddard Space Flight Ctr, Commun Coordinated Modeling Ctr, Greenbelt, MD USA. RP Ridley, AJ (reprint author), Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. EM ridley@umich.edu FU National Science Foundation; National Aeronautical and Space Administration; Air Force Office of Scientific Research; NASA [NNX12AQ40G] FX All data for this study are available through the Community Coordinated Modeling Center website (http://ccmc.gsfc.nasa.gov/) and the Virtual Model Repository website (http://vmr.engin.umich.edu/). This study would not have been possible without the Community Coordinated Modeling Center, which is funded by the National Science Foundation, National Aeronautical and Space Administration, the Air Force Office of Scientific Research, and others. At the University of Michigan, the research was funded by NASA grant NNX12AQ40G. Special thanks go to Casey Steuer, Nicholas Perlongo, Jie Zhu, Xiangyun Zhang, Charles Bussy-Virat, and Nathan Boll, who helped edit this paper. NR 59 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2016 VL 14 IS 10 BP 819 EP 834 DI 10.1002/2016SW001465 PG 16 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EC0PK UT WOS:000387802900011 ER PT J AU Gronoff, G Mertens, CJ Norman, RB Straume, T Lusby, TC AF Gronoff, Guillaume Mertens, Christopher J. Norman, Ryan B. Straume, Tore Lusby, Terry C. TI Assessment of the influence of the RaD-X balloon payload on the onboard radiation detectors SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID GEANT4; RAYS AB The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission, launched on 25 September 2015, provided dosimetric measurements above the Pfotzer maximum. The goal of taking these measurements is to improve aviation radiation models by providing a characterization of cosmic ray primaries, which are the source of radiation exposure at aviation altitudes. The RaD-X science payload consists of four instruments. The main science instrument is a tissue-equivalent proportional counter (TEPC). The other instruments consisted of three solid state silicon dosimeters: Liulin, Teledyne total ionizing dose (TID) and RaySure detectors. The instruments were housed in an aluminum structure protected by a foam cover. The structure partially shielded the detectors from cosmic rays but also created secondary particles, modifying the ambient radiation environment observed by the instruments. Therefore, it is necessary to account for the influence of the payload structure on the measured doses. In this paper, we present the results of modeling the effect of the balloon payload on the radiation detector measurements using a Geant-4 (GEometry ANd Tracking) application. Payload structure correction factors derived for the TEPC, Liulin, and TID instruments are provided as a function of altitude. Overall, the payload corrections are no more than a 7% effect on the radiation environment measurements. C1 [Gronoff, Guillaume; Mertens, Christopher J.; Norman, Ryan B.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Gronoff, Guillaume] SSAI, Hampton, VA USA. [Straume, Tore; Lusby, Terry C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Gronoff, G (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA.; Gronoff, G (reprint author), SSAI, Hampton, VA USA. EM guillaume.p.gronoff@nasa.gov RI Norman, Ryan/D-5095-2017 OI Norman, Ryan/0000-0002-9103-7225 FU NASA Science Mission Directorate under the Hands-On Project Experience (HOPE)-4 opportunity; NASA Langley Research Center (LaRC); NASA Ames Research Center; NASA Wallops Flight Facility FX The RaD-X mission was funded by the NASA Science Mission Directorate under the Hands-On Project Experience (HOPE)-4 opportunity. Civil Servant labor costs were provided by NASA Langley Research Center (LaRC), NASA Ames Research Center, and NASA Wallops Flight Facility. LaRC also contributed to facility costs, science instrument procurements (Science Directorate), and media and outreach costs. Lawrence Livermore National Laboratory provided their facility for radiation source exposure and calibration of the science instruments. All data for this paper is properly cited and referred to in the reference list. The RaD-X fight data are available from the authors upon request (Guillaume.p.Gronoff@nasa.gov and Christopher.J.Mertens@nasa.gov). NR 25 TC 3 Z9 3 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2016 VL 14 IS 10 BP 835 EP 845 DI 10.1002/2016SW001405 PG 11 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EC0PK UT WOS:000387802900012 ER PT J AU Boynton, RJ Balikhin, MA Sibeck, DG Walker, SN Billings, SA Ganushkina, N AF Boynton, R. J. Balikhin, M. A. Sibeck, D. G. Walker, S. N. Billings, S. A. Ganushkina, N. TI Electron flux models for different energies at geostationary orbit SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID OUTPUT PARAMETRIC MODELS; NON-LINEAR SYSTEMS; GEOSYNCHRONOUS ORBIT; INNER MAGNETOSPHERE; RADIATION BELTS; NEURAL-NETWORK; DST MODEL; IDENTIFICATION; INDEX; PREDICTION AB Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1h resolution models for the low-energy electrons measured by GOES (30-50keV, 50-100keV, 100-200keV, 200-350keV, and 350-600keV) and extended the existing >800keV and >2MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%. C1 [Boynton, R. J.; Balikhin, M. A.; Walker, S. N.; Billings, S. A.] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Ganushkina, N.] Finnish Meteorol Inst, Helsinki, Finland. [Ganushkina, N.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Boynton, RJ (reprint author), Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England. EM rboynton85@gmail.com FU European Union [637302] FX Solar wind data were obtained from OMNIweb (http://omniweb.gsfc.nasa.gov/ow_min.html), Dst index data from the World Data Center for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp/index.html), and GOES data from the Nation Oceanic and Atmospheric Administration (http://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html). This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement 637302 PROGRESS. M. Balikhin and N. Ganushkina thank the International Space Science Institute in Bern, Switzerland, for their support of the international teams on "Analysis of Cluster Inner Magnetosphere Campaign data, in application the dynamics of waves and wave-particle interaction within the outer radiation belt" and "Ring current modeling: Uncommon Assumptions and Common Misconceptions." NR 50 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2016 VL 14 IS 10 BP 846 EP 860 DI 10.1002/2016SW001506 PG 15 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EC0PK UT WOS:000387802900013 ER PT J AU Mertens, CJ Gronoff, GP Norman, RB Hayes, BM Lusby, TC Straume, T Tobiska, WK Hands, A Ryden, K Benton, E Wiley, S Gersey, B Wilkins, R Xu, XJ AF Mertens, Christopher J. Gronoff, Guillaume P. Norman, Ryan B. Hayes, Bryan M. Lusby, Terry C. Straume, Tore Tobiska, W. Kent Hands, Alex Ryden, Keith Benton, Eric Wiley, Scott Gersey, Brad Wilkins, Richard Xu, Xiaojing TI Cosmic radiation dose measurements from the RaD-X flight campaign SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID ATTENDANTS; EQUIVALENT; EXPOSURE AB The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees N, 104.2 degrees W) on 25 September 2015. Over 18h of flight data were obtained from each of the four different science instruments at altitudes above 20km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate. C1 [Mertens, Christopher J.; Norman, Ryan B.; Hayes, Bryan M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Gronoff, Guillaume P.] Sci Syst & Applicat Inc, Hampton, VA USA. [Hayes, Bryan M.; Benton, Eric] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Lusby, Terry C.; Straume, Tore] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Tobiska, W. Kent] Space Environm Technol, Los Angeles, CA USA. [Hands, Alex; Ryden, Keith] Univ Surrey, Surrey Space Ctr, Guildford, Surrey, England. [Wiley, Scott] Jacobs Technol Inc, Edwards AFB, CA USA. [Gersey, Brad; Wilkins, Richard] Prairie View A&M Univ, Dept Elect & Comp Engn, Prairie View, TX USA. [Xu, Xiaojing] Natl Inst Aerosp, Hampton, VA USA. RP Mertens, CJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM Christopher.J.Mertens@nasa.gov RI Norman, Ryan/D-5095-2017 OI Norman, Ryan/0000-0002-9103-7225 FU NASA Science Mission Directorate under the Hands-On Project Experience (HOPE)-4 opportunity; NASA Langley Research Center (LaRC); NASA Ames Research Center; NASA Wallops Flight Facility FX The RaD-X mission was funded by the NASA Science Mission Directorate under the Hands-On Project Experience (HOPE)-4 opportunity. Civil Servant labor costs were provided by NASA Langley Research Center (LaRC), NASA Ames Research Center, and NASA Wallops Flight Facility. LaRC also contributed to facility costs, science instrument procurements (Science Directorate), and media and outreach costs. Lawrence Livermore National Laboratory provided their facility for radiation source exposure and calibration of the science instruments. Bryn Jones from SolarMetrics (United Kingdom) provided the TEPC instrument which flew on the NASA Armstrong Flight Research Center's ER-2 aircraft. Columbia Scientific Balloon Facility provided their Cessna aircraft for a dedicated flight to support the RaD-X mission. James Rosenthal from the RaD-X engineering team provided helpful information regarding the discussion of the voltage noise on the TID power supply line. The RaD-X flight data are available from the authors upon request (Christopher.J.Mertens@nasa.gov). NR 52 TC 3 Z9 3 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2016 VL 14 IS 10 BP 874 EP 898 DI 10.1002/2016SW001407 PG 25 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EC0PK UT WOS:000387802900015 ER PT J AU Hateley, S Hosamani, R Bhardwaj, SR Pachter, L Bhattacharya, S AF Hateley, Shannon Hosamani, Ravikumar Bhardwaj, Shilpa R. Pachter, Lior Bhattacharya, Sharmila TI Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity SO GENOMICS LA English DT Article DE Hypergravity; Drosophila melanogaster; Pupae; Transcriptome; Metamorphosis; RNA-Seq ID OXIDATIVE STRESS; ALTERED GRAVITY; GENE-EXPRESSION; IMMUNE-RESPONSE; SPACE-FLIGHT; YOUNG AGE; LONGEVITY; METAMORPHOSIS; EVOLUTIONARY; PROTEINS AB Altered gravity can perturb normal development and induce corresponding changes in gene expression. Understanding this relationship between the physical environment and a biological response is important for NASA's space travel goals. We use RNA-Seq and qRT-PCR techniques to profile changes in early Drosophila melanogaster pupae exposed to chronic hypergravity (3 g, or three times Earth's gravity). During the pupal stage, D. melanogaster rely upon gravitational cues for proper development. Assessing gene expression changes in the pupae under altered gravity conditions helps highlight gravity-dependent genetic pathways. A robust transcriptional response was observed in hypergravity-treated pupae compared to controls, with 1513 genes showing a significant (q < 0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular and biological changes occurring in Drosophila pupae in response to hypergravity; gravity is important for many biological processes on Earth. Published by Elsevier Inc. C1 [Hateley, Shannon; Pachter, Lior] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Hosamani, Ravikumar; Bhardwaj, Shilpa R.; Bhattacharya, Sharmila] NASA, Space Biosci Div, Ames Res Ctr, Mountain View, CA 94035 USA. [Pachter, Lior] Univ Calif Berkeley, Dept Math & Comp Sci, Berkeley, CA 94720 USA. RP Bhattacharya, S (reprint author), NASA, Biomodel Performance & Behav Lab, Space Biosci Div, Ames Res Ctr, Mail Stop 236-5, Mountain View, CA 94035 USA. EM shateley@berkeley.edu; ravikumar.hosamani@nasa.gov; shilpa.r.shankar@gmail.com; lpachter@math.berkeley.edu; sharmila.bhattacharya@nasa.gov FU NASA grants [NNX15AB42G, NNX13AN38G]; NASA Post-Doctoral Program (NPP) Fellowship; NSF Graduate Research Fellowship; NIH S10 Instrumentation Grants [S10RR029668, S10RR027303] FX This work was funded by NASA grants to SB (NNX15AB42G and NNX13AN38G). RH was supported by a NASA Post-Doctoral Program (NPP) Fellowship. SH was supported by the NSF Graduate Research Fellowship. This work used the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 Instrumentation Grants S10RR029668 and S10RR027303. NR 46 TC 0 Z9 0 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0888-7543 EI 1089-8646 J9 GENOMICS JI Genomics PD OCT PY 2016 VL 108 IS 3-4 BP 158 EP 167 DI 10.1016/j.ygeno.2016.09.002 PG 10 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA ED1CD UT WOS:000388580500007 PM 27621057 ER PT J AU Jones, CE Dagestad, KF Breivik, O Holt, B Rohrs, J Christensen, KH Espeseth, M Brekke, C Skrunes, S AF Jones, Cathleen E. Dagestad, Knut-Frode Breivik, Oyvind Holt, Benjamin Roehrs, Johannes Christensen, Kai Hakon Espeseth, Martine Brekke, Camilla Skrunes, Stine TI Measurement and modeling of oil slick transport SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE oil slicks; oil transport modeling; upper ocean currents and mixing; synthetic aperture radar; UAVSAR ID DEEP-WATER-HORIZON; GULF-OF-MEXICO; SYNTHETIC-APERTURE RADAR; STOKES DRIFT; SATELLITE-OBSERVATIONS; SPILL TRAJECTORIES; BREAKING WAVES; SURFACE; CURRENTS; SEA AB Transport characteristics of oil slicks are reported from a controlled release experiment conducted in the North Sea in June 2015, during which mineral oil emulsions of different volumetric oil fractions and a look-alike biogenic oil were released and allowed to develop naturally. The experiment used the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to track slick location, size, and shape for approximate to 8 h following release. Wind conditions during the exercise were at the high end of the range considered suitable for radar-based slick detection, but the slicks were easily detectable in all images acquired by the low noise, L-band imaging radar. The measurements are used to constrain the entrainment length and representative droplet radii for oil elements in simulations generated using the OpenOil advanced oil drift model. Simultaneously released drifters provide near-surface current estimates for the single biogenic release and one emulsion release, and are used to test model sensitivity to upper ocean currents and mixing. Results of the modeling reveal a distinct difference between the transport of the biogenic oil and the mineral oil emulsion, in particular in the vertical direction, with faster and deeper entrainment of significantly smaller droplets of the biogenic oil. The difference in depth profiles for the two types of oils is substantial, with most of the biogenic oil residing below depths of 10 m, compared to the majority of the emulsion remaining above 10 m depth. This difference was key to fitting the observed evolution of the two different types of slicks. C1 [Jones, Cathleen E.; Holt, Benjamin] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Dagestad, Knut-Frode; Breivik, Oyvind; Roehrs, Johannes; Christensen, Kai Hakon] Norwegian Meteorol Inst, Oslo, Norway. [Breivik, Oyvind] Univ Bergen, Inst Geophys, Bergen, Norway. [Espeseth, Martine; Brekke, Camilla; Skrunes, Stine] Arctic Univ Norway, UiT, Dept Phys & Technol, Tromso, Norway. RP Jones, CE (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM cathleen.e.jones@jpl.nasa.gov OI Breivik, Oyvind/0000-0002-2900-8458 FU Norwegian Centre for Integrated Remote Sensing and Forecasting for Arctic Operations (CIRFA) under Research Council of Norway [237906]; Research Council of Norway through the RETROSPECT project [244262] FX We thank the Norwegian Clean Seas Association for Operating Companies (NOFO) for its support in planning and executing the NORSE2015 experiment. The NORSE2015 experiment and the research done by MET Norway was partly financed by the Norwegian Centre for Integrated Remote Sensing and Forecasting for Arctic Operations (CIRFA) under Research Council of Norway grant 237906 and by the Research Council of Norway through the RETROSPECT project (grant no. 244262). This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The UAVSAR data arc courtesy of NASA/JPL-Caltech and are available through http://uaysar.jpl.nasa.gov or the Alaska Satellite Facility (www.asf.alaska.edu). Mention of trade names or commercial products is not an endorsement or recommendation for use by the U.S. Government. NR 66 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD OCT PY 2016 VL 121 IS 10 BP 7759 EP 7775 DI 10.1002/2016JC012113 PG 17 WC Oceanography SC Oceanography GA ED1JS UT WOS:000388602200030 ER PT J AU Schneider, D Molotch, NP AF Schneider, Dominik Molotch, Noah P. TI Real-time estimation of snow water equivalent in the Upper Colorado River Basin using MODIS-based SWE Reconstructions and SNOTEL data SO WATER RESOURCES RESEARCH LA English DT Article DE snow water equivalent; spatial distribution; remote sensing; water resources; water supply ID SPATIAL-DISTRIBUTION; UNITED-STATES; COVER DATA; ROCKY-MOUNTAINS; MODEL; TERRAIN; INTERPOLATION; AIRBORNE; IMPACTS; ENERGY AB Changes in climate necessitate improved snowpack information to better represent anomalous distributions of snow water equivalent (SWE) and improve water resource management. We estimate the spatial distribution of SWE for the Upper Colorado River basin weekly from January to June 2001-2012 in quasireal-time by two regression techniques: a baseline regression of in situ operationally measured point SWE using only physiographic information and regression of these in situ points combining both physiographic information and historical SWE patterns from a remote sensing-based SWE reconstruction model. We compare the baseline regression approach to our new regression in the context of spatial snow surveys and operational snow measuring stations. When compared to independent distributed snow surveys, the new regression reduces the bias of SWE estimates from -5.5% to 0.8%, and RMSE of the SWE estimates by 8% from 0.25 m to 0.23 m. Notable improvements were observed in alpine terrain with bias declining from -38% to only 3.4%, and RMSE was reduced by 13%, from 0.47 to 0.41 m. The mean increase in cross-validated r(2) for the new regression compared to the baseline regression is from 0.22 to 0.33. The largest increase in r(2) in any one year is 0.19, an 83% improvement. The new regression estimates, on average, 31% greater SWE depth than the baseline regression in areas above 3000 m elevation, which contributes up to 66% of annual SWE volume in the driest year. This indicates that the historical SWE patterns from the reconstruction adds information to the interpolation beyond the physiographic conditions represented by the SNOTEL network. Given that previous works using SWE reconstructions were limited to retrospective analyses by necessity, the work presented here represents an important contribution in that it extends SWE reconstructions to real-time applications and illustrates that doing so significantly improves the accuracy of SWE estimates. C1 [Schneider, Dominik; Molotch, Noah P.] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. [Schneider, Dominik; Molotch, Noah P.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Molotch, Noah P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Molotch, NP (reprint author), Univ Colorado, Dept Geog, Boulder, CO 80309 USA.; Molotch, NP (reprint author), Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.; Molotch, NP (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM noah.molotch@colorado.edu OI Schneider, Dominik/0000-0002-5846-5033 FU NASA [NNXIIAK35A]; USDA [2012-67003-19802]; NSF [EAR1141764]; NOAA Western Water Assessment; NSF Niwot Ridge Long-Term Ecological Research; NASA Earth and Space Science Fellowship; National Science Foundation [CNS-0821794]; University of Colorado Boulder FX This work was supported by NASA NNXIIAK35A, USDA 2012-67003-19802, NSF EAR1141764, NOAA Western Water Assessment and NSF Niwot Ridge Long-Term Ecological Research. Part of this work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract from NASA. D. Schneider was also supported by a NASA Earth and Space Science Fellowship. This work utilized the Janus supercomputer, which is supported by the National Science Foundation (award CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver, and the National Center for Atmospheric Research. The authors would like to thank Randy Julander for insightful conversations regarding SNOTEL data and B. Rajagopalan for statistical advice. We also thank GDAL developers [GDAL Development Team, 2015] and the R Core Team [R Core Team, 2015]; in particular authors of the raster [Hijmans, 2015], rgdal [Bivand et al., 2015], reshape2, and tidyr [Wickham, 2007], plyr and dplyr [Wickham, 2011], ggplot2 [Wickham, 2009] and MASS [Venables and Ripley, 2002] packages. All code and data are available upon request at noah.molotch@colorado.edu. NR 65 TC 0 Z9 0 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2016 VL 52 IS 10 BP 7892 EP 7910 DI 10.1002/2016WR019067 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA EC9VW UT WOS:000388493400021 ER PT J AU Leach, N AF Leach, Neil TI The Culture of the Copy SO ARCHITECTURAL DESIGN LA English DT Article C1 [Leach, Neil] European Grad Sch, Digital Design, Saas Fee, Switzerland. [Leach, Neil] Harvard Grad Sch Design, Cambridge, MA 02138 USA. [Leach, Neil] Florida Int Univ, Miami, FL 33199 USA. [Leach, Neil] Tongji Univ, Shanghai, Peoples R China. [Leach, Neil] NASA, Washington, DC 20546 USA. RP Leach, N (reprint author), European Grad Sch, Digital Design, Saas Fee, Switzerland.; Leach, N (reprint author), Harvard Grad Sch Design, Cambridge, MA 02138 USA.; Leach, N (reprint author), Florida Int Univ, Miami, FL 33199 USA.; Leach, N (reprint author), Tongji Univ, Shanghai, Peoples R China.; Leach, N (reprint author), NASA, Washington, DC 20546 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 0003-8504 EI 1554-2769 J9 ARCHIT DESIGN JI Archit. Des. PD OCT PY 2016 VL 86 IS 5 BP 126 EP 133 DI 10.1002/ad.2098 PG 8 WC Architecture SC Architecture GA EC0QV UT WOS:000387806600004 ER PT J AU Gil, Y David, CH Demir, I Essawy, BT Fulweiler, RW Goodall, JL Karlstrom, L Lee, H Mills, HJ Oh, JH Pierce, SA Pope, A Tzeng, MW Villamizar, SR Yu, X AF Gil, Yolanda David, Cedric H. Demir, Ibrahim Essawy, Bakinam T. Fulweiler, Robinson W. Goodall, Jonathan L. Karlstrom, Leif Lee, Huikyo Mills, Heath J. Oh, Ji-Hyun Pierce, Suzanne A. Pope, Allen Tzeng, Mimi W. Villamizar, Sandra R. Yu, Xuan TI Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance SO EARTH AND SPACE SCIENCE LA English DT Review DE geoscience paper of the future; reproducibility; data sharing; software reuse; provenance; workflow ID REPRODUCIBLE RESEARCH; OPEN SCIENCE; REPEATABILITY; ENVIRONMENT; SUPPORT; DESIGN; SYSTEM; CODE; TRANSPARENCY; INFORMATION AB Geoscientists now live in a world rich with digital data and methods, and their computational research cannot be fully captured in traditional publications. The Geoscience Paper of the Future (GPF) presents an approach to fully document, share, and cite all their research products including data, software, and computational provenance. This article proposes best practices for GPF authors to make data, software, and methods openly accessible, citable, and well documented. The publication of digital objects empowers scientists to manage their research products as valuable scientific assets in an open and transparent way that enables broader access by other scientists, students, decision makers, and the public. Improving documentation and dissemination of research will accelerate the pace of scientific discovery by improving the ability of others to build upon published work. C1 [Gil, Yolanda] Univ Southern Calif, Informat Sci Inst, Los Angeles, CA 90007 USA. [Gil, Yolanda] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90007 USA. [David, Cedric H.; Lee, Huikyo; Oh, Ji-Hyun] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Demir, Ibrahim] Univ Iowa, IIHR Hydrosci & Engn Inst, Iowa City, IA USA. [Essawy, Bakinam T.; Goodall, Jonathan L.] Univ Virginia, Dept Civil & Environm Engn, Charlottesville, VA USA. [Fulweiler, Robinson W.] Boston Univ, Dept Biol, Dept Earth & Environm, 5 Cummington St, Boston, MA 02215 USA. [Karlstrom, Leif] Univ Oregon, Dept Earth Sci, Eugene, OR 97403 USA. [Mills, Heath J.] Univ Houston Clear Lake, Div Nat Sci, Houston, TX USA. [Oh, Ji-Hyun] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA USA. [Pierce, Suzanne A.] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA. [Pierce, Suzanne A.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Pope, Allen] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Pope, Allen] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Tzeng, Mimi W.] Dauphin Isl Sea Lab, Data Management Ctr, Dauphin Isl, AL USA. [Villamizar, Sandra R.] Univ Pontificia Bolivariana, Medellin, Colombia. [Yu, Xuan] Univ Delaware, Dept Geol Sci, Newark, DE USA. RP Gil, Y (reprint author), Univ Southern Calif, Informat Sci Inst, Los Angeles, CA 90007 USA.; Gil, Y (reprint author), Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90007 USA. EM gil@isi.edu OI Essawy, Bakinam/0000-0003-2295-7981; Lee, Huikyo/0000-0003-3754-3204; Goodall, Jonathan/0000-0002-1112-4522 NR 166 TC 3 Z9 3 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 EARTH SPACE SCI JI Earth Space Sci. PD OCT PY 2016 VL 3 IS 10 BP 388 EP 415 DI 10.1002/2015EA000136 PG 28 WC Geosciences, Multidisciplinary SC Geology GA EC0LZ UT WOS:000387793900001 ER PT J AU DeLong, SB Donnellan, A Ponti, DJ Rubin, RS Lienkaemper, JJ Prentice, CS Dawson, TE Seitz, G Schwartz, DP Hudnut, KW Rosa, C Pickering, A Parker, JW AF DeLong, Stephen B. Donnellan, Andrea Ponti, Daniel J. Rubin, Ron S. Lienkaemper, James J. Prentice, Carol S. Dawson, Timothy E. Seitz, Gordon Schwartz, David P. Hudnut, Kenneth W. Rosa, Carla Pickering, Alexandra Parker, Jay W. TI Tearing the terroir: Details and implications of surface rupture and deformation from the 24 August 2014 M6.0 South Napa earthquake, California SO EARTH AND SPACE SCIENCE LA English DT Article DE earthquake; tectonics; surface rupture; deformation; UAVSAR ID FRANCISCO BAY-REGION; FAULTS; SLIP AB The M(w)6.0 South Napa earthquake of 24 August 2014 caused slip on several active fault strands within the West Napa Fault Zone (WNFZ). Field mapping identified 12.5km of surface rupture. These field observations, near-field geodesy and space geodesy, together provide evidence for more than similar to 30km of surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a similar to 7km section north of the epicenter, the surface rupture is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp. The rupture continued northward onto at least four other traces through subparallel ridges and valleys. Postseismic slip exceeded coseismic slip along much of the southern part of the main rupture trace with total slip 1year postevent approaching 0.5m at locations where only a few centimeters were measured the day of the earthquake. Analysis of airborne interferometric synthetic aperture radar data provides slip distributions along fault traces, indicates connectivity and extent of secondary traces, and confirms that postseismic slip only occurred on the main trace of the fault, perhaps indicating secondary structures ruptured as coseismic triggered slip. Previous mapping identified the WNFZ as a zone of distributed faulting, and this was generally borne out by the complex 2014 rupture pattern. Implications for hazard analysis in similar settings include the need to consider the possibility of complex surface rupture in areas of complex topography, especially where multiple potentially Quaternary-active fault strands can be mapped. C1 [DeLong, Stephen B.; Ponti, Daniel J.; Lienkaemper, James J.; Prentice, Carol S.; Schwartz, David P.; Rosa, Carla; Pickering, Alexandra] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Donnellan, Andrea; Parker, Jay W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rubin, Ron S.; Dawson, Timothy E.; Seitz, Gordon] Calif Geol Survey, Menlo Pk, CA USA. [Hudnut, Kenneth W.] US Geol Survey, Pasadena, CA 91106 USA. RP DeLong, SB (reprint author), US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM sdelong@usgs.gov NR 31 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 EARTH SPACE SCI JI Earth Space Sci. PD OCT PY 2016 VL 3 IS 10 BP 416 EP 430 DI 10.1002/2016EA000176 PG 15 WC Geosciences, Multidisciplinary SC Geology GA EC0LZ UT WOS:000387793900002 ER PT J AU David, CH Gil, Y Duffy, CJ Peckham, SD Venayagamoorthy, SK AF David, Cedric H. Gil, Yolanda Duffy, Christopher J. Peckham, Scott D. Venayagamoorthy, S. Karan TI An introduction to the special issue on Geoscience Papers of the Future SO EARTH AND SPACE SCIENCE LA English DT Editorial Material DE GPF; open; data; software; provenance; reproducibility ID OPEN SCIENCE; CODE; REPRODUCIBILITY; WORKFLOW AB Advocates of enhanced quality for published scientific results are increasingly voicing the need for further transparency of data and software for scientific reproducibility. However, such advanced digital scholarship can appear perplexing to geoscientists that are seduced by the concept of open science yet wonder about the exact mechanics and implications of the associated efforts. This special issue of Earth and Space Science entitled Geoscience Papers of the Future includes a review of existing best practices for digital scholarship and bundles a set of example articles that share their digital research products and reflect on the process of opening their scientific approach in a common quest for reproducible science. C1 [David, Cedric H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Gil, Yolanda] Univ Southern Calif, Informat Sci Inst, Los Angeles, CA USA. [Gil, Yolanda] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA USA. [Duffy, Christopher J.] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. [Peckham, Scott D.] Univ Colorado, Inst Arct & Alpine Res, Boulder, CO 80309 USA. [Venayagamoorthy, S. Karan] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80523 USA. RP David, CH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM cedric.david@jpl.nasa.gov NR 27 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 EARTH SPACE SCI JI Earth Space Sci. PD OCT PY 2016 VL 3 IS 10 BP 441 EP 444 DI 10.1002/2016EA000201 PG 4 WC Geosciences, Multidisciplinary SC Geology GA EC0LZ UT WOS:000387793900004 ER PT J AU Reddy, TR Zheng, XY Roden, EE Beard, BL Johnson, CM AF Reddy, Thiruchelvi R. Zheng, Xin-Yuan Roden, Eric E. Beard, Brian L. Johnson, Clark M. TI Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Si isotopes; Fe-Si gels; Microbial reduction; Fractionation; BIFs ID MULTI-DIRECTION APPROACH; BILLION YEARS AGO; AQUEOUS FE(II); DISSIMILATORY FE(III); SIO4 LIGANDS; GEOBACTER-SULFURREDUCENS; CRYSTAL-CHEMISTRY; OXIDE REDUCTION; WEST GREENLAND; ATOM EXCHANGE AB Microbial dissimilatory iron reduction (DIR) is a deeply rooted metabolism in the Bacteria and Archaea. In the Archean and Proterozoic, the most likely electron acceptor for DIR in marine environments was Fe(III)-Si gels. It has been recently suggested that the Fe and Si cycles were coupled through sorption of aqueous Si to iron oxides/hydroxides, and through release of Si during DIR. Evidence for the close association of the Fe and Si cycles comes from banded iron formations (BIFs), which consist of alternating bands of Fe-bearing minerals and quartz ( chert). Although there has been extensive study of the stable Fe isotope fractionations produced by DIR of Fe(III)-Si gels, as well as studies of stable Fe isotope fractionations in analogous abiologic systems, no studies to date have investigated stable Si isotope fractionations produced by DIR. In this study, the stable Si isotope fractionations produced by microbial reduction of Fe(III)-Si gels were investigated in simulated artificial Archean seawater (AAS), using the marine iron-reducing bacterium Desulfuromonas acetoxidans. Microbial reduction produced very large Si-30/Si-28 isotope fractionations between the solid and aqueous phase at similar to 23 degrees C, where Delta Si-30(solid-aqueous) isotope fractionations of -3.35 +/- 0.16% and -3.46 +/- 0.09% were produced in two replicate experiments at 32% Fe( III) reduction (solid-phase Fe(II)/Fe-Total = 0.32). This isotopic fractionation was substantially greater than that observed in two abiologic controls that had solid-phase Fe(II)/Fe-Total = 0.02-0.03, which produced Delta Si-30(solid-aqueous) isotope fractionations of -2.83 +/- 0.24% and -2.65 +/- 0.28%. In a companion study, the equilibrium Delta Si-30(solid-) aqueous isotope fractionation was determined to be -2.3% for solid-phase Fe(II)/Fe-Total = 0. Collectively, these results highlight the importance of Fe(II) in Fe-Si gels in producing large changes in Si isotope fractionations. These results suggest that DIR should produce highly negative delta Si-30 values in quartz that is the product of diagenetic reactions associated with Fe-Si gels. Such Si isotope compositions would be expected to be associated with Fe-bearing minerals that contain Fe(II), indicative of reduction, such as magnetite. Support for this model comes from recent in situ Si isotope studies of oxide-facies BIFs, where quartz in magnetiterich samples have significantly more negative delta Si-30 values than quartz in hematite- rich samples. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Reddy, Thiruchelvi R.] Univ Wisconsin Madison, Dept Geosci, Madison, WI 53706 USA. NASA, Astrobiol Inst, Mountain View, CA USA. RP Reddy, TR (reprint author), Univ Wisconsin Madison, Dept Geosci, Madison, WI 53706 USA. EM trreddy@wisc.edu OI Zheng, Xin-Yuan/0000-0002-7959-8046 FU NASA Astrobiology Institute [NNA13AA94A]; National Science Foundation [1122855] FX The authors thank Elizabeth Percak-Dennett for her insights in the Fe-Si gel synthesis and microbial culture growth procedures and Rie Fredrickson and Phillip Gopon for guidance on XRD and SEM analysis respectively. Comments made by Michael Tatzel, two anonymous reviewere, and AE Edwin Schauble have improved the manuscript. This work was supported by the NASA Astrobiology Institute under grant NNA13AA94A, and National Science Foundation grant 1122855. NR 69 TC 0 Z9 0 U1 11 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 1 PY 2016 VL 190 BP 85 EP 99 DI 10.1016/j.gca.2016.06.035 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA ED4FH UT WOS:000388802600006 ER PT J AU Miller, SM Miller, CE Commane, R Chang, RYW Dinardo, SJ Henderson, JM Karion, A Lindaas, J Melton, JR Miller, JB Sweeney, C Wofsy, SC Michalak, AM AF Miller, Scot M. Miller, Charles E. Commane, Roisin Chang, Rachel Y-W Dinardo, Steven J. Henderson, John M. Karion, Anna Lindaas, Jakob Melton, Joe R. Miller, John B. Sweeney, Colm Wofsy, Steven C. Michalak, Anna M. TI A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID COMPARISON PROJECT WETCHIMP; HIGH-SPATIAL-RESOLUTION; GLOBAL WETLAND EXTENT; PERMAFROST CARBON; GEOSTATISTICAL APPROACH; NORTHERN LAKES; SATELLITE DATA; CLIMATE-CHANGE; PRESENT STATE; STILT MODEL AB Methane (CH4) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH4 fluxes across Alaska for 2012-2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH4 observations at the statewide, multiyear scale more effectively than global-scale process-based models. This result points to a simple and effective way of representing CH4 fluxes across Alaska. It further suggests that process-based models can improve their representation of key processes and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH4 observations. In addition, we find that CH4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 +/- 0.26 Tg CH4 (for May-October). Global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland extent in regions without visible surface water, and these models prematurely shut down CH4 fluxes at soil temperatures near 0 degrees C. Lastly, we find that the seasonality of CH4 fluxes varied during 2012-2014 but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation. C1 [Miller, Scot M.; Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Miller, Charles E.; Dinardo, Steven J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Commane, Roisin; Wofsy, Steven C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Chang, Rachel Y-W] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. [Henderson, John M.] Atmospher & Environm Res Inc, Lexington, MA USA. [Karion, Anna] NIST, Gaithersburg, MD 20899 USA. [Lindaas, Jakob] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Melton, Joe R.] Environm & Climate Change Canada, Climate Res Div, Victoria, BC, Canada. [Miller, John B.; Sweeney, Colm] NOAA, Global Monitoring Div, Boulder, CO USA. [Miller, John B.; Sweeney, Colm] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Miller, SM (reprint author), Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. EM scot.m.miller@gmail.com OI Lindaas, Jakob/0000-0003-1872-3162 FU Carnegie Distinguished Post-doctoral Fellowship; National Aeronautics and Space Administration FX This work was supported by the Carnegie Distinguished Post-doctoral Fellowship. We thank Thomas Nehrkorn of Atmospheric and Environmental Research for his help with the PWRF-STILT model. Computing resources for this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. A portion of the research described in this paper was performed for the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), an Earth Ventures (EVS-1) investigation, under contract with the National Aeronautics and Space Administration. The CARVE data used in this study are available at http://dx.doi.org/10.3334/ORNLDAAC/1402 and https://ilma.jpl.nasa.gov/portal/browse/. NR 68 TC 0 Z9 0 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD OCT PY 2016 VL 30 IS 10 BP 1441 EP 1453 DI 10.1002/2016GB005419 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA EC9IK UT WOS:000388458000004 PM 28066129 ER PT J AU Paielli, RA AF Paielli, Russell A. TI Trajectory Specification for Terminal Air Traffic: Arrival Spacing SO JOURNAL OF AEROSPACE INFORMATION SYSTEMS LA English DT Article ID AIRSPACE AB Trajectory specification is the explicit bounding and control of aircraft trajectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and are based on the aircraft navigation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time, even in the event of an air traffic control system or datalink failure; hence, it can help to achieve the high level of safety and reliability needed for air traffic control automation. As a more proactive form of air traffic control, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both en route airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents algorithms and software for achieving a specified delay of runway arrival time. C1 [Paielli, Russell A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Paielli, Russell A.] Code AFT,MS 210-10, Moffett Field, CA USA. RP Paielli, RA (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Paielli, RA (reprint author), Code AFT,MS 210-10, Moffett Field, CA USA. EM Russ.Paielli@nasa.gov NR 28 TC 0 Z9 0 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 EI 2327-3097 J9 J AEROSP INFORM SYST JI J. Aerosp. Inf. Syst. PD OCT PY 2016 VL 13 IS 10 BP 381 EP 392 DI 10.2514/1.I010402 PG 12 WC Engineering, Aerospace SC Engineering GA EC5TV UT WOS:000388200300001 ER PT J AU Pieters, CM Noble, SK AF Pieters, Carle M. Noble, Sarah K. TI Space weathering on airless bodies SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Review DE space weathering; Moon; asteroids ID ASTEROID 433 EROS; NANOPHASE METALLIC IRON; PULSE-LASER IRRADIATION; ITOKAWA DUST PARTICLES; X-RAY SPECTROMETER; S-TYPE ASTEROIDS; ORDINARY CHONDRITES; MERCURYS SURFACE; 1 CERES; 4 VESTA AB Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produces different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, and outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research. C1 [Pieters, Carle M.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Noble, Sarah K.] NASA Headquarters, Planetary Sci Div, Washington, DC USA. RP Pieters, CM (reprint author), Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. EM Carle_Pieters@brown.edu FU NASA SSERVI [NNA14AB01A] FX Data for this paper are properly cited, and specific files are identified in figure captions and can be found through the references identified or PDS. RELAB data can be found through http://www.planetary.brown.edu/relabdocs/relab.htm. We especially thank Lindsay Keller for contributing new TEM image (Figure 3b). The comments and suggestions by David Blewett and Paul Lucey were much appreciated and strengthened the final manuscript. This work has been supported through a NASA SSERVI cooperative agreement NNA14AB01A. NR 130 TC 1 Z9 1 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2016 VL 121 IS 10 BP 1865 EP 1884 DI 10.1002/2016JE005128 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC0MS UT WOS:000387795800003 ER PT J AU Fassett, CI AF Fassett, Caleb I. TI Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Review DE crater statistics; chronology; planetary surfaces ID SIZE-FREQUENCY DISTRIBUTION; LATE HEAVY BOMBARDMENT; POLAR LAYERED DEPOSITS; LOBATE DEBRIS APRONS; 1ST MESSENGER FLYBY; NEAR-EARTH OBJECTS; LUNAR MARE BASALTS; TERRESTRIAL PLANETS; RESURFACING HISTORY; SMOOTH PLAINS AB Analyzing the density of impact craters on planetary surfaces is the only known technique for learning their ages remotely. As a result, crater statistics have been widely analyzed on the terrestrial planets, since the timing and rates of activity are critical to understanding geologic process and history. On the Moon, the samples obtained by the Apollo and Luna missions provide critical calibration points for cratering chronology. On Mercury, Venus, and Mars, there are no similarly firm anchors for cratering rates, but chronology models have been established by extrapolating from the lunar record or by estimating their impactor fluxes in other ways. This review provides a current perspective on crater population measurements and their chronological interpretation. Emphasis is placed on how ages derived from crater statistics may be contingent on assumptions that need to be considered critically. In addition, ages estimated from crater populations are somewhat different than ages from more familiar geochronology tools (e.g., radiometric dating). Resurfacing processes that remove craters from the observed population are particularly challenging to account for, since they can introduce geologic uncertainty into results or destroy information about the formation age of a surface. Regardless of these challenges, crater statistics measurements have resulted in successful predictions later verified by other techniques, including the age of the lunar maria, the existence of a period of heavy bombardment in the Moon's first billion years, and young volcanism on Mars. C1 [Fassett, Caleb I.] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. [Fassett, Caleb I.] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Fassett, CI (reprint author), Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA.; Fassett, CI (reprint author), NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM cfassett@mtholyoke.edu FU NASA [NNX14AG56G, NNX14AR88G, NNX14AR93G, NNX15AM40G] FX This contribution was supported by NASA grants NNX14AG56G, NNX14AR88G, NNX14AR93G, and NNX15AM40G. Discussions with colleagues at the 2015 Workshop on Issues in Crater Studies and the Dating of Planetary Surfaces contributed to my thinking on many of these topics and were useful in helping to motivate this work. Greg Michael, Simone Marchi, and Stephanie Werner are acknowledged for their diligent and helpful formal reviews, and Patricia Chaffey and Jim Head provided useful informal reviews. All data in this paper are available upon request from the author. This paper is dedicated to the memory of Gerhard Neukum (1944-2014). NR 227 TC 0 Z9 0 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2016 VL 121 IS 10 BP 1900 EP 1926 DI 10.1002/2016JE005094 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC0MS UT WOS:000387795800005 ER PT J AU Ehlmann, BL Anderson, FS Andrews-Hanna, J Catling, DC Christensen, PR Cohen, BA Dressing, CD Edwards, CS Elkins-Tanton, LT Farley, KA Fassett, CI Fischer, WW Fraeman, AA Golombek, MP Hamilton, VE Hayes, AG Herd, CDK Horgan, B Hu, R Jakosky, BM Johnson, JR Kasting, JF Kerber, L Kinch, KM Kite, ES Knutson, HA Lunine, JI Mahaffy, PR Mangold, N McCubbin, FM Mustard, JF Niles, PB Quantin-Nataf, C Rice, MS Stack, KM Stevenson, DJ Stewart, ST Toplis, MJ Usui, T Weiss, BP Werner, SC Wordsworth, RD Wray, JJ Yingst, RA Yung, YL Zahnle, KJ AF Ehlmann, B. L. Anderson, F. S. Andrews-Hanna, J. Catling, D. C. Christensen, P. R. Cohen, B. A. Dressing, C. D. Edwards, C. S. Elkins-Tanton, L. T. Farley, K. A. Fassett, C. I. Fischer, W. W. Fraeman, A. A. Golombek, M. P. Hamilton, V. E. Hayes, A. G. Herd, C. D. K. Horgan, B. Hu, R. Jakosky, B. M. Johnson, J. R. Kasting, J. F. Kerber, L. Kinch, K. M. Kite, E. S. Knutson, H. A. Lunine, J. I. Mahaffy, P. R. Mangold, N. McCubbin, F. M. Mustard, J. F. Niles, P. B. Quantin-Nataf, C. Rice, M. S. Stack, K. M. Stevenson, D. J. Stewart, S. T. Toplis, M. J. Usui, T. Weiss, B. P. Werner, S. C. Wordsworth, R. D. Wray, J. J. Yingst, R. A. Yung, Y. L. Zahnle, K. J. TI The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Review DE Mars history; planetary evolution; habitability; sustainability; terrestrial exoplanets ID NORTHWEST AFRICA 7034; POLAR LAYERED DEPOSITS; EARLY MARTIAN CLIMATE; MAWRTH-VALLIS REGION; SURFACE GROUND ICE; GALE CRATER; ATMOSPHERIC EVOLUTION; EARLY DIFFERENTIATION; MANTLE CONVECTION; MERIDIANI-PLANUM AB What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extrasolar planets yet to be discovered. C1 [Ehlmann, B. L.; Dressing, C. D.; Farley, K. A.; Fischer, W. W.; Knutson, H. A.; Stevenson, D. J.; Yung, Y. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, B. L.; Fraeman, A. A.; Golombek, M. P.; Hu, R.; Kerber, L.; Stack, K. M.; Yung, Y. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Anderson, F. S.; Andrews-Hanna, J.; Hamilton, V. E.] Southwest Res Inst, Dept Space Studies, Boulder, CO USA. [Catling, D. C.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Christensen, P. R.; Elkins-Tanton, L. T.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Cohen, B. A.; Fassett, C. I.] NASA Marshall Space Flight Ctr, Huntsville, AL USA. [Dressing, C. D.] NASA, Washington, DC 20546 USA. [Edwards, C. S.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ USA. [Hayes, A. G.; Lunine, J. I.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Hayes, A. G.; Lunine, J. I.] Cornell Univ, Carl Sagan Inst, Ithaca, NY USA. [Herd, C. D. K.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada. [Horgan, B.] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Kasting, J. F.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Kinch, K. M.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Kite, E. S.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. [Mahaffy, P. R.] NASA Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD USA. [Mangold, N.] CNRS, Lab Planetol & Geodynam Nantes, UMR6112, Nantes 3, France. [Mangold, N.] Univ Nantes, Nantes 3, France. [McCubbin, F. M.; Niles, P. B.] NASA Johnson Space Ctr, Houston, TX USA. [Mustard, J. F.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Quantin-Nataf, C.] Univ Lyon 1, CNRS, Ecole Normale Super Lyon, Lab Geol Lyon Terre Planetes Environm, Villeurbanne, France. [Rice, M. S.] Western Washington Univ, Dept Phys & Astron, Dept Geol, Bellingham, WA 98225 USA. [Stewart, S. T.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Toplis, M. J.] Univ Toulouse, UPS, CNRS, IRAP, Toulouse, France. [Usui, T.] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo, Japan. [Weiss, B. P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Werner, S. C.] Univ Oslo, Dept Geosci, Ctr Earth Evolut & Dynam, Oslo, Norway. [Wordsworth, R. D.] Harvard Univ, Harvard Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Wordsworth, R. D.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Wray, J. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Yingst, R. A.] Planetary Sci Inst, Tucson, AZ USA. [Zahnle, K. J.] NASA Ames Res Ctr, Space Sci Div, Moffett Field, CA USA. RP Ehlmann, BL (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.; Ehlmann, BL (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM ehlmann@caltech.edu RI Wray, James/B-8457-2008; Quantin, Cathy/H-1516-2014; Kinch, Kjartan/C-5742-2015 OI Wray, James/0000-0001-5559-2179; Kinch, Kjartan/0000-0002-4629-8880 NR 317 TC 0 Z9 0 U1 18 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2016 VL 121 IS 10 BP 1927 EP 1961 DI 10.1002/2016JE005134 PG 35 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC0MS UT WOS:000387795800006 ER PT J AU Roos-Serote, M Atreya, SK Webster, CR Mahaffy, PR AF Roos-Serote, M. Atreya, S. K. Webster, C. R. Mahaffy, P. R. TI Cometary origin of atmospheric methane variations on Mars unlikely SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Mars; meteorite; methane; comet; atmosphere ID MARTIAN ATMOSPHERE; SENSITIVE SEARCH; UPPER LIMITS; SPECTROSCOPY; LIFE; H2CO; HCL; CH4 AB The detection of methane in the atmosphere of Mars was first reported in 2004. Since then a number of independent observations of methane have been reported, all showing temporal variability. Up until recently, the origin of methane was attributed to sources either indigenous to Mars or exogenous, where methane is a UV degradation byproduct of organics falling on to the surface. Most recently, a new hypothesis has been proposed that argues that the appearance and variation of methane are correlated with specific meteor events at Mars. Indeed, extraplanetary material can be brought to a planet when it passes through a meteoroid stream left behind by cometary bodies orbiting the Sun. This occurs repeatedly at specific times in a planet's year as streams tend to be fairly stable in space. In this paper, we revisit this latest hypothesis by carrying out a complete analysis of all available data on Mars atmospheric methane, including the very recent data not previously published, together with all published predicted meteor events for Mars. Whether we consider the collection of individual data points and predicted meteor events, whether we apply statistical analysis, or whether we consider different time spans between high methane measurements and the occurrence of meteor events, we find no compelling evidence for any correlation between atmospheric methane and predicted meteor events. C1 [Roos-Serote, M.; Atreya, S. K.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Webster, C. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Mahaffy, P. R.] Goddard Space Flight Ctr, Greenbelt, MD USA. RP Atreya, SK (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. EM atreya@umich.edu FU NASA MSL/SAM project FX Gloria Kim helped with literature search and preparation of table entries. We thank F. Pijpers for help with the best choice of statistical methods. We are grateful to the two referees for their constructive comments. This research was supported by the NASA MSL/SAM project. Part of the research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). All the data used in this analysis can be found in Tables 1-3. NR 26 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2016 VL 121 IS 10 BP 2108 EP 2119 DI 10.1002/2016JE005076 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC0MS UT WOS:000387795800014 ER PT J AU McCubbin, FM Boyce, JW Novak-Szabo, T Santos, AR Tartese, R Muttik, N Domokos, G Vazquez, J Keller, LP Moser, DE Jerolmack, DJ Shearer, CK Steele, A Elardo, SM Rahman, Z Anand, M Delhaye, T Agee, CB AF McCubbin, Francis M. Boyce, Jeremy W. Novak-Szabo, Timea Santos, Alison R. Tartese, Romain Muttik, Nele Domokos, Gabor Vazquez, Jorge Keller, Lindsay P. Moser, Desmond E. Jerolmack, Douglas J. Shearer, Charles K. Steele, Andrew Elardo, Stephen M. Rahman, Zia Anand, Mahesh Delhaye, Thomas Agee, Carl B. TI Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE apatite; zircon; clast; Mars; sedimentary; transport ID IN-SITU EVIDENCE; GUSEV CRATER; MERIDIANI-PLANUM; SPIRIT ROVER; UPPER-MANTLE; EARLY MARS; SHERGOTTITE YAMATO-980459; CHASSIGNY METEORITE; PETROGENETIC MODEL; RAMAN-SPECTROSCOPY AB The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past hydrothermal activity. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500-800 degrees C, evident by groundmass texture and concordance of similar to 1.5Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification. C1 [McCubbin, Francis M.; Keller, Lindsay P.] NASA Johnson Space Ctr, Houston, TX 77058 USA. [McCubbin, Francis M.; Boyce, Jeremy W.; Santos, Alison R.; Muttik, Nele; Shearer, Charles K.; Agee, Carl B.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Boyce, Jeremy W.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Novak-Szabo, Timea; Domokos, Gabor] Budapest Univ Technol & Econ, Dept Mech Mat & Struct, Budapest, Hungary. [Novak-Szabo, Timea; Jerolmack, Douglas J.] Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA. [Tartese, Romain] UPMC, Museum Natl Hist Nat, Inst Mineral Phys Mat & Cosmochim, Sorbonne Univ,CNRS, Paris, France. [Tartese, Romain] IRD, Paris, France. [Tartese, Romain; Anand, Mahesh] Open Univ, Dept Phys Sci, Walton Hall, Milton Keynes, Bucks, England. [Vazquez, Jorge] US Geol Survey, Menlo Pk, CA USA. [Vazquez, Jorge] Stanford Univ, Stanford USGS Ion Microprobe Lab, Stanford, CA 94305 USA. [Moser, Desmond E.] Univ Western Ontario, Dept Earth Sci, London, ON, Canada. [Steele, Andrew; Elardo, Stephen M.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. [Rahman, Zia] Jacobs NASA Johnson Space Ctr, Sci Dept, Houston, TX USA. [Anand, Mahesh] Nat Hist Museum, Dept Earth Sci, London, England. [Delhaye, Thomas] Univ Rennes 1, CNRS, OSUR, Plateforme NanoSIMS,UMR 6118, Rennes, France. RP McCubbin, FM (reprint author), NASA Johnson Space Ctr, Houston, TX 77058 USA.; McCubbin, FM (reprint author), Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. EM francis.m.mccubbin@nasa.gov RI Elardo, Stephen/E-5865-2010; OI Tartese, Romain/0000-0002-3490-9875 FU NASA Mars Fundamental Research Program [NNX13AK44G]; NASA Early Career Fellowship [NNX13AG40G]; NASA Cosmochemistry Program [NNX13AH85G, NNX14AI23G]; Hungarian NKFIH [119245]; Imre Koranyi Fellowship; UK Science and Technology Facilities Council [ST/I001298/1]; NSERC FX All of the data used in this study can be found within the contents of this manuscript or within the supporting information, which contain Figures S1-S15 and Tables S1-S8. We acknowledge the curatorial staff at the Institute of Meteoritics for allowing the use of thin sections of NWA 7034 during this study. We would also like to thank Seth Burgess, Arya Udry, and Axel Wittman for their constructive reviews that helped to improve the quality and clarity of the manuscript. We also want to thank Justin Filiberto for the editorial handling of the manuscript. We also acknowledge the efforts of two anonymous reviewers that provided important feedback on a prior verssion of this manuscript. This work was supported by the NASA Mars Fundamental Research Program grant NNX13AK44G awarded to F.M.M. J.W.B. acknowledges support from a NASA Early Career Fellowship (NNX13AG40G). C.K.S., A.S., and C.B.A. acknowledge support from the NASA Cosmochemistry Program (NNX13AH85G to C.K.S. and NNX14AI23G to C.B.A.). G.D. and T.N.S. acknowledge Hungarian NKFIH grant 119245 and T.N.S. also acknowledges support by the Imre Koranyi Fellowship. R.T. and M.A. acknowledge financial support from a UK Science and Technology Facilities Council research grant (#ST/I001298/1) to M.A.. NSERC Discovery Grant funding to D.E.M. is gratefully acknowledged. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 156 TC 3 Z9 3 U1 11 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2016 VL 121 IS 10 BP 2120 EP 2149 DI 10.1002/2016JE005143 PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC0MS UT WOS:000387795800015 ER PT J AU Zimmerman, MI Farrell, WM Hartzell, CM Wang, X Horanyi, M Hurley, DM Hibbitts, K AF Zimmerman, M. I. Farrell, W. M. Hartzell, C. M. Wang, X. Horanyi, M. Hurley, D. M. Hibbitts, K. TI Grain-scale supercharging and breakdown on airless regoliths SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE supercharging; regolith; airless; Moon; asteroid; solar wind ID TERMINATOR REGION; SIMULANT SURFACE; LUNAR SUNSET; PLASMA WAKE; DUST; SIMULATIONS; LEVITATION; ASTEROIDS; COHESION; MOON AB Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies. C1 [Zimmerman, M. I.; Hurley, D. M.; Hibbitts, K.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Farrell, W. M.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Hartzell, C. M.] Univ Maryland, Dept Aerosp Engn, College Pk, MD 20742 USA. [Wang, X.; Horanyi, M.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. RP Zimmerman, MI (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM michael.zimmerman@jhuapl.edu RI Farrell, William/I-4865-2013 FU NASA Solar System Exploration Research Virtual Institute through NASA Goddard Space Flight Center FX M. I. Zimmerman gratefully acknowledges funding by the NASA Solar System Exploration Research Virtual Institute administered through NASA Goddard Space Flight Center. M. I. Zimmerman would like to thank A. Kulchitsky and J. Johnson for inspirational conversations regarding ion penetration into airless regoliths. The simulation data are accessible from the lead author via e-mail. NR 38 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2016 VL 121 IS 10 BP 2150 EP 2165 DI 10.1002/2016JE005049 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC0MS UT WOS:000387795800016 ER PT J AU Plesa, AC Grott, M Lemmon, MT Muller, N Piqueux, S Siegler, MA Smrekar, SE Spohn, T AF Plesa, A. -C. Grott, M. Lemmon, M. T. Muller, N. Piqueux, S. Siegler, M. A. Smrekar, S. E. Spohn, T. TI Interannual perturbations of the Martian surface heat flow by atmospheric dust opacity variations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE heat flow; Mars; thermal gradient; thermal conductivity; atmosphere-induced perturbations ID THERMAL INERTIA; GROUND ICE; MARS; CONSTRAINTS; MISSION; MODEL; STORM AB The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will perform the first Martian in situ heat flow measurement by deploying the Heat Flow and Physical Properties Package (HP3) onto the Martian surface. In order to estimate the heat flow coming from the planetary interior, HP3 will measure the local subsurface thermal gradient as well as the local thermal conductivity to a depth of up to 5m. From these measurements, local heat flow can be determined, but this will in general differ from the heat flow emanating from the planetary interior due to atmosphere-induced perturbations. Here we quantify heat flow perturbation induced by dust loading of the Martian atmosphere using dust opacity data obtained by the Mars Exploration Rover Opportunity. Dust opacity data span the time period between Mars year (MY) 27 and MY 32, thus incorporating the global dust storm event of MY 28 as a signal. We consider two end-member cases for the regolith thermal conductivity and find that the background planetary heat flow is superposed by atmosphere-induced perturbations of less than 1.5mWm(-2) at depths below 2m if regolith thermal conductivity is low and around 0.025Wm(-1)K(-1) on average. If thermal conductivity is high and around 0.05Wm(-1)K(-1) on average, perturbations are less than 2.5mWm(-2) at depths below 3m. Overall, the influence of interannual variability on subsurface heat flow is found to be moderate following a global dust storm. Considerably smaller perturbations are introduced by regional dust storms, which are of shorter duration and smaller magnitude. C1 [Plesa, A. -C.; Grott, M.; Spohn, T.] German Aerosp Ctr DLR, Berlin, Germany. [Lemmon, M. T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. [Muller, N.; Piqueux, S.; Smrekar, S. E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Siegler, M. A.] Planetary Sci Inst, Tucson, AZ USA. [Siegler, M. A.] Southern Methodist Univ, Dept Earth Sci, Dallas, TX USA. RP Plesa, AC (reprint author), German Aerosp Ctr DLR, Berlin, Germany. EM Ana.Plesa@dlr.de OI Mueller, Nils/0000-0001-9229-8921 FU Interuniversity Attraction Poles Programme; InSight project FX All the parameters used in the models and their outcomes are listed in Tables 1 and 2. All the data contained in the paper are available in the supporting information. We thank the Editor Steven A. Hauck and the reviewers Michael D. Smith and Ralph Lorenz for their thoughtful comments, which greatly helped to improve a previous version of this manuscript. A.-C. Plesa acknowledges support from the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet TOPERS alliance. Work at the Jet Propulsion Laboratory/California Institute of Technology was performed under a contract with NASA. Support from the InSight project is acknowledged. NR 48 TC 1 Z9 1 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2016 VL 121 IS 10 BP 2166 EP 2175 DI 10.1002/2016JE005127 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC0MS UT WOS:000387795800017 ER PT J AU Vasconcelos, PM Farley, KA Malespin, CA Mahaffy, P Ming, D McLennan, SM Hurowitz, JA Rice, MS AF Vasconcelos, P. M. Farley, K. A. Malespin, C. A. Mahaffy, P. Ming, D. McLennan, S. M. Hurowitz, J. A. Rice, Melissa S. TI Discordant K-Ar and young exposure dates for the Windjana sandstone, Kimberley, Gale Crater, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Mars; Ar-36; K-Ar; He-3; Ne-21 ID YELLOWKNIFE BAY; CLAY-MINERALS; FELDSPARS; HABITABILITY; METEORITE; ROCKS AB K-Ar and noble gas surface exposure age measurements were carried out on the Windjana sandstone, Kimberley region, Gale Crater, Mars, by using the Sample Analysis at Mars instrument on the Curiosity rover. The sandstone is unusually rich in sanidine, as determined by CheMin X-ray diffraction, contributing to the high K2O concentration of 3.090.20wt % measured by Alpha-Particle X-ray Spectrometer analysis. A sandstone aliquot heated to similar to 915 degrees C yielded a K-Ar age of 62750Ma. Reheating this aliquot yielded no additional Ar. A second aliquot heated in the same way yielded a much higher K-Ar age of 1710110Ma. These data suggest incomplete Ar extraction from a rock with a K-Ar age older than 1710Ma. Incomplete extraction at similar to 900 degrees C is not surprising for a rock with a large fraction of K carried by Ar-retentive K-feldspar. Likely, variability in the exact temperature achieved by the sample from run to run, uncertainties in sample mass estimation, and possible mineral fractionation during transport and storage prior to analysis may contribute to these discrepant data. Cosmic ray exposure ages from He-3 and Ne-21 in the two aliquots are minimum values given the possibility of incomplete extraction. However, the general similarity between the He-3 (5749 and 18 +/- 32Ma, mean 30Ma) and Ne-21 (2 +/- 32 and 83 +/- 24Ma, mean 54Ma) exposure ages provides no evidence for underextraction. The implied erosion rate at the Kimberley location is similar to that reported at the nearby Yellowknife Bay outcrop. C1 [Vasconcelos, P. M.] Univ Queensland, Sch Earth Sci, Brisbane, Qld, Australia. [Farley, K. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Malespin, C. A.; Mahaffy, P.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Malespin, C. A.] Univ Space Res Assoc, Columbia, MD USA. [Ming, D.] NASA Johnson Space Ctr, Houston, TX USA. [McLennan, S. M.; Hurowitz, J. A.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Rice, Melissa S.] Western Washington Univ, Geol & Phys Dept, Bellingham, WA 98225 USA. [Rice, Melissa S.] Western Washington Univ, Dept Astron, Bellingham, WA 98225 USA. RP Vasconcelos, PM (reprint author), Univ Queensland, Sch Earth Sci, Brisbane, Qld, Australia. EM paulo@earth.uq.edu.au NR 35 TC 1 Z9 1 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2016 VL 121 IS 10 BP 2176 EP 2192 DI 10.1002/2016JE005017 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC0MS UT WOS:000387795800018 ER PT J AU Richardson, M Cowtan, K Hawkins, E Stolpe, MB AF Richardson, Mark Cowtan, Kevin Hawkins, Ed Stolpe, Martin B. TI Reconciled climate response estimates from climate models and the energy budget of Earth SO NATURE CLIMATE CHANGE LA English DT Article ID SENSITIVITY; TEMPERATURE; SURFACE; CMIP5; TRENDS AB Climate risks increase with mean global temperature(1), so knowledge about the amount of future global warming should better inform risk assessments for policymakers. Expected near-term warming is encapsulated by the transient climate response (TCR), formally defined as the warming following 70 years of 1% per year increases in atmospheric CO2 concentration, by which point atmospheric CO2 has doubled. Studies based on Earth's historical energy budget have typically estimated lower values of TCR than climate models, suggesting that some models could overestimate future warming(2). However, energy-budget estimates rely on historical temperature records that are geographically incomplete and blend air temperatures over land and sea ice with water temperatures over open oceans. We show that there is no evidence that climate models overestimate TCR when their output is processed in the same way as the HadCRUT4 observation-based temperature record(3,4). Models suggest that air-temperature warming is 24% greater than observed by HadCRUT4 over 1861-2009 because slower-warming regions are preferentially sampled and water warms less than air(5). Correcting for these biases and accounting for wider uncertainties in radiative forcing based on recent evidence, we infer an observation-based best estimate for TCR of 1.66 degrees C, with a 5-95% range of 1.0-3.3 degrees C, consistent with the climate models considered in the IPCC 5th Assessment Report. C1 [Richardson, Mark] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Cowtan, Kevin] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Hawkins, Ed] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci, Reading RG6 6BB, Berks, England. [Stolpe, Martin B.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. RP Richardson, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM markr@jpl.nasa.gov OI Hawkins, Ed/0000-0001-9477-3677 FU Cloudsat project; OCO-2 project; NASA; UK Natural Environment Research Council; National Centre for Atmospheric Science FX M.R. is funded by the Cloudsat and OCO-2 projects. The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, sponsored by NASA. E.H. is funded by the UK Natural Environment Research Council and the National Centre for Atmospheric Science. We thank Piers Forster for providing support regarding CMIP5 radiative forcing time series and R. Knutti, P. Jacobs and P. Kalmus for substantial helpful comments. M.R. thanks G. Stephens for advisory support and helpful scientific discussions. NR 30 TC 5 Z9 5 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD OCT PY 2016 VL 6 IS 10 BP 931 EP + DI 10.1038/NCLIMATE3066 PG 6 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EC7CG UT WOS:000388292800015 ER PT J AU Luckring, JM Boelens, OJ Breitsamter, C Hovelmann, A Knoth, F Malloy, DJ Deck, S AF Luckring, James M. Boelens, Okko J. Breitsamter, Christian Hoevelmann, Andreas Knoth, Florian Malloy, Donald J. Deck, Sebastien TI Objectives, approach, and scope for the AVT-183 diamond-wing investigations SO AEROSPACE SCIENCE AND TECHNOLOGY LA English DT Article DE Vortex flow; Diamond wing; Blunt leading edge; UCAV; Wind tunnel experiment; CFD AB A roughly six-year investigation of blunt-leading-edge vortical separation has recently been completed. Principles from a hierarchical complexity approach were used to develop a simple, diamond wing configuration with vortex flow properties that were relevant to those of a complex Uninhabited Combat Air Vehicle concept, known as SACCON. The focus of this paper is to present an overview of the project including the basic flow of interest, the approach used to develop,the specific research investigation, and the scope of the results. Subsequent papers address specific experimental and numerical findings. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. Published by Elsevier Masson SAS. C1 [Luckring, James M.] NASA, Langley Res Ctr, Configurat Aerodynam Branch, Hampton, VA 23681 USA. [Boelens, Okko J.] Natl Aerosp Lab NLR, Appl Computat Fluid Dynam, Dept Flight Phys & Loads, Aerosp Div, Amsterdam, Netherlands. [Breitsamter, Christian; Hoevelmann, Andreas; Knoth, Florian] Tech Univ Munch, Inst Aerodynam & Fluid Mech, Munich, Germany. [Malloy, Donald J.] Arnold Engn Dev Complex, US Air Force Anal & Evaluat Branch, TSTA, Arnold AFB, TN 37389 USA. [Deck, Sebastien] Off Natl Etud & Rech Aerosp, Appl Aerodynam Dept, F-92190 Meudon, France. RP Luckring, JM (reprint author), NASA, Langley Res Ctr, Configurat Aerodynam Branch, Hampton, VA 23681 USA. EM james.m.luckring@nasa.gov; okko.boelens@nlr.nl; christian.breitsamter@aer.mw.tum.de; andreas.hoevelmann@tum.de; florian.knoth@aer.mw.tum.de; donald.malloy.1@us.af.mil; sebastien.deck@onera.fr OI Deck, Sebastien/0000-0003-1020-0965 FU NASA; NLR programmatic research funding "Kennis voor Vermogen"; Institute of Aerodynamics and Fluid Mechanics, Technische Universitat Munchen; French Aerospace Laboratory ONERA FX The work has been supported by a number of program and project offices. These include the NASA Transformational Tools and Technologies (TTT) and the Environmentally Responsible Aviation (ERA) projects, the NLR programmatic research funding "Kennis voor Vermogen", the Institute of Aerodynamics and Fluid Mechanics, Technische Universitat Munchen, and the French Aerospace Laboratory ONERA. All of this support is appreciated. In addition to the authors, the AEDC CFD analysis was performed by William Sickles and Derick Daniel, and the authors appreciate their contributions. NR 30 TC 3 Z9 3 U1 2 U2 2 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1270-9638 EI 1626-3219 J9 AEROSP SCI TECHNOL JI Aerosp. Sci. Technol. PD OCT PY 2016 VL 57 SI SI BP 2 EP 17 DI 10.1016/j.ast.2016.05.025 PG 16 WC Engineering, Aerospace SC Engineering GA EA6LB UT WOS:000386739600002 ER PT J AU Deck, S Luckring, JM AF Deck, Sebastien Luckring, James M. TI Zonal Detached Eddy Simulation (ZDES) of the flow around the AVT-183 diamond wing configuration SO AEROSPACE SCIENCE AND TECHNOLOGY LA English DT Article DE Diamond wing; Vortex flow; Unsteady aerodynamics; ZDES ID EQUATION TURBULENCE MODEL; UNSTEADY NATURE; DELTA-WINGS; AERODYNAMICS AB The onset and progression of vortex separation from a round leading edge on a moderately-swept diamond wing was investigated using the Zonal Detached Eddy Simulation (ZDES). Calculations were performed using mode 2 of ZDES that is appropriate for pressure-gradient-induced separation and that includes automated switching between the RANS and LES regions of the flow. The computations were performed early in conceptual design of the AVT-183 project to contribute unsteady flow assessments to other RANS-based steady flow simulations. The salient features of the roll-up of two vortex sheets are investigated together with a spectral analysis of the flow dynamics. (C) 2016 Elsevier Masson SAS. All rights reserved. C1 [Deck, Sebastien] Off Natl Etud & Rech Aerosp, F-92190 Meudon, France. [Luckring, James M.] NASA, Langley Res Ctr, Hampton, VA 23861 USA. RP Deck, S (reprint author), Off Natl Etud & Rech Aerosp, F-92190 Meudon, France. EM sebastien.deck@onera.fr OI Deck, Sebastien/0000-0003-1020-0965 FU NASA; French Aerospace Laboratory ONERA FX The work was part of a NATO/STO program entitled "Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles", also known as AVT-183. The authors appreciate the opportunity to work within the Applied Vehicle Technology (AVT) sector of the STO. The work has been supported by a number of program and project offices. These include the NASA Revolutionary Computational Aerosciences (RCA) and the Environmentally Responsible Aircraft (ERA) projects, and the French Aerospace Laboratory ONERA. All of this support is appreciated. NR 24 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1270-9638 EI 1626-3219 J9 AEROSP SCI TECHNOL JI Aerosp. Sci. Technol. PD OCT PY 2016 VL 57 SI SI BP 43 EP 51 DI 10.1016/j.ast.2016.02.020 PG 9 WC Engineering, Aerospace SC Engineering GA EA6LB UT WOS:000386739600005 ER PT J AU Frink, NT Tomac, M Rizzi, A AF Frink, Neal T. Tomac, Maximilian Rizzi, Arthur TI Collaborative study of incipient separation on 53 degrees-swept diamond wing SO AEROSPACE SCIENCE AND TECHNOLOGY LA English DT Article ID TURBULENT FLOWS; TETRUSS; MODEL AB A systematic analysis of incipient separation and subsequent vortex formation from moderately-swept blunt leading edges is presented for a 53 degrees-swept diamond wing. This work contributes to a collective body of knowledge generated within the multinational NATO/STO AVT-183 Task Group titled "Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles". Details of vortex formation are inferred from numerical solutions of two flow solvers after establishing a good correlation of the global flow field and surface pressure distributions with those from wind tunnel measurements. From this, significant and sometimes surprising insights into the nature of incipient separation and part-span vortex formation are derived from the wealth of information available in the computational solutions. Published by Elsevier Masson SAS. C1 [Frink, Neal T.] NASA, Langley Res Ctr, Configurat Aerodynam Branch, Res Directorate, MS 499, Hampton, VA 23681 USA. [Tomac, Maximilian; Rizzi, Arthur] Aeronaut & Vehicle Engn KTH, Dept Aeronaut & Vehicle Engn, Tekn Ringen 8, Stockholm, Sweden. RP Frink, NT (reprint author), NASA, Langley Res Ctr, Configurat Aerodynam Branch, Res Directorate, MS 499, Hampton, VA 23681 USA. EM neal.t.frink@nasa.gov; rizzi@kth.se FU Vehicle Systems Safety Technologies (VSST) project under the NASA Aviation Safety Program; KTH The Royal Institute of Technology FX The work reported herein is funded by the Vehicle Systems Safety Technologies (VSST) project under the NASA Aviation Safety Program. The first author would also like to thank Mr. Ed Parlette of ViGYAN, Inc. for generating the computational grids for USM3D. The second author gratefully acknowledges the support of KTH The Royal Institute of Technology in carrying out this work in partial fulfillment of the requirements for his Ph.D. dissertation. Special thanks is extended to our fellow AVT-183 team members for their synergistic interactions, and in particular to the excellent experimentalists who produced the final data. NR 27 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1270-9638 EI 1626-3219 J9 AEROSP SCI TECHNOL JI Aerosp. Sci. Technol. PD OCT PY 2016 VL 57 SI SI BP 76 EP 89 DI 10.1016/j.ast.2016.02.019 PG 14 WC Engineering, Aerospace SC Engineering GA EA6LB UT WOS:000386739600007 ER PT J AU MacDonald, MG Ragozzine, D Fabrycky, DC Ford, EB Holman, MJ Isaacson, HT Lissauer, JJ Lopez, ED Mazeh, T Rogers, L Rowe, JF Steffen, JH Torres, G AF MacDonald, Mariah G. Ragozzine, Darin Fabrycky, Daniel C. Ford, Eric B. Holman, Matthew J. Isaacson, Howard T. Lissauer, Jack J. Lopez, Eric D. Mazeh, Tsevi Rogers, Leslie Rowe, Jason F. Steffen, Jason H. Torres, Guillermo TI A DYNAMICAL ANALYSIS OF THE KEPLER-80 SYSTEM OF FIVE TRANSITING PLANETS SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: statistical; planetary systems; planets and satellites: dynamical evolution and stability; stars: individual (Kepler-80) ID MEAN MOTION RESONANCES; BVRI PHOTOMETRIC SYSTEMS; MAIN-SEQUENCE STARS; LOW-DENSITY PLANETS; DIGITAL SKY SURVEY; EXOPLANETARY SYSTEMS; TRANSFORMATION EQUATIONS; COLOR TRANSFORMATIONS; TERRESTRIAL PLANETS; TIMING OBSERVATIONS AB Kepler. has discovered hundreds of systems with multiple transiting exoplanets which hold tremendous potential both individually and collectively for understanding the formation and evolution of planetary systems. Many of these systems consist of multiple small planets with periods less than similar to 50 days known as Systems with Tightly spaced Inner Planets, or STIPs. One especially intriguing STIP, Kepler-80 (KOI-500), contains five transiting planets: f, d, e, b, and c with periods of 1.0, 3.1, 4.6, 7.1, and 9.5 days, respectively. We provide measurements of transit times and a transit timing variation (TTV) dynamical analysis. We find that TTVs cannot reliably detect eccentricities for this system, though mass estimates are not affected. Restricting the eccentricity to a reasonable range, we infer masses for the outer four planets (d, e, b, and c) to be 6.75(-0.51)(+0.69), 4.13(-0.95)(+0.81), 6.93(-0.70)(+1.05), and 6.74(-0.86)(+1.23) Earth masses, respectively. The similar masses but different radii are consistent with terrestrial compositions for d and e and similar to 2% H/He envelopes for b and c. We confirm that the outer four planets are in a rare dynamical configuration with four interconnected three-body resonances that are librating with few degree amplitudes. We present a formation model that can reproduce the observed configuration by starting with a multi-resonant chain and introducing dissipation. Overall, the information-rich Kepler-80 planets provide an important perspective into exoplanetary systems. C1 [MacDonald, Mariah G.; Ragozzine, Darin] Florida Inst Technol, Dept Phys & Space Sci, 150 West Univ Blvd, Melbourne, FL 32940 USA. [Ragozzine, Darin] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32611 USA. [Ragozzine, Darin; Holman, Matthew J.; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Fabrycky, Daniel C.; Rogers, Leslie] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Ford, Eric B.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Ford, Eric B.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, 525 Davey Lab, University Pk, PA 16802 USA. [Isaacson, Howard T.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. [Lopez, Eric D.] Univ Edinburgh, Royal Observ Edinburgh, Inst Astron, Blackford Hill, Edinburgh, Midlothian, Scotland. [Mazeh, Tsevi] Tel Aviv Univ, Sch Phys & Astron, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Rowe, Jason F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rowe, Jason F.] SETI Inst, Mountain View, CA 94043 USA. [Steffen, Jason H.] Univ Nevada, Dept Phys & Astron, 4505 S Maryland Pkwy,Box 454002, Las Vegas, NV 89154 USA. RP MacDonald, MG (reprint author), Florida Inst Technol, Dept Phys & Space Sci, 150 West Univ Blvd, Melbourne, FL 32940 USA. EM mmacdonald2012@my.fit.edu; darin.ragozzine@gmail.com OI Ragozzine, Darin/0000-0003-1080-9770; Rogers, Leslie/0000-0003-0638-3455; Isaacson, Howard/0000-0002-0531-1073; /0000-0001-6545-639X NR 104 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2016 VL 152 IS 4 AR 105 DI 10.3847/0004-6256/152/4/105 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ3LQ UT WOS:000385749000003 ER PT J AU Gurgew, DN Broadway, DM Gubarev, M Ramsey, BD Gregory, DA AF Gurgew, Danielle N. Broadway, David M. Gubarev, Mikhail Ramsey, Brian D. Gregory, Don A. TI X-ray reflectometer for single layer and multilayer coating characterization at 8 keV: An interlaboratory study SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB An X-ray reflectometer (XRR) system has been developed at the Marshall Space Flight Center (MSFC) for characterizing various soft and hard X-ray optic coatings. The XRR instrument generates X-ray radiation using a high-output rotating anode source (RAS), operational over a voltage range of 5-35 kV and a current range of 10-150 mA. Copper is used as the target material to produce an X-ray spectrum from which the K-alpha line at 8.048 keV is isolated for the reflectivity measurements. Five precision slits are mounted along the X-ray beam path to limit the extent of the beam at the sample and to adjust the resolution in the measurements. A goniometer consisting of two precision rotary stages controls the positions of the coating sample and the X-ray detector with respect to the beam. The detector itself is a high performance silicon drift detector used to achieve high count rate efficiency to attain good statistics in the reflectivity measurement at larger grazing angles. The X-ray reflectometer system design and capabilities are described in detail. Verification of the system is obtained through an interlaboratory study in which reflectivity measurements of a multilayer coating made at MSFC are compared with those made at two external laboratories. Published by AIP Publishing. C1 [Gurgew, Danielle N.; Gregory, Don A.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Broadway, David M.; Gubarev, Mikhail; Ramsey, Brian D.] NASA Marshall Space Flight Ctr, Huntsville, AL 35805 USA. RP Gurgew, DN (reprint author), Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. EM dng0006@uah.edu NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2016 VL 87 IS 10 AR 104501 DI 10.1063/1.4965978 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EB8SS UT WOS:000387661900038 PM 27802704 ER PT J AU Ault, TR Mankin, JS Cook, BI Smerdon, JE AF Ault, Toby R. Mankin, Justin S. Cook, Benjamin I. Smerdon, Jason E. TI Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest SO SCIENCE ADVANCES LA English DT Article ID PERSISTENT DROUGHT; CLIMATE-CHANGE; NORTH-AMERICA; SEVERITY AB Megadroughts are comparable in severity to the worst droughts of the 20th century but are of much longer duration. A megadrought in the American Southwest would impose unprecedented stress on the limited water resources of the area, making it critical to evaluate future risks not only under different climate change mitigation scenarios but also for different aspects of regional hydroclimate. We find that changes in the mean hydroclimate state, rather than its variability, determine megadrought risk in the American Southwest. Estimates of megadrought probabilities based on precipitation alone tend to underestimate risk. Furthermore, business-as-usual emissions of greenhouse gases will drive regional warming and drying, regardless of large precipitation uncertainties. We find that regional temperature increases alone push megadrought risk above 70, 90, or 99% by the end of the century, even if precipitation increases moderately, does not change, or decreases, respectively. Although each possibility is supported by some climate model simulations, the latter is the most common outcome for the American Southwest in Coupled Model Intercomparison 5 generation models. An aggressive reduction in global greenhouse gas emissions cuts megadrought risks nearly in half. C1 [Ault, Toby R.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Mankin, Justin S.; Cook, Benjamin I.; Smerdon, Jason E.] Columbia Univ, Lamont Doherty Earth Observ, Div Ocean & Climate Phys, Palisades, NY 10964 USA. [Mankin, Justin S.; Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Ault, TR (reprint author), Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. EM toby.ault@cornell.edu RI Smerdon, Jason/F-9952-2011; Cook, Benjamin/H-2265-2012 NR 33 TC 0 Z9 0 U1 17 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD OCT PY 2016 VL 2 IS 10 AR e1600873 DI 10.1126/sciadv.1600873 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC2YV UT WOS:000387991500021 PM 27713927 ER PT J AU Wickert, J Cardellach, E Martin-Neira, M Bandeiras, J Bertino, L Andersen, OB Camps, A Catarino, N Chapron, B Fabra, F Floury, N Foti, G Gommenginger, C Hatton, J Hoeg, P Jaggi, A Kern, M Lee, T Li, ZJ Park, H Pierdicca, N Ressler, G Rius, A Rosello, J Saynisch, J Soulat, F Shum, CK Semmling, M Sousa, A Xie, JP Zuffada, C AF Wickert, Jens Cardellach, Estel Martin-Neira, Manuel Bandeiras, Jorge Bertino, Laurent Andersen, Ole Baltazar Camps, Adriano Catarino, Nuno Chapron, Bertrand Fabra, Fran Floury, Nicolas Foti, Giuseppe Gommenginger, Christine Hatton, Jason Hoeg, Per Jaggi, Adrian Kern, Michael Lee, Tong Li, Zhijin Park, Hyuk Pierdicca, Nazzareno Ressler, Gerhard Rius, Antonio Rosello, Josep Saynisch, Jan Soulat, Francois Shum, C. K. Semmling, Maximilian Sousa, Ana Xie, Jiping Zuffada, Cinzia TI GEROS-ISS: GNSS REflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Global Navigation Satellite Systems (GNSS) reflectometry; GNSS radio occultation; international space station; mean sea level; mesoscale ocean currents ID DATA ASSIMILATION; ORBIT DETERMINATION; TSUNAMI DETECTION; FIELD CAMPAIGN; SOIL-MOISTURE; GPS SIGNALS; OCEAN; MISSION; IMPACT; CIRCULATION AB GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans and of the ocean surface mean square slope, which is related to sea roughness and wind speed. These geophysical parameters are derived using reflected GNSS signals (GNSS reflectometry, GNSS-R). Secondary mission goals include atmosphere/ionosphere sounding using refracted GNSS signals (radio occultation, GNSS-RO) and remote sensing of land surfaces using GNSS-R. TheGEROS-ISS mission objectives and its design, the current status, and ongoing activities are reviewed and selected scientific and technical results of the GEROS-ISS preparation phase are described. C1 [Wickert, Jens; Saynisch, Jan; Semmling, Maximilian] German Res Ctr Geosci GFZ, D-14473 Potsdam, Germany. [Cardellach, Estel; Fabra, Fran; Rius, Antonio] Spanish Natl Res Council, Inst Space Sci, Inst Space Studies Catalonia, Barcelona 08034, Spain. [Andersen, Ole Baltazar; Hoeg, Per] Tech Univ Denmark, DK-2800 Lyngby, Denmark. [Bandeiras, Jorge; Catarino, Nuno; Sousa, Ana] DEIMOS Engn SA, P-1998023 Lisbon, Portugal. [Bertino, Laurent; Xie, Jiping] Nansen Environm & Remote Sensing Ctr, N-5006 Bergen, Norway. [Camps, Adriano; Park, Hyuk] Univ Politecn Cataluna, ES-08034 Barcelona, Spain. [Camps, Adriano; Park, Hyuk] UPC, Ctr Space Technol, Inst Space Studies Catalonia, CTE, Barcelona 08034, Spain. [Chapron, Bertrand] IFREMER, Ctr Brest, Pointe Diable,BP 70, F-29280 Plouzane, France. [Foti, Giuseppe; Gommenginger, Christine] Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England. [Martin-Neira, Manuel; Floury, Nicolas; Hatton, Jason; Kern, Michael; Ressler, Gerhard; Rosello, Josep] Estec, European Space Agcy, Keplerlaan 1,POB 299, NL-2200 AG Noordwijk, Netherlands. [Jaggi, Adrian] Univ Bern, CH-3012 Bern, Switzerland. [Soulat, Francois] CLS, Space Oceanog Div, 8-10 Rue Hermes, F-31520 Ramonville St Agne, France. [Lee, Tong; Li, Zhijin; Zuffada, Cinzia] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Pierdicca, Nazzareno] Univ Roma La Sapienza, I-00185 Rome, Italy. [Shum, C. K.] Ohio State Univ, Columbus, OH 43210 USA. [Shum, C. K.] Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Geodesy & Earths Dynam, Wuhan 430077, Peoples R China. RP Wickert, J (reprint author), German Res Ctr Geosci GFZ, D-14473 Potsdam, Germany. EM wickert@gfz-potsdam.de; estel@ice.cat; jorge.bandeiras@deimos.com.pt; laurent.bertino@nersc.no; camps@tsc.upc.edu; nuno.catarino@deimos.com.pt; bertrand.chapron@ifremer.fr; fabra@ieec.cat; nicolas.floury@esa.int; g.foti@noc.ac.uk; cg1@noc.ac.uk; jason.hatton@esa.int; hoeg@space.dtu.dk; adrian.jaeggi@aiub.unibe.ch; michael.kern@esa.int; tlee@jpl.nasa.gov; zhijin@jpl.nasa.gov; park.hyuk@tsc.upc.edu; nazzareno.pierdicca@uniroma1.it; gerhard.ressler@esa.int; rius@ieec.uab.es; josep.rosello@esa.int; saynisch@gfz-potsdam.de; fsoulat@cls.fr; ckshum@osu.edu; maxsem@gfz-potsdam.de; ana.sousa@deimos.com.pt; jiping.xie@nersc.no; cinzia.zuffada@jpl.nasa.gov RI Wickert, Jens/A-7257-2013; Hoeg, Per/G-3537-2010; Park, Hyuk/A-5652-2014; OI Hoeg, Per/0000-0002-3172-5587; Park, Hyuk/0000-0003-0031-0802; Cardellach, Estel/0000-0001-8908-0972 FU ESA [C111952, 4000112188, 4000112189, 4200022592]; Spanish Ministry of Economy and Competitiveness [ESP2015-70014-C2-1-R, ESP2015-70014-C2-2-R]; NASA [NNX15AU99G] FX This work was supported in part by ESA for the GARCA study under Contract C111952 and the Phase A industrial studies under Contracts 4000112188 and 4000112189, in part by ESA for the SPIR and flight campaign under Contract 4200022592, and in part by the Spanish Ministry of Economy and Competitiveness under Grant ESP2015-70014-C2-1-R and Grant ESP2015-70014-C2-2-R. The Ohio State University component of the research was supported by NASA under Grant NNX15AU99G. (Corresponding author: Jens Wickert.) NR 83 TC 2 Z9 2 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD OCT PY 2016 VL 9 IS 10 SI SI BP 4552 EP 4581 DI 10.1109/JSTARS.2016.2614428 PG 30 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA EB5XO UT WOS:000387454400004 ER PT J AU Li, ZJ Zuffada, C Lowe, ST Lee, T Zlotnicki, V AF Li, Zhijin Zuffada, Cinzia Lowe, Stephen T. Lee, Tong Zlotnicki, Victor TI Analysis of GNSS-R Altimetry for Mapping Ocean Mesoscale Sea Surface Heights Using High-Resolution Model Simulations SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Global navigation satellite system reflectometry (GNSS-R altimetry); mesoscale sea surface height; two-dimensional (2-D) mapping ID VARIATIONAL DATA ASSIMILATION; SYSTEM; REFLECTOMETRY; TOPOGRAPHY; INTERFEROMETRY; CAPABILITIES; TRANSITION; SMOOTHER; MISSIONS; SIGNALS AB The capability of global navigation satellite system reflectometry (GNSS-R) altimetry to map mesoscale sea surface height (SSH) fields is analyzed using synthetic measurements derived from a high-resolution (1/10 degrees) numerical model of the North Pacific. As an example, we consider the GPS and GLONASS constellation transmitters and assume six reflection-capable receivers onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites in high-inclination (720 km, 72 degrees) orbits. An individual GNSS-R measurement has a similar to 10-km footprint. The SSH measurement error is simulated as a function of the incidence angle and the error in the delay measurement between the transmitter and receiver. The delay measurement error is assumed to have Gaussian white noise distribution with a root-mean-square error (RMSE) of 1.0 or 2.0 m. Two days of synthetic measurements are used to reconstruct SSH fields using a two-dimensional variational algorithm. For the 1.0-m delay error, the basin-wide RMSE of the mapped field is 2.3 cm and the spatial correlation between the mapped and true mesoscale fields is larger than 0.9. For the 2.0-m delay error, the basin-wide RMSE is 3.8 cm and the spatial correlation is larger than 0.8. Spectral and synoptic analyses suggest that two days of measurements can reproduce mesoscale features down to 100 km. The result demonstrates the ability of GNSS-R altimetry to suppress large measurement errors due to the high density of measurements and the potential to constrain mesoscale features down to scales beyond what the constellation of existing nadir-altimeters allows. C1 [Li, Zhijin; Zuffada, Cinzia; Lowe, Stephen T.; Lee, Tong; Zlotnicki, Victor] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Li, ZJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Zhijin.Li@jpl.nasa.gov; cinzia.zuffada@jpl.nasa.gov; stephen.t.lowe@jpl.nasa.gov; tlee@jpl.nasa.gov; victor.zlotnicki@jpl.nasa.gov FU NASA; JPL Innovative and Spontaneous Concept Program FX The work was supported by the contract with NASA and the JPL Innovative and Spontaneous Concept Program, performed by the Jet Propulsion Laboratory. (Corresponding Author: Zhijin Li.) NR 51 TC 0 Z9 0 U1 6 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD OCT PY 2016 VL 9 IS 10 SI SI BP 4631 EP 4642 DI 10.1109/JSTARS.2016.2581699 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA EB5XO UT WOS:000387454400009 ER PT J AU Mashburn, J Axelrad, P Lowe, ST Larson, KM AF Mashburn, Jake Axelrad, Penina Lowe, Stephen T. Larson, Kristine M. TI An Assessment of the Precision and Accuracy of Altimetry Retrievals for a Monterey Bay GNSS-R Experiment SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Altimetry; bistatic radar; geophysical measurement techniques; global positioning system; radar remote sensing AB Global navigation satellite systems (GNSS) provide signals of opportunity for bistatic radar remote sensing, called GNSS reflectometry (GNSS-R), that have potential to be used for ocean altimetry. These signals have advantages over traditional mono-static radar that include reduced cost, high density of measurements in time and space, and an inherent reference to a highly accurate time-space frame. Here, we examine GNSS-R data collected from an aircraft flying over Monterey Bay, California. A downward-looking dual-frequency left-hand circularly polarized patch antenna recorded reflected signals. An upward-looking commercial antenna recorded the direct signals. Dual-frequency carrier phase data from this antenna were also used to produce precise coordinates for the aircraft. The L1 P-code GPS data were collected over four days with two flights per day and consist of nine transects covering a 1 degx 1 deg grid. The performance of three timing retrieval algorithms has been evaluated based on measurement precision. From the observed cross-correlation waveform, the specular reflection timing was derived from the delay of the 70% peak correlation power (HALF method), the waveform leading edge peak first derivative (DER method), or the delay associated with a best fit function approximating the nominal waveform shape (PARA3 method). It was found that the HALF method produced the most precise measurements for a 5 s integration time with a standard deviation of sigma = 0.6 m. The measurement accuracy is characterized by comparison with well-established models including neutral atmospheric delay, mean sea surface height, and ocean and solid Earth tides. Biases on the order of 1-4 m are observed with respect to a modeled mean sea surface and between each flight. However, the measurements are shown to track changes in sea surface height along the ground track to within 0.6 m. C1 [Mashburn, Jake; Axelrad, Penina; Larson, Kristine M.] Univ Colorado, Aerosp Engn Sci, Boulder, CO 80301 USA. [Lowe, Stephen T.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Mashburn, J (reprint author), Univ Colorado, Aerosp Engn Sci, Boulder, CO 80301 USA. EM jake.mashburn@colorado.edu; penina.axelrad@colorado.edu; stephen.t.lowe@jpl.nasa.gov; kristine.larson@colorado.edu FU National Aeronautics and Space Administration Jet Propulsion Laboratory FX This work was supported by the National Aeronautics and Space Administration Jet Propulsion Laboratory. NR 18 TC 2 Z9 2 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD OCT PY 2016 VL 9 IS 10 SI SI BP 4660 EP 4668 DI 10.1109/JSTARS.2016.2537698 PG 9 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA EB5XO UT WOS:000387454400012 ER PT J AU Small, EE Larson, KM Chew, CC Dong, JN Ochsner, TE AF Small, Eric E. Larson, Kristine M. Chew, Clara C. Dong, Jingnuo Ochsner, Tyson E. TI Validation of GPS-IR Soil Moisture Retrievals: Comparison of Different Algorithms to Remove Vegetation Effects SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Global positioning system; hydrologic measurements; remote sensing; soil measurements ID REFLECTOMETRY AB The GPS interferometric reflectometry (GPS-IR) technique can be used to estimate near-surface soil moisture from signal-to-noise ratio (SNR) data collected with standard geodetic instrumentation. However, the effects of vegetation on GPS-IR soil moisture retrievals must be considered in some environments. In situ soil moisture observations from 11 GPS sites are used to compare the performance of three different retrieval algorithms that represent vegetation effects with different degrees of complexity. A bare-soil retrieval algorithm does not perform well, even at sites where seasonal variations in vegetation water content (VWC) are less than1 kg m(-2). The range of volumetric soil moisture (VSM) is too large due to the effects of vegetation on phase of the SNR interferogram, yielding an RMSE between in situ and GPS-IR VSM of 0.055 cm(3) cm(-3). Errors are reduced by an algorithm that adjusts for vegetation effects using variations in the amplitude of the SNR interferogram. RMSE is 0.038 cm(3) cm(-3) using this algorithm, below the typical limit required for validation of satellite data. This simple vegetation algorithm performs poorly at sites where seasonal variations in VWC are 1 kg m(-2) or greater. A more complex algorithm, that uses amplitude in conjunction with frequency analysis of the SNR interferogeram to predict vegetation effects, provides acceptable performance at these sites (RMSE = 0.039 cm(3) cm(-3)). The additional complexity of this algorithm is only warranted at sites where the simple vegetation algorithm cannot adequately represent the effects of the vegetation fluctuations. C1 [Small, Eric E.] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Larson, Kristine M.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Chew, Clara C.] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Chew, Clara C.] Jet Prop Lab, Pasadena, CA 91109 USA. [Dong, Jingnuo; Ochsner, Tyson E.] Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA. RP Small, EE (reprint author), Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. EM eric.small@colorado.edu; kristinem.larson@gmail.com; Clara.C.Chew@gmail.com; geano.dong@okstate.edu; tyson.ochsner@okstate.edu FU National Science Foundation [AGS-0935725, EAR1144221, AGS-1449554]; National Aeronautics and Space Administration [NNX12AK21G, NNX13AF43G]; NSF; NASA [NSF EAR-1261833] FX This work was supported in part by the National Science Foundation under Grant AGS-0935725, Grant EAR1144221, and Grant AGS-1449554, and in part by the National Aeronautics and Space Administration under Grant NNX12AK21G and Grant NNX13AF43G. Some of this material is based on data, equipment, and engineering services provided by UNAVCO through the GAGE Facility with support from NSF and NASA under NSF EAR-1261833. NR 24 TC 4 Z9 4 U1 7 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD OCT PY 2016 VL 9 IS 10 SI SI BP 4759 EP 4770 DI 10.1109/JSTARS.2015.2504527 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA EB5XO UT WOS:000387454400021 ER PT J AU Li, JLF Lee, WL Wang, YH Richardson, M Yu, JY Suhas, E Fetzer, E Lo, MH Yue, Q AF Li, J. -L. F. Lee, Wei-Liang Wang, Yi-Hui Richardson, Mark Yu, Jia-Yuh Suhas, E. Fetzer, Eric Lo, Min-Hui Yue, Qing TI Assessing the radiative impacts of precipitating clouds on winter surface air temperatures and land surface properties in general circulation models using observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE coupled GCM; land model; radiation; LST; SAT ID ATMOSPHERE RADIATION; CLIMATE MODELS; DATA SET; SATELLITE; UNCERTAINTY; EVAPOTRANSPIRATION; IRRADIANCES; IRRIGATION; CONSISTENT; SHORTWAVE AB Using CloudSat-CALIPSO ice water, cloud fraction, and radiation; Clouds and the Earth's Radiant Energy System (CERES) radiation; and long-term station-measured surface air temperature (SAT), we identified a substantial underestimation of the total ice water path, total cloud fraction, land surface radiative flux, land surface temperature (LST), and SAT during Northern Hemisphere winter in Coupled Model Intercomparison Project Phase 5 (CMIP5) models. We perform sensitivity experiments with the National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) in fully coupled modes to identify processes driving these biases. We found that biases in land surface properties are associated with the exclusion of downwelling longwave heating from precipitating ice during Northern Hemisphere winter. The land surface temperature biases introduced by the exclusion of precipitating ice radiative effects in CESM1 and CMIP5 both spatially correlate with winter biases over Eurasia and North America. The underestimated precipitating ice radiative effect leads to colder LST, associated surface energy-budget adjustments, and cooler SAT. This bias also shifts regional soil moisture state from liquid to frozen, increases snow cover, and depresses evapotranspiration (ET) and total leaf area index in Northern Hemisphere winter. The inclusion of the precipitating ice radiative effects largely reduces the model biases of surface radiative fluxes (more than 15Wm(-2)), SAT (up to 2-4K), and snow cover and ET (25-30%), compared with those without snow-radiative effects. Key Points Most GCMs exclude snow-radiative effects Excluding snow-radiative effects leads to reductions in TS, soil moisture, and ET Excluding snow-radiative effects results in an increase in ice in soil and a subsequent decrease in TLAI in some regions C1 [Li, J. -L. F.; Wang, Yi-Hui; Richardson, Mark; Suhas, E.; Fetzer, Eric; Yue, Qing] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Lee, Wei-Liang] Acad Sinica, RCEC, Taipei, Taiwan. [Yu, Jia-Yuh] Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan. [Lo, Min-Hui] Natl Taiwan Univ, Dept Atmospher Sci, Taipei, Taiwan. RP Li, JLF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jli@jpl.nasa.gov RI Yue, Qing/F-4619-2017 OI Yue, Qing/0000-0002-3559-6508 FU Jet Propulsion Laboratory, California Institute of Technology [NNH12ZDA001N-CCST]; National Aeronautics and Space Administration (NASA); NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) programs; National Science Council [NSC100-2119-M-001-029-MY5, NSC102-2111-M-001-009]; Ministry of Science and Technology (MOST), Taiwan [MOST 104-2111-M-002-008] FX We would like to thank Graeme Stephens at JPL/CalTech for his useful suggestions. The contribution by J.L.L. to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under contracts of ATMOS COMP 2013 (NNH12ZDA001N-CCST) with the National Aeronautics and Space Administration (NASA). This work has been supported in part by the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) programs. The second author (WLL) was supported by the National Science Council under contracts NSC100-2119-M-001-029-MY5 and NSC102-2111-M-001-009. Min-Hui Lo was supported by the Ministry of Science and Technology (MOST), Taiwan, MOST 104-2111-M-002-008. The most up-to-date radiative longwave downward flux at surface (RLDS) and radiative shortwave downward flux at surface (RSDS) are available from EBAF Surface and ISCCP-derived products. This surface flux radiation product is constrained by TOA CERES-derived flux with Energy Balanced and Filled (EBAF) adjustments [Kato et al., 2012, 2013]. The data used in this study are the monthly mean product, collected from January 2000 to December 2010. The CERES data can be found at http://ceres.larc.nasa.gov/order_data.php. The land surface temperature is the monthly composite and average of the MODIS Level-3 LST product (MOD11C3) at 0.05 degrees grid resolution (2002 to 2012). Further details regarding the MODIS land product validation for the LST/E products are available from the following URL: http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD11. The surface air temperature climatology used in this study is based on the period of 1961-1990 from HadCRUT2V data. The data can be accessed at http://www.esrl.noaa.gov/psd/data/gridded/data.hadcru3.html. The monthly mean UDeIland-only SAT data span from 1900 to 2010 can be accessed at http://climate.geog.udel.edu/similar to climate/html_pages/download.html, and references can be found at http://climate.geog.udel.edu/similar to climate/. The product evapotranspiration (ET) can be found at http://www.iac.ethz.ch/groups/seneviratne/research/LandFlux-EVAL. The filtered cloud ice, ice water path, and cloud fraction data span from 2007 to 2010 are available by e-mail request (jli@jpl.nasa.gov). NR 48 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT PY 2016 VL 121 IS 19 BP 11536 EP 11555 DI 10.1002/2016JD025175 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EA9PK UT WOS:000386976100032 ER PT J AU Wang, T Fetzer, EJ Wong, S Kahn, BH Yue, Q AF Wang, Tao Fetzer, Eric J. Wong, Sun Kahn, Brian H. Yue, Qing TI Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE MODIS; CloudSat; CALIPSO; cloud overlap; cloud type; cloud layer ID WATER-VAPOR; OPTICAL-PROPERTIES; A-TRAIN; OVERLAP; TEMPERATURE; ALGORITHMS; PRODUCTS; AEROSOL; SENSORS; TERRA AB Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 cloud observations (MYD06) at 1km are collocated with daytime CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (C-C) cloud vertical structures (2B-CLDCLASS-LIDAR). For 2007-2010, over 267 million C-C cloud profiles are used to (1) validate MODIS cloud mask and cloud multilayer flag and (2) cross-reference between C-C cloud types and MODIS cloud regimes defined by joint histograms of cloud top pressure (CTP) and cloud optical depth (). Globally, of total observations, C-C reports 27.1% clear and 72.9% cloudy, whereas MODIS reports 30.0% confidently clear and 58.7% confidently cloudy, with the rest 7.1% as probably clear and 4.2% as probably cloudy. Agreement between MODIS and C-C is 77.8%, with 20.9% showing both clear and 56.9% showing both cloudy. The 9.1% of observations are clear in MODIS but cloudy in C-C, indicating clouds missed by MODIS; 1.8% of observations are cloudy in MODIS but clear in C-C, likely due to aerosol/dust or surface snow layers misidentified by MODIS. C-C reports 47.4/25.5% single-layer/multilayer clouds, while MODIS reports 26.7/14.0%. For C-C single-layer clouds, similar to 90% of tropical MODIS high (CTP<440hPa) and optically thin (<3.6) clouds are identified as cirrus and similar to 60% of high and optically thick (>23) clouds are recognized as deep convective in C-C. Approximately 70% of MODIS low-level (CTP>680hPa) clouds are classified as stratocumulus in C-C regardless of region and optical thickness. No systematic relationship exists between MODIS middle-level (680100nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition. C1 [Wang, Zhen; Ramirez, Marco Mora; Dadashazar, Hossein; MacDonald, Alex B.; Aghdam, Mojtaba Azadi; Sorooshian, Armin] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA. [Crosbie, Ewan] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Crosbie, Ewan] Univ Space Res Assoc, Columbia, MD USA. [Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Flagan, Richard C.; Seinfeld, John H.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Lynch, Peng; Campbell, James R.] US Naval Res Lab, Monterey, CA USA. [Woods, Roy K.; Jonsson, Haflidi] Naval Postgrad Sch, Monterey, CA USA. [Sorooshian, Armin] Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA. RP Sorooshian, A (reprint author), Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA.; Sorooshian, A (reprint author), Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA. EM armin@email.arizona.edu RI Campbell, James/C-4884-2012; Coggon, Matthew/I-8604-2016; OI Campbell, James/0000-0003-0251-4550; Coggon, Matthew/0000-0002-5763-1925; Sorooshian, Armin/0000-0002-2243-2264 FU ONR [N00014-11-1-0783, N00014-10-1-0200, N00014-04-1-0118, N00014-10-1-0811, N00014-16-1-2567]; NSF [AGS-1008848] FX This work was funded by ONR grants N00014-11-1-0783, N00014-10-1-0200, N00014-04-1-0118, N00014-10-1-0811, and N00014-16-1-2567 and NSF grant AGS-1008848. Field campaign data used for this study can be obtained at u.arizona.edu/similar to armin, and questions about those data should be directed to the corresponding author (armin@email.arizona.edu). The NAAPS reanalysis data are available at http://usgodae.org/cgi-bin/datalist.pl?dset=nrl_naaps_reanalysis & the data on that server are updated as model improvements are made and reruns are completed. CALIOP data are available at the following website: https://eosweb.larc.nasa.gov/. NR 62 TC 0 Z9 0 U1 12 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT PY 2016 VL 121 IS 19 BP 11679 EP 11691 DI 10.1002/2016JD025695 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EA9PK UT WOS:000386976100026 ER PT J AU Esmaili, RB Tian, YD Vila, DA Kim, KM AF Esmaili, Rebekah Bradley Tian, Yudong Vila, Daniel Alejandro Kim, Kyu-Myong TI A Lagrangian analysis of cold cloud clusters and their life cycles with satellite observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE evolution; life cycle; cloud cluster; tracking; Lagrangian ID MESOSCALE CONVECTIVE COMPLEXES; INFRARED IMAGERY; DENSITY-FUNCTION; STORM TRACKS; WARM POOL; SYSTEMS; RAINFALL; TRMM; ATLANTIC; TROPICS AB Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semicoherent clusters enable study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are gaps between overpasses. Using a cluster tracking algorithm, in this study we examine the trajectories, size, and brightness temperature of millions of cloud clusters over their lifespan, from infrared satellite observations at 30min, 4km resolution, for a period of 11years. We found that the majority of cold clouds were both small and short lived and that their frequency and location are influenced by El Nino. Also, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Long-lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in short-lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon, while over the ocean there was a semidiurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a global long-term survey of object-based cloud characteristics. C1 [Esmaili, Rebekah Bradley] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Tian, Yudong] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Vila, Daniel Alejandro] Natl Inst Space Res INPE, Sao Jose Dos Campos, Brazil. [Kim, Kyu-Myong] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Esmaili, RB (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM bekah@umd.edu RI Vila, Daniel/G-8379-2012 OI Vila, Daniel/0000-0002-1015-5650 FU NASA Earth System Data Records Uncertainty Analysis Program; NASA's Precipitation Measurement Missions (PMM) program FX This research was supported by the NASA Earth System Data Records Uncertainty Analysis Program and NASA's Precipitation Measurement Missions (PMM) program. Computing resources were provided by the NASA Center for Climate Simulation. The data used in this study are available online through the Goddard Earth Sciences Data and Information Services Center's Mirador Search tool: http://mirador.gsfc.nasa.gov. Upon publication of the manuscript, we plan to distribute cloud cluster tracks created in this study. NR 47 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT PY 2016 VL 121 IS 19 BP 11723 EP 11738 DI 10.1002/2016JD025653 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EA9PK UT WOS:000386976100015 ER PT J AU Schmidt, JA Jacob, DJ Horowitz, HM Hu, L Sherwen, T Evans, MJ Liang, Q Suleiman, RM Oram, DE Le Breton, M Percival, CJ Wang, S Dix, B Volkamer, R AF Schmidt, J. A. Jacob, D. J. Horowitz, H. M. Hu, L. Sherwen, T. Evans, M. J. Liang, Q. Suleiman, R. M. Oram, D. E. Le Breton, M. Percival, C. J. Wang, S. Dix, B. Volkamer, R. TI Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE halogen; troposphere; ozone; mercury; modeling; GEOS-Chem ID MARINE BOUNDARY-LAYER; SEA-SALT AEROSOLS; BROMINE CHEMISTRY; GLOBAL OBSERVATIONS; HALOGEN CHEMISTRY; IODINE CHEMISTRY; NORTH-ATLANTIC; GEOS-CHEM; IN-SITU; CONSTRAINTS AB Aircraft and satellite observations indicate the presence of ppt (pptpmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS-Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br-Cl) chemistry than has been done in the past. Important reactions for regenerating BrO from its nonradical reservoirs include HOBr+Br-/Cl- in both aerosols and clouds, and oxidation of Br- by ClNO3 and ozone. Most tropospheric BrO in the model is in the free troposphere, consistent with observations and originates mainly from the photolysis and oxidation of ocean-emitted CHBr3. Stratospheric input is also important in the upper troposphere. Including production of gas phase inorganic bromine from debromination of acidified sea salt aerosol increases free tropospheric Br-y by about 30%. We find HOBr to be the dominant gas-phase reservoir of inorganic bromine. Halogen (Br-Cl) radical chemistry as implemented here in GEOS-Chem drives 14% and 11% decreases in the global burdens of tropospheric ozone and OH, respectively, a 16% increase in the atmospheric lifetime of methane, and an atmospheric lifetime of 6months for elemental mercury. The dominant mechanism for the Br-Cl driven tropospheric ozone decrease is oxidation of NOx by formation and hydrolysis of BrNO3 and ClNO3. C1 [Schmidt, J. A.; Jacob, D. J.; Hu, L.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Schmidt, J. A.] Univ Copenhagen, Dept Chem, Copenhagen, Denmark. [Jacob, D. J.; Horowitz, H. M.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Sherwen, T.; Evans, M. J.] Univ York, Dept Chem, WACL, York, N Yorkshire, England. [Liang, Q.] NASA, Goddard Space Flight Ctr, Lab Atmospher Chem & Dynam, Greenbelt, MD USA. [Suleiman, R. M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Oram, D. E.] Univ East Anglia, Ctr Oceanog & Atmospher Sci, Natl Ctr Atmospher Sci, Norwich, Norfolk, England. [Le Breton, M.; Percival, C. J.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Ctr Atmospher Sci, Manchester, Lancs, England. [Wang, S.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Wang, S.; Dix, B.; Volkamer, R.] Univ Colorado Boulder, Dept Chem & Biochem, Boulder, CO USA. [Wang, S.; Volkamer, R.] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA. RP Schmidt, JA (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.; Schmidt, JA (reprint author), Univ Copenhagen, Dept Chem, Copenhagen, Denmark. EM schmidt@chem.ku.dk RI Volkamer, Rainer/B-8925-2016; Liang, Qing/B-1276-2011; Chem, GEOS/C-5595-2014; OI Volkamer, Rainer/0000-0002-0899-1369; Sherwen, Tomas/0000-0002-3006-3876; Hu, Lu/0000-0002-4892-454X; Evans, Mathew John/0000-0003-4775-032X FU Danish Council for Independent Research/Natural Sciences; NASA Atmospheric Composition Modeling and Analysis Program; National Science Foundation (NSF) [AGS-1104104]; NSF; Fulbright Junior Research Award; NOAA Climate Program Office FX J.A.S. acknowledges support from the Danish Council for Independent Research/Natural Sciences. This work was supported by the NASA Atmospheric Composition Modeling and Analysis Program (grants to D.J.J. and Q.L.). We acknowledge Eric Apel and the TORERO Science Team. The TORERO project is funded by the National Science Foundation (NSF) under award AGS-1104104 (Principal Investigator: R.V.). The involvement of the NSF-sponsored Lower Atmospheric Observing Facilities, managed and operated by the National Center for Atmospheric Research Earth Observing Laboratory, is acknowledged. S.W. is a recipient of the Fulbright Junior Research Award. We acknowledge the CAST Science Team. We acknowledge C. Brenninkmeijer, A. Rauthe-Schoech, and the CARIBIC Science Team. We acknowledge E. Atlas, S. Montzka, and the HIPPO Science Team. NOAA flask measurements onboard the HIPPO missions were provided by S. Montzka, F. Moore, B. Miller, C. Sweeney, and J. Elkins and were supported in part by NOAA Climate Program Office's AC4 program. GEOS-Chem is available to the community through the standard GEOS-Chem repository www.geos-chem.org. Model output from the simulations described above are available upon request (schmidt@chem.ku.dk). Observational data from the TORERO campaign is available to the community through http://www.eol.ucar.edu/node/4527. NR 65 TC 7 Z9 7 U1 9 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT PY 2016 VL 121 IS 19 BP 11819 EP 11835 DI 10.1002/2015JD024229 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EA9PK UT WOS:000386976100017 ER PT J AU Strahan, SE Douglass, AR Steenrod, SD AF Strahan, S. E. Douglass, A. R. Steenrod, S. D. TI Chemical and dynamical impacts of stratospheric sudden warmings on Arctic ozone variability SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Arctic ozone; ozone depletion; sudden warming; wave driving ID BREWER-DOBSON CIRCULATION; CHEMISTRY; REANALYSES; TRANSPORT; DEPLETION; CHLORINE; HOLE AB We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O-3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90 degrees N column O-3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O-3 from an assumed climatological mean is due to variations in O-3 resupply and 1/3 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion. Key Points Arctic column ozone depletion depends on the number of cold days Winters with a sudden warming have less than half the depletion of years without one Dynamics plays a larger role than chemistry in Arctic ozone variability C1 [Strahan, S. E.; Steenrod, S. D.] Univ Space Res Assoc, Columbia, MD 21046 USA. [Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. RP Strahan, SE (reprint author), Univ Space Res Assoc, Columbia, MD 21046 USA.; Strahan, SE (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. EM susan.e.strahan@nasa.gov RI Douglass, Anne/D-4655-2012 FU NASA Modeling, Analysis, and Prediction Program; NASA Atmospheric Composition Modeling and Analysis Program FX This work was supported by the NASA Modeling, Analysis, and Prediction Program and the NASA Atmospheric Composition Modeling and Analysis Program. MLS data are available at http://mls.jpl.nasa.gov. The MERRA reanalysis can be obtained from the Goddard Earth Science Data and Information Services Center, http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl. Derived meteorological quantities such as heat fluxes can be obtained through this NASA data services website (http://acdb-ext.gsfc.nasa.gov/Data_services/met/ann_data.html). GMI simulation output is available by request to susan. e.strahan@nasa.gov. We thank the reviewers for their constructive comments. NR 40 TC 0 Z9 0 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT PY 2016 VL 121 IS 19 BP 11836 EP 11851 DI 10.1002/2016JD025128 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EA9PK UT WOS:000386976100021 ER PT J AU Tullos, DD Collins, MJ Bellmore, JR Bountry, JA Connolly, PJ Shafroth, PB Wilcox, AC AF Tullos, Desiree D. Collins, MathMathias J. Bellmore, J. Ryan Bountry, Jennifer A. Connolly, Patrick J. Shafroth, Patrick B. Wilcox, Andrew C. TI SYNTHESIS OF COMMON MANAGEMENT CONCERNS ASSOCIATED WITH DAM REMOVAL SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE sediment management; headcut; aggradation; reservoir erosion; reservoir drawdown; wells; turbidity; nonnative plants; invasive fish; dam removal; river restoration ID LOW-HEAD DAM; WHITE SALMON RIVER; FRESH-WATER FISH; ELWHA RIVER; VEGETATION DEVELOPMENT; PACIFIC-NORTHWEST; CONDIT DAM; SEDIMENT; CHANNEL; WASHINGTON AB Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether these concerns are warranted at a particular site. We used a dam-removal science database supplemented with other information sources to explore seven frequently raised concerns, herein Common Management Concerns (CMCs). We investigate the occurrence of these concerns and the contributing biophysical controls. The CMCs addressed are the following: degree and rate of reservoir sediment erosion, excessive channel incision upstream of reservoirs, downstream sediment aggradation, elevated downstream turbidity, drawdown impacts on local water infrastructure, colonization of reservoir sediments by nonnative plants, and expansion of invasive fish. Biophysical controls emerged for some of the concerns, providing managers with information to assess whether a given concern is likely to occur at a site. To fully assess CMC risk, managers should concurrently evaluate site conditions and identify the ecosystem or human uses that will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other factors such as natural watershed variability and disturbance history. C1 [Tullos, Desiree D.] Oregon State Univ, Biol & Ecol Engn Dept, 116 Gilmore Hall, Corvallis, OR 97331 USA. [Collins, MathMathias J.] NOAA, Restorat Ctr, Natl Marine Fisheries Serv, Gloucester, MA 01930 USA. [Bellmore, J. Ryan] US Forest Serv, Pacific Northwest Res Stn, Juneau, AK 99801 USA. [Bountry, Jennifer A.] US Bur Reclamat, Sedimentat & River Hydraul Grp, Lakewood, CO 80225 USA. [Connolly, Patrick J.] US Geol Survey, Western Fisheries Res Ctr, Cook, WA 98605 USA. [Shafroth, Patrick B.] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA. [Wilcox, Andrew C.] Univ Montana, Dept Geosci, Missoula, MT 59812 USA. RP Tullos, DD (reprint author), Oregon State Univ, Biol & Ecol Engn Dept, 116 Gilmore Hall, Corvallis, OR 97331 USA. EM desiree.tullos@oregonstate.edu OI Wilcox, Andrew C./0000-0002-6241-8977; Collins, Mathias/0000-0003-4238-2038 NR 138 TC 0 Z9 0 U1 33 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X EI 1752-1688 J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD OCT PY 2016 VL 52 IS 5 BP 1179 EP 1206 DI 10.1111/1752-1688.12450 PG 28 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EB2EL UT WOS:000387170400013 ER PT J AU Johansen, CT Lincoln, DA Bathel, BF Inman, JA Danehy, PM AF Johansen, Craig T. Lincoln, Daniel A. Bathel, Brett F. Inman, Jennifer A. Danehy, Paul M. TI Simultaneous Nitric Oxide/Atomic Oxygen Laser-Induced Fluorescence in an Arcjet Facility SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article ID DENSITY-MEASUREMENTS; SPECTROSCOPY; EXCITATION; ATOMS AB Simultaneous nitric-oxide and atomic-oxygen laser-induced-fluorescence experiments were performed in the Hypersonic Materials Environmental Test System facility at the NASA Langley Research Center. The data serve as an experimental database for validation for chemical and thermal nonequilibrium models used in hypersonic flows. Measurements were taken over a wide range of stagnation enthalpies (6.7-18.5 MJ/kg) using an Earth atmosphere simulant with a composition of 75% nitrogen, 20% oxygen, and 5% argon (by volume). These are the first simultaneous measurements of nitric-oxide and atomic-oxygen laser-induced fluorescence to be reported in literature for the Hypersonic Materials Environmental Test System facility. The maximum atomic-oxygen laser-induced-fluorescence mean signal intensity was observed at a stagnation enthalpy of approximately 12 MJ/kg, whereas the maximum nitric-oxide laser-induced-fluorescence mean signal intensity was observed at a stagnation enthalpy of 6.7 MJ/kg. The experimental results were compared to a fluorescence model that assumes equilibrium conditions in the plenum and frozen chemistry in an isentropic nozzle expansion (Mach 5). The equilibrium calculations were performed using CANTERA v2.1.1 with 16 species. The fluorescence model captured the correlation in mean atomic-oxygen laser-induced-fluorescence and nitric-oxide laser-induced-fluorescence signal intensities over a large range of stagnation enthalpies tested. The agreement between equilibrium calculations and the experimental laser-induced fluorescence signals was better for nitric oxide than atomic oxygen. Very weak correlations between single-shot atomic-oxygen laser-induced-fluorescence and nitric-oxide laser-induced-fluorescence intensities were observed in the experiments at all of the stagnation enthalpy conditions. It was found that the overall magnitude of nitric-oxide laser-induced-fluorescence fluctuations was much larger than atomic-oxygen laser-induced-fluorescence fluctuations. C1 [Johansen, Craig T.; Lincoln, Daniel A.] Univ Calgary, Mech & Mfg Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. [Bathel, Brett F.; Inman, Jennifer A.; Danehy, Paul M.] NASA, Langley Res Ctr, Adv Measurements & Data Syst Branch, MS 493, Hampton, VA 23681 USA. RP Johansen, CT (reprint author), Univ Calgary, Mech & Mfg Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. FU NASA's Fundamental Aeronautics Program; Natural Sciences and Engineering Research Council of Canada; Alberta Innovates Technology Futures FX The authors would like to acknowledge funding from NASA's Fundamental Aeronautics Program, the former Hypersonics Project, and the current High Speed Project. Assistance from Jeff Gragg, Steve Jones, and Scott Splinter is greatly appreciated. Craig Johansen was supported by the Natural Sciences and Engineering Research Council of Canada. Daniel Lincoln was supported by Alberta Innovates Technology Futures. The authors also acknowledge help from Alexandre Martin for his assistance with the equilibrium calculations. NR 26 TC 0 Z9 0 U1 4 U2 4 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT PY 2016 VL 30 IS 4 BP 912 EP 918 DI 10.2514/1.T4691 PG 7 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA EB4JQ UT WOS:000387338000005 ER PT J AU Trejo, A Trujillo, A Galvan, M Choudhuri, A Melcher, JC Bruggemann, JJ AF Trejo, Adrian Trujillo, Abraham Galvan, Manuel Choudhuri, Ahsan Melcher, John C. Bruggemann, Jeremy J. TI Experimental Investigation of Methane Convection and Boiling in Rocket Engine Cooling Channels SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference CY JUL 27-30, 2014 CL Cleveland, OH SP AIAA, ASME, SAE, ASEE AB The steady-state heat transfer characteristics under internal forced convection of liquid methane were experimentally investigated using a rectangular channel with a cross section of 1.8 x 4.1 mm and square channels with a cross section of 3.2 x 3.2 mm; three square channels had surface finishes typical of milled channels and another three square channels had internal longitudinal fins. A high heat flux test facility capable of handling cryogenic temperatures, which was developed at the Center for Space Exploration Technology Research for the purpose of simulating the high heat load conditions, representative of regeneratively cooled rocket engines, was used in this study. Subcooled film-boiling phenomena were discovered for all the channels presented in this study. Film-boiling onset at critical heat flux was correlated to the boiling number Bo similar to 0.1. The convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction for both the boiling and nonboiling regimes. C1 [Trejo, Adrian; Trujillo, Abraham; Galvan, Manuel; Choudhuri, Ahsan] Univ Texas El Paso, Ctr Space Explorat Technol Res, El Paso, TX 79902 USA. [Trejo, Adrian] Univ Texas El Paso, Missile Def Agcy, El Paso, TX 79902 USA. [Galvan, Manuel] Univ Texas El Paso, Ball Aerosp & Technol Corp, El Paso, TX 79902 USA. [Melcher, John C.] NASA, Johnson Space Ctr, Prop & Power Div, Houston, TX 77058 USA. [Bruggemann, Jeremy J.] NASA, Johnson Space Ctr, Prop Div, White Sands Test Facil, Las Cruces, NM 88004 USA. RP Trejo, A (reprint author), Univ Texas El Paso, Ctr Space Explorat Technol Res, El Paso, TX 79902 USA.; Trejo, A (reprint author), Univ Texas El Paso, Missile Def Agcy, El Paso, TX 79902 USA. NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT PY 2016 VL 30 IS 4 BP 937 EP 945 DI 10.2514/1.T4883 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA EB4JQ UT WOS:000387338000024 ER PT J AU Xi, X Johnson, MS Jeong, S Fladeland, M Pied, D Diaz, JA Bland, GL AF Xi, Xin Johnson, Matthew S. Jeong, Seongeun Fladeland, Matthew Pieri, David Diaz, Jorge Andres Bland, Geoffrey L. TI Constraining the sulfur dioxide degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurements SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Sulfur dioxide; Volcanic degassing; Turrialba; Unmanned aerial system; Inverse modeling; Unmanned aerial vehicle ID ATMOSPHERIC OBSERVATIONS; WEATHER RESEARCH; BOUNDARY-LAYER; STILT MODEL; CO2 FLUXES; EMISSIONS; SO2; GAS; GEOCHEMISTRY; SURVEILLANCE AB Observed sulfur dioxide (SO2) mixing ratios onboard unmanned aerial systems (UAS) during March 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux from Turrialba volcano within a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., <1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 +/- 037 to 0.83 +/- 033 kt d(-1) depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Xi, Xin; Johnson, Matthew S.; Fladeland, Matthew] NASA, Ames Res Ctr, M-S 232-21, Moffett Field, CA 94035 USA. [Jeong, Seongeun] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Pieri, David] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Diaz, Jorge Andres] Univ Costa Rica, CICANUM, GasLab, Sch Phys, San Jose, Costa Rica. [Bland, Geoffrey L.] NASA, Wallops Flight Facil, Wallops Isl, VA USA. RP Xi, X (reprint author), NASA, Ames Res Ctr, M-S 232-21, Moffett Field, CA 94035 USA. EM xin.xi30@gmail.com OI XI, XIN/0000-0003-3804-2735 FU NASA Postdoctoral Program FX X. Xi is supported by the NASA Postdoctoral Program administered by Oak Ridge Associated Universities through a contract with NASA. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at NASA ARC. SO2 data are obtained from the global 2000 present volcanogenic SO2 catalog being developed for the ASTER Volcano Archive (http://ava.jpl.nasa.gov) which was carried out in part at the Jet Propulsion Laboratory of the California Institute of Technology, under contract to NASA. NR 45 TC 1 Z9 1 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD OCT 1 PY 2016 VL 325 BP 110 EP 118 DI 10.1016/j.jvolgeores.2016.06.023 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EB2NB UT WOS:000387198000009 ER PT J AU Kagoshima, T Sano, YJ Takahata, N Ishida, A Tomonaga, Y Roulleau, E Pinti, DL Fischer, TP Lan, TF Nishio, Y Tsunogai, U Guo, ZF AF Kagoshima, Takanori Sano, Yuji Takahata, Naoto Ishida, Akizumi Tomonaga, Yama Roulleau, Emilie Pinti, Daniele L. Fischer, Tobias P. Lan, Tefang Nishio, Yoshiro Tsunogai, Urumu Guo, Zhengfu TI Spatial and temporal variations of gas geochemistry at Mt. Ontake, Japan SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Mt. Ontake; Helium; Carbon; Nitrogen; 2014 eruption ID DEL-RUIZ VOLCANO; ISOTOPE SYSTEMATICS; HELIUM-ISOTOPES; SECULAR VARIATIONS; HE-3 EMISSION; FAULT SYSTEM; CARBON; NITROGEN; COLOMBIA; CO2 AB This report describes spatial and temporal variations of helium, carbon, and nitrogen isotopes measured in CO2-rich bubbling gases from natural springs associated with Mt. Ontake (central Honshu, Japan) from November 1981 through September 2015. During the entire period, the He-3/He-4 ratio decreased concomitantly with increasing distance of the sampling site from the central cone. In contrast, the CO2/He-3 ratios and the delta C-13 values of CO2 increased with distance. These spatial trends became more pronounced after the September 27, 2014 Ontake eruption, suggesting reactivation of the volcano plumbing system with enhanced emission of magmatic volatiles, although the spatial trend of nitrogen isotopes disappeared. The 3He/4He ratios of the most proximal site to the central cone remained constant until 2000, apparently increasing from June 2003 through October 2014. They became constant soon after the eruption until September 2015. The ten-year He-3 enhancement might have been a precursor of the 2014 Ontake eruption. In contrast, delta C-13 values of CO2 at the same site remained constant through this period. The lack of delta C-13 anomaly might be attributable to 1) negligibly small amounts of magmatic CO2 introduced into the source of hot springs compared to ambient CO2 in the air-saturated aquifer, or 2) close resemblance of the carbon signature of magmatic CO2 to that of ambient CO2. Therefore its addition cannot change the overall delta C-13 value of the sampled hot springs. At distal sampling sites, no measurable change of helium, carbon, or nitrogen isotopes was observed in relation to the 2014 Ontake eruption, suggesting that the effect of this eruption on the Ontake hydrothermal system was geographically localized. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Ishida, Akizumi; Tomonaga, Yama] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan. [Sano, Yuji] Natl Taiwan Univ, Dept Geosci, Taipei 10617, Taiwan. [Tomonaga, Yama] Swiss Fed Inst Aquat Sci & Technol, Uberlandstr, Dubendorf, Switzerland. [Roulleau, Emilie] Univ Chile, Dept Geol, Ctr Excelencia Geotermia Los Andes, Santiago, Chile. [Pinti, Daniele L.] Univ Quebec, Geotop, Montreal, PQ, Canada. [Pinti, Daniele L.] Univ Quebec, Dept Sci Terre & Atmosphere, Montreal, PQ, Canada. [Fischer, Tobias P.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Lan, Tefang] Acad Sinica, Inst Earth Sci, Taipei 11529, Taiwan. [Nishio, Yoshiro] Kochi Univ, Reseach & Educ Fac, Kochi, Japan. [Tsunogai, Urumu] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi, Japan. [Guo, Zhengfu] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Cenozo Geol & Environment;, Beijing 100029, Peoples R China. [Ishida, Akizumi] Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, WiscSIMS lab, Madison, WI 53706 USA. RP Sano, YJ (reprint author), Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan. EM ysano@aori.u-tokyo.ac.jp RI Tsunogai, Urumu/C-8303-2011; OI Tsunogai, Urumu/0000-0002-1517-3284; Lan, Tefang/0000-0002-1899-095X; Nishio, Yoshiro/0000-0001-8023-5050; Tomonaga, Yama/0000-0003-2871-8826 FU Japan Society for the Promotion of Science [26900002] FX We thank Hsinyi Wen and Ai-Ti Chen for comments. This work was inspired by a discussion with David Hilton during the ICGG13 meeting in Chengdu, China. The original manuscript was written when Y.S. and T.K. were staying at the Department of Geosciences, National Taiwan University. This work was partly supported by a research grant from the Japan Society for the Promotion of Science (26900002). NR 43 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD OCT 1 PY 2016 VL 325 BP 179 EP 188 DI 10.1016/j.jvolgeores.2016.06.013 PG 10 WC Geosciences, Multidisciplinary SC Geology GA EB2NB UT WOS:000387198000015 ER PT J AU Gao, P Plavchan, P Gagne, J Furlan, E Bottom, M Anglada-Escude, G White, R Davison, CL Beichman, C Brinkworth, C Johnson, J Ciardi, D Wallace, K Mennesson, B von Braun, K Vasisht, G Prato, L Kane, SR Tanner, A Crawford, TJ Latham, D Rougeot, R Geneser, CS Catanzarite, J AF Gao, Peter Plavchan, P. Gagne, J. Furlan, E. Bottom, M. Anglada-Escude, G. White, R. Davison, C. L. Beichman, C. Brinkworth, C. Johnson, J. Ciardi, D. Wallace, K. Mennesson, B. von Braun, K. Vasisht, G. Prato, L. Kane, S. R. Tanner, A. Crawford, T. J. Latham, D. Rougeot, R. Geneser, C. S. Catanzarite, J. TI Retrieval of Precise Radial Velocities from Near-infrared High-resolution Spectra of Low-mass Stars SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE methods: data analysis; planets and satellites: detection; techniques: radial velocities ID M-DWARFS; GAS CELL; ECHELLE SPECTROGRAPH; DETECTING PLANETS; ABSORPTION CELLS; GIANT PLANET; PHOTON NOISE; BROWN DWARF; M4 DWARF; SEARCH AB Given that low-mass stars have intrinsically low luminosities at optical wavelengths and a propensity for stellar activity, it is advantageous for radial velocity (RV) surveys of these objects to use near-infrared (NIR) wavelengths. In this work, we describe and test a novel RV extraction pipeline dedicated to retrieving RVs from low-mass stars using NIR spectra taken by the CSHELL spectrograph at the NASA Infrared Telescope Facility, where a methane isotopologue gas cell is used for wavelength calibration. The pipeline minimizes the residuals between the observations and a spectral model composed of templates for the target star, the gas cell, and atmospheric telluric absorption; models of the line-spread function, continuum curvature, and sinusoidal fringing; and a parameterization of the wavelength solution. The stellar template is derived iteratively from the science observations themselves without a need for separate observations dedicated to retrieving it. Despite limitations from CSHELL's narrow wavelength range and instrumental systematics, we are able to (1) obtain an RV precision of 35 m s(-1) for the RV standard star GJ 15 A over a time baseline of 817 days, reaching the photon noise limit for our attained signal-to-noise ratio; (2) achieve similar to 3 m s(-1) RV precision for the M giant SV Peg over a baseline of several days and confirm its long-term RV trend due to stellar pulsations, as well as obtain nightly noise floors of similar to 2-6 m s(-1); and (3) show that our data are consistent with the known masses, periods, and orbital eccentricities of the two most massive planets orbiting GJ 876. Future applications of our pipeline to RV surveys using the next generation of NIR spectrographs, such as iSHELL, will enable the potential detection of super-Earths and mini-Neptunes in the habitable zones of M dwarfs. C1 [Gao, Peter] CALTECH, Div Geol & Planetary Sci, MC 150-21,1200 East Calif Blvd, Pasadena, CA 91125 USA. [Plavchan, P.; Geneser, C. S.] Missouri State Univ, Dept Phys, 901 S Natl Ave, Springfield, MO 65897 USA. [Gagne, J.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Furlan, E.; Beichman, C.; Brinkworth, C.; Ciardi, D.] CALTECH, NASA Exoplanet Sci Inst, 770 S Wilson Ave, Pasadena, CA 91125 USA. [Bottom, M.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Anglada-Escude, G.] Queen Mary Univ London, Sch Phys & Astron, 327 Mile End Rd, London E1 4NS, England. [Anglada-Escude, G.] Univ Hertfordshire, Ctr Astrophys Res, Coll Lane, Hatfield AL10 9AB, Herts, England. [White, R.; Davison, C. L.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Brinkworth, C.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Johnson, J.; Latham, D.] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA. [Wallace, K.; Mennesson, B.; Vasisht, G.; Crawford, T. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [von Braun, K.; Prato, L.] Lowell Observ, West Mars Hill Rd, Flagstaff, AZ 86001 USA. [Kane, S. R.] San Francisco State Univ, Dept Phys & Astron, 1600 Holloway Ave, San Francisco, CA 94132 USA. [Tanner, A.] Mississippi State Univ, Dept Phys & Astron, Hilbun Hall, Starkville, MS 39762 USA. [Rougeot, R.] ESA, European Space Res & Technol Ctr, Noordwijk Binnen, Provincie Zuid, Netherlands. [Catanzarite, J.] NASA Ames Res Ctr, MS 245-3,POB 1, Moffett Field, CA 94035 USA. RP Gao, P (reprint author), CALTECH, Div Geol & Planetary Sci, MC 150-21,1200 East Calif Blvd, Pasadena, CA 91125 USA. EM pgao@caltech.edu OI Gao, Peter/0000-0002-8518-9601; Anglada Escude, Guillem/0000-0002-3645-5977; Ciardi, David/0000-0002-5741-3047 FU JPL Research and Technology Development Grant; JPL Center for Exoplanet Science; Venus Express program via NASA [NNX10AP80G]; University of Washington; California Institute of Technology [NNH12ZDA002C]; [NNA13AA93A] FX We thank K. Sung, S. Crawford, B. Drouin, E. Garcia-Berrios, N.S. Lewis, S. Mills, and S. Lin for their effort in the building and setting up of the methane isotopologue gas cell. We thank B. Walp for his help with data collection at NASA IRTF. We thank J. Rayner, L. Bergknut, B. Bus, and the telescope operators at NASA IRTF for their help throughout this project. This work uses observations obtained at NASA IRTF through program numbers 2010B022, 2011A083, 2011B083, and 2012B021. This work was supported in part by a JPL Research and Technology Development Grant and the JPL Center for Exoplanet Science. Additional support includes the Venus Express program via NASA NNX10AP80G grant to the California Institute of Technology, and an NAI Virtual Planetary Laboratory grant from the University of Washington to the Jet Propulsion Laboratory and California Institute of Technology under solicitation NNH12ZDA002C and cooperative agreement number NNA13AA93A. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 77 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD OCT PY 2016 VL 128 IS 968 AR 104501 DI 10.1088/1538-3873/128/968/104501 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1LN UT WOS:000387113500005 ER PT J AU Plazas, AA Shapiro, C Kannawadi, A Mandelbaum, R Rhodes, J Smith, R AF Plazas, A. A. Shapiro, C. Kannawadi, A. Mandelbaum, R. Rhodes, J. Smith, R. TI The Effect of Detector Nonlinearity on WFIRST PSF Profiles for Weak Gravitational Lensing Measurements SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE cosmology: observations; dark energy; instrumentation: detectors ID POINT-SPREAD FUNCTION; COSMIC SHEAR; SYSTEMATIC-ERRORS; IMAGE COMBINATION; DARK ENERGY; REQUIREMENTS; CALIBRATION; TELESCOPE; INFERENCE; CAMERA AB Weak gravitational lensing (WL) is one of the most powerful techniques to learn about the dark sector of the universe. To extract the WL signal from astronomical observations, galaxy shapes must be measured and corrected for the point-spread function (PSF) of the imaging system with extreme accuracy. Future WL missions-such as NASA's Wide-Field Infrared Survey Telescope (WFIRST)-will use a family of hybrid near-infrared complementary metal-oxide-semiconductor detectors (HAWAII-4RG) that are untested for accurate WL measurements. Like all image sensors, these devices are subject to conversion gain nonlinearities (voltage response to collected photo-charge) that bias the shape and size of bright objects such as reference stars that are used in PSF determination. We study this type of detector nonlinearity (NL) and show how to derive requirements on it from WFIRST PSF size and ellipticity requirements. We simulate the PSF optical profiles expected for WFIRST and measure the fractional error in the PSF size (Delta R/R) and the absolute error in the PSF ellipticity (Delta e) as a function of star magnitude and the NL model. For our nominal NL model (a quadratic correction), we find that, uncalibrated, NL can induce an error of Delta R/R = 1 x 10(-2) and Delta e(2) = 1.75 x 10(-3) in the H158 bandpass for the brightest unsaturated stars in WFIRST. In addition, our simulations show that to limit the bias of Delta R/R and Delta e in the H158 band to similar to 10% of the estimated WFIRST error budget, the quadratic NL model parameter beta must be calibrated to similar to 1% and similar to 2.4%, respectively. We present a fitting formula that can be used to estimate WFIRST detector NL requirements once a true PSF error budget is established. C1 [Plazas, A. A.; Shapiro, C.; Rhodes, J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Shapiro, C.; Rhodes, J.; Smith, R.] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Kannawadi, A.; Mandelbaum, R.] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Rhodes, J.] Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. RP Plazas, AA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Andres.A.Plazas.Malagon@jpl.nasa.gov RI Mandelbaum, Rachel/N-8955-2014 OI Mandelbaum, Rachel/0000-0003-2271-1527 FU Jet Propulsion Laboratory; National Aeronautics and Space Administration FX We thank Chris Hirata, Jeff Kruk, Dave Content, and the WFIRST detector requirements working group for useful discussions. AAP is supported by the Jet Propulsion Laboratory. CS and JR are being supported in part by the Jet Propulsion Laboratory. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 59 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD OCT PY 2016 VL 128 IS 968 AR 104001 DI 10.1088/1538-3873/128/968/104001 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1LN UT WOS:000387113500002 ER PT J AU Lyapustin, AI Coops, NC Hall, FG Tucker, CJ Sellers, PJ Galvao, LS Aragao, LEOC Anderson, LO Nichol, CJ Waring, RH AF Lyapustin, Alexei I. Coops, Nicholas C. Hall, Forrest G. Tucker, Compton J. Sellers, Piers J. Galvao, Lenio Soares Aragao, Luiz E. O. C. Anderson, Liana O. Nichol, Caroline J. Waring, Richard H. TI In Memorium: Thomas Hilker Obituary SO REMOTE SENSING LA English DT Biographical-Item ID LIGHT-USE EFFICIENCY; ABOVEGROUND BIOMASS; REFLECTANCE; FOREST; TOWER; LIDAR; TERRESTRIAL; MODEL C1 [Lyapustin, Alexei I.; Hall, Forrest G.; Tucker, Compton J.; Sellers, Piers J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Coops, Nicholas C.] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada. [Galvao, Lenio Soares; Aragao, Luiz E. O. C.; Anderson, Liana O.] Natl Inst Space Res INPE, BR-12227010 Sao Jose Dos Campos, Brazil. [Nichol, Caroline J.] Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3FF, Midlothian, Scotland. [Waring, Richard H.] Oregon State Univ, Corvallis, OR 97331 USA. RP Lyapustin, AI (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM alexei.i.lyapustin@nasa.gov; nicholas.coops@ubc.ca; forrest.g.hall@nasa.gov; compton.j.tucker@nasa.gov; piers.j.sellers@nasa.gov; lenio.galvao@inpe.br; laragao@dsr.inpe.br; liana.anderson@cemaden.gov.br; caroline.nichol@ed.ac.uk; richard.waring@oregonstate.edu NR 22 TC 0 Z9 0 U1 1 U2 1 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD OCT PY 2016 VL 8 IS 10 AR 853 DI 10.3390/rs8100853 PG 4 WC Remote Sensing SC Remote Sensing GA EB4QI UT WOS:000387357300067 ER PT J AU Nava-Sedeno, JM Ortiz-Cervantes, A Segura, A Domagal-Goldman, SD AF Nava-Sedeno, J. Manik Ortiz-Cervantes, Adrian Segura, Antigona Domagal-Goldman, Shawn D. TI Carbon Monoxide and the Potential for Prebiotic Chemistry on Habitable Planets around Main Sequence M Stars SO ASTROBIOLOGY LA English DT Article ID X-RAY FLARES; ATMOSPHERIC AEROSOLS; M-DWARFS; GJ 876; SOLAR; LIFE; ORIGIN; EARTH; CO; COMPOUND AB Lifeless planets with CO2 atmospheres produce CO by CO2 photolysis. On planets around M dwarfs, CO is a long-lived atmospheric compound, as long as UV emission due to the star's chromospheric activity lasts, and the sink of CO and O-2 in seawater is small compared to its atmospheric production. Atmospheres containing reduced compounds, like CO, may undergo further energetic and chemical processing to give rise to organic compounds of potential importance for the origin of life. We calculated the yield of organic compounds from CO2-rich atmospheres of planets orbiting M dwarf stars, which were previously simulated by Domagal-Goldman et al. (2014) and Harman et al. (2015), by cosmic rays and lightning using results of experiments by Miyakawa et al. (2002) and Schlesinger and Miller (1983a, 1983b). Stellar protons from active stars may be important energy sources for abiotic synthesis and increase production rates of biological compounds by at least 2 orders of magnitude compared to cosmic rays. Simple compounds such as HCN and H2CO are more readily synthesized than more complex ones, such as amino acids and uracil (considered here as an example), resulting in higher yields for the former and lower yields for the latter. Electric discharges are most efficient when a reducing atmosphere is present. Nonetheless, atmospheres with high quantities of CO2 are capable of producing higher amounts of prebiotic compounds, given that CO is constantly produced in the atmosphere. Our results further support planetary systems around M dwarf stars as candidates for supporting life or its origin. Key Words: Prebiotic chemistryM dwarfsHabitable planetsCosmic raysLightningStellar activity. Astrobiology 16, 744-754. C1 [Nava-Sedeno, J. Manik] Tech Univ Dresden, Dept Innovat Methods Comp, ZIH, Dresden, Germany. [Ortiz-Cervantes, Adrian] Tech Univ Dresden, Struct Bioinformat & Computat Biol, BIOTEC, Dresden, Germany. [Segura, Antigona] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Circuito Exterior CU,A Postal 70-543, Mexico City 04510, DF, Mexico. [Domagal-Goldman, Shawn D.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD USA. [Segura, Antigona; Domagal-Goldman, Shawn D.] NASA, Astrobiol Inst, Virtual Planetary, Greenbelt, MD USA. RP Segura, A (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Circuito Exterior CU,A Postal 70-543, Mexico City 04510, DF, Mexico. EM antigona@nucleares.unam.mx FU Universidad Nacional Autonoma de Mexico [DGAPA PAPIIT IN109015]; NASA Astrobiology Institute [NNH05ZDA001C] FX We acknowledge support from the Universidad Nacional Autonoma de Mexico grant DGAPA PAPIIT IN109015. This work was also performed as part of the NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team, supported by the NASA Astrobiology Institute under Cooperative Agreement Notice NNH05ZDA001C. NR 46 TC 0 Z9 0 U1 3 U2 3 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD OCT PY 2016 VL 16 IS 10 BP 744 EP 754 DI 10.1089/ast.2015.1435 PG 11 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DZ8QR UT WOS:000386136400003 ER PT J AU Nadeau, J Lindensmith, C Deming, JW Fernandez, VI Stocker, R AF Nadeau, Jay Lindensmith, Chris Deming, Jody W. Fernandez, Vicente I. Stocker, Roman TI Microbial Morphology and Motility as Biosignatures for Outer Planet Missions SO ASTROBIOLOGY LA English DT Article ID DIGITAL HOLOGRAPHIC MICROSCOPY; WATER DRILL SYSTEM; BACTERIAL CHEMOTAXIS; MARINE-BACTERIA; SEA-ICE; FLUORESCENCE MICROSCOPY; HYPERVELOCITY IMPACTS; NATURAL ASSEMBLAGES; NUTRIENT PATCHES; FLAGELLAR MOTOR AB Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies. Key Words: In situ measurementBiosignaturesMicrobiologyEuropaIce. Astrobiology 16, 755-774. C1 [Nadeau, Jay] CALTECH, GALCIT, Pasadena, CA 91125 USA. [Lindensmith, Chris] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Deming, Jody W.] Univ Washington, Dept Biol Oceanog, Seattle, WA 98195 USA. [Fernandez, Vicente I.; Stocker, Roman] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Nadeau, J (reprint author), CALTECH, Mail Code 105-50,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM jnadeau@caltech.edu FU Gordon and Betty Moore Foundation [4037, 4038]; Walters Endowed Professorship FX This work was supported by the Gordon and Betty Moore Foundation, grants 4037 to McGill University and 4038 to the California Institute of Technology. J.W.D. also acknowledges support from the Walters Endowed Professorship. We thank Gordon Max Showalter for his contributions to laboratory and field testing of the DHM featured in Fig. 13 and Shelly Carpenter for the DAPI-stained image in Fig. 5 and assistance in the field. NR 121 TC 1 Z9 1 U1 4 U2 4 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD OCT PY 2016 VL 16 IS 10 BP 755 EP 774 DI 10.1089/ast.2015.1376 PG 20 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DZ8QR UT WOS:000386136400004 PM 27552160 ER PT J AU Leistedt, B Peiris, HV Elsner, F Benoit-Levy, A Amara, A Bauer, AH Becker, MR Bonnett, C Bruderer, C Busha, MT Kind, MC Chang, C Crocce, M da Costa, LN Gaztanaga, E Huff, EM Lahav, O Palmese, A Percival, WJ Refregier, A Ross, AJ Rozo, E Rykoff, ES Sanchez, C Sadeh, I Sevilla-Noarbe, I Sobreira, F Suchyta, E Swanson, MEC Wechsler, RH Abdalla, FB Allam, S Banerji, M Bernstein, GM Bernstein, RA Bertin, E Bridle, SL Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Carretero, J Cunha, CE D'Andrea, CB DePoy, DL Desai, S Diehl, HT Doel, P Eifler, TF Evrard, AE Neto, AF Flaugher, B Fosalba, P Frieman, J Gerdes, DW Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Jarvis, M Kent, S Kuehn, K Kuropatkin, N Li, TS Lima, M Maia, MAG March, M Marshall, JL Martini, P Melchior, P Miller, CJ Miquel, R Nichol, RC Nord, B Ogando, R Plazas, AA Reil, K Romer, AK Roodman, A Sanchez, E Santiago, B Scarpine, V Schubnell, M Smith, RC Soares-Santos, M Tarle, G Thaler, J Thomas, D Vikram, V Walker, AR Wester, W Zhang, Y Zuntz, J AF Leistedt, B. Peiris, H. V. Elsner, F. Benoit-Levy, A. Amara, A. Bauer, A. H. Becker, M. R. Bonnett, C. Bruderer, C. Busha, M. T. Kind, M. Carrasco Chang, C. Crocce, M. da Costa, L. N. Gaztanaga, E. Huff, E. M. Lahav, O. Palmese, A. Percival, W. J. Refregier, A. Ross, A. J. Rozo, E. Rykoff, E. S. Sanchez, C. Sadeh, I. Sevilla-Noarbe, I. Sobreira, F. Suchyta, E. Swanson, M. E. C. Wechsler, R. H. Abdalla, F. B. Allam, S. Banerji, M. Bernstein, G. M. Bernstein, R. A. Bertin, E. Bridle, S. L. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Carretero, J. Cunha, C. E. D'Andrea, C. B. DePoy, D. L. Desai, S. Diehl, H. T. Doel, P. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Jarvis, M. Kent, S. Kuehn, K. Kuropatkin, N. Li, T. S. Lima, M. Maia, M. A. G. March, M. Marshall, J. L. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Sanchez, E. Santiago, B. Scarpine, V. Schubnell, M. Smith, R. C. Soares-Santos, M. Tarle, G. Thaler, J. Thomas, D. Vikram, V. Walker, A. R. Wester, W. Zhang, Y. Zuntz, J. TI MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; galaxies: distances and redshifts; galaxies: statistics; large-scale structure of universe ID DARK ENERGY SURVEY; DIGITAL SKY SURVEY; PHOTOMETRIC REDSHIFT PDFS; GALAXY POWER SPECTRUM; COSMOLOGICAL IMPLICATIONS; ANGULAR MASKS; SDSS-III; INFORMATION; UNCERTAINTIES; SEXTRACTOR AB Spatially varying depth and the characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, particularly in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES-SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementary nature of these two approaches by comparing the SV data with BCC-UFig, a synthetic sky catalog generated by forward-modeling of the DES-SV images. We analyze the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and are well-captured by the maps of observing conditions. The combined use of the maps, the SV data, and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak-lensing analyses. However, they will need to be carefully characterized in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented here is relevant to all multi-epoch surveys and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky. C1 [Leistedt, B.; Peiris, H. V.; Elsner, F.; Benoit-Levy, A.; Lahav, O.; Palmese, A.; Sadeh, I.; Abdalla, F. B.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Amara, A.; Bruderer, C.; Chang, C.; Refregier, A.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Bauer, A. H.; Crocce, M.; Gaztanaga, E.; Carretero, J.; Fosalba, P.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Becker, M. R.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Becker, M. R.; Busha, M. T.; Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Bonnett, C.; Sanchez, C.; Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Busha, M. T.; Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kind, M. Carrasco; Sevilla-Noarbe, I.; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Swanson, M. E. C.; Gruendl, R. A.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [da Costa, L. N.; Sobreira, F.; Carnero Rosell, A.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [da Costa, L. N.; Carnero Rosell, A.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Huff, E. M.; Ross, A. J.; Suchyta, E.; Honscheid, K.; Martini, P.; Melchior, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Huff, E. M.; Suchyta, E.; Honscheid, K.; Melchior, P.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Percival, W. J.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Sevilla-Noarbe, I.; Sanchez, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Sobreira, F.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kent, S.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Banerji, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Bernstein, G. M.; Eifler, T. F.; Jarvis, M.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, UMR 7095, Inst Astrophys Paris, Sorbonne Univ, F-75014 Paris, France. [Bridle, S. L.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Desai, S.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. [James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matema, CP 66318, BR-05314970 Sao Paulo, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Leistedt, B (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. RI Lima, Marcos/E-8378-2010; Gaztanaga, Enrique/L-4894-2014; Ogando, Ricardo/A-1747-2010; OI Gaztanaga, Enrique/0000-0001-9632-0815; Ogando, Ricardo/0000-0003-2120-1154; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union's Seventh Framework Programme (FP7) [240672, 291329, 306478]; STFC; European Research Council under the European Community's Seventh Framework Programme (FP7)/ERC [306478]; National Science Foundation [PHYS-1066293, AST-1138766]; Swiss National Foundation [200021-149442, 200021-143906]; CAPES [3171-13-2]; FAPESP; CNPq; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; DES FX B.L., H.V.P., and F.E. are supported by STFC and the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 306478-CosmicDawn. This work was supported in part by National Science Foundation grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics. C.C., A.R., A.A., and C.B. are supported by in part the Swiss National Foundation grants 200021-149442 and 200021-143906. F.S. acknowledges financial support provided by CAPES under contract No. 3171-13-2. M.L. is partially supported by FAPESP and CNPq. We acknowledge use of the HEALPix software package (Gorski et al. 2005).; Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de A mparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.; The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. NR 52 TC 4 Z9 4 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD OCT PY 2016 VL 226 IS 2 AR 24 DI 10.3847/0067-0049/226/2/24 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA3HJ UT WOS:000386492400004 ER PT J AU Jenner, FE Arevalo, RD AF Jenner, Frances E. Arevalo, Ricardo D., Jr. TI Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS SO ELEMENTS LA English DT Article DE in situ LA-ICP-MS; trace element; experimental petrology; chemical mapping; spatial resolution ID INDUCTIVELY-COUPLED PLASMA; LASER-ABLATION MICROPROBE; MASS-SPECTROMETRY; GEOLOGICAL-MATERIALS; MAGMA; COEFFICIENTS; MINERALS; GLASSES; MANTLE; MELT AB Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) enables spatially resolved quantitative measurements of major, minor and trace element abundances in igneous rocks and minerals with equal or better precision than many other in situ techniques, and more rapidly than labour-intensive wet chemistry procedures. Common applications for LA-ICP-MS in the Earth sciences centre on investigating the composition of natural and experimental geological materials, including: analysis of whole rock silicate glasses, flux-free pressed powder tablets and/or fused aliquots of materials; in situ probing of individual minerals, xenocrysts, fluid and melt inclusions, experimental run products, and siderophile-rich micronuggets; and multidimensional chemical mapping of complex (multiphase) materials. C1 [Jenner, Frances E.] Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England. [Arevalo, Ricardo D., Jr.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. RP Jenner, FE (reprint author), Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England. EM frances.jenner@open.ac.uk; ricardo.d.arevalo@nasa.gov NR 29 TC 0 Z9 0 U1 6 U2 6 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 EI 1811-5217 J9 ELEMENTS JI Elements PD OCT PY 2016 VL 12 IS 5 BP 311 EP 316 DI 10.2113/gselements.12.5.311 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA EA2LG UT WOS:000386423200003 ER PT J AU Colman, DR Feyhl-Buska, J Robinson, KJ Fecteau, KM Xu, HF Shock, EL Boyd, ES AF Colman, Daniel R. Feyhl-Buska, Jayme Robinson, Kirtland J. Fecteau, Kristopher M. Xu, Huifang Shock, Everett L. Boyd, Eric S. TI Ecological differentiation in planktonic and sediment-associated chemotropic microbial populations in Yellowstone hot springs (vol 92, fiw137, 2016 ) SO FEMS MICROBIOLOGY ECOLOGY LA English DT Correction C1 [Colman, Daniel R.; Feyhl-Buska, Jayme; Boyd, Eric S.] Montana State Univ, Dept Microbiol & Immunol, POB 173520, Bozeman, MT 59717 USA. [Robinson, Kirtland J.; Fecteau, Kristopher M.; Shock, Everett L.] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA. [Xu, Huifang] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Shock, Everett L.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Xu, Huifang; Shock, Everett L.; Boyd, Eric S.] NASA, Astrobiol Inst, Moffett Field, CA 94035 USA. RP Boyd, ES (reprint author), Montana State Univ, Dept Microbiol & Immunol, POB 173520, Bozeman, MT 59717 USA. EM eboyd@montana.edu NR 1 TC 0 Z9 0 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD OCT PY 2016 VL 92 IS 10 AR fiw168 DI 10.1093/femsec/fiw168 PG 1 WC Microbiology SC Microbiology GA DZ7UZ UT WOS:000386074400020 ER PT J AU Schumann, GJP Stampoulis, D Smith, AM Sampson, CC Andreadis, KM Neal, JC Bates, PD AF Schumann, Guy J. -P. Stampoulis, Dimitrios Smith, Andrew M. Sampson, Christopher C. Andreadis, Konstantinos M. Neal, Jeffrey C. Bates, Paul D. TI Rethinking flood hazard at the global scale SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE flood hazard; event simulations; continental scale; flood risk; inundation; remote sensing ID RIVER DISCHARGE; RISK; MODEL; WATER; CALIBRATION; FRAMEWORK; DATABASE; CLIMATE AB Flooding is governed by the amount and timing of water spilling out of channels and moving across adjacent land, often with little warning. At global scales, flood hazard is typically inferred from streamflow, precipitation or from satellite images, yielding a largely incomplete picture. Thus, at present, the floodplain inundation variables, which define hazard, cannot be accurately predicted nor can they be measured at large scales. Here we present, for the first time, a complete continuous long-term simulation of floodplain water depths at continental scale. Simulations of floodplain inundation were performed with a hydrodynamic model based on gauged streamflow for the Australian continent from 1973 to 2012. We found the magnitude and timing of floodplain storage to differ significantly from streamflow in terms of their distribution. Furthermore, floodplain volume gave a much sharper discrimination of high hazard and low hazard periods than discharge. These discrepancies have implications for characterizing flood hazard at the global scale from precipitation and streamflow records alone, suggesting that simulations and observations of inundation are also needed. C1 [Schumann, Guy J. -P.] Remote Sensing Solut Inc, Monrovia, CA 91016 USA. [Schumann, Guy J. -P.; Smith, Andrew M.; Sampson, Christopher C.; Neal, Jeffrey C.; Bates, Paul D.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Stampoulis, Dimitrios; Andreadis, Konstantinos M.] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. [Smith, Andrew M.; Sampson, Christopher C.] SSBN Ltd, Bristol, Avon, England. RP Schumann, GJP (reprint author), Remote Sensing Solut Inc, Monrovia, CA 91016 USA.; Schumann, GJP (reprint author), Univ Bristol, Sch Geog Sci, Bristol, Avon, England. EM gjpschumann@gmail.com RI Bates, Paul/C-8026-2012 OI Bates, Paul/0000-0001-9192-9963 FU NASA ESTO grant [14AIST14-0074] FX All authors are in agreement of all aspects of the work published and confirm contribution. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). G. J-P. Schumann's time was supported by a NASA ESTO grant (14AIST14-0074). The authors would like to thank Shahar Janjua for assisting with the model validation during his internship. The authors also declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Note that the data supporting the conclusions can be obtained from the corresponding author upon request. NR 40 TC 2 Z9 2 U1 14 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT PY 2016 VL 43 IS 19 BP 10249 EP 10256 DI 10.1002/2016GL070260 PG 8 WC Geosciences, Multidisciplinary SC Geology GA EA9CW UT WOS:000386939800045 ER PT J AU Kwok, R Comiso, JC Lee, T Holland, PR AF Kwok, R. Comiso, J. C. Lee, T. Holland, P. R. TI Linked trends in the South Pacific sea ice edge and Southern Oscillation Index SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Antarctic ice edge; Southern Oscillation ID OCEAN; VARIABILITY; CIRCULATION; IMPACTS; CLIMATE; EXTENT; CMIP5; MOTION; WINDS; DRIFT AB Previous work have shown that sea ice variability in the South Pacific is associated with extratropical atmospheric anomalies linked to the Southern Oscillation (SO). Over a 32year period (1982-2013), our study shows that the trend in Southern Oscillation Index (SOI) is also able to quantitatively explain the trends in sea ice edge, drift, and surface winds in this region. On average two thirds of the winter ice edge trend in this sector, linked to ice drift and surface winds, could be explained by the positive SOI trend, thus subjecting the ice edge to strong decadal SO variability. If this relationship holds, the negative SOI trend prior to the recent satellite era suggests that ice edge trends opposite to that of the recent record over a similar time scale. Significant low-frequency ice edge trends, linked to the natural variability of SO, are superimposed upon any trends expected of anthropogenic forcing. C1 [Kwok, R.; Lee, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Comiso, J. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Holland, P. R.] British Antarctic Survey, Cambridge, England. RP Kwok, R (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM ron.kwok@jpl.nasa.gov RI Holland, Paul/G-2796-2012; OI Kwok, Ronald/0000-0003-4051-5896 NR 36 TC 1 Z9 1 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT PY 2016 VL 43 IS 19 BP 10295 EP 10302 DI 10.1002/2016GL070655 PG 8 WC Geosciences, Multidisciplinary SC Geology GA EA9CW UT WOS:000386939800053 ER PT J AU Fournier, S Reager, JT Lee, T Vazquez-Cuervo, J David, CH Gierach, MM AF Fournier, S. Reager, J. T. Lee, T. Vazquez-Cuervo, J. David, C. H. Gierach, M. M. TI SMAP observes flooding from land to sea: The Texas event of 2015 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE SMAP; flood; Gulf of Mexico; Texas; plume; salinity ID GULF-OF-MEXICO; MISSISSIPPI RIVER; SURFACE SALINITY; AQUARIUS; ALGORITHM; OCEAN; MODEL; SMOS AB Floods can have damaging impacts on both land and sea, yet studies of flooding events tend to focus on only one side of the land/sea continuum. Here we present the first two-sided analysis, focusing on the May 2015 severe flooding in Texas. Our investigation benefits from simultaneous measurements of land surface soil moisture and sea surface salinity from NASA's recent Soil Moisture Active Passive (SMAP) mission as well as ancillary data. We report the comprehensive chronology of the flooding: above average rainfall preceding the flood caused soils to saturate; record rainfall then generated record river discharge; and subsequently, an unusual freshwater plume associated with anomalous ocean currents formed in the north central Gulf of Mexico. Together with the Mississippi River plume, a rare horseshoe pattern was created that may have significant biogeochemical implications. Such integrated land/sea analysis of flood evolution can improve impact assessments of future extreme flooding events. C1 [Fournier, S.; Reager, J. T.; Lee, T.; Vazquez-Cuervo, J.; David, C. H.; Gierach, M. M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. RP Fournier, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM severine.fournier@jpl.nasa.gov OI David, Cedric/0000-0002-0924-5907 FU NASA; NASA Science Utilization of the Soil Moisture Active-Passive Mission program [NNH15ZDA001N-SUSMAP] FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. It is in part supported by the NASA Postdoctoral Program administered by the Universities Space Research Association, NASA Science Utilization of the Soil Moisture Active-Passive Mission (NNH15ZDA001N-SUSMAP) program, and NASA Physical Oceanography Program. The authors of this paper thank Jacqueline Boutin for her personal communication on SMOS SSS products. Data for this paper are available at the following data centers we gratefully thank: the NASA's National Snow and Ice Data Center (NSIDC) for SMAP soil moisture data (ftp://n5eil01u.ecs.nsidc.org/SAN/SMAP/SPL3SMP.002/), the Jet Propulsion Laboratory for SMAP SSS data (ftp://sealion.jpl.nasa.gov/pub/outgoing/smap/v2.0/L3/), the CNESIFREMER Centre Aval de Traitement des Donnees SMOS (CATDS) for SMOS soil moisture and SSS data (http://catds.ifremer.fr), the NOAA NODC World Ocean Database 2009 (WOD09) for in situ salinity data (https://www.nodc.noaa.gov), the Earth Space Research (ESR) and Physical Oceanography Distributed Active Archive Center (PO. DAAC) for OSCAR currents data (10.5067/OSCAR-03D01), PO. DAAC for GRACE data (10.5067/TEMSC-2LCR5), the Goddard Earth Sciences Data and Information Services Center (GES DISC) for TMPA precipitation data (http://mirador.gsfc.nasa.gov), the United States Geological Survey (USGS) center for discharge data (http://waterdata.usgs.gov), and the Ocean Biology Distributed Active Archive Center (OB. DAAC) for MODIS acdm data (http://oceancolor.gsfc.nasa.gov/). Copyright 2016 California Institute of Technology. U.S. Government sponsorship acknowledged. NR 17 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT PY 2016 VL 43 IS 19 BP 10338 EP 10346 DI 10.1002/2016GL070821 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EA9CW UT WOS:000386939800011 ER PT J AU Thompson, PR Hamlington, BD Landerer, FW Adhikari, S AF Thompson, P. R. Hamlington, B. D. Landerer, F. W. Adhikari, S. TI Are long tide gauge records in the wrong place to measure global mean sea level rise? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE global mean sea level; tide gauges ID REANALYSIS; MODEL AB Ocean dynamics, land motion, and changes in Earth's gravitational and rotational fields cause local sea level change to deviate from the rate of global mean sea level rise. Here we use observations and simulations of spatial structure in sea level change to estimate the likelihood that these processes cause sea level trends in the longest and highest-quality tide gauge records to be systematically biased relative to the true global mean rate. The analyzed records have an average twentieth century rate of approximately 1.6mm/yr, but based on the locations of these gauges, we show that the simple average underestimates the twentieth century global mean rate by 0.1 0.2mm/yr. Given the distribution of potential sampling biases, we find that <1% probability that observed trends from the longest and highest-quality tide gauge records are consistent with global mean rates less than 1.4mm/yr. C1 [Thompson, P. R.] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA. [Hamlington, B. D.] Old Dominion Univ, Ctr Coastal Phys Oceanog, Norfolk, VA USA. [Landerer, F. W.; Adhikari, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Thompson, PR (reprint author), Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA. EM philiprt@hawaii.edu FU NOAA Climate Program Office of the University of Hawaii Sea Level Center [NA11NMF4320128]; NASA New Investigator Program [NNX16AH56G]; NASA FX P.R. Thompson acknowledges financial support from the NOAA Climate Program Office in support of the University of Hawaii Sea Level Center (NA11NMF4320128). B.D. Hamlington acknowledges support from the NASA New Investigator Program (NNX16AH56G). The work of F.W. Landerer and S. Adhikari was carried out at the Jet Propulsion Laboratory/California Institute of Technology, under a contract with the NASA. S. Adhikari acknowledges support from a fellowship through the NASA Postdoctoral Program. All data used in this work are freely available. Tide gauge data were obtained from the Permanent Service for Mean Sea Level (http://psmsl.org). Climate model data were obtained from the CMIP5 data portal (http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html). GRACE data were obtained from the GRACE data portal (http://grace.jpl.nasa.gov/data/get-data/). NR 45 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT PY 2016 VL 43 IS 19 BP 10403 EP 10411 DI 10.1002/2016GL070552 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EA9CW UT WOS:000386939800024 ER PT J AU Jiang, XA Zhao, M Maloney, ED Waliser, DE AF Jiang, Xianan Zhao, Ming Maloney, Eric D. Waliser, Duane E. TI Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden-Julian Oscillation SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Madden-Julian Oscillation; tropical convection; climate models; convective adjustment time scale ID INTRASEASONAL VARIABILITY; VERTICAL STRUCTURE; WATER-VAPOR; CLIMATE; MJO; PRECIPITATION; PACIFIC; SENSITIVITY; WAVES AB Despite its pronounced impacts on weather extremes worldwide, the Madden-Julian Oscillation (MJO) remains poorly represented in climate models. Here we present findings that point to some necessary ingredients to produce a strong MJO amplitude in a large set of model simulations from a recent model intercomparison project. While surface flux and radiative heating anomalies are considered important for amplifying the MJO, their strength per unit MJO precipitation anomaly is found to be negatively correlated to MJO amplitude across these multimodel simulations. However, model MJO amplitude is found to be closely tied to a model's convective moisture adjustment time scale, a measure of how rapidly precipitation must increase to remove excess column water vapor, or alternately the efficiency of surface precipitation generation per unit column water vapor anomaly. These findings provide critical insights into key model processes for the MJO and pinpoint a direction for improved model representation of the MJO. C1 [Jiang, Xianan] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Jiang, Xianan; Waliser, Duane E.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Zhao, Ming] Princeton Univ, Geophys Fluid Dynam Lab, NOAA, Princeton, NJ 08544 USA. [Maloney, Eric D.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Jiang, XA (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA.; Jiang, XA (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM xianan@ucla.edu RI Maloney, Eric/A-9327-2008; Zhao, Ming/C-6928-2014 OI Maloney, Eric/0000-0002-2660-2611; FU National Science Foundation (NSF) Climate and Large-Scale Dynamics Program [AGS-1228302]; NOAA Climate Program Office (CPO) [NA12OAR4310075, NA15OAR4310098, NA15OAR4310177]; Office of Naval Research under project [ONRBAA12-001]; NSF [AGS-1221013, AGS-1441916]; NASA Modeling, Analysis and Prediction Program; Jet Propulsion Laboratory, California Institute of Technology, under NASA; NOAA MAPP [NA15OAR4310098, NA13OAR431016, NA15OAR4310099] FX The multimodel output collected by this project and analyzed in this study is available for free download from https://earthsystemcog.org/projects/gassyotc-mip. X. Jiang acknowledges support by National Science Foundation (NSF) Climate and Large-Scale Dynamics Program under awards AGS-1228302 and NOAA Climate Program Office (CPO) under award NA12OAR4310075, NA15OAR4310098, and NA15OAR4310177. D. Waliser acknowledges the Office of Naval Research under project ONRBAA12-001, NSF award AGS-1221013, NASA Modeling, Analysis and Prediction Program, and the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. E. Maloney acknowledges support by the NOAA MAPP program under awards NA13OAR431016, NA15OAR4310099, and NA15OAR4310098 and by NSF award AGS-1441916. NR 45 TC 4 Z9 4 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT PY 2016 VL 43 IS 19 BP 10412 EP 10419 DI 10.1002/2016GL070898 PG 8 WC Geosciences, Multidisciplinary SC Geology GA EA9CW UT WOS:000386939800048 ER PT J AU Naud, CM Posselt, DJ van den Heever, SC AF Naud, Catherine M. Posselt, Derek J. van den Heever, Susan C. TI Aerosol optical depth distribution in extratropical cyclones over the Northern Hemisphere oceans SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE aerosol; extratropical cyclone; MODIS ID MIDLATITUDE CYCLONES; SATELLITE-OBSERVATIONS; CIRCULATION SYSTEMS; CLOUD; MODEL; PRECIPITATION; MODIS; WARM; VALIDATION; PRODUCTS AB Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database, the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere midlatitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the postcold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones. C1 [Naud, Catherine M.] Columbia Univ, NASA GISS, New York, NY 10027 USA. [Posselt, Derek J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [van den Heever, Susan C.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Naud, CM (reprint author), Columbia Univ, NASA GISS, New York, NY 10027 USA. EM cn2140@columbia.edu RI van den Heever, Susan/E-8728-2011 OI van den Heever, Susan/0000-0001-9843-3864 FU NASA CloudSat science team recompete grant [NNX13AQ33G] FX Funding for this study comes from NASA CloudSat science team recompete grant NNX13AQ33G. The MCMS extratropical cyclone data set, algorithm, and documentation are available at http://gcss-dime.giss.nasa.gov/mcms/. The MODIS Aqua collection 6 daily MYD08_D3 files were obtained from the Level 1 and Atmosphere Archive and Distribution system at the Goddard Space Flight https://ladsweb.nascom.nasa.gov. The authors thank two anonymous reviewers for their helpful comments. NR 29 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT PY 2016 VL 43 IS 19 BP 10504 EP 10511 DI 10.1002/2016GL070953 PG 8 WC Geosciences, Multidisciplinary SC Geology GA EA9CW UT WOS:000386939800057 ER PT J AU Garcia-Pando, CP Miller, RL Perlwitz, JP Rodriguez, S Prospero, JM AF Garcia-Pando, Carlos Perez Miller, Ron L. Perlwitz, Jan P. Rodriguez, Sergio Prospero, Joseph M. TI Predicting the mineral composition of dust aerosols: Insights from elemental composition measured at the Izana Observatory SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE soil dust; dust mineral composition; size distribution ID MARINE BOUNDARY-LAYER; NORTH-ATLANTIC REGION; SAHARAN AIR LAYER; AFRICAN DUST; SIZE DISTRIBUTION; DESERT DUST; PACIFIC-OCEAN; KEY PROCESSES; GISS MODELE2; TRANSPORT AB Regional variations of dust mineral composition are fundamental to climate impacts but generally neglected in climate models. A challenge for models is that atlases of soil composition are derived from measurements following wet sieving, which destroys the aggregates potentially emitted from the soil. Aggregates are crucial to simulating the observed size distribution of emitted soil particles. We use an extension of brittle fragmentation theory in a global dust model to account for these aggregates. Our method reproduces the size-resolved dust concentration along with the approximately size-invariant fractional abundance of elements like Fe and Al in the decade-long aerosol record from the Izana Observatory, off the coast of West Africa. By distinguishing between Fe in structural and free forms, we can attribute improved model behavior to aggregation of Fe and Al-rich clay particles. We also demonstrate the importance of size-resolved measurements along with elemental composition analysis to constrain models. C1 [Garcia-Pando, Carlos Perez; Miller, Ron L.; Perlwitz, Jan P.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Garcia-Pando, Carlos Perez; Miller, Ron L.; Perlwitz, Jan P.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Perlwitz, Jan P.] Climate Aerosol & Pollut Res LLC, New York, NY USA. [Rodriguez, Sergio] AEMET, Joint Res Unit CSIC Studies Atmospher Pollut, Izana Atmospher Res Ctr, Santa Cruz de Tenerife, CA, Spain. [Prospero, Joseph M.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. RP Garcia-Pando, CP (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Garcia-Pando, CP (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM carlos.perezga@nasa.gov RI Rodriguez, Sergio/J-5365-2015; OI Rodriguez, Sergio/0000-0002-1727-3107; Perez Garcia-Pando, Carlos/0000-0002-4456-0697 FU Department of Energy [DE-SC0006713]; NASA Modeling, Analysis and Prediction Program; Aerosol Global Atmospheric Watch program of Izana Observatory; AEMET; Ministry of Economy and Competitiveness of Spain; European Regional Development Fund (ERDF), POLLINDUST [CGL2011-26259]; European Regional Development Fund (ERDF), AEROATLAN [CGL2015-66229-P] FX Data from the Izana Observatory and Barbados can be obtained by request to Sergio Rodriguez and Joseph M. Prospero, respectively. The dust mineral fractions at emission for the SMF and AMF methods can be downloaded from http://data.giss.nasa.gov/mineralfrac/. This research was supported by the Department of Energy (DE-SC0006713), the NASA Modeling, Analysis and Prediction Program, and the Aerosol Global Atmospheric Watch program of Izana Observatory, which has been funded by AEMET and several research projects of the Ministry of Economy and Competitiveness of Spain and the European Regional Development Fund (ERDF) including POLLINDUST (CGL2011-26259) and AEROATLAN (CGL2015-66229-P). Chemical analysis was made at IDAEA-CSIC (A. Alastuey and X. Querol). Computational resources were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. NR 41 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT PY 2016 VL 43 IS 19 BP 10520 EP 10529 DI 10.1002/2016GL069873 PG 10 WC Geosciences, Multidisciplinary SC Geology GA EA9CW UT WOS:000386939800001 ER PT J AU Cesana, G Waliser, DE AF Cesana, G. Waliser, D. E. TI Characterizing and understanding systematic biases in the vertical structure of clouds in CMIP5/CFMIP2 models SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE cloud; CALIPSO-GOCCP; simulator; evaluation; model; vertical structure ID INTERCOMPARISON PROJECT; SATELLITE-OBSERVATIONS; REANALYSIS DATA; CLIMATE; CMIP5; RADAR; REPRESENTATION; SIMULATIONS; PACIFIC; CALIPSO AB From a traditional low-, middle-, and high-cloud layered perspective as well as a more detailed level perspective (40 levels), we compare the vertical distribution of clouds in 12 general circulation models (GCMs) against the GCM-Oriented Cloud-Aerosols Lidar and Infrared Pathfinder Satellite Observations Cloud Product (CALIPSO-GOCCP) using a satellite simulator approach. The layered perspective shows that models exhibit the similar regional biases: an overestimate (underestimate) of high clouds over oceans (continents) in the tropics and a strong underestimate of low clouds over stratocumulus regions. Although high clouds are too infrequent on average, the level perspective reveals that high-level clouds fill too many upper levels of the column when present (geometrically too thick), suggesting an overestimation of the cloud overlap. Compositing by dynamical regimes and large-scale relative humidity shows that the models tend to have too many high-level clouds in moist environments and too few boundary layer clouds in dry environments regardless of dynamical regimes. C1 [Cesana, G.; Waliser, D. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Cesana, G (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Gregory.v.cesana@jpl.nasa.gov NR 39 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT PY 2016 VL 43 IS 19 BP 10538 EP 10546 DI 10.1002/2016GL070515 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EA9CW UT WOS:000386939800049 ER PT J AU Alden, CB Miller, JB Gatti, LV Gloor, MM Guan, K Michalak, AM van der Laan-Luijkx, IT Touma, D Andrews, A Basso, LS Correia, CSC Domingues, LG Joiner, J Krol, MC Lyapustin, AI Peters, W Shiga, YP Thoning, K van der Velde, IR van Leeuwen, TT Yadav, V Diffenbaugh, NS AF Alden, Caroline B. Miller, John B. Gatti, Luciana V. Gloor, Manuel M. Guan, Kaiyu Michalak, Anna M. van der Laan-Luijkx, Ingrid T. Touma, Danielle Andrews, Arlyn Basso, Luana S. Correia, Caio S. C. Domingues, Lucas G. Joiner, Joanna Krol, Maarten C. Lyapustin, Alexei I. Peters, Wouter Shiga, Yoichi P. Thoning, Kirk van der Velde, Ivar R. van Leeuwen, Thijs T. Yadav, Vineet Diffenbaugh, Noah S. TI Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange SO GLOBAL CHANGE BIOLOGY LA English DT Article DE Amazon; climate extremes; CO2; inverse model; terrestrial biosphere; tropical carbon exchange ID TERRESTRIAL CARBON-CYCLE; CHLOROPHYLL FLUORESCENCE; DROUGHT SENSITIVITY; DIOXIDE FLUX; RAIN-FOREST; CLIMATE; VEGETATION; MODEL; PHOTOSYNTHESIS; BALANCE AB Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere ( NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (similar to 1-8 x 10(6) km(2)) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE ( more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation ( negative correlation) and temperature ( positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity ( GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub-Basin estimates have not been previously available. C1 [Alden, Caroline B.; Guan, Kaiyu; Touma, Danielle; Diffenbaugh, Noah S.] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. [Alden, Caroline B.; Diffenbaugh, Noah S.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. [Miller, John B.; Andrews, Arlyn; Thoning, Kirk] NOAA, Global Monitoring Div, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA. [Miller, John B.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Gatti, Luciana V.; Basso, Luana S.; Correia, Caio S. C.; Domingues, Lucas G.] CNEN, IPEN, Atmospher Chem Lab, 2242 Ave Prof Lineu Prestes,Cidade Univ, BR-05508000 Sao Paulo, Brazil. [Gloor, Manuel M.] Univ Leeds, Sch Geog, Woodhouse Lane, Leeds LS9 2JT, W Yorkshire, England. [Michalak, Anna M.; Shiga, Yoichi P.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [van der Laan-Luijkx, Ingrid T.; Krol, Maarten C.; Peters, Wouter] Wageningen Univ, Dept Meteorol & Air Qual, POB 47, NL-6700 AA Wageningen, Netherlands. [Joiner, Joanna; Lyapustin, Alexei I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krol, Maarten C.; van Leeuwen, Thijs T.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Princetonpl 5, NL-3584 CC Utrecht, Netherlands. [Krol, Maarten C.; van Leeuwen, Thijs T.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [Peters, Wouter; van der Velde, Ivar R.] Univ Groningen, Ctr Isotope Res, Nijenborgh 4, NL-9747 AG Groningen, Netherlands. [Shiga, Yoichi P.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Yadav, Vineet] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Alden, CB (reprint author), Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA.; Alden, CB (reprint author), Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. EM aldenc@colorado.edu RI van der Laan-Luijkx, Ingrid/G-9169-2011; Krol, Maarten/E-3414-2013; OI van der Laan-Luijkx, Ingrid/0000-0002-3990-6737; ALDEN, CAROLINE/0000-0002-5249-7800; Touma, Danielle/0000-0003-1992-9904; Domingues, Lucas/0000-0003-4868-917X FU NASA [NNX12AM90G]; NSF (AGS CAREER) [0955283] FX This research was funded by grants from NASA (NNX12AM90G to JBM) and NSF (AGS CAREER 0955283 to NSD). We thank the pilots who collected the air samples, and the measurement analysts and scientists at NOAA for providing data from ASC and RPB. We also thank Sourish Basu and Tyler Jones for helpful discussions and two anonymous reviewers for thoughtful comments and suggestions. NR 64 TC 2 Z9 2 U1 22 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD OCT PY 2016 VL 22 IS 10 BP 3427 EP 3443 DI 10.1111/gcb.13305 PG 17 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EA5RQ UT WOS:000386680600017 PM 27124119 ER PT J AU Obryk, MK Doran, PT Hicks, JA McKay, CP Priscu, JC AF Obryk, M. K. Doran, P. T. Hicks, J. A. McKay, C. P. Priscu, J. C. TI Modeling the thickness of perennial ice covers on stratified lakes of the Taylor Valley, Antarctica SO JOURNAL OF GLACIOLOGY LA English DT Article DE energy balance; ice and climate; ice thickness measurements; lake ice ID MCMURDO DRY VALLEYS; SEA-ICE; THERMODYNAMIC MODEL; WATER BODIES; ECOSYSTEM; HOARE; TEMPERATURE; ABLATION; BONNEY; RATES AB A 1-D ice cover model was developed to predict and constrain drivers of long-termice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 a (between 1996 and 2012) of ice thickness changes for the west lobe of Lake Bonney (average ice thickness = 3.53 m) and Lake Fryxell (average ice thickness = 4.22 m). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (cooling or warming). As such, shallow (<20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation. C1 [Obryk, M. K.] Portland State Univ, Dept Geol, Portland, OR 97207 USA. [Obryk, M. K.; Doran, P. T.] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA. [Hicks, J. A.] Northwestern Univ, Engn Sci & Appl Math, Evanston, IL USA. [McKay, C. P.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Priscu, J. C.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. RP Obryk, MK (reprint author), Portland State Univ, Dept Geol, Portland, OR 97207 USA.; Obryk, MK (reprint author), Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA. EM mobryk@pdx.edu FU Office of Polar Programs [9810219, 0096250, 0832755, 1041742, 1115245]; NSF FX This research was supported by the Office of Polar Programs (grants 9810219, 0096250, 0832755, 1041742 and 1115245). Logistical support was provided by the US Antarctic Program through funding from NSF. We thank the Long Term Ecological Research project personnel for collecting the ice thickness measurements throughout the duration of this project and Douglas MacAyeal for insightful conversations on the topic. NR 39 TC 0 Z9 0 U1 7 U2 7 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0022-1430 EI 1727-5652 J9 J GLACIOL JI J. Glaciol. PD OCT PY 2016 VL 62 IS 235 BP 825 EP 834 DI 10.1017/jog.2016.69 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA EA5PP UT WOS:000386673900003 ER PT J AU Zwally, HJ Li, J Robbins, JW Saba, JL Yi, DH Brenner, AC AF Zwally, H. Jay Li, Jun Robbins, John W. Saba, Jack L. Yi, Donghui Brenner, Anita C. TI Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on 'Mass gains of the Antarctic ice sheet exceed losses' by H. J. Zwally and others (2015) SO JOURNAL OF GLACIOLOGY LA English DT Letter ID ELEVATION CHANGE; GREENLAND; BALANCE C1 [Zwally, H. Jay] NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zwally, H. Jay] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Jun; Yi, Donghui] NASA, SGT Inc, Goddard Space Flight Ctr, Greenbelt, MD USA. [Robbins, John W.] NASA, Craig Technol, Goddard Space Flight Ctr, Greenbelt, MD USA. [Saba, Jack L.] NASA, Sci Syst & Applicat Inc, Goddard Space Flight Ctr, Greenbelt, MD USA. [Brenner, Anita C.] Sigma Space Corp, Lanham, MD USA. RP Zwally, HJ (reprint author), NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Zwally, HJ (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM jayzwallyice@verizon.net NR 14 TC 0 Z9 0 U1 4 U2 4 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0022-1430 EI 1727-5652 J9 J GLACIOL JI J. Glaciol. PD OCT PY 2016 VL 62 IS 235 BP 990 EP 992 DI 10.1017/jog.2016.91 PG 3 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA EA5PP UT WOS:000386673900016 ER PT J AU Zwally, HJ Li, J Robbins, JW Saba, JL Yi, DH Brenner, AC AF Zwally, H. Jay Li, Jun Robbins, John W. Saba, Jack L. Yi, Donghui Brenner, Anita C. TI Response to Comment by A. RICHTER, M. HORWATH, R. DIETRICH (2016) on 'Mass gains of the Antarctic ice sheet exceed losses' by H. J. Zwally and others (2015) SO JOURNAL OF GLACIOLOGY LA English DT Letter ID EAST ANTARCTICA; ACCUMULATION C1 [Zwally, H. Jay] NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zwally, H. Jay] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Jun; Yi, Donghui] NASA, SGT Inc, Goddard Space Flight Ctr, Greenbelt, MD USA. [Robbins, John W.] NASA, Craig Technol, Goddard Space Flight Ctr, Greenbelt, MD USA. [Saba, Jack L.] NASA, Sci Syst & Applicat Inc, Goddard Space Flight Ctr, Greenbelt, MD USA. [Brenner, Anita C.] Sigma Space Corp, Lanham, MD USA. RP Zwally, HJ (reprint author), NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Zwally, HJ (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM jayzwallyice@verizon.net NR 12 TC 0 Z9 0 U1 1 U2 1 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0022-1430 EI 1727-5652 J9 J GLACIOL JI J. Glaciol. PD OCT PY 2016 VL 62 IS 235 BP 993 EP 995 DI 10.1017/jog.2016.92 PG 3 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA EA5PP UT WOS:000386673900017 ER PT J AU Singh, NB Su, CH Arnold, B Choa, FS AF Singh, N. B. Su, Ching-Hua Arnold, Bradley Choa, Fow-Sen TI Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals SO OPTICAL MATERIALS LA English DT Article DE Zinc selenide; Zinc sulfide; Defects; Raman; Photoluminescence; Solid-solution; Crystal growth ID PHYSICAL VAPOR TRANSPORT; GROWTH AB Experiments were performed to study the effect of point defects on the optical and morphological characteristics of zinc selenide-zinc sulfide ZnSe-ZnS (ZnSexS(1-x)) solid solution crystals grown under terrestrial (1-g) condition. We used the composition ZnSe0.91S0.09 and ZnSe0.73S0.27 for the detailed studies. Crystals of 8 mm and 12 mm diameter were grown using physical vapor transport methods. These crystals did not exhibit gross defects such as voids, bubbles or precipitates. The photoluminescence spectra indicated strong red emission for the 610-630-nm wavelength region in both crystals. This emission could be explained on the basis of high energy irradiation of Zn selenide. For the ZnSe0.73S0.27 crystal, absorption starts at a lower wavelength range (300 nm) when compared to the ZnSe0.91S0.09 crystal presumably due to the much higher bandgap of ZnS than that of ZnSe. Sharp peaks at 451 and 455 nm were observed for both samples corresponding to the band edge transitions, followed by a strong peak at 632 nm. These results were consistent with the observations based on Raman spectroscopy studies. Under 532-nm laser illumination both transverse optical (TO) and longitudinal optical (LO) phonon peaks appeared at Raman shifts of 220 and 280 Delta cm(-1), respectively. These peaks are similar to those observed for pure ZnSe Raman spectra for which TO and LO occur at 200 and 250 Delta cm(-1) for the xaxis (first order) polarization. (C) 2016 Elsevier B.V. All rights reserved. C1 [Singh, N. B.; Arnold, Bradley; Choa, Fow-Sen] Univ Maryland Baltimore Cty, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Su, Ching-Hua] NASA, Marshall Space Flight Ctr, EM31, Huntsville, AL 35812 USA. RP Singh, NB (reprint author), Univ Maryland Baltimore Cty, 1000 Hilltop Circle, Baltimore, MD 21250 USA. EM singna@gmail.com FU Space Life and Physical Sciences Division, Human Exploration and Operations Mission Directorate, NASA Headquarter through Marshall Space Flight Center Contract [NM15540345Q-1] FX The authors would like to acknowledge the supports of Space Life and Physical Sciences Division, Human Exploration and Operations Mission Directorate, NASA Headquarter through Marshall Space Flight Center Contract No. NM15540345Q-1. Authors are also grateful to the program and management team for technical discussion during this study. We also thank Mr. Chris Cooper and several other graduate and undergraduate students for their support who participated in this project. NR 13 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-3467 EI 1873-1252 J9 OPT MATER JI Opt. Mater. PD OCT PY 2016 VL 60 BP 474 EP 480 DI 10.1016/j.optmat.2016.08.031 PG 7 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA EA5FJ UT WOS:000386644500074 ER PT J AU Tanelli, S Durden, SL Johnson, MP AF Tanelli, S. Durden, S. L. Johnson, M. P. TI Airborne Demonstration of DPCA for Velocity Measurements of Distributed Targets SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Clouds; displaced phase center antenna (DPCA); precipitation; radar; radar remote sensing; sea surface; weather ID SPACEBORNE DOPPLER RADAR; SEA-SURFACE; RAINFALL; SAR AB Measurement of the Doppler velocity of distributed targets, such as precipitation and rough surfaces, from space is challenging due to the large platform velocity, the broad Doppler spectrum, and the resulting decorrelation between pulses. A previous paper by Durden et al. suggested the use of the displaced phase center antenna (DPCA) technique for the Doppler measurements of such targets. The proposed technique uses two antennas with appropriately chosen pulse timing to cancel platform motion. While DPCA has been used for many years in canceling clutter for point target motion measurements, its use in measuring Doppler from distributed targets was not well established. Here, the authors provide an example of surface measurements from a dual-antenna airborne system and a first demonstration of the use of DPCA to estimate the surface Doppler. C1 [Tanelli, S.; Durden, S. L.; Johnson, M. P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Tanelli, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM simone.tanelli@jpl.nasa.gov NR 20 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD OCT PY 2016 VL 13 IS 10 BP 1415 EP 1419 DI 10.1109/LGRS.2016.2581174 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA EA0CS UT WOS:000386253500005 ER PT J AU Tao, J Wu, D Gourley, J Zhang, SQ Crow, W Peters-Lidard, C Barros, AP AF Tao, Jing Wu, Di Gourley, Jonathan Zhang, Sara Q. Crow, Wade Peters-Lidard, Christa Barros, Ana P. TI Operational hydrological forecasting during the IPHEx-IOP campaign - Meet the challenge SO JOURNAL OF HYDROLOGY LA English DT Article DE Integrated Precipitation and Hydrology Experiment (IPHEx); Operational flood forecasts; Quantitative Precipitation Estimate (QPE); Quantitative Precipitation Forecast (QPF); Data assimilation; Duke Coupled surface-groundwater; Hydrology Model (DCHM) ID OBSERVING SYSTEM SIMULATION; ENSEMBLE PREDICTION SYSTEMS; SNOW MICROWAVE EMISSIONS; DATA ASSIMILATION SCHEME; FLOOD ALERT SYSTEM; MEDIUM-SIZE BASIN; X-BAND RADAR; MAP D-PHASE; FLASH-FLOOD; SOIL-MOISTURE AB An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the MP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over-and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basin's outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins. (C) 2016 Elsevier B.V. All rights reserved. C1 [Tao, Jing; Barros, Ana P.] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27706 USA. [Peters-Lidard, Christa] NASA, GSFC, Hydrol Sci Lab, Greenbelt, MD USA. [Gourley, Jonathan] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Wu, Di; Zhang, Sara Q.] NASA, GSFC, Mesoscale Atmospher Proc Lab, Greenbelt, MD USA. [Wu, Di; Zhang, Sara Q.] SAIC, Mclean, VA USA. [Crow, Wade] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD USA. RP Barros, AP (reprint author), Duke Univ, Dept Civil & Environm Engn, Durham, NC 27706 USA. EM barros@duke.edu RI Peters-Lidard, Christa/E-1429-2012; Barros, Ana/A-3562-2011 OI Peters-Lidard, Christa/0000-0003-1255-2876; Barros, Ana/0000-0003-4606-3106 FU NASA's Precipitation Measurement Missions Program; GPM Ground Validation [NNX14AE71G] FX This work was supported by NASA's Precipitation Measurement Missions Program and GPM Ground Validation (Grant Number NNX14AE71G with Ana Barros, the corresponding author). The first author was a Ph.D. student at Duke University in the Barros group, and now is at the Earth System Science Interdisciplinary Center (ESSIC) of the University of Maryland. Barros group members Miguel Nogueira, Lauren Lowman, and Yajuan (Viola) Duan downloaded precipitation and discharge data, and helped with down scaling precipitation and analysis during the IPHEx-IOP. Di Wu and Christa Peters-Lidard provided the NU-WRF forecasting fields including QPFs for the entire IOP. Sara Zhang conducted the NU-WRF data assimilation simulations for the May 15th event. Jonathan Gourley facilitated access to the Q3 data and provided the NOXP QPEs. We thank Manos Anagnostou's group at University of Connecticut for their valuable input, and all participants in the 'GPM-GV Real-time IPHEx Hydrological Modeling Email List' for their participation. NR 147 TC 1 Z9 1 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD OCT PY 2016 VL 541 SI SI BP 434 EP 456 DI 10.1016/j.jhydrol.2016.02.019 PN A PG 23 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EA2KM UT WOS:000386421200033 ER PT J AU Chen, S Hong, Y Kulie, M Behrangi, A Stepanian, PM Cao, Q You, YL Zhang, J Hu, JJ Zhang, XH AF Chen, Sheng Hong, Yang Kulie, Mark Behrangi, Ali Stepanian, Phillip M. Cao, Qing You, Yalei Zhang, Jian Hu, Junjun Zhang, Xinhua TI Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System SO JOURNAL OF HYDROLOGY LA English DT Article DE CloudSat; NEXRAD; Radar; Snowfall ID CONTINENTAL UNITED-STATES; REAL-TIME ALGORITHM; QPE ERRORS; PRECIPITATION; PRODUCT AB The latest global snowfall product derived from the CloudSat Cloud Profiling Radar (2C-SNOW-PROFILE) is compared with NOAA/National Severe Storms Laboratory's Multi-Radar Multi-Sensor (MRMS/Q3) system precipitation products from 2009 through 2010. The results show that: (1) Compared to Q3, CloudSat tends to observe more extremely light snowfall events (<0.2 mm/h) and snowfall rate (SR) between 0.6 to 1 mm/h, and detects less snowfall events with SR between 0.2-0.5 mm/h. (2) CloudSat identifies 69.40% of snowfall events detected by Q3 as certain snow and 10% as certain mixed. When possible snow, possible mixed, and certain mixed precipitation categories are assumed to be snowfall events, CloudSat has a high snowfall POD (86.10%). (3) CloudSat shows less certain snow precipitation than Q3 by 26.13% with a low correlation coefficient (0.41) with Q3 and a high RMSE (0.6 mm/h). (4) With Q3 as reference, CloudSat underestimates (overestimates) certain snowfall when the bin height of detected snowfall events are below (above) 3 km, and generally overestimates light snowfall (<1 mm/h) by 7.53%, and underestimates moderate snowfall (1-2.5 mm/h) by 42.33% and heavy snowfall (>= 2.5 mm/h) by 68.73%. (5) The bin heights of most (99.41%) CloudSat surface snowfall events are >1 km high above the surface, whereas 76.41% of corresponding Q3 observations are low below 1 km to the near ground surface. This analysis will provide helpful reference for CloudSat snowfall estimation algorithm developers and the Global Precipitation Measurement (GPM) snowfall product developers to understand and quantify the strengths and weaknesses of remote sensing techniques and precipitation estimation products. (C) 2016 Elsevier B.V. All rights reserved. C1 [Chen, Sheng] Sun Yat Sen Univ, Sch Atmospher Sci, 135 West Xingang Rd, Guangzhou 510275, Guangdong, Peoples R China. [Chen, Sheng] Sun Yat Sen Univ, Guangdong Prov Key Lab Climate Change & Nat Disas, Guangzhou 510275, Guangdong, Peoples R China. [Chen, Sheng; Hong, Yang] Univ Oklahoma, Adv Radar Res Ctr, 120 David L Boren Blvd,Suite 4610, Norman, OK 73072 USA. [Chen, Sheng; Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Hong, Yang] Tsinghua Univ, Dept Hydraul Engn, Beijing, Peoples R China. [Kulie, Mark] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA. [Kulie, Mark] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI USA. [Behrangi, Ali] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Stepanian, Phillip M.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Cao, Qing] Enterprise Elect Corp, Res & Innovat Div, Norman, OK 73072 USA. [You, Yalei] CMNS Earth Syst Sci Interdisciplinary Ctr, M Sq Res Pk, MD USA. [Zhang, Jian] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Hu, Junjun] Univ Oklahoma, Sch Comp Sci, Norman, OK 73072 USA. [Zhang, Xinhua] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China. RP Chen, S (reprint author), Sun Yat Sen Univ, Sch Atmospher Sci, 135 West Xingang Rd, Guangzhou 510275, Guangdong, Peoples R China.; Hong, Y (reprint author), Univ Oklahoma, Adv Radar Res Ctr, 120 David L Boren Blvd,Suite 4610, Norman, OK 73072 USA. EM chenshengbj@gmail.com; yanghong@ou.edu RI Hong, Yang/D-5132-2009 OI Hong, Yang/0000-0001-8720-242X FU Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma; National Natural Science Foundation of China [41361022, 41171020]; Open Fund from State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University [SKHL1310, SKHL1501]; NASA New Investigator Program (NIP) award; NASA Energy and Water Cycle Study (NEWS) award FX This work was supported in part by the Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma, in part by the National Natural Science Foundation of China (No. 41361022 and No. 41171020), the Open Fund from State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (No. SKHL1310 and No. SKHL1501). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. A.B. was supported by NASA New Investigator Program (NIP) and Energy and Water Cycle Study (NEWS) awards. Thanks are given to Youcun Qi from NOAA/NSSL for his great help in VPR analysis during revision process, to Dr. Benjamin Johnson from Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center for his constructive advice for this paper in early version, and to Mr. Nicholas Carr from The University of Oklahoma for assistant proofreading early versions of this manuscript. NR 37 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD OCT PY 2016 VL 541 BP 862 EP 872 DI 10.1016/j.jhydrol.2016.07.047 PN B PG 11 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EA2GI UT WOS:000386410400016 ER PT J AU Berger, EL Lauretta, DS Zega, TJ Keller, LP AF Berger, Eve L. Lauretta, Dante S. Zega, Thomas J. Keller, Lindsay P. TI Heterogeneous histories of Ni-bearing pyrrhotite and pentlandite grains in the CI chondrites Orgueil and Alais SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID CM CARBONACEOUS CHONDRITES; AQUEOUS ALTERATION; CRYSTAL-STRUCTURE; SOLAR NEBULA; PARENT BODY; ELECTRON-MICROSCOPY; SULFIDE FORMATION; S SYSTEM; FE; MINERALOGY AB Compositional and structural analyses of CI chondrite iron-nickel sulfide grains reveal heterogeneity both across and within the Orgueil and Alais meteorites. Orgueil grains with the 4C monoclinic pyrrhotite structure have variable metal-to-sulfur ratios and nickel contents. These range from the nominal ratio of 0.875 for Fe7S8 with <1 atom% nickel to a high metal-to-sulfur ratio of 0.97 with 15 atom% nickel. These data reveal a previously unrecognized low-temperature solid solution between Fe7S8 and Fe5Ni3S8. We have also identified 6C monoclinic pyrrhotite among the Orgueil iron-nickel sulfides. The occurrence of pentlandite in Orgueil is confirmed for the first time crystallographically. In contrast, sulfide grains in Alais do not show the same spread in composition and structure; rather they represent the endmembers: low-Ni 4C monoclinic pyrrhotite and pentlandite. We investigate possible formation/alteration scenarios: crystallization from a melt, solid-state diffusion and/or exsolution, oxidation of pre-existing sulfides, and precipitation from a fluid. Sulfide grains are sensitive to alteration conditions; these data suggest that the structures and compositions of the sulfide assemblages in Orgueil and Alais were established by late-stage parent body aqueous alteration, followed in some cases by low-temperature solid-stateprocesses. The samples record different alteration histories, with Orgueil experiencing lower equilibration temperatures (25 degrees C) than Alais (100-135 degrees C). We conclude that millimeter-scale heterogeneity existed in alteration conditions (e.g., temperature, pH, oxygen fugacity, sulfur fugacity, duration of alteration) on the parent body. This variability is evidenced by the diversity among sulfide grains located within millimeters of one another. C1 [Berger, Eve L.] GeoControl Syst Inc, NASA Johnson Space Ctr, Jacobs JETS Contract, Houston, TX 77058 USA. [Berger, Eve L.] NASA Postdoctoral Program, Oak Ridge, TN 37830 USA. [Berger, Eve L.; Lauretta, Dante S.; Zega, Thomas J.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85712 USA. [Zega, Thomas J.] Naval Res Lab, Washington, DC 20375 USA. [Keller, Lindsay P.] NASA Johnson Space Ctr, Houston, TX 77058 USA. RP Berger, EL (reprint author), GeoControl Syst Inc, NASA Johnson Space Ctr, Jacobs JETS Contract, Houston, TX 77058 USA.; Berger, EL (reprint author), NASA Postdoctoral Program, Oak Ridge, TN 37830 USA.; Berger, EL (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85712 USA. EM eve.l.berger@nasa.gov NR 81 TC 0 Z9 0 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT PY 2016 VL 51 IS 10 BP 1813 EP 1829 DI 10.1111/maps.12721 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DZ6GT UT WOS:000385960400004 ER PT J AU Flannery, DT Allwood, AC Van Kranendonk, MJ AF Flannery, David T. Allwood, Abigail C. Van Kranendonk, Martin J. TI Lacustrine facies dependence of highly C-13-depleted organic matter during the global age of methanotrophy SO PRECAMBRIAN RESEARCH LA English DT Article DE Archean; Fortescue; Kerogen; Lacustrine; Methanotrophy; Stromatolite ID NORTHERN FORTESCUE GROUP; EARLY ARCHEAN ERA; TRANSVAAL SUPERGROUP; PILBARA-CRATON; SOUTH-AFRICA; DEPOSITIONAL-ENVIRONMENTS; WESTERN-AUSTRALIA; LAKE GENEVA; CARBON; SEDIMENTS AB Highly C-13-depleted organic matter reported from Neoarchean formations worldwide has led to the concept of a "Global Age of Methanotrophy" (GAM) in the Neoarchean. A temporal peak in the GAM is suggested by values as low as -61%. that are reported from rocks deposited at similar to 2.7 Ga. Here we analyse previously reported values, report new field observations and isotope data, and re-evaluate the depositional settings of several units of this age. We find a statistically significant lowering of delta C-13(org) values in units of Neoarchean age compared to values reported from other Precambrian intervals, both older and younger, confirming the existence of the GAM. However, we also report a correlation between very low delta C-13(org) values and lacustrine units deposited during the Neoarchean. We hypothesize methanogenesis may have been promoted in some Neoarchean lakes due to local deficiencies of oxidants, specifically Fe3+ and SO4, relative to the Archean oceans. Lower availability of these oxidants could have limited higher energy yield metabolisms such as sulfate and iron reduction and provided an ecological niche for methanogens, ultimately resulting in the local burial of biomass highly depleted in C-13. We conclude that the exceptionally low delta C-13(org) values reported from formations deposited at similar to 2.7 Ga could represent the prevalence of closed basin depositional environments preserved in the limited outcrop available, rather than a peak in the global age of methanotrophy at this time. (C) 2016 Elsevier B.V. All rights reserved. C1 [Flannery, David T.; Allwood, Abigail C.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Kranendonk, Martin J.] Univ New South Wales, Sch Biol Earth & Environm Sci, Kensington, NSW, Australia. RP Flannery, DT (reprint author), NASA, Jet Prop Lab, Pasadena, CA 91109 USA. EM flannery@jpl.nasa.gov FU Geological Survey of Western Australia; Australian Centre for Astrobiology; ARC Discovery Grant FX We thank Andy Knoll and two anonymous reviewers for suggesting improvements to this manuscript. We also thank Jan Veizer for providing a database of delta13Corg values obtained by previous studies of Precambrian units and Ian Morrison for help with statistical analyses. DTF thanks Malcolm Walter for sharing his knowledge of the Fortescue Group and for supporting the fieldwork required for this study. Fieldwork was also supported by the Geological Survey of Western Australia, the Australian Centre for Astrobiology, and an ARC Discovery Grant. NR 73 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-9268 EI 1872-7433 J9 PRECAMBRIAN RES JI Precambrian Res. PD OCT PY 2016 VL 285 BP 216 EP 241 DI 10.1016/j.precamres.2016.09.021 PG 26 WC Geosciences, Multidisciplinary SC Geology GA EA2EB UT WOS:000386404500014 ER PT J AU Duvall, RM Long, RW Beaver, MR Kronmiller, KG Wheeler, ML Szykman, JJ AF Duvall, Rachelle M. Long, Russell W. Beaver, Melinda R. Kronmiller, Keith G. Wheeler, Michael L. Szykman, James J. TI Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide SO SENSORS LA English DT Article DE nitrogen dioxide; ozone; low-cost sensors; electrochemical sensor; performance evaluation; citizen science ID AIR-QUALITY; GAS SENSORS; CALIBRATION; POLLUTION AB This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in Houston, Texas and Denver, Colorado, under the umbrella of the NASA-led DISCOVER-AQ Earth Venture Mission. Measurements were focused on ozone (O-3) and nitrogen dioxide (NO2). The performance evaluation showed that the CairClip O-3/NO2 sensor provided a consistent measurement response to that of reference monitors (r(2) = 0.79 in Houston; r(2) = 0.72 in Denver) whereas the CairClip NO2 sensor measurements showed no agreement to reference measurements. The CairClip O-3/NO2 sensor data from the citizen science sites compared favorably to measurements at nearby reference monitoring sites. This study provides important information on data quality from low-cost sensor technologies and is one of few studies that reports sensor data collected directly by citizen scientists. C1 [Duvall, Rachelle M.; Long, Russell W.; Szykman, James J.] US EPA, Off Res & Dev, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. [Beaver, Melinda R.] US EPA, Off Air Qual Planning & Stand, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. [Kronmiller, Keith G.; Wheeler, Michael L.] Jacobs Technol Inc, 600 William Northern Blvd, Tullahoma, TN 37388 USA. [Szykman, James J.] NASA Langley Res Ctr, 11 Langley Blvd, Hampton, VA 23681 USA. RP Duvall, RM (reprint author), US EPA, Off Res & Dev, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM duvall.rachelle@epa.gov; long.russell@epa.gov; beaver.melinda@epa.gov; kronmiller.keith@epa.gov; wheeler.michael@epa.gov; james.j.szykman@nasa.gov NR 19 TC 0 Z9 0 U1 17 U2 17 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD OCT PY 2016 VL 16 IS 10 AR 1698 DI 10.3390/s16101698 PG 14 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA DZ8OY UT WOS:000386131600150 ER PT J AU Henderson, CB Shvartzvald, Y AF Henderson, Calen B. Shvartzvald, Yossi TI ON THE FEASIBILITY OF CHARACTERIZING FREE-FLOATING PLANETS WITH CURRENT AND FUTURE SPACE-BASED MICROLENSING SURVEYS SO ASTRONOMICAL JOURNAL LA English DT Article DE Galaxy: bulge; gravitational lensing: micro; planets and satellites: detection; planets and satellites: fundamental parameters ID PARSEC EVOLUTIONARY TRACKS; PARALLAX MEASUREMENT; SPITZER OBSERVATIONS; STELLAR EVOLUTION; GALACTIC BULGE; MASSIVE STARS; BROWN DWARFS; MOVING GROUP; HOST STARS; AB DORADUS AB Simultaneous space-and ground-based microlensing surveys, such as K2's Campaign 9 (K2C9) and WFIRST, facilitate measuring the masses and distances of free-floating planet (FFP) candidates, which are identified as single-lens events with timescales that are of the order of 1 day. Measuring the mass and distance of an FFP lens requires determining the size of the source star., measuring the microlens parallax pi(E), and using high-resolution imaging to search for the lens flux F-l from a possible host star. Here we investigate the accessible parameter space for each of these components considering different satellites for a range of FFP masses, Galactic distances, and source star properties. We find that at the beginning of K2C9, when its projected separation D-perpendicular to from the Earth is less than or similar to 0.2 au, it will be able to measure pE for Jupiter-mass FFP candidates at distances larger than similar to 2 kpc and to Earth-mass lenses at similar to 8 kpc. At the end of K2C9, when D-perpendicular to = 0.81 au, it is sensitive to planetary-mass lenses for distances greater than or similar to 3.5 kpc, and even then only to those with mass greater than or similar to M-Jup. From lens flux constraints we find that it will be possible to exclude hosts down to the deuterium-burning limit for events within similar to 2 kpc. This indicates that the ability to characterize FPs detected during K2C9 is optimized for events occurring toward the beginning of the campaign. WFIRST, on the other hand, will be able to detect and characterize FFP masses down to or below super-Earths throughout the Galaxy during its entire microlensing survey. C1 [Henderson, Calen B.; Shvartzvald, Yossi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Henderson, CB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM calen.b.henderson@jpl.nasa.gov FU NASA FX Work by C.B.H. and Y.S. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Universities Space Research Association through a contract with NASA. We thank David Ciardi, Chas Beichman, and Chris Gelino for useful discussions regarding adaptive optics observations. Finally, we thank Scott Gaudi, Dan Maoz, Matt Penny, and Sebastiano Calchi Novati for a careful and fruitful reading of the manuscript. NR 56 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2016 VL 152 IS 4 AR 96 DI 10.3847/0004-6256/152/4/96 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ2QO UT WOS:000385686500007 ER PT J AU Barnes, G Leka, KD Schrijver, CJ Colak, T Qahwaji, R Ashamari, OW Yuan, Y Zhang, J McAteer, RTJ Bloomfield, DS Higgins, PA Gallagher, PT Falconer, DA Georgoulis, MK Wheatland, MS Balch, C Dunn, T Wagner, EL AF Barnes, G. Leka, K. D. Schrijver, C. J. Colak, T. Qahwaji, R. Ashamari, O. W. Yuan, Y. Zhang, J. McAteer, R. T. J. Bloomfield, D. S. Higgins, P. A. Gallagher, P. T. Falconer, D. A. Georgoulis, M. K. Wheatland, M. S. Balch, C. Dunn, T. Wagner, E. L. TI A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE "ALL-CLEAR" WORKSHOP SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods; statistical - Sun; flares - Sun; magnetic fields Supporting material; tar.gz files ID MAGNETIC-FIELD PROPERTIES; SOLAR ACTIVE REGIONS; MICHELSON DOPPLER IMAGER; SUNSPOT-GROUPS; ERUPTIVE EVENTS; PREDICTION; CLASSIFICATION; PRODUCTIVITY; NONPOTENTIALITY; MAGNETOGRAMS AB Solar flares produce radiation that can have an almost immediate effect on the near-Earth environment, making it crucial to forecast flares in order to mitigate their negative effects. The number of published approaches to flare forecasting using photospheric magnetic field observations has proliferated, with varying claims about how well each works. Because of the different analysis techniques and data sets used, it is essentially impossible to compare the results from the literature. This problem is exacerbated by the low event rates of large solar flares. The challenges of forecasting rare events have long been recognized in the meteorology community, but have yet to be fully acknowledged by the space weather community. During the interagency workshop on "all clear" forecasts held in Boulder, CO in 2009, the performance of a number of existing algorithms was compared on common data sets, specifically line-of-sight magnetic field and continuum intensity images from the Michelson Doppler Imager, with consistent definitions of what constitutes an event. We demonstrate the importance of making such systematic comparisons, and of using standard verification statistics to determine what constitutes a good prediction scheme. When a comparison was made in this fashion, no one method clearly outperformed all others, which may in part be due to the strong correlations among the parameters used by different methods to characterize an active region. For M-class flares and above, the set of methods tends toward a weakly positive skill score (as measured with several distinct metrics), with no participating method proving substantially better than climatological forecasts. C1 [Barnes, G.; Leka, K. D.; Dunn, T.; Wagner, E. L.] NWRA, 3380 Mitchell Ln, Boulder, CO 80301 USA. [Schrijver, C. J.] Lockheed Martin Solar & Astrophys Lab, 3251 Hanover St, Palo Alto, CA 94304 USA. [Colak, T.; Qahwaji, R.; Ashamari, O. W.] Univ Bradford, Sch Comp Informat & Media, Bradford, W Yorkshire, England. [Yuan, Y.] New Jersey Inst Technol, Space Weather Res Lab, Newark, NJ 07102 USA. [Zhang, J.] George Mason Univ, Dept Phys & Astron, 4400 Univ Dr, Fairfax, VA 22030 USA. [McAteer, R. T. J.] New Mexico State Univ, Dept Astron, POB 30001,MSC 4500, Las Cruces, NM 88003 USA. [Bloomfield, D. S.; Higgins, P. A.; Gallagher, P. T.] Trinity Coll Dublin, Sch Phys, Astrophys Res Grp, Dublin 2, Ireland. [Falconer, D. A.] Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, ZP13, Huntsville, AL 35812 USA. [Falconer, D. A.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Falconer, D. A.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Georgoulis, M. K.] Acad Athens, Res Ctr Astron & Appl Math, 4 Soranou Efesiou St, Athens 11527, Greece. [Wheatland, M. S.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Balch, C.] NOAA, Space Weather Predict Ctr, 325 Broadway Ave, Boulder, CO 80305 USA. [Bloomfield, D. S.] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England. RP Barnes, G (reprint author), NWRA, 3380 Mitchell Ln, Boulder, CO 80301 USA. EM graham@nwra.com; leka@nwra.com; schrijver@lmsal.com; Tufancolak@hotmail.com; s.r.qahwaji@bradford.ac.uk; omarashamari@gmail.com; yy46@njit.edu; jzhang7@gmu.edu; mcateer@nmsu.edu; shaun.bloomfield@northumbria.ac.uk; pohuigin@gmail.com; peter.gallagher@tcd.ie; david.a.falconer@nasa.gov; Manolis.Georgoulis@academyofathens.gr; michael.wheatland@sydney.edu.au; Christopher.Balch@noaa.gov; tdunn@nwra.com; wagneric@nwra.com OI Barnes, Graham/0000-0003-3571-8728; Gallagher, Peter/0000-0001-9745-0400 FU NASA/Johnson Space Flight Center's Space Radiation Analysis Group; National Center for Atmospheric Research; NOAA/Space Weather Prediction Center; NSF [NSWP 0519107, AGS-1255024]; European Space Agency PRODEX Programme; European Union [640216]; ESA [4000111994/14/D/MPR]; National Science Foundation [ATM 09-36665, ATM 07-16950, ATM-0745744]; NASA [NNX0-7AH78G, NNXO-8AQ90G]; NMSU FX This work is the outcome of many collaborative and cooperative efforts. The 2009 "Forecasting the All-Clear" Workshop in Boulder, CO was sponsored by NASA/Johnson Space Flight Center's Space Radiation Analysis Group, the National Center for Atmospheric Research, and the NOAA/Space Weather Prediction Center, with additional travel support for participating scientists from NASA LWS TRT NNH09CE72C to NWRA. The authors thank the participants of that workshop, in particular Drs. Neal Zapp, Dan Fry, Doug Biesecker, for the informative discussions during those three days, and NCAR's Susan Baltuch and NWRA's Janet Biggs for organizational prowess. Workshop preparation and analysis support was provided for GB, KDL by NASA LWS TRT NNH09CE72C, NASA Heliophysics GI NNH12CG10C, and NSF award NSWP 0519107. PAH and DSB received funding from the European Space Agency PRODEX Programme, while DSB and MKG also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 640216 (FLARECAST project). MKG also acknowledges research performed under the A-EFFort project and subsequent service implementation, supported under ESA Contract number 4000111994/14/D/MPR. YY was supported by the National Science Foundation under grants ATM 09-36665, ATM 07-16950, ATM-0745744 and by NASA under grants NNX0-7AH78G, NNXO-8AQ90G. YY owes his deepest gratitude to his advisers Professor Frank Y. Shih, Professor Haimin Wang and Professor Ju Jing for long discussions, for reading previous drafts of his work and providing many valuable comments that improved the presentation and contents of this work. JMA was supported by NSF Career Grant AGS-1255024 and by a NMSU Vice President for Research Interdisciplinary Research Grant. NR 67 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 89 DI 10.3847/0004-637X/829/2/89 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8JX UT WOS:000385377200031 ER PT J AU Corbet, RHD Chomiuk, L Coe, MJ Coley, JB Dubus, G Edwards, PG Martin, P McBride, VA Stevens, J Strader, J Townsend, LJ Udalski, A AF Corbet, R. H. D. Chomiuk, L. Coe, M. J. Coley, J. B. Dubus, G. Edwards, P. G. Martin, P. McBride, V. A. Stevens, J. Strader, J. Townsend, L. J. Udalski, A. TI A LUMINOUS GAMMA-RAY BINARY IN THE LARGE MAGELLANIC CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: stars; stars: individual (CXOU J053600.0-673507); stars: neutron ID LARGE-AREA TELESCOPE; 1FGL J1018.6-5856; SUPERNOVA REMNANT; 4TH EDITION; DEM L241; LS 5039; EMISSION; GALAXY; MASS; CYGNUS-X-3 AB Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Only a handful of such systems have been previously discovered, all within our Galaxy. Here, we report the discovery of a luminous gamma-ray binary in the Large Magellanic Cloud, found with the Fermi Large Area Telescope (LAT), from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. The system has an orbital period of 10.3 days, and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0-673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way, at radio, optical, X-ray, and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems, raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars. C1 [Corbet, R. H. D.] Univ Maryland, Code 662, Greenbelt, MD 20771 USA. [Corbet, R. H. D.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Corbet, R. H. D.] Maryland Inst Coll Art, 1300 W Mt Royal Ave, Baltimore, MD 21217 USA. [Chomiuk, L.; Strader, J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Coe, M. J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Coley, J. B.] NASA, Postdoctoral Program, Code 661, Greenbelt, MD 20771 USA. [Coley, J. B.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Dubus, G.] Univ Grenoble Alpes, CNRS, Inst Planeol & Astrophys Grenoble, F-38000 Grenoble, France. [Edwards, P. G.; Stevens, J.] CSIRO, Astron & Space Sci, POB 76, Epping, NSW 1710, Australia. [Martin, P.] Univ Toulouse, CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France. [McBride, V. A.; Townsend, L. J.] Univ Cape Town, Dept Astron, Private Bag X3, ZA-7701 Rondebosch, South Africa. [McBride, V. A.] South African Astron Observ, POB 9, ZA-7935 Observatory, South Africa. [Udalski, A.] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Corbet, RHD (reprint author), Univ Maryland, Code 662, Greenbelt, MD 20771 USA.; Corbet, RHD (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.; Corbet, RHD (reprint author), Maryland Inst Coll Art, 1300 W Mt Royal Ave, Baltimore, MD 21217 USA. OI Coley, Joel/0000-0001-7532-8359; Dubus, Guillaume/0000-0002-5130-2514 FU NASA Fermi [NNX15AU83G, 13-FERMI13-0008]; National Science Centre, Poland [MAESTRO 2014/14/A/ST9/00121]; Australian Government; NASA Postdoctoral Program at the Goddard Space Flight Center; Centre National d'Etudes Spatiales in France; Packard Foundation; Istituto Nazionale di Astrofisica in Italy; LAT FX We thank C. C. Cheung for support and important comments during the production of this paper. We also thank an anonymous referee for useful comments. This work is based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministerio da Ciencia, Tecnologia, e Inovacao (MCTI) da Republica Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). This work was partially supported by NASA Fermi grants NNX15AU83G and 13-FERMI13-0008. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to AU. The Australia Telescope Compact Array is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIRO. J.B.C. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by the Universities Space Research Association through a contract with NASA. G.D. and P.M. acknowledge support from the Centre National d'Etudes Spatiales in France. J. Strader acknowledges support from the Packard Foundation. We thank the Swift team for undertaking observations. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 56 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 105 DI 10.3847/0004-637X/829/2/105 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8JX UT WOS:000385377200047 ER PT J AU Hornbeck, JB Swearingen, JR Grady, CA Williger, GM Brown, A Sitko, ML Wisniewski, JP Perrin, MD Lauroesch, JT Schneider, G Apai, D Brittain, S Brown, JM Champney, EH Hamaguchi, K Henning, T Lynch, DK Petre, R Russell, RW Walter, FM Woodgate, B AF Hornbeck, J. B. Swearingen, J. R. Grady, C. A. Williger, G. M. Brown, A. Sitko, M. L. Wisniewski, J. P. Perrin, M. D. Lauroesch, J. T. Schneider, G. Apai, D. Brittain, S. Brown, J. M. Champney, E. H. Hamaguchi, K. Henning, Th. Lynch, D. K. Petre, R. Russell, R. W. Walter, F. M. Woodgate, B. TI PANCHROMATIC IMAGING OF A TRANSITIONAL DISK: THE DISK OF GM AUR IN OPTICAL AND FUV SCATTERED LIGHT SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; protoplanetary disks; stars: individual (GM Aur); stars: protostars; stars: variables: T Tauri, Herbig Ae/Be; ultraviolet: planetary systems ID T-TAURI STARS; YOUNG STELLAR OBJECTS; SPECTRAL ENERGY-DISTRIBUTIONS; FLUORESCENT H-2 EMISSION; MOLECULAR-HYDROGEN EMISSION; PROTOPLANETARY DISKS; CIRCUMSTELLAR DISK; SIZE DISTRIBUTION; EMBEDDED PLANETS; DUST FILTRATION AB We have imaged GM Aurigae with the Hubble Space Telescope, detected its disk in scattered light at 1400 and 1650 angstrom, and compared these with observations at 3300 angstrom, 5550 angstrom, 1.1 mu m, and 1.6 mu m. The scattered light increases at shorter wavelengths. The radial surface brightness profile at 3300 angstrom shows no evidence of the 24 au radius cavity that has been previously observed in submillimeter observations. Comparison with dust grain opacity models indicates that. the surface of the entire disk is populated with submicron grains. We have compiled a. spectral energy distribution from 0.1 mu m to 1 mm. and used it to constrain a model of the star + disk system that includes the submillimeter cavity using the Monte Carlo radiative transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of submicron grains interior to the submillimeter cavity wall. We suggest one explanation for this that. could be due to a planet of mass <9 M-J interior to 24 au. A unique cylindrical structure is detected in the far-UV data from the Advanced Camera for Surveys/ Solar Blind Channel. It is aligned along the system semiminor axis, but does not resemble an accretion-driven jet. The structure is limb. brightened and extends 190 +/- 35 au above the disk midplane. The inner radius of the limb. brightening is 40 +/- 10 au, just beyond the submillimeter cavity wall. C1 [Hornbeck, J. B.; Williger, G. M.; Lauroesch, J. T.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Swearingen, J. R.; Sitko, M. L.; Champney, E. H.] Univ Cincinnati, Dept Phys, 400 Geol Phys Bldg,POB 210011, Cincinnati, OH 45221 USA. [Grady, C. A.] Eureka Sci, 2452 Delmer St,Suite 100, Oakland, CA 96402 USA. [Grady, C. A.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Williger, G. M.] Univ Nice, Lab Lagrange, UMR 7293, F-06108 Nice 2, France. [Williger, G. M.] Catholic Univ Amer, Dept Phys, IACS, Washington, DC 20064 USA. [Williger, G. M.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Brown, A.] Univ Colorado, CASA, Boulder, CO 80309 USA. [Sitko, M. L.] Space Sci Inst, Ctr Extrasolar Planetary Syst, Boulder, CO 80301 USA. [Wisniewski, J. P.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Perrin, M. D.; Schneider, G.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Apai, D.] Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Apai, D.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Apai, D.] Univ Arizona, Dept Planetary Sci, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Apai, D.] Univ Arizona, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Brittain, S.] Clemson Univ, Dept Phys & Astron, 118 Kinard Lab, Clemson, SC 29634 USA. [Brown, J. M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Hamaguchi, K.] UMBC, Dept Phys, Baltimore, MD 21250 USA. [Hamaguchi, K.] NASA GSFC, CRESST, Greenbelt, MD 20771 USA. [Hamaguchi, K.] NASA GSFC, X Ray Astrophys Lab, Greenbelt, MD 20771 USA. [Henning, Th.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Lynch, D. K.; Russell, R. W.] Aerosp Corp, Los Angeles, CA 90009 USA. [Petre, R.; Woodgate, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Walter, F. M.] SUNY Stony Brook, Dept Phys & Astron, Z 3800, Stony Brook, NY 11794 USA. RP Hornbeck, JB (reprint author), Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. EM jeremy.hornbeck@louisville.edu; carol.a.grady@nasa.gov; gmwill06@louisville.edu FU NASA [NAS 5-26555, NNH06CC28C, NNX09AC73G]; NASA Kentucky Space Grant Consortium [3049024102-11-175]; [HST-GO-10864]; [HST-GO-11336]; [HST-GO-12016]; [HST-GO-11336.01-A] FX This work is, in part, based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. J.B.H. was supported in part by funding from the NASA Kentucky Space Grant Consortium, Award # 3049024102-11-175. Data used in this study were obtained under programs HST-GO-10864, HST-GO-11336, and HST-GO-12016. We thank A.. M. Hughes and S. Andrews for the SMA and Plateau de Bure data. A.B. was supported by the grant HST-GO-11336.01-A, for which observing time was granted by the Chandra X-ray Observatory peer review. The authors thank the support staff members of the IRTF telescope for assistance in obtaining the SED data, and the IR&D program at The Aerospace Corporation. We also acknowledge support from NASA NNH06CC28C (M.L.S.) and NNX09AC73G (C.A.G. and M.L.S.). We would like to thank Kenneth Wood and Michael J. Wolff for their quick response to our questions about their dust grain models during private communications. Finally, we thank two anonymous referees for many suggestions that. significantly improved this paper. We dedicate this paper to the memory of Bruce Woodgate, a colleague, mentor, and friend who died during the preparation of this paper. NR 97 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 65 DI 10.3847/0004-637X/829/2/65 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8JX UT WOS:000385377200007 ER PT J AU Kamenetzky, J Rangwala, N Glenn, J Maloney, PR Conley, A AF Kamenetzky, J. Rangwala, N. Glenn, J. Maloney, P. R. Conley, A. TI L '(CO)/L-FIR RELATIONS WITH CO ROTATIONAL LADDERS OF GALAXIES ACROSS THE HERSCHEL SPIRE ARCHIVE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: ISM; ISM: molecules; submillimeter: galaxies; submillimeter: ISM; surveys ID LUMINOUS INFRARED GALAXIES; FOURIER-TRANSFORM SPECTROMETER; MOLECULAR INTERSTELLAR-MEDIUM; STAR-FORMATION RATE; NEARBY GALAXIES; PHYSICAL CONDITIONS; DENSE GAS; NGC 1068; STARBURST GALAXIES; CIRCUMNUCLEAR DISK AB We present a catalog of all CO (J = 4-3 through J = 13-12), [ C I], and [ N II] lines available from extragalactic spectra from the Herschel SPIRE Fourier Transform Spectrometer (FTS) archive combined with observations of the low-J CO lines from the literature and from the Arizona Radio Observatory. This work examines the relationships between L-FIR, L'(CO), and L-CO/L-CO,L-1-0. We also present a new method for estimating probability distribution functions from marginal signal-to-noise ratio Herschel FTS spectra, which takes into account the instrumental "ringing" and the resulting highly correlated nature of the spectra. The slopes of log(L-FIR) versus log (L'(CO)) are linear for all mid- to high-J CO lines and slightly sublinear if restricted to (ultra) luminous infrared galaxies ((U) LIRGs). The mid-to high-J CO luminosity relative to CO J - 1-0 increases with increasing L-FIR, indicating higher excitement of the molecular gas, although these ratios do not exceed similar to 180. For a given bin in L-FIR, the luminosities relative to CO J = 1-0 remain relatively flat from J = 6-5 through J = 13-12, across three orders of magnitude of L-FIR. A single component theoretical photodissociation region (PDR) model cannot match these flat SLED shapes, although combinations of PDR models with mechanical heating added qualitatively match the shapes, indicating the need for further comprehensive modeling of the excitation processes of warm molecular gas in nearby galaxies. C1 [Kamenetzky, J.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Rangwala, N.] NASA, Ames Res Ctr, Naval Air Stn, Univ Space Res Assoc, Moffett Field, CA 94035 USA. [Glenn, J.; Maloney, P. R.; Conley, A.] Univ Colorado, Ctr Astrophys & Space Astron, 389-UCB, Boulder, CO USA. RP Kamenetzky, J (reprint author), Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. EM jkamenetzky@as.arizona.edu FU NSF Astronomy and Astrophysics Postdocoral Fellowship [AST-1402193]; NASA [NNX13AL16G]; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX We thank the anonymous referee for a thorough and helpful report. J. K. is supported by an NSF Astronomy and Astrophysics Postdocoral Fellowship under award AST-1402193. This material is based upon work supported by NASA under award number NNX13AL16G. We utilized multiple publicly available software packages in addition to those already credited in the text, such as astropy, astroquery, pyspeckit, and Dave Green's "cubehelix" colormap. We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). We would like to thank Rosalind Hopwood for useful guidance with HIPE reprocessing and Karin Sandstrom for sharing planetary calibration observations. NR 67 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 DI 10.3847/0004-637X/829/2/93 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8JX UT WOS:000385377200035 ER PT J AU Liu, T Kim, KT Yoo, H Liu, SY Tatematsu, K Qin, SL Zhang, QZ Wu, YF Wang, K Goldsmith, PF Juvela, M Lee, JE Toth, LV Mardones, D Garay, G Bronfman, L Cunningham, MR Li, D Lo, N Ristorcelli, I Schnee, S AF Liu, Tie Kim, Kee-Tae Yoo, Hyunju Liu, Sheng-Yuan Tatematsu, Ken'ichi Qin, Sheng-Li Zhang, Qizhou Wu, Yuefang Wang, Ke Goldsmith, Paul F. Juvela, Mika Lee, Jeong-Eun Toth, L. Viktor Mardones, Diego Garay, Guido Bronfman, Leonardo Cunningham, Maria R. Li, Di Lo, Nadia Ristorcelli, Isabelle Schnee, Scott TI STAR FORMATION LAWS IN BOTH GALACTIC MASSIVE CLUMPS AND EXTERNAL GALAXIES: EXTENSIVE STUDY WITH DUST CONINUUM, HCN (4-3), AND CS (7-6) SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: ISM; ISM: kinematics and dynamics; stars: formation ID ULTRALUMINOUS INFRARED GALAXIES; DENSE GAS TRACERS; HIGH-J CO; MOLECULAR CLOUDS; FORMING REGIONS; COMPLETE SAMPLE; FORMATION RATES; MILKY-WAY; LUMINOSITY; CONTINUUM AB We observed 146 Galactic clumps in HCN (4-3) and CS (7-6) with the Atacama Submillimeter Telescope Experiment 10 m telescope. A tight linear relationship between star formation rate and gas mass traced by dust continuum emission was found for both Galactic clumps and the high redshift (z > 1) star forming galaxies (SFGs), indicating a constant gas depletion time of similar to 100 Myr for molecular gas in both Galactic clumps and high z SFGs. However, low z galaxies do not follow this relation and seem to have a longer global gas depletion time. The correlations between total infrared luminosities (L-TIR) and molecular line luminosities (L-mol') of HCN (4-3) and CS (7-6) are tight and sublinear extending down to clumps with L-TIR similar to 10(3) L-circle dot. These correlations become linear when extended to external galaxies. A bimodal behavior in the L-TIR-L-mol' correlations was found for clumps with different dust temperature, luminosity-to-mass ratio, and sigma(line)/sigma(vir). Such bimodal behavior may be due to evolutionary effects. The slopes of L-TIR-L-mol' correlations become more shallow as clumps evolve. We compared our results with lower J transition lines in Wu et al. (2010). The correlations between clump masses and line luminosities are close to linear for low effective excitation density tracers but become sublinear for high effective excitation density tracers for clumps with L-TIR larger than L-TIR similar to 10(4.5) L-circle dot. High effective excitation density tracers cannot linearly trace the total clump masses, leading to a sublinear correlations for both M-clump-L-mol' and L-TIR-L-mol' relations. C1 [Liu, Tie; Kim, Kee-Tae; Yoo, Hyunju] Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 34055, South Korea. [Yoo, Hyunju] Chungnam Natl Univ, Dept Astron & Space Sci, Daejeon, South Korea. [Liu, Sheng-Yuan] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 106, Taiwan. [Tatematsu, Ken'ichi] Natl Astron Observ Japan, Natl Inst Nat Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Qin, Sheng-Li] Yunnan Univ, Dept Astron, Kunming 650091, Peoples R China. [Qin, Sheng-Li] Key Lab Astroparticle Phys Yunnan Prov, Kunming 650091, Peoples R China. [Zhang, Qizhou] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Wu, Yuefang] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Wang, Ke] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Goldsmith, Paul F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Juvela, Mika] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Lee, Jeong-Eun] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi Do, South Korea. [Toth, L. Viktor] Eotvos Lorand Univ, Dept Astron, Pazmany Peter Setany 1, H-1117 Budapest, Hungary. [Mardones, Diego; Garay, Guido; Bronfman, Leonardo; Lo, Nadia] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. [Cunningham, Maria R.] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia. [Li, Di] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Li, Di] Chinese Acad Sci, Key Lab Radio Astron, Nanjing 210008, Jiangsu, Peoples R China. [Ristorcelli, Isabelle] Univ Toulouse 3, IRAP, CNRS, UMR5277, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Schnee, Scott] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. RP Liu, T (reprint author), Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 34055, South Korea. EM liutiepku@gmail.com RI Toth, L. Viktor/C-8667-2017; OI Toth, L. Viktor/0000-0002-5310-4212; Wang, Ke/0000-0002-7237-3856; Cunningham, Maria/0000-0001-7020-6176; Zhang, Qizhou/0000-0003-2384-6589 FU KASI fellowship; China Ministry of Science and Technology under State Key Development Program for Basic Research [2012CB821800]; NSFC [11373009, 11433008, 11373026]; ESO fellowship; DFG Priority Program ("Physics of the Interstellar Medium") [1573, WA3628-1/1]; Top Talents Program of Yunnan Province [2015HA030]; Academy of Finland [1285769]; CONICYT [PFB-06]; Basic Science Research Program through the National Research Foundation of Korea (NRF) [NRF-2015R1A2A2A01004769]; Korea Astronomy and Space Science Institute under the RD program [20151-32018]; OTKA [K101393, NN-111016] FX We are grateful to the ASTE staff. The ASTE telescope is operated by National Astronomical Observatory of Japan (NAOJ). Tie Liu is supported by KASI fellowship. Y. Wu is partly supported by the China Ministry of Science and Technology under State Key Development Program for Basic Research (No.2012CB821800), the grants of NSFC No.11373009 and No.11433008. Ke Wang acknowledges the support from ESO fellowship and DFG Priority Program 1573 ("Physics of the Interstellar Medium") grant WA3628-1/1. This work was carried out in part at the Jet Propulsion Laboratory, operated for NASA by the California Institute of Technology. S. L. Qin is supported by NSFC under grant No. 11373026, and Top Talents Program of Yunnan Province (2015HA030). MJ acknowledges the support of the Academy of Finland Grant No.1285769. LB acknowledges support from CONICYT grant PFB-06. JEL was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) (grant No. NRF-2015R1A2A2A01004769) and the Korea Astronomy and Space Science Institute under the R&D program (Project No.20151-32018) supervised by the Ministry of Science, ICT, and Future Planning. LVT acknowledges the support by the OTKA grants K101393 and NN-111016. The anonymous referee provided very insightful comments. NR 43 TC 1 Z9 1 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 59 DI 10.3847/0004-637X/829/2/59 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8JX UT WOS:000385377200001 ER PT J AU Moses, JI Marley, MS Zahnle, K Line, MR Fortney, JJ Barman, TS Visscher, C Lewis, NK Wolff, MJ AF Moses, J. I. Marley, M. S. Zahnle, K. Line, M. R. Fortney, J. J. Barman, T. S. Visscher, C. Lewis, N. K. Wolff, M. J. TI ON THE COMPOSITION OF YOUNG, DIRECTLY IMAGED GIANT PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: gaseous planets; planets and satellites: individual (51 Eri b, HR 8799 b) ID HR 8799 PLANETS; ATMOSPHERE SIMULATION EXPERIMENT; NEAR-INFRARED SPECTROSCOPY; TITANS UPPER-ATMOSPHERE; WEBB-SPACE-TELESCOPE; DEEP-WATER ABUNDANCE; CARBON-MONOXIDE; BROWN DWARFS; HAZE FORMATION; HOT JUPITERS AB The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the large orbital distances. These disequilibrium chemical processes can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemistry affects the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N-2/NH3 ratios much greater than, and H2O mixing ratios a factor of a few less than, chemical-equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a major constituent when stratospheric temperatures are low and recycling of water via the H-2 + OH reaction becomes kinetically stifled. Young Jupiters with effective temperatures less than or similar to 700 K are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets. C1 [Moses, J. I.; Visscher, C.; Wolff, M. J.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Marley, M. S.; Zahnle, K.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Line, M. R.; Fortney, J. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Barman, T. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Visscher, C.] Dordt Coll, Sioux Ctr, IA 51250 USA. [Lewis, N. K.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Moses, JI (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. EM jmoses@spacescience.org RI Moses, Julianne/I-2151-2013; OI Moses, Julianne/0000-0002-8837-0035; Marley, Mark/0000-0002-5251-2943 FU National Aeronautics and Space Administration through NASA Exoplanet Research Program [NNX15AN82G, NNX16AC64G] FX This material is based upon work supported by the National Aeronautics and Space Administration through NASA Exoplanet Research Program grant NNX15AN82G (initially) and NNX16AC64G. We thank Kevin France for useful advice on constructing the stellar ultraviolet fluxes, and the anonymous reviewer for a thorough review of the manuscript. Portions of the stellar spectra were compiled using data from the Mikulski Archive for Space Telescopes (MAST) at STSci and the X-exoplanet archive at the CAB. NR 170 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 66 DI 10.3847/0004-637X/829/2/66 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8JX UT WOS:000385377200008 ER PT J AU Uprety, Y Chiao, M Collier, MR Cravens, T Galeazzi, M Koutroumpa, D Kuntz, KD Lallement, R Lepri, ST Liu, W McCammon, D Morgan, K Porter, FS Prasai, K Snowden, SL Thomas, NE Ursino, E Walsh, BM AF Uprety, Y. Chiao, M. Collier, M. R. Cravens, T. Galeazzi, M. Koutroumpa, D. Kuntz, K. D. Lallement, R. Lepri, S. T. Liu, W. McCammon, D. Morgan, K. Porter, F. S. Prasai, K. Snowden, S. L. Thomas, N. E. Ursino, E. Walsh, B. M. TI SOLAR WIND CHARGE EXCHANGE CONTRIBUTION TO THE ROSAT ALL SKY SURVEY MAPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (local hot bubble); X-rays: diffuse background; X-rays: individual (SWCX) ID X-RAY-EMISSION; LOCAL HOT BUBBLE; HELIUM FOCUSING CONE; SUZAKU; HYDROGEN; SPECTRA; ABUNDANCES; NEUTRALS; ORIGINS; PLASMAS AB DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l = 140 degrees, b = 0 degrees, where the DXL path crosses the Galactic plane, is 33% +/- 6%(statistical) +/- 12%(systematic) for R1, 44% +/- 6% +/- 5% for R2, 18% +/- 12% +/- 11% for R4, 14% +/- 11% +/- 9% for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26% +/- 6% +/- 13% for R1, 30% +/- 4%. 4% for R2, 8% +/- 5% +/- 5% for R4, 6% +/- 4% +/- 4% for R5, and negligible for R6 and R7. C1 [Uprety, Y.; Galeazzi, M.; Liu, W.; Prasai, K.; Ursino, E.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Chiao, M.; Collier, M. R.; Porter, F. S.; Snowden, S. L.; Thomas, N. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cravens, T.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Koutroumpa, D.] Univ Paris 06, UVSQ Univ Paris Saclay, LATMOS IPSL, CNRS, Guyancourt, France. [Kuntz, K. D.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. [Lallement, R.] Univ Paris Diderot, CNRS, GEPI Observ Paris, F-92190 Meudon, France. [Lepri, S. T.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [McCammon, D.; Morgan, K.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Walsh, B. M.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. [Prasai, K.] Calif State Univ, Dept Phys & Engn, Bakersfield, CA 93311 USA. [Uprety, Y.] Middle Tennessee State Univ, Dept Phys & Astron, Murfreesboro, TN 37132 USA. [Ursino, E.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. RP Uprety, Y (reprint author), Univ Miami, Dept Phys, Coral Gables, FL 33124 USA.; Uprety, Y (reprint author), Middle Tennessee State Univ, Dept Phys & Astron, Murfreesboro, TN 37132 USA. RI Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 FU NASA [NNX11AF04G, NNX09AF09G]; programme "Soleil Heliosphere Magnetosphere" of the French space agency CNES; National Program "Physique Chimie du Milieu Interstellaire" of the Institut National des Sciences de l'Univers (INSU) FX This work was supported by NASA award numbers NNX11AF04G and NNX09AF09G. We would like to thank the sounding rocket staff at NASA's Wallops Flight Facility and the White Sands Missile Range for their support and technical personnel, and thank the undergraduate students at the University of Miami, NASA's Goddard Space Flight Center, and the University of Michigan for their support of the instrument's development, and Mark Mulligan at the University of Wisconsin Space Science and Engineering Center (SSEC) for his support with the DXS windows. D.K. and R.L. acknowledge financial support for their activity through the programme "Soleil Heliosphere Magnetosphere" of the French space agency CNES, and the National Program "Physique Chimie du Milieu Interstellaire" of the Institut National des Sciences de l'Univers (INSU). NR 45 TC 1 Z9 1 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 83 DI 10.3847/0004-637X/829/2/83 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8JX UT WOS:000385377200025 ER PT J AU Willacy, K Allen, M Yung, Y AF Willacy, K. Allen, M. Yung, Y. TI A NEW ASTROBIOLOGICAL MODEL OF THE ATMOSPHERE OF TITAN SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: individual (Titan) ID COUPLING PHOTOCHEMISTRY; VERTICAL-DISTRIBUTION; STELLAR OCCULTATIONS; HAZE FORMATION; MESOSPHERE; THERMOSPHERE; STRATOSPHERE; ABUNDANCE; SPECTRA; HC3N AB We present results of an investigation into the formation of nitrogen-bearing molecules in the atmosphere of Titan. We extend a previous model to cover the region below the tropopause, so the new model treats the atmosphere from Titan's surface to an altitude of 1500 km. We consider the effects of condensation and sublimation using a continuous, numerically stable method. This is coupled with parameterized treatments of the sedimentation of the aerosols and their condensates, and the formation of haze particles. These processes affect the abundances of heavier species such as the nitrogen-bearing molecules, but have less effect on the abundances of lighter molecules. Removal of molecules to form aerosols also plays a role in determining the mixing ratios, particularly. of HNC, HC3N, and HCN. We find good agreement with the recently detected mixing ratios of C2H5CN, with condensation playing an important role in determining the abundance of this molecule below 500 km. Of particular interest is the chemistry of acrylonitrile (C2H3CN) which has been suggested by Stevenson et al. as a molecule that could form biological membranes in an oxygen-deficient environment. With the inclusion of haze formation, we find good agreement of our model predictions of acrylonitrile with the available observations. C1 [Willacy, K.; Allen, M.] CALTECH, Jet Prop Lab, MS 169-507,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Allen, M.; Yung, Y.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Willacy, K (reprint author), CALTECH, Jet Prop Lab, MS 169-507,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Karen.Willacy@jpl.nasa.gov OI Willacy, Karen/0000-0001-6124-5974 FU NASA Astrobiology Institute/Titan as a Prebiotic Chemical System; Cassini UVIS program via NASA grant [JPL.1459109] FX This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. Support was provided by the NASA Astrobiology Institute/Titan as a Prebiotic Chemical System. Y.L.Y. was supported in part by the Cassini UVIS program via NASA grant JPL.1459109 to the California Institute of Technology. The authors thank Dr. Run-Lie Shia for his assistance with the KINETICS code and Dr. Panyotis Lavvas for providing the aerosol data used in these models. NR 56 TC 1 Z9 1 U1 11 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2016 VL 829 IS 2 AR 79 DI 10.3847/0004-637X/829/2/79 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8JX UT WOS:000385377200021 ER PT J AU Palliyaguru, NT Corsi, A Kasliwal, MM Cenko, SB Frail, DA Perley, DA Mishra, N Singer, LP Gal-Yam, A Nugent, PE Surace, JA AF Palliyaguru, N. T. Corsi, A. Kasliwal, M. M. Cenko, S. B. Frail, D. A. Perley, D. A. Mishra, N. Singer, L. P. Gal-Yam, A. Nugent, P. E. Surace, J. A. TI RADIO FOLLOW-UP OF GRAVITATIONAL-WAVE TRIGGERS DURING ADVANCED LIGO O1 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gravitational waves; radiation mechanisms: general; radio continuum: general ID ACTIVE GALACTIC NUCLEI; NEUTRON-STAR MERGERS; BLACK-HOLE MERGERS; GAMMA-RAY BURSTS; OPTICAL COUNTERPART; ELECTROMAGNETIC COUNTERPARTS; MIDINFRARED SELECTION; EVENT GW151226; X-RAY; EMISSION AB We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational-wave triggers were followed-up during the approximate to 4 months of O1, from 2015 September to 2016 January. Two of these triggers, GW150914 and GW151226, are binary black hole (BH) merger events of high significance. A third trigger, G194575, was subsequently declared as an event of no interest (i.e., a false alarm). Our observations targeted selected optical transients identified by the intermediate Palomar Transient Factory in the Advanced LIGO error regions of the three triggers, and a limited region of the gravitational-wave localization area of G194575 not accessible to optical telescopes due to Sun constraints, where a possible high-energy transient was identified. No plausible radio counterparts to GW150914 and GW151226 were found, in agreement with expectations for binary BH mergers. We show that combining optical and radio observations is key to identifying contaminating radio sources that may be found in the follow-up of gravitational-wave triggers, such as emission associated with star formation and active galactic nuclei. We discuss our results in the context of the theoretical predictions for radio counterparts to gravitational-wave transients, and describe our future plans for the radio follow-up of Advanced LIGO (and Virgo) triggers. C1 [Palliyaguru, N. T.; Corsi, A.; Mishra, N.] Texas Tech Univ, Dept Phys, Box 41051, Lubbock, TX 79409 USA. [Kasliwal, M. M.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Cenko, S. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Frail, D. A.] Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA. [Perley, D. A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Mishra, N.] Westview High Sch, 4200 NW 185th Ave, Portland, OR 97229 USA. [Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Nugent, P. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nugent, P. E.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd MS 50B-4206, Berkeley, CA 94720 USA. [Surace, J. A.] CALTECH, Spitzer Sci Ctr, MS 220-6, Pasadena, CA 91125 USA. RP Corsi, A (reprint author), Texas Tech Univ, Dept Phys, Box 41051, Lubbock, TX 79409 USA. EM alessandra.corsi@ttu.edu OI Singer, Leo/0000-0001-9898-5597; Gal-Yam, Avishay/0000-0002-3653-5598; Palliyaguru, Nipuni/0000-0002-4828-0262 FU NSF CAREER award [1455090]; NASA/Swift Cycle 11 GI [NNX16AC12G]; GROWTH project - NSF [1545949]; TTU Clark Scholars program; European Union FP7 programme through ERC grant [307260]; Quantum universe I-Core program by the Israeli Committee for Planning and Budgeting; ISF; Minerva grant; ISF grant; Kimmel award; YeS award; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX A.C. thanks K. Hotokezaka and S. Nissanke for graciously providing the theoretical radio light curves of NS-NS mergers. A.C. acknowledges support from the NSF CAREER award #1455090. A.C. and N.P. acknowledge partial support from NASA/Swift Cycle 11 GI via grant NNX16AC12G. M.M.K. acknowledges partial support from the GROWTH project funded by the NSF under Grant #1545949. N.M. acknowledges support from the TTU Clark Scholars program. A.G.-Y. acknowledges support from the European Union FP7 programme through ERC grant #307260, the Quantum universe I-Core program by the Israeli Committee for Planning and Budgeting and the ISF; by Minerva and ISF grants; and by Kimmel and YeS awards. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Intermediate Palomar Transient Factory project is a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the universe. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 76 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2016 VL 829 IS 2 AR L28 DI 10.3847/2041-8205/829/2/L28 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8WJ UT WOS:000385412300007 ER PT J AU Moss, JH Zaleski, MF Heintz, RA AF Moss, Jamal H. Zaleski, Marilyn F. Heintz, Ron A. TI Distribution, diet, and energetic condition of age-0 walleye pollock (Gadus chalcogrammus) and pacific cod (Gadus macrocephalus) inhabiting the Gulf of Alaska SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Walleye pollock; Pacific cod; Gulf of Alaska; Energy storage; Early life history strategy; Overwinter survival ID EASTERN BERING-SEA; CAPELIN MALLOTUS-VILLOSUS; CROSS-SHELF DISTRIBUTION; EARLY-LIFE STAGES; THERAGRA-CHALCOGRAMMA; NORTHERN GULF; FEEDING ECOLOGY; WESTERN GULF; FRESH-WATER; RECRUITMENT AB Walleye pollock (Gadus chalcogrammus) and Pacific cod (Gadus macrocephalus) are commercially and ecologically important species in Alaska waters. Little is known about their ecology after transitioning from larvae to free swimming fish until settlement to nursery habitats in the eastern Gulf of Alaska. Differences in the distribution, diet, body size, and energetic status between the eastern and central Gulf of Alaska were investigated during summer months to better understand regional and interspecific differences in life history and ecology. The composition of zooplankton prey in the diets of walleye pollock and Pacific cod inhabiting shelf waters was more varied relative to those inhabiting the slope and basin. Body condition and total energy content of Pacific cod was greater than walleye pollock, however total energy content increased with length at a similar rate for both species. Walleye pollock inhabiting continental slope waters had higher energy stores relative to those inhabiting the continental shelf and basin, indicating an energetic advantage for individuals remaining off the shelf during summer months or potentially the advection of fish with higher energy reserves off of the shelf. Previous studies have documented the importance of energy stores for surviving winter and future studies should focus on understanding the mechanisms influencing lipid storage and somatic growth for walleye pollock and Pacific cod inhabiting the eastern and central Gulf of Alaska. Published by Elsevier Ltd. C1 [Moss, Jamal H.; Zaleski, Marilyn F.; Heintz, Ron A.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Lab, 19107 Pt Lena Loop Rd, Juneau, AK 99801 USA. RP Moss, JH (reprint author), NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Lab, 19107 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM Jamal.Moss@noaa.gov FU North Pacific Research Board FX This manuscript was significantly improved by incorporating comments provided by Danielle Dickson and three anonymous reviewers. We thank Casey Debenham, Wess Strasburger, and Jared Weems for assistance with sample processing; and Captain Ray Haddon and the crew of the F/V Northwest Explorer for assistance with sample collection. The North Pacific Research Board provided funding for this study. A reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA and the findings and conclusions in in this paper are those of the authors and do not necessarily represent the views of NOAA. NR 58 TC 2 Z9 2 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD OCT PY 2016 VL 132 BP 146 EP 153 DI 10.1016/j.dsr2.2015.03.014 PG 8 WC Oceanography SC Oceanography GA DZ1LA UT WOS:000385598700011 ER PT J AU Sreenivasan, A Heintz, R AF Sreenivasan, Ashwin Heintz, Ron TI Estimation of the relationship between growth, consumption, and energy allocation in juvenile pacific cod (Gadus macrocephalus) as a function of temperature and ration SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Pacific cod; Nucleic acids; Growth; Food consumption ID POLLOCK THERAGRA-CHALCOGRAMMA; RNA-DNA RATIO; PROTEIN MAINTENANCE REQUIREMENT; PRINCE-WILLIAM-SOUND; FISH SKELETAL-MUSCLE; EASTERN BERING-SEA; WALLEYE POLLOCK; BODY-COMPOSITION; ATLANTIC COD; OXYGEN DIFFUSION AB Pacific cod (Gadus macrocephalus) are generalist predators in the Gulf of Alaska (GOA), and are an important predator on other commercially important species. Efficient management of this species can benefit by knowing how these fish adapt to changing environmental conditions, with a focus on how growth and condition are affected by changes in temperature and diet. We conducted a feeding study to understand the relationship between growth, ration, and temperature, and how these factors interact to affect energy allocation strategies. Since growth and condition of juveniles can determine recruitment into the population, this study focused on growth and consumption of age 1+Pacific cod held over 4 temperature treatments (4 degrees C, 8 degrees C, 12 degrees C, and 16 degrees C) and 3 ration levels (unlimited ration, medium ration, and low ration). We also compared cellular nucleic acid (RNA/DNA) ratios, an instantaneous growth index, total-body lipid, and proximate composition between fish. At 4 degrees C, 8 degrees C, and 12 degrees C, fish at medium and low rations had higher growth rates relative to fish at high rations. Higher food consumption appears to negatively affect digestive ability, assimilation efficiency, and nutrient utilization. RNA/DNA was clearly correlated with growth rates at 4 degrees C and 8 degrees C, but this relationship did not hold at higher temperatures. A secondary growth study was conducted to test the reliability of the growth/consumption models derived from the main growth study. Temperature influenced energy reserves (lipid) while tissue growth (protein) was influenced by ration level. Average lipid values were higher at 4 degrees C than at 8 degrees C or 12 degrees C, suggesting a predisposition to heightened lipid synthesis at colder temperatures. Longer durations of warmer water temperature in the GOA could consequently affect energy allocation strategies, with dietary changes in the field potentially amplifying this effect in cold and warm years. This energy allocation strategy could be detrimental with warmer temperatures predicted in the GOA. (C) 2016 Elsevier Ltd All rights reserved. C1 [Sreenivasan, Ashwin] Sitka Sound Sci Ctr, 834 Lincoln St,Suite 200, Sitka, AK 99835 USA. [Heintz, Ron] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. [Sreenivasan, Ashwin] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. RP Sreenivasan, A (reprint author), Sitka Sound Sci Ctr, 834 Lincoln St,Suite 200, Sitka, AK 99835 USA.; Sreenivasan, A (reprint author), NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM asreenivasan@alaska.edu FU North Pacific Research Board; Sitka Sound Science Center; NOAA's Little Port Walter station; Alaska Fisheries Science Center's Auke Bay Laboratories FX We gratefully acknowledge the support of the North Pacific Research Board for funding this study as part of the Gulf of Alaska Integrated Ecosystem Research Project. We also thank Andrew Eller, Lawrence Schaufler, the Sitka Sound Science Center, NOAA's Little Port Walter station, and the Alaska Fisheries Science Center's Auke Bay Laboratories, who supported this research. We also thank 3 anonymous reviewers for their comments in improving this manuscript. NR 45 TC 1 Z9 1 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD OCT PY 2016 VL 132 BP 154 EP 161 DI 10.1016/j.dsr2.2016.04.004 PG 8 WC Oceanography SC Oceanography GA DZ1LA UT WOS:000385598700012 ER PT J AU Maleki, S Soffianian, AR Koupaei, SS Saatchi, S Pourmanafi, S Sheikholeslam, F AF Maleki, Saeideh Soffianian, Ali Reza Koupaei, Saeid Soltani Saatchi, Sassan Pourmanafi, Saeid Sheikholeslam, Farid TI Habitat mapping as a tool for water birds conservation planning in an arid zone wetland: The case study Hamun wetland SO ECOLOGICAL ENGINEERING LA English DT Article DE Suitable habitat; Conservational priority; Waterbirds; Remote sensing ID COASTAL WETLANDS; SUITABILITY; RESTORATION; DISTRIBUTIONS; CHINA; LANDSAT; VARIABILITY; MANAGEMENT; MARSHES; MAXENT AB Wetlands, especially those in semi-arid areas, are highly vulnerable to human activities, droughts, and other climate variations. Regards to water resources limitations in these regions, prioritization of management strategies is essential to ecosystem conservation and restoration, particularly during the breeding season of waterbirds. The present study sought to develop a spatial conservation prioritization approach based on remote sensing and geographical information system to identify areas of a wetland which require special protective measures during waterbirds' breeding season. After the extraction of spatial information from Landsat 8 time series data, maximum entropy and weighted linear combination (WLC) methods were used to identify areas with higher conservation priority. Firstly, waterbirds' habitat suitability map during their nesting time in Hamun Wetland was constructed. Then, Habitat suitability changes until the end of the nestling period were evaluated and areas providing suitable conditions for longer periods were identified. Moreover, areas with suitable conditions in the beginning of breeding season but unsuitable conditions ( caused by the drying of the wetland) in the nestling period were also determined. Considering limited water availability in the study area, carefully designed management strategies are required to conserve waterbird habitats in such parts of the wetland which are at higher risk of drying. The results of this paper highlighted areas with high conservation priority in a wetland with water limitation. This approach can be practically applied in the management of water habitats in arid and semi-arid areas facing water limitations. (C) 2016 Elsevier B.V. All rights reserved. C1 [Maleki, Saeideh; Soffianian, Ali Reza; Koupaei, Saeid Soltani; Pourmanafi, Saeid] Isfahan Univ Technol, Dept Nat Resources, Esfahan, Iran. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Sheikholeslam, Farid] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran. [Maleki, Saeideh] Zabol Univ, Dept Nat Resources, Zabol, Iran. RP Maleki, S (reprint author), Isphahan Univ Technol, Dept Nat Resources, Emam, Isphahan, Iran. EM Sahraa62@na.iut.ac.ir; soffianian@cc.iut.ac.ir NR 59 TC 1 Z9 1 U1 23 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-8574 EI 1872-6992 J9 ECOL ENG JI Ecol. Eng. PD OCT PY 2016 VL 95 BP 594 EP 603 DI 10.1016/j.ecoleng.2016.06.115 PG 10 WC Ecology; Engineering, Environmental; Environmental Sciences SC Environmental Sciences & Ecology; Engineering GA DY8HX UT WOS:000385371400070 ER PT J AU Wallach, D Thorburn, P Asseng, S Challinor, AJ Ewert, F Jones, JW Rotter, R Ruane, A AF Wallach, Daniel Thorburn, Peter Asseng, Senthold Challinor, Andrew J. Ewert, Frank Jones, James W. Rotter, Reimund Ruane, Alex TI Estimating model prediction error: Should you treat predictions as fixed or random? SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Crop model; Uncertainty; Prediction error; Parameter uncertainty; Input uncertainty; Model structure uncertainty ID CROP MODEL; CLIMATE-CHANGE; WIDE-RANGE; UNCERTAINTY; ENSEMBLE; OUTPUTS; YIELD; WATER; RICE; SOIL AB Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEPfixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEPuncertain(X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEPuncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEPuncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wallach, Daniel] INRA, UMR Agrosyst & Dev Terr AGIR 1248, F-31326 Castanet Tolosan, France. [Thorburn, Peter] CSIRO Agr Flagship, Dutton Pk, Qld 4102, Australia. [Asseng, Senthold; Jones, James W.] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA. [Challinor, Andrew J.] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Challinor, Andrew J.] Int Ctr Trop Agr CIAT, CGIAR ESSP Program Climate Change Agr & Food Secu, Cali 6713, Colombia. [Ewert, Frank] Univ Bonn, INRES, Inst Crop Sci & Resource Conservat, D-53115 Bonn, Germany. [Rotter, Reimund] Nat Resources Inst Finland Luke, FI-50100 Mikkeli, Finland. [Ruane, Alex] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Wallach, D (reprint author), INRA, UMR Agrosyst & Dev Terr AGIR 1248, F-31326 Castanet Tolosan, France. EM daniel.wallach@toulouse.inra.fr; peter.thorburn@csiro.au; sasseng@ufl.edu; a.j.challinor@leeds.ac.uk; fewert@uni-bonn.de; jimj@ufl.edu; reimund.rotter@luke.fi; alexander.c.ruane@nasa.gov RI Challinor, Andrew/C-4992-2008; Thorburn, Peter/A-6884-2011; OI Challinor, Andrew/0000-0002-8551-6617; Wallach, Daniel/0000-0003-3500-8179 NR 49 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD OCT PY 2016 VL 84 BP 529 EP 539 DI 10.1016/j.envsoft.2016.07.010 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA DZ1JR UT WOS:000385595200040 ER PT J AU Moreaux, G Lemoine, FG Argus, DF Santamaria-Gomez, A Willis, P Soudarin, L Gravelle, M Ferrage, P AF Moreaux, G. Lemoine, F. G. Argus, D. F. Santamaria-Gomez, A. Willis, P. Soudarin, L. Gravelle, M. Ferrage, P. TI Horizontal and vertical velocities derived from the IDS contribution to ITRF2014, and comparisons with geophysical models SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Satellite geodesy; Reference systems; Plate motions ID TECTONIC PLATE MOTIONS; SPACE GEODESY; NY-ALESUND; DORIS; GPS; SVALBARD; DEFORMATION; FIELD; SYSTEM; TRENDS AB In the context of the 2014 realization of the International Terrestrial Reference Frame, the International DORIS (Doppler Orbitography Radiopositioning Integrated by Satellite) Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS combination centre estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time-series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm yr(-1). For five of the sites (Arequipa, Dionysos/Gavdos, Manila and Santiago) with horizontal velocity differences with respect to these models larger than 10 mm yr(-1), comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm yr-1 at 23 percent of the sites. At Thule, the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time-series from the DORIS station in Thule show similar trends to the GRACE equivalent water height. C1 [Moreaux, G.; Soudarin, L.] Collecte Localisat Satellites, 8-10 Rue Hermes,Parc Technol Canal, F-31520 Ramonville St Agne, France. [Lemoine, F. G.] NASA, Goddard Space Flight Ctr, Code 698, Greenbelt, MD 20771 USA. [Argus, D. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Santamaria-Gomez, A.; Gravelle, M.] Univ La Rochelle, CNRS, LIENSS, 2 Rue Olympe Gouge, La Rochelle, France. [Santamaria-Gomez, A.] Univ Tasmania, Sch Land & Food, Hobart, Tas, Australia. [Willis, P.] Inst Natl Informat Geograph & Forestiere, Direct Rech & Enseignement, Marne La Vallee, France. [Willis, P.] Univ Paris Diderot, Inst Phys Globe Paris, Gravimetrie & Geodesie Spatiale UMR7154, Sorbonne Paris Cite, Paris, France. [Ferrage, P.] Ctr Natl Etud Spatiales, 18 Ave Edouard Belin, F-31401 Toulouse 9, France. RP Moreaux, G (reprint author), Collecte Localisat Satellites, 8-10 Rue Hermes,Parc Technol Canal, F-31520 Ramonville St Agne, France. EM gmoreaux@cls.fr RI Willis, Pascal/A-8046-2008; Santamaria-Gomez, Alvaro/E-4573-2013 OI Willis, Pascal/0000-0002-3257-0679; Santamaria-Gomez, Alvaro/0000-0002-1655-3414 FU Centre National d'Etudes Spatiales (CNES); European Union [31031-2008]; INSU/CNRS FX Part of this work was supported by Centre National d'Etudes Spatiales (CNES) and is based on observations from the DORIS satellites. DFA's part of this research was performed at Jet Propulsion Laboratory under contract with NASA. All the DORIS data used in this study are freely available and downloadable from the IDS data centres: CDDIS (ftp://cddis.gsfc.nasa.gov/doris/products/) and IGN (ftp://doris.ensg.ign.fr/pub/doris/). The GPS solution from University of La Rochelle is available at http://www.sonel.org. The University of La Rochelle computing infrastructure was partly funded by the European Union (contract 31031-2008, European Regional Development Fund). The SONEL GPS@TG data assembly centre is supported by INSU/CNRS. Figures were produced with the Generic Mapping Tool software (Wessel & Smith 1991). NR 45 TC 0 Z9 0 U1 4 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD OCT PY 2016 VL 207 IS 1 BP 209 EP 227 DI 10.1093/gji/ggw265 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DX8PO UT WOS:000384651200015 ER PT J AU Mann, IR Ozeke, LG Murphy, KR Claudepierre, SG Turner, DL Baker, DN Rae, IJ Kale, A Milling, DK Boyd, AJ Spence, HE Reeves, GD Singer, HJ Dimitrakoudis, S Daglis, IA Honary, F AF Mann, I. R. Ozeke, L. G. Murphy, K. R. Claudepierre, S. G. Turner, D. L. Baker, D. N. Rae, I. J. Kale, A. Milling, D. K. Boyd, A. J. Spence, H. E. Reeves, G. D. Singer, H. J. Dimitrakoudis, S. Daglis, I. A. Honary, F. TI Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt SO NATURE PHYSICS LA English DT Article ID ELECTRON ACCELERATION; GEOMAGNETIC STORMS; MAGNETIC STORM; CHORUS WAVES; DIFFUSION; DROPOUTS; LOSSES; RING AB Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave-particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a data driven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave-particle scattering loss into the atmosphere is not needed in this case. When rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained. C1 [Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; Kale, A.; Milling, D. K.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Murphy, K. R.] NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA. [Claudepierre, S. G.; Turner, D. L.] Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Rae, I. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Boyd, A. J.; Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space & Atmospher Sci, NIS 1, Los Alamos, NM 87544 USA. [Singer, H. J.] NOAA, Space Weather Predict Ctr, Boulder, CO 80305 USA. [Dimitrakoudis, S.; Daglis, I. A.] Natl Observ Athens, Inst Astron Astrophys Space Applicat & Remote Sen, Penteli 15236, Greece. [Daglis, I. A.] Univ Athens, Dept Phys, Athens 15784, Greece. [Honary, F.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. RP Mann, IR (reprint author), Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. EM imann@ualberta.ca RI Daglis, Ioannis/L-6100-2013; OI Daglis, Ioannis/0000-0002-0764-3442; Mann, Ian/0000-0003-1004-7841 FU Canadian NSERC; STFC [ST/L000563/1]; NERC [NE/L007495/1]; NSERC Postdoctoral Fellowship; Canadian Space Agency; NASA [NAS5-02099]; RBSP-ECT - JHU/APL under NASA's Prime [967399, NAS5-01072]; MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) consortium; European Community [284520] FX I.R.M. is supported by a Discovery Grant from Canadian NSERC. I.J.R. is funded by STFC grant ST/L000563/1 and NERC grant NE/L007495/1. K.R.M. is supported by an NSERC Postdoctoral Fellowship. CARISMA is operated by the University of Alberta, funded by the Canadian Space Agency. We acknowledge the WDC for Geomagnetism, Kyoto University, Japan for the geomagnetic indices. We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS Mission. Specifically D. Larson and R. P. Lin for use of SST data and C. W Carlson and J. P. McFadden for use of ESA data. We thank A. Kellerman and T. Onsager for helpful discussions. This work was supported by RBSP-ECT funding provided by JHU/APL Contract No. 967399 under NASA's Prime Contract No. NAS5-01072. The Sub-Auroral Magnetometer Network (SAMNET) is operated by the Space Plasma Environment and Radio Science (SPEARS) group, Department of Physics, Lancaster University. We thank the institutes who maintain the IMAGE Magnetometer Array. This work was supported in part by participation in the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) consortium. MAARBLE has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1, SP1 Cooperation, Collaborative project) under grant agreement no 284520. This paper reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained herein. NR 41 TC 3 Z9 3 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD OCT PY 2016 VL 12 IS 10 BP 978 EP 983 DI 10.1038/NPHYS3799 PG 6 WC Physics, Multidisciplinary SC Physics GA DY7VP UT WOS:000385337700023 ER PT J AU Cramer, N Swei, SSM Cheung, KC Teodorescu, M AF Cramer, Nick Swei, Sean Shan-Min Cheung, Kenneth C. Teodorescu, Mircea TI Extended discrete-time transfer matrix approach to modeling and decentralized control of lattice-based structures SO STRUCTURAL CONTROL & HEALTH MONITORING LA English DT Article DE discrete time; transfer matrix method; decentralized control; structural control; LQR ID ELEMENT-TRANSFER-MATRIX; DESIGN AB This paper presents the modeling and control of an aircraft wing structure constructed by lattice-based cellular materials/components. A novel model reduction process is proposed that utilizes the extended discrete-time transfer matrix method (E-DT-TMM). Through recursive application of the E-DT-TMM, an effective reduced-order model can be obtained in which a decentralized discrete-time linear quadratic regulator (LQR) controller can be designed. To demonstrate the efficiency of the proposed concept, a prototype wing structure is studied. The analysis and simulation results show that the performance of the proposed E-DT-TMM based decentralized LQR controller is comparable with that of the full-state continuous LQR controller. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Cramer, Nick; Teodorescu, Mircea] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Swei, Sean Shan-Min] NASA, Intelligent Syst Div, Ames Res Ctr, Mountain View, CA USA. [Cheung, Kenneth C.] NASA, Off Ctr Chief Technologist, Ames Res Ctr, Mountain View, CA USA. RP Cramer, N (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. EM ncramer@ucsc.edu FU UARC; ASL; NASA Ames Research Center; NASA ARMD Team Seedling Project FX N. Cramer and M. Teodorescu would like to thank the UARC, ASL, and the NASA Ames Research Center for sponsoring their research, and S. Swei and K. Cheung would like to thank the funding support of the NASA ARMD Team Seedling Project. NR 27 TC 0 Z9 0 U1 3 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1545-2255 EI 1545-2263 J9 STRUCT CONTROL HLTH JI Struct. Control. Health Monit. PD OCT PY 2016 VL 23 IS 10 BP 1256 EP 1272 DI 10.1002/stc.1837 PG 17 WC Construction & Building Technology; Engineering, Civil; Instruments & Instrumentation SC Construction & Building Technology; Engineering; Instruments & Instrumentation GA DW4MH UT WOS:000383616700003 ER PT J AU Lim, JW AF Lim, J. W. TI Consideration of structural constraints in passive rotor blade design for improved performance SO AERONAUTICAL JOURNAL LA English DT Article DE Passive Rotor Blade Design; Performance; Structural Constraints; Optimisation; Aerodynamics; Aircraft Design; Flight simulation; Performance; Rotorcraft ID OPTIMIZATION AB This design study applied parameterisation to rotor blade for improved performance. In the design, parametric equations were used to represent blade planform changes over the existing rotor blade model. Design variables included blade twist, sweep, dihedral and the radial control point. Updates to the blade structural properties with changes in the design variables allowed accurate evaluation of performance objectives and realistic structural constraints - blade stability, steady moments (flap bending, chord bending and torsion) and the high-g manoeuvre pitch link loads. Performance improvement was demonstrated with multiple parametric designs. Using a parametric design with advanced aerofoils, the predicted power reduction was 1.0% in hover, 10.0% at mu = 0.30 and 17.0% at mu = 0.40, relative to the baseline UH-60A rotor, but these were obtained with a 35% increase in the steady chord bending moment at mu = 0.30 and a 20% increase in the half peak-to-peak pitch link load during the UH-60A UTTAS manoeuvre. Low vibration was maintained for this design. More rigorous design efforts, such as chord tapering and/or structural redesign of the blade cross section, would enlarge the feasible design space and likely provide significant performance improvement. C1 [Lim, J. W.] US Army, Aviat Dev Directorate AFDD, Aviat & Missile Res Dev & Engn Ctr, Res Dev & Engn Command RDECOM,Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lim, JW (reprint author), US Army, Aviat Dev Directorate AFDD, Aviat & Missile Res Dev & Engn Ctr, Res Dev & Engn Command RDECOM,Ames Res Ctr, Moffett Field, CA 94035 USA. EM joon.w.lim.civ@mail.mil NR 27 TC 0 Z9 0 U1 1 U2 1 PU ROYAL AERONAUTICAL SOC PI LONDON PA 4 HAMILTON PL, LONDON W1J 7BQ, ENGLAND SN 0001-9240 J9 AERONAUT J JI Aeronaut. J. PD OCT PY 2016 VL 120 IS 1232 BP 1604 EP 1631 DI 10.1017/aer.2016.77 PG 28 WC Engineering, Aerospace SC Engineering GA DY4GC UT WOS:000385056000005 ER PT J AU Jung, J Kim, DJ Lavalle, M Yun, SH AF Jung, Jungkyo Kim, Duk-jin Lavalle, Marco Yun, Sang-Ho TI Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Coherence change detection; synthetic aperture radar (SAR) interferometry; temporal decorrelation model; volcanic ash ID POLARIMETRIC SAR INTERFEROMETRY; APERTURE RADAR INTERFEROMETRY; MULTITEMPORAL SAR; IMAGERY; FOREST AB Detection of changes caused by major events-such as earthquakes, volcanic eruptions, and floods-from interferometric synthetic aperture radar (SAR) data is challenging because of the coupled effects with temporal decorrelation caused by natural phenomena, including rain, snow, wind, and seasonal changes. The coupled effect of major events and natural phenomena sometimes leads to misinterpretation of interferometric coherence maps and often degrades the performance of change detection algorithms. To differentiate decorrelation sources caused by natural changes from those caused by an event of interest, we formulated a temporal decorrelation model that accounts for the random motion of canopy elements, temporally correlated dielectric changes, and temporally uncorrelated dielectric changes of canopy and ground. The model parameters are extracted from the interferometric pairs associated with natural changes in canopy and ground using the proposed temporal decorrelation model. In addition, the cumulative distribution functions of the temporally uncorrelatedmodel parameters, which are associated with natural changes in canopy and ground, are estimated from interferometric pairs acquired before the event. Model parameters are also extracted from interferometric SAR data acquired across the event and compared with the cumulative probabilities of natural changes in order to calculate the probability of a major event. Subsequently, pixels with cumulative probabilities greater than 75% are marked as changed due to the event. A case study for detecting volcanic ash during the eruption of the Shinmoedake volcano in January 2011 was carried out using L-band Advanced Land Observation Satellite PALSAR data. C1 [Jung, Jungkyo; Kim, Duk-jin] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. [Lavalle, Marco; Yun, Sang-Ho] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Jung, J (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. EM ring78@snu.ac.kr; djkim@snu.ac.kr; marco.lavalle@jpl.nasa.gov; Sang-Ho.Yun@jpl.nasa.gov FU Space Core Technology Development program through the National Research Foundation of Korea - Ministry of Science, ICT and Future Planning [2011-0020884, 2014M1A3A3A03034799]; National Aeronautics and Space Administration Applied Sciences / Disasters Program FX This work was supported in part by the Space Core Technology Development program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2011-0020884 and 2014M1A3A3A03034799) and in part by the National Aeronautics and Space Administration Applied Sciences / Disasters Program. NR 36 TC 0 Z9 0 U1 8 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD OCT PY 2016 VL 54 IS 10 BP 5765 EP 5775 DI 10.1109/TGRS.2016.2572166 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DY5XT UT WOS:000385178700010 ER PT J AU Mohammed, PN Aksoy, M Piepmeier, JR Johnson, JT Bringer, A AF Mohammed, Priscilla N. Aksoy, Mustafa Piepmeier, Jeffrey R. Johnson, Joel T. Bringer, Alexandra TI SMAP L-Band Microwave Radiometer: RFI Mitigation Prelaunch Analysis and First Year On-Orbit Observations SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave radiometry; radio-frequency interference (RFI) ID INTERFERENCE; PERFORMANCE; DETECTOR AB The National Aeronautics and Space Administration's (NASA) Soil Moisture Active and Passive (SMAP) mission, which was launched on January 31, 2015, is providing global measurements of soil moisture and freeze/thaw state. The SMAP radiometer operates within the protected Earth Exploration Satellite Service passive frequency allocation of 1400-1427 MHz. However, unauthorized in-band transmitters and out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum are known to cause interference to microwave radiometry in this band. Because measurement corruption by these terrestrial transmissions, which is referred to as radio-frequency interference (RFI), threatens mission success, the SMAP radiometer includes special flight hardware to enable the detection and filtering of RFI. Results from the first year of SMAP data show the presence of RFI with frequent occurrence over Asia and Europe. During the calibration/validation stage of the mission, the RFI detection and mitigation algorithms were modified to provide enhanced performance. Analysis of the L1B_TB products indicates good algorithmic performance with respect to RFI detection and removal. However, some regions of the globe (e.g., Japan) continue to experience complete data loss. This paper summarizes updates to the SMAP RFI processing algorithms based on prelaunch tests and on-orbit measurements, as well as RFI information obtained in SMAP's first year on orbit. C1 [Mohammed, Priscilla N.; Aksoy, Mustafa; Piepmeier, Jeffrey R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mohammed, Priscilla N.] Morgan State Univ, Baltimore, MD 21251 USA. [Aksoy, Mustafa] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Johnson, Joel T.; Bringer, Alexandra] Ohio State Univ, Columbus, OH 43210 USA. RP Mohammed, PN (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Priscilla.N.Mohammed@nasa.gov NR 17 TC 2 Z9 2 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD OCT PY 2016 VL 54 IS 10 BP 6035 EP 6047 DI 10.1109/TGRS.2016.2580459 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DY5XT UT WOS:000385178700029 ER PT J AU Lei, N Xiong, XX AF Lei, Ning Xiong, Xiaoxiong TI Suomi NPP VIIRS Solar Diffuser BRDF Degradation Factor at Short-Wave Infrared Band Wavelengths SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Bidirectional reflectance distribution function (BRDF); calibration; degradation; reflective solar bands (RSBs); short-wave infrared (SWIR); solar diffuser (SD); SWIR bands; visible infrared imaging radiometer suite (VIIRS) ID ON-ORBIT CALIBRATION; RADIOMETRIC CALIBRATION; STABILITY; PERFORMANCE AB The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is an imaging radiometer, collecting data of the Earth's surface in wavelengths ranging from 0.41 to 12.5 mu m. To maintain and improve data quality, the VIIRS calibrates its reflective solar bands using a sunlit onboard solar diffuser (SD) panel as the radiance source. Due to exposure to solar radiative energy and high-energy particles and perhaps on-orbit contamination, the surface property of the SD panel changes with time. An onboard SD stability monitor (SDSM) measures the change in the value of the bidirectional reflectance distribution function (BRDF) of the SD at the SDSMSD view direction. The SDSM-measurements show that the BRDF value decreases over time and that the degradation is wavelength dependent. The degradation varies monotonically with the wavelength and becomes much smaller at a longer wavelength. However, the SDSM design band wavelengths (412-926 nm) are much shorter than the VIIRS short-wave infrared (SWIR) band wavelengths (1238-2257 nm). Consequently, for simplicity, for SNPP VIIRS, it has been assumed that the degradation is zero at the SWIR band wavelengths. Nevertheless, at the present time, the degradation at the shorter end of the SWIR band wavelengths may not be small enough to be negligible to satisfy the 0.1% (at least) radiometric calibration stability required by the Ocean Color products. We propose empirical models to calculate the BRDF degradation in the SWIR wavelength region. C1 [Lei, Ning] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Sci & Explorat Directorate, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lei, N (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM ning.lei@ssaihq.com; Xiaoxiong.Xiong-1@nasa.gov NR 27 TC 2 Z9 2 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD OCT PY 2016 VL 54 IS 10 BP 6212 EP 6216 DI 10.1109/TGRS.2016.2583220 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DY5XT UT WOS:000385178700041 ER PT J AU Koster, RD Chang, YH Wang, HL Schubert, SD AF Koster, Randal D. Chang, Yehui Wang, Hailan Schubert, Siegfried D. TI Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields during Boreal Summer: A Comprehensive Analysis over North America SO JOURNAL OF CLIMATE LA English DT Article ID COUPLING EXPERIMENT; SOLAR-RADIATION; UNITED-STATES; PART II; VARIABILITY; CLIMATE; MODEL; RAINFALL; WAVES; PRECIPITATION AB A series of stationary wave model (SWM) experiments are performed in which the boreal summer atmosphere is forced, over a number of locations in the continental United States, with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-hPa eddy streamfunction) is largely the same: a high anomaly forms over west-central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, similar results are found; imposing soil moisture dryness in the AGCM in different locations within the U.S. interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi River valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the U.S.-Canadian border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior. C1 [Koster, Randal D.; Chang, Yehui; Wang, Hailan; Schubert, Siegfried D.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. [Chang, Yehui] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Wang, Hailan] Sci Syst & Applicat Inc, Lanham, MD USA. RP Koster, RD (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM randal.d.koster@nasa.gov RI Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 FU NOAA Modeling, Analysis, Predictions and Projections (MAPP) program [NA14OAR4310221]; NASA Energy and Water Cycle Study (NEWS) program; NASA Modeling, Analysis, and Prediction Program - Global Modeling and Assimilation Office FX Support for this project was provided by the NOAA Modeling, Analysis, Predictions and Projections (MAPP) program (NA14OAR4310221, for YC and HW); the NASA Energy and Water Cycle Study (NEWS) program (for YC and SDS); and the NASA Modeling, Analysis, and Prediction Program through its funding of the Global Modeling and Assimilation Office (for RDK). NR 54 TC 0 Z9 0 U1 3 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2016 VL 29 IS 20 BP 7345 EP 7364 DI 10.1175/JCLI-D-16-0192.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX1TK UT WOS:000384149700012 ER PT J AU Kato, S Xu, KM Wong, T Loeb, NG Rose, FG Trenberth, KE Thorsen, TJ AF Kato, Seiji Xu, Kuan-Man Wong, Takmeng Loeb, Norman G. Rose, Fred G. Trenberth, Kevin E. Thorsen, Tyler J. TI Investigation of the Residual in Column-Integrated Atmospheric Energy Balance Using Cloud Objects SO JOURNAL OF CLIMATE LA English DT Article ID CLIMATOLOGY PROJECT GPCP; SURFACE IRRADIANCES; HADLEY CIRCULATION; RADIATION BUDGET; WATER-BUDGET; ANNUAL CYCLE; PART I; PRECIPITATION; TRANSPORTS; OCEAN AB Observationally based atmospheric energy balance is analyzed using Clouds and the Earth's Radiant Energy System (CERES)-derived TOA and surface irradiance, Global Precipitation Climatology Project (GPCP)-derived precipitation, dry static and kinetic energy tendency and divergence estimated from ERA-Interim, and surface sensible heat flux from SeaFlux. The residual tends to be negative over the tropics and positive over midlatitudes. A negative residual implies that the precipitation rate is too small, divergence is too large, or radiative cooling is too large. The residual of atmospheric energy is spatially and temporally correlated with cloud objects to identify cloud types associated with the residual. Spatially, shallow cumulus, cirrostratus, and deep convective cloud-object occurrence are positively correlated with the absolute value of the residual. The temporal correlation coefficient between the number of deep convective cloud objects and individual energy components, net atmospheric irradiance, precipitation rate, and the sum of dry static and kinetic energy divergence and their tendency over the western Pacific are 0.84, 0.95, and 0.93, respectively. However, when all energy components are added, the atmospheric energy residual over the tropical Pacific is temporally correlated well with the number of shallow cumulus cloud objects over tropical Pacific. Because shallow cumulus alters not enough atmospheric energy compared to the residual, this suggests the following: 1) if retrieval errors associated with deep convective clouds are causing the column-integrated atmospheric energy residual, the errors vary among individual deep convective clouds, and 2) it is possible that the residual is associated with processes in which shallow cumulus clouds affect deep convective clouds and hence atmospheric energy budget over the tropical western Pacific. C1 [Kato, Seiji; Xu, Kuan-Man; Wong, Takmeng; Loeb, Norman G.; Thorsen, Tyler J.] NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. [Rose, Fred G.] Sci Syst & Applicat Inc, Hampton, VA USA. [Trenberth, Kevin E.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Thorsen, Tyler J.] NASA, Postdoctoral Program, Hampton, VA USA. RP Kato, S (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM seiji.kato@nasa.gov RI Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 FU NASA CERES project; NASA NEWS project; DOE [DE-SC0012711]; NASA FX We thank Dr. Louise Nuijens of MIT for useful discussions, Mr. Walter Miller for providing cloud fractional coverage by cloud objects, and three anonymous reviewers for providing constructive comments. The work was supported by the NASA CERES and NEWS projects. The research of K. E. Trenberth is partially sponsored by DOE Grant DE-SC0012711. T. J. Thorsen is supported by a NASA Postdoctoral Program Fellowship. The CERES data sets were obtained from the NASA CERES website (http://ceres.larc.nasa.gov/order_data.php), GPCP data were obtained from the NASA GSFC website (http://precip.gsfc.nasa.gov/), SeaFlux data were obtained online (http://seaflux.org/), and ERA-Interim data were obtained from NCAR (http://www.cgd.ucar.edu/cas/catalog/newbudgets/index.html#AtD). NR 47 TC 0 Z9 0 U1 6 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2016 VL 29 IS 20 BP 7435 EP 7452 DI 10.1175/JCLI-D-15-0782.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX1TK UT WOS:000384149700017 ER PT J AU Paulino-Lima, IG Fujishima, K Navarrete, JU Galante, D Rodrigues, F Azua-Bustos, A Rothschild, LJ AF Paulino-Lima, Ivan Glaucio Fujishima, Kosuke Navarrete, Jesica Urbina Galante, Douglas Rodrigues, Fabio Azua-Bustos, Armando Rothschild, Lynn Justine TI Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations SO JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY LA English DT Article DE Desiccation; Ultraviolet radiation resistance; Extremophile; Manganese; Microbial diversity ID OXIDATIVE STRESS RESISTANCE; ATACAMA DESERT; DEINOCOCCUS-RADIODURANS; IONIZING-RADIATION; SONORAN DESERT; SP-NOV.; BACTERIA; DIVERSITY; CHILE; SOIL AB Desiccation resistance and a high intracellular Mn/Fe ratio contribute to ionizing radiation resistance of Deinococcus radiodurans. We hypothesized that this was a general phenomenon and thus developed a strategy to search for highly radiation-resistant organisms based on their natural environment. While desiccation is a typical feature of deserts, the correlation between radiation resistance and the intracellular Mn/Fe ratio of indigenous microorganisms or the Mn/Fe ratio of the environment, has not yet been described. UV-C radiation is highly damaging to biomolecules including DNA. It was used in this study as a selective tool because of its relevance to early life on earth, high altitude aerobiology and the search for life beyond Earth. Surface soil samples were collected from the Sonoran Desert, Arizona (USA), from the Atacama Desert in Chile and from a manganese mine in northern Argentina. Microbial isolates were selected after exposure to UV-C irradiation and growth. The isolates comprised 28 genera grouped within six phyla, which we ranked according to their resistance to UV-C irradiation. Survival curves were performed for the most resistant isolates and correlated with their intracellular Mn/Fe ratio, which was determined by ICP-MS. Five percent of the isolates were highly resistant, including one more resistant than D. radiodurans, a bacterium generally considered the most radiation-resistant organism, thus used as a model for radiation resistance studies. No correlation was observed between the occurrence of resistant microorganisms and the Mn/Fe ratio in the soil samples. However, all resistant isolates showed an intracellular Mn/Fe ratio much higher than the sensitive isolates. Our findings could represent a new front in efforts to harness mechanisms of UV-C radiation resistance from extreme environments. (C) 2016 Elsevier B.V. All rights reserved. C1 [Paulino-Lima, Ivan Glaucio] NASA, Ames Res Ctr, NASA Postdoctoral Program, Moffett Field, CA 94035 USA. [Fujishima, Kosuke; Navarrete, Jesica Urbina] NASA, Ames Res Ctr, Univ Affiliated Res Ctr, Moffett Field, CA 94035 USA. [Galante, Douglas] Brazilian Synchrotron Light Lab, BR-13083970 Campinas, SP, Brazil. [Rodrigues, Fabio] Univ Sao Paulo, Inst Chem, BR-05508000 Sao Paulo, Brazil. [Azua-Bustos, Armando] Univ Autonoma Chile, Ctr Invest Biomed, Santiago 8910060, Chile. [Rothschild, Lynn Justine] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Fujishima, Kosuke] Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, Tokyo 1528550, Japan. RP Paulino-Lima, IG (reprint author), NASA, Ames Res Ctr, NASA Postdoctoral Program, Moffett Field, CA 94035 USA.; Paulino-Lima, IG (reprint author), Univ Space Res Assoc, Moffett Field, CA 94035 USA. EM ivan.g.paulinolima@nasa.gov RI Galante, Douglas/G-8752-2011; OI Galante, Douglas/0000-0002-3265-2527; Fujishima, Kosuke/0000-0002-8844-812X FU University of Sao Paulo, Brazil; National Council for the Improvement of Higher Education in Brazil; NASA Postdoctoral Program FX We thank Joe Lukas from Integrated Science Solutions, Inc. at NASA Ames Research Center for coordinating the metal analysis in the soil samples, Karen Moulton from S. Monroe Duboise's lab at the University of Southern Maine and Joey Varelas from the Materials Analysis for Collaborative Science of the University of California Santa Cruz at NASA Ames Research Center for the fundamental assistance on the TEM images, and Rob Franks from the Institute of Marine Sciences at University of California Santa Cruz for performing the ICP-MS experiments. We also thank American Manganese Inc., and Mina Eco Alabi S/A for giving access to the sampling sites, the Research Unity in Astrobiology from the University of Sao Paulo, Brazil, the National Council for the Improvement of Higher Education in Brazil and the NASA Postdoctoral Program administered by Oak Ridge Associated Universities for providing IGPL's postdoctoral fellowships. NR 61 TC 0 Z9 0 U1 18 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1011-1344 J9 J PHOTOCH PHOTOBIO B JI J. Photochem. Photobiol. B-Biol. PD OCT PY 2016 VL 163 BP 327 EP 336 DI 10.1016/j.jphotobiol.2016.08.017 PG 10 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DY1JT UT WOS:000384852000042 PM 27614243 ER PT J AU Valivarthi, R Puigibert, MG Zhou, Q Aguilar, GH Verma, VB Marsili, F Shaw, MD Nam, SW Oblak, D Tittel, W AF Valivarthi, Raju Puigibert, Marcelli Grimau Zhou, Qiang Aguilar, Gabriel H. Verma, Varun B. Marsili, Francesco Shaw, Matthew D. Nam, Sae Woo Oblak, Daniel Tittel, Wolfgang TI Quantum teleportation across a metropolitan fibre network SO NATURE PHOTONICS LA English DT Article ID SINGLE-PHOTON DETECTORS; STATE; KILOMETERS; ENSEMBLES; CHANNELS; QUBITS; MEMORY AB If a photon interacts with a member of an entangled photon pair via a Bell-state measurement (BSM), its state is teleported over principally arbitrary distances onto the pair's second member(1). Since 1997, this puzzling prediction of quantum mechanics has been demonstrated many times(2). However, with two exceptions(3,4), only the photon that received the teleported state, if any, travelled far, while the photons partaking in the BSM were always measured close to where they were created. Here, using the Calgary fibre network, we report quantum teleportation from a telecom photon at 1,532 nm wavelength, interacting with another telecom photon after both have travelled several kilometres and over a combined beeline distance of 8.2 km, onto a photon at 795 nm wavelength. This improves the distance over which teleportation takes place to 6.2 km. Our demonstration establishes an important requirement for quantum repeater-based communications(5) and constitutes a milestone towards a global quantum internee. C1 [Valivarthi, Raju; Puigibert, Marcelli Grimau; Zhou, Qiang; Aguilar, Gabriel H.; Oblak, Daniel; Tittel, Wolfgang] Univ Calgary, Inst Quantum Sci & Technol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. [Valivarthi, Raju; Puigibert, Marcelli Grimau; Zhou, Qiang; Aguilar, Gabriel H.; Oblak, Daniel; Tittel, Wolfgang] Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. [Verma, Varun B.; Nam, Sae Woo] NIST, Boulder, CO 80305 USA. [Marsili, Francesco; Shaw, Matthew D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Tittel, W (reprint author), Univ Calgary, Inst Quantum Sci & Technol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada.; Tittel, W (reprint author), Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM wtittel@ucalgary.ca RI Tittel, Wolfgang/A-1600-2011 FU Alberta Innovates Technology Futures (AITF); National Science and Engineering Research Council of Canada (NSERC); Defense Advanced Research Projects Agency (DARPA) Quiness programme [W31P4Q-134-0004]; Canadian Institute for Advanced Research (CIFAR); Defense Advanced Research Projects Agency (DARPA) Information in a Photon (InPho) programme FX The authors thank T. Andruschak, R. Angelo, D. Basto, C. Chambers and H. Dhillon from the City of Calgary for providing access to the fibre network and for help during the experiment, V. Kiselyov for technical support and P. Lefebvre for help with aligning the entangled photon pair source. This work was funded through Alberta Innovates Technology Futures (AITF), the National Science and Engineering Research Council of Canada (NSERC) and the Defense Advanced Research Projects Agency (DARPA) Quiness programme (contract no. W31P4Q-134-0004). W.T. also acknowledges funding as a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR), and V.B.V. and S.W.N. acknowledge partial funding for detector development from the Defense Advanced Research Projects Agency (DARPA) Information in a Photon (InPho) programme. Part of the detector research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 29 TC 3 Z9 3 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD OCT PY 2016 VL 10 IS 10 BP 676 EP 680 DI 10.1038/NPHOTON.2016.180 PG 5 WC Optics; Physics, Applied SC Optics; Physics GA DY2WD UT WOS:000384951900016 ER PT J AU Lim, H Kim, J Wang, YF Min, J Carvajal, NA Lloyd, CW AF Lim, Hyunjung Kim, JiEun Wang, Youfa Min, Jungwon Carvajal, Nubia A. Lloyd, Charles W. TI Child health promotion program in South Korea in collaboration with US National Aeronautics and Space Administration: Improvement in dietary and nutrition knowledge of young children SO NUTRITION RESEARCH AND PRACTICE LA English DT Article DE Child; obesity; prevention; nutrition; South Korea ID OBESITY PREVENTION PROGRAMS; PHYSICAL-ACTIVITY; INTERVENTIONS AB BACKGROUND/OBJECTIVES: Childhood obesity has become a global epidemic. Development of effective and sustainable programs to promote healthy behaviors from a young age is important. This study developed and tested an intervention program designed to promote healthy eating and physical activity among young children in South Korea by adaptation of the US National Aeronautics and Space Administration (NASA) Mission X (MX) Program. SUBJECTS/METHODS: The intervention program consisted of 4 weeks of fitness and 2 weeks of nutrition education. A sample of 104 subjects completed pre- and post- surveys on the Children's Nutrition Acknowledgement Test (NAT). Parents were asked for their children's characteristics and two 24-hour dietary records, the Nutrition Quotient (NQ) at baseline and a 6-week follow-up. Child weight status was assessed using Korean body mass index (BMI) percentiles. RESULTS: At baseline, 16.4% (boy: 15.4%; girl: 192%) of subjects were overweight or obese (based on BMI >= 85%tile). Fat consumption significantly decreased in normal BMI children (48.6 +/- 16.8 g at baseline to 41.9 +/- 18.1 g after intervention, P < 0.05); total NQ score significantly increased from 66.4 to 67.9 (P < 0.05); total NAT score significantly improved in normal BMI children (74.3 at baseline to 81.9 after the program), children being underweight (from 71.0 to 77.0), and overweight children (77.1 at baseline vs. 88.2 after intervention, P < 0.001). CONCLUSIONS: The 6-week South Korean NASA MX project is feasible and shows favorable changes in eating behaviors and nutritional knowledge among young children. C1 [Lim, Hyunjung; Kim, JiEun] Kyung Hee Univ, Grad Sch East West Med Sci, Res Inst Med Nutr, Dept Med Nutr, Yongin 17104, South Korea. [Wang, Youfa; Min, Jungwon] Univ Buffalo State Univ New York, Dept Epidemiol & Environm Hlth, Syst Oriented Global Childhood Obes Intervent Pro, 816 Kimball Tower, Buffalo, NY 14214 USA. [Min, Jungwon] Korea Inst Child Care & Educ, Seoul 06750, South Korea. [Carvajal, Nubia A.] NASA Informat Technol & Multimedia Serv Contract, MEI Technol, Houston, TX 77058 USA. [Lloyd, Charles W.] NASA, Johnson Space Ctr, Human Res Program, Houston, TX 77058 USA. RP Wang, YF (reprint author), Univ Buffalo State Univ New York, Dept Epidemiol & Environm Hlth, Syst Oriented Global Childhood Obes Intervent Pro, 816 Kimball Tower, Buffalo, NY 14214 USA. EM youfawan@buffalo.edu FU Korea Institute of Child Care and Education in the Republic of Korea; National Institute of Health (NIH) [U54 HD070725]; Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) [U54 HD070725]; Office of the Director, National Institutes of Health (OD) FX The study was funded by the Korea Institute of Child Care and Education in the Republic of Korea. A part of Drs. Min and Wang's effort was funded by research grants from the National Institute of Health (NIH, U54 HD070725). The U54 project (U54 HD070725) is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the Office of the Director, National Institutes of Health (OD). The content of the paper is solely the responsibility of the authors and does not necessarily represent the official views of the funders. NR 33 TC 1 Z9 1 U1 5 U2 5 PU KOREAN NUTRITION SOC PI SEOUL PA 804 KST CTR, 635-4 YEOGSAM-SONG KANGNAM-KU, SEOUL, 135-703, SOUTH KOREA SN 1976-1457 EI 2005-6168 J9 NUTR RES PRACT JI Nutr. Res. Pract. PD OCT PY 2016 VL 10 IS 5 BP 555 EP 562 DI 10.4162/nrp.2016.10.5.555 PG 8 WC Nutrition & Dietetics SC Nutrition & Dietetics GA DY1QW UT WOS:000384870500011 PM 27698964 ER PT J AU Kilpua, EKJ Madjarska, MS Karna, N Wiegelmann, T Farrugia, C Yu, W Andreeova, K AF Kilpua, E. K. J. Madjarska, M. S. Karna, N. Wiegelmann, T. Farrugia, C. Yu, W. Andreeova, K. TI Sources of the Slow Solar Wind During the Solar Cycle 23/24 Minimum SO SOLAR PHYSICS LA English DT Article DE Solar wind; Corona; Modelling ID CORONAL HOLE BOUNDARIES; HELIOSPHERIC CURRENT SHEET; IMAGING TELESCOPE; HELIUM ABUNDANCE; ACTIVE-REGION; STREAMERS; SPEED; EVOLUTION; JETS; TEMPERATURE AB We investigate the characteristics and the sources of the slow () solar wind during the four years (2006 -aEuroe2009) of low solar activity between Solar Cycles 23 and 24. We used a comprehensive set of in-situ observations in the near-Earth solar wind (Wind and ACE) and removed the periods when large-scale interplanetary coronal mass ejections were present. The investigated period features significant variations in the global coronal structure, including the frequent presence of low-latitude active regions in 2006 -aEuroe2007, long-lived low- and mid-latitude coronal holes in 2006 -aEuroemid-2008 and mostly the quiet Sun in 2009. We examined Carrington rotation averages of selected solar plasma, charge state, and compositional parameters and distributions of these parameters related to the quiet Sun, active region Sun, and the coronal hole Sun. While some of the investigated parameters (e.g. speed, the C+6/C+4 and He/H ratios) show clear variations over our study period and with solar wind source type, some (Fe/O) exhibit very little changes. Our results highlight the difficulty of distinguishing between the slow solar wind sources based on the inspection of solar wind conditions. C1 [Kilpua, E. K. J.] Univ Helsinki, Dept Phys, POB 64, Helsinki, Finland. [Madjarska, M. S.] Armagh Observ, Coll Hill, Armagh BT61 9DG, North Ireland. [Karna, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Karna, N.] George Mason Univ, Fairfax, VA 22030 USA. [Wiegelmann, T.] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. [Farrugia, C.; Yu, W.] Univ New Hampshire, 8 Coll Rd, Durham, NH 03824 USA. [Andreeova, K.] Finnish Meteorol Inst, POB 503, Helsinki, Finland. RP Kilpua, EKJ (reprint author), Univ Helsinki, Dept Phys, POB 64, Helsinki, Finland. EM Emilia.Kilpua@helsinki.fi RI Kilpua, Emilia/G-8994-2012 FU academy of Finland [1218152]; Leverhulme Trust; Sun to the Heliosphere FX The academy of Finland project 1218152 is thanked for financial support. M. Madjarska and E. Kilpua acknowledge with gratitude the Royal Society international exchange grant for the project Coupling transient activity from the Sun to the Heliosphere. M. Madjarska is supported by the Leverhulme Trust. The OMNI data were obtained through the NSSDC CDAWEB online facility. We acknowledge the ACE Science Center for providing SWICS measurements. SOHO is a project of international cooperation between ESA and NASA. NR 59 TC 2 Z9 2 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD OCT PY 2016 VL 291 IS 8 BP 2441 EP 2456 DI 10.1007/s11207-016-0979-x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY6HO UT WOS:000385207200013 ER PT J AU Paredes, P Choudhari, MM Li, F Chang, CL AF Paredes, Pedro Choudhari, Meelan M. Li, Fei Chang, Chau-Lyan TI Optimal Growth in Hypersonic Boundary Layers SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 54th AIAA Aerospace Sciences Meeting / AIAA Science and Technology Forum and Exposition CY JAN 04-08, 2016 CL San Diego, CA SP AIAA ID PARABOLIZED STABILITY EQUATIONS; SPATIAL OPTIMAL-GROWTH; OPTIMAL DISTURBANCES; OPTIMAL PERTURBATIONS; BYPASS TRANSITION; TRANSIENT GROWTH; FLOW; INSTABILITY AB The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow. C1 [Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan] NASA Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. RP Paredes, P (reprint author), NASA Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. RI Choudhari, Meelan/F-6080-2017 OI Choudhari, Meelan/0000-0001-9120-7362 NR 53 TC 1 Z9 1 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD OCT PY 2016 VL 54 IS 10 BP 3050 EP 3061 DI 10.2514/1.J054912 PG 12 WC Engineering, Aerospace SC Engineering GA DX5TH UT WOS:000384444400011 ER PT J AU Balla, RJ AF Balla, R. Jeffrey TI Mach 10 Bow Shock and Gas-Cap Unsteadiness Measurements Using Rayleigh Scattering SO AIAA JOURNAL LA English DT Article ID BOUNDARY-LAYER; WIND-TUNNEL; PITOT PRESSURE; TRANSITION; DENSITY; DISTURBANCES; WAVES; LASER; JETS AB This study demonstrates the usefulness of instantaneous and mean density rho, standard deviation sigma, relative standard deviation sigma/rho, and product standard deviation sigma * rho acquired using a low-sampling-rate instantaneous (10 ns) laser-based method to study effects of high-frequency phenomena on offbody freestream, bow-shock wave, and gas-cap unsteadiness. Spatial correlations of relative flow unsteadiness are acquired using laser Rayleigh scattering performed along a 38.7 mm line containing 200 pixels spanning the freestream, gas cap, near-normal, and oblique shocks created by a multipurpose crew vehicle model in the NASA Langley 31-in. Mach 10 air wind tunnel. A total of 371 instantaneous images are acquired at a fixed stagnation temperature of 990 +/- 11 K and five stagnation pressures spanning 2.41-10.0 MPa (350-1454 psi). Maximum s occurs at the bow-shock-wave spatial density profile first-derivative maximum for a near-normal and oblique shock. Maximum sigma/rho and sigma * rho occur at the bow-shock-wave spatial density profile second-derivative maximum and minimum, respectively, for both the near-normal and oblique shocks. At P-0 = 1454 psi, maximum s (normal shock) >5/2 sigma (gas cap), and sigma (gas cap) is >2 sigma (freestream). Additional spatially averaged unsteadiness correlations with flowfield conditions are presented. C1 [Balla, R. Jeffrey] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Balla, RJ (reprint author), NASA Langley Res Ctr, Hampton, VA 23681 USA. NR 35 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD OCT PY 2016 VL 54 IS 10 BP 3062 EP 3074 DI 10.2514/1.J054724 PG 13 WC Engineering, Aerospace SC Engineering GA DX5TH UT WOS:000384444400012 ER PT J AU Vancil, B Lorr, J Schmidt, V Ohlinger, W Polk, J AF Vancil, B. Lorr, J. Schmidt, V. Ohlinger, W. Polk, J. TI Reservoir Hollow Cathode for Electric Space Propulsion SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Electric propulsion; mixed metal matrix; reservoir cathode; thermionic emission ID DISPENSER CATHODES AB We report on a mechanically robust reservoir-type hollow cathode suitable for use in electric space propulsion for long duration space flights. It represents the first instance in which the reservoir technology has been successfully adapted to the hollow geometry used in ion engines and Hall thrusters. A novel construction technology was employed that uses flexible elements to reduce stress concentrations in the reservoir wall due to transient thermal effects. The new design was subjected to 12 000 thermal cycles without degradation in performance. Seventeen new cathodes were constructed and tested in both vacuum and xenon discharge modes. Four cathodes were vacuum and xenon discharge pulse tested for periods up to 10 000 h, with no degradation in performance. One cathode was tested in DC discharge mode for 1000 h at Colorado State University with no change in performance. Life test details will be presented. Both discharge and vacuum emission performance on the new cathodes were measured and compared with their impregnated cathode counterparts. A variety of compositions, both in the matrix and emissive material, were studied in the reservoir geometry. These provide the basis for a more exhaustive study of specific formulations in future work. In particular, cathodes with mixed metal matrices, consisting of tungsten-iridium and tungsten-osmium were tested and compared with pure tungsten. They were tested in both vacuum and discharge modes and provided superior performance over tungsten matrices. A tungsten-osmium matrix achieved a discharge current of 50 A at a temperature 100 degrees C lower than cathodes with tungsten matrices. C1 [Vancil, B.; Lorr, J.; Schmidt, V.] E Beam Inc, Beaverton, OR 97007 USA. [Polk, J.] Jet Prop Lab, Pasadena, CA 91109 USA. RP Vancil, B (reprint author), E Beam Inc, Beaverton, OR 97007 USA. EM bernie@ebeaminc.com; jjlorr@comcast.net; stonehammer@rconnects.com; wlobp@aol.com; james.e.polk@jpl.nasa.gov FU Jet Propulsion Laboratory [NNX12CA54C] FX This work was supported by the Jet Propulsion Laboratory under Contract NNX12CA54C. The review of this paper was arranged by Editor R. Carter. NR 10 TC 0 Z9 0 U1 7 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 EI 1557-9646 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD OCT PY 2016 VL 63 IS 10 BP 4113 EP 4118 DI 10.1109/TED.2016.2601566 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DX7NU UT WOS:000384575700043 ER PT J AU Lewis, JR Campbell, JR Welton, EJ Stewart, SA Haftings, PC AF Lewis, Jasper R. Campbell, James R. Welton, Ellsworth J. Stewart, Sebastian A. Haftings, Phillip C. TI Overview of MPLNET, Version 3, Cloud Detection SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID TROPICAL CIRRUS CLOUDS; DEPOLARIZATION RATIO; CLIMATE-RESEARCH; CALIPSO LIDAR; MICROPULSE; RADIATION; SATELLITE; MISSION; ISCCP; MODIS AB The National Aeronautics and Space Administration Micro Pulse Lidar Network, version 3, cloud detection algorithm is described and differences relative to the previous version are highlighted. Clouds are identified from normalized level 1 signal profiles using two complementary methods. The first method considers vertical signal derivatives for detecting low-level clouds. The second method, which detects high-level clouds like cirrus, is based on signal uncertainties necessitated by the relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network instruments, especially during daytime. Furthermore, a multitemporal averaging scheme is used to improve cloud detection under conditions of a weak signal-to-noise ratio. Diurnal and seasonal cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space Flight Center (Greenbelt, Maryland) site are compared for the new and previous versions. The largest differences, and perceived improvement, in detection occurs for high clouds (above 5 km, above MSL), which increase in occurrence by over 5%. There is also an increase in the detection of multilayered cloud profiles from 9% to 19%. Macrophysical properties and estimates of cloud optical depth are presented for a transparent cirrus dataset. However, the limit to which the cirrus cloud optical depth could be reliably estimated occurs between 0.5 and 0.8. A comparison using collocated CALIPSO measurements at the Goddard Space Flight Center and Singapore Micro Pulse Lidar Network (MPLNET) sites indicates improvements in cloud occurrence frequencies and layer heights. C1 [Lewis, Jasper R.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Campbell, James R.] Naval Res Lab, Monterey, CA USA. [Lewis, Jasper R.; Welton, Ellsworth J.] NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. [Stewart, Sebastian A.; Haftings, Phillip C.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Lewis, JR (reprint author), NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. EM jasper.r.lewis@nasa.gov RI Campbell, James/C-4884-2012 OI Campbell, James/0000-0003-0251-4550 FU NASA Earth Observing System; NASA Radiation Sciences Program; NASA [NNG13HH10I] FX The authors acknowledge Larry Belcher for processing the V2 lidar data, and the MPLNET PIs and staff for their efforts in establishing and maintaining the GSFC and Singapore sites. The GEOS-5 meteorological data were provided by the NASA Global Modeling and Assimilation Office (GMAO) at GSFC. The NASA Micro Pulse Lidar Network is funded by the NASA Earth Observing System and the NASA Radiation Sciences Program. CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. Author JRC acknowledges the support of NASA Interagency Agreement NNG13HH10I on behalf of MPLNET. NR 72 TC 0 Z9 0 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD OCT PY 2016 VL 33 IS 10 BP 2113 EP 2134 DI 10.1175/JTECH-D-15-0190.1 PG 22 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DX7AG UT WOS:000384537400005 ER PT J AU Roa, J Pelaez, J Senent, J AF Roa, Javier Pelaez, Jesus Senent, Juan TI Spiral Lambert's Problem SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID GRAVITY-ASSIST TRAJECTORIES; BOUNDARY-VALUE PROBLEM; LOW-THRUST; PRELIMINARY DESIGN; AUTOMATED DESIGN; FOURIER-SERIES; ALGORITHM; MARS AB Lambert's problem is solved for the case of a spacecraft accelerated by a continuous thrust. The solution is based on the family of generalized logarithmic spirals, which provides a fully analytic description of the dynamics including the time of flight and involves two conservation laws. The structure of the solution yields a collection of properties that are closely related to those of the Keplerian case. A minimum-energy spiral is found, with pairs of conjugate spirals bifurcating from it. Thanks to the integral of motion related to the energy, the solutions are classified as elliptic, parabolic, and hyperbolic. The maximum acceleration reached along the transfer can be solved in closed form. The problem of designing a low-thrust trajectory between two bodies reduces to solving two equations with two unknowns. Double-timeopportunity transfers appear naturally thanks to the symmetry properties of the generalized logarithmic spirals. Comparing the Keplerian and spiral pork-chop plots in an Earth-Mars example shows that the spiral solution might increase the mass fraction delivered to the final orbit, thanks to reducing of the magnitude of the impulsive maneuvers at departure and arrival. C1 [Roa, Javier; Pelaez, Jesus] Tech Univ Madrid, Space Dynam Grp, Pza Cardenal Cisneros 3, E-28040 Madrid, Spain. [Roa, Javier] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Senent, Juan] CALTECH, Jet Prop Lab, Mission Design & Nav Software Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Roa, J (reprint author), Tech Univ Madrid, Space Dynam Grp, Pza Cardenal Cisneros 3, E-28040 Madrid, Spain.; Roa, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU Spanish Ministry of Economy and Competitiveness [ESP2013-41634-P]; Spanish Government; La Caixa FX This work has been carried out at the Jet Propulsion Laboratory (JPL) within the framework of the JPL Visiting Student Researchers Program. It is part of the research project entitled "Dynamical Analysis, Advanced Orbit Propagation and Simulation of Complex Space Systems" (ESP2013-41634-P) supported by the Spanish Ministry of Economy and Competitiveness. J. Pelaez and J. Roa thank the Spanish Government for its support, and J. Roa especially thanks "La Caixa" for his doctoral fellowship: he is particularly grateful to N. Arora, A. Petropoulos, and J. Sims for fruitful discussions about this topic. The comments from N. Arora, L. Healy, and two anonymous reviewers greatly improved this manuscript. Last, but not least, the authors thank C. Bombardelli for providing the code for building the Keplerian pork-chop plots. NR 39 TC 1 Z9 1 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD OCT PY 2016 VL 39 IS 10 BP 2250 EP 2263 DI 10.2514/1.G000342 PG 14 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DX5TN UT WOS:000384445200005 ER PT J AU Roa, J Pelaez, J Senent, J AF Roa, Javier Pelaez, Jesus Senent, Juan TI New Analytic Solution with Continuous Thrust: Generalized Logarithmic Spirals SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID GRAVITY-ASSIST TRAJECTORIES; CONSTANT RADIAL THRUST; SHAPE-BASED APPROACH; ACCELERATION PROBLEM; PRELIMINARY DESIGN; TANGENTIAL THRUST; ESCAPE; MOTION AB A new fully analytic solution to the motion of a continuously accelerated spacecraft is presented. It is demonstrated that the same tangential control law that generates a logarithmic spiral yields an entire family of generalized spirals. The system admits two integrals of motion that follow from the equations of the energy and angular momentum. Three different subfamilies of spiral trajectories are obtained, depending on the sign of the constant of the generalized energy: elliptic, parabolic, and hyperbolic. Elliptic spirals are bounded, never escape to infinity, and the trajectory is symmetric. Parabolic spirals are equivalent to logarithmic spirals. There are two subfamilies of hyperbolic spirals, classified in terms of their generalized angular momentum. The first family has only one asymptote, whereas spirals of the second type are symmetric and exhibit two asymptotes. The new family of solutions is obtained when rigorously solving the equations of motion with no prior assumptions. Closed-form expressions for the trajectory, velocity, time of flight, and arc length are provided. The thrust magnitude decreases with the square of the radial distance and might be reproducible with solar sails or solar electric propulsion systems. C1 [Roa, Javier; Pelaez, Jesus] Tech Univ Madrid, Space Dynam Grp, Pza Cardenal Cisneros 3, E-28040 Madrid, Spain. [Roa, Javier] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Senent, Juan] CALTECH, Jet Prop Lab, Mission Design & Nav Software Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Roa, J (reprint author), Tech Univ Madrid, Space Dynam Grp, Pza Cardenal Cisneros 3, E-28040 Madrid, Spain.; Roa, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU Spanish Ministry of Economy and Competitiveness [ESP2013-41634-P]; Spanish Government; La Caixa FX This work was carried out at the Jet Propulsion Laboratory within the framework of the JPL Visiting Student Researchers Program. It is part of the research project entitled "Dynamical Analysis, Advanced Orbit Propagation and Simulation of Complex Space Systems" (ESP2013-41634-P), supported by the Spanish Ministry of Economy and Competitiveness. J. Pelaez and J. Roa thank the Spanish Government for its support, and J. Roa especially thanks "La Caixa" for his doctoral fellowship. The final version of this manuscript was greatly improved thanks to the suggestions and valuable insights from C. Kluever, M. Vasile, E. Taheri, and an anonymous reviewer. NR 46 TC 1 Z9 1 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD OCT PY 2016 VL 39 IS 10 BP 2336 EP 2351 DI 10.2514/1.G000341 PG 16 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DX5TN UT WOS:000384445200012 ER PT J AU Yu, S Pearson, JC Drouin, BJ Miller, CE Kobayashi, K Matsushima, F AF Yu, Shanshan Pearson, John C. Drouin, Brian J. Miller, Charles E. Kobayashi, Kaori Matsushima, Fusakazu TI Terahertz spectroscopy of ground state (HDO)-O-18 SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE (HDO)-O-18; THz spectroscopy; Euler Hamiltonian; Large centrifugal distortion ID ORION KL; ENERGY-LEVELS; WATER; SPECTRA; HERSCHEL/HIFI; ASTRONOMY; SOFIA; H2O; THZ AB Terahertz absorption spectroscopy was employed to measure the ground state pure rotational transitions of the water isotopologue (HDO)-O-18. A total of 105 pure rotational transitions were observed in the 0.5-5.0 THz region with similar to 100 kHz accuracy for the first time. The observed positions were fit to experimental accuracy using the Euler series expansion of the asymmetric-top Hamiltonian together with the literature Microwave, Far-IR and IR data in the ground state and v(2). The new measurements and predictions reported here support the analysis of astronomical observations by high-resolution spectroscopic telescopes such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or less are required for proper analysis of velocity resolved astrophysical data. (C) 2016 Elsevier Inc. All rights reserved. C1 [Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Miller, Charles E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Kobayashi, Kaori; Matsushima, Fusakazu] Toyama Univ, Dept Phys, Gofu Ku, Toyama 9308555, Japan. RP Yu, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shanshan.yu@jpl.nasa.gov RI Yu, Shanshan/D-8733-2016 FU [26400226] FX The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. The experimental work at the University of Toyama was supported by the Grant-in-Aid for Scientific Research (C) (Grant No. 26400226). F.M. thanks Mr. T. Miyamoto for helping the far-infrared measurements. NR 26 TC 1 Z9 1 U1 5 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD OCT PY 2016 VL 328 BP 27 EP 31 DI 10.1016/j.jms.2016.07.005 PG 5 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA DX8HM UT WOS:000384628700003 ER PT J AU Orbe, C Waugh, DW Newman, PA Steenrod, S AF Orbe, Clara Waugh, Darryn W. Newman, Paul A. Steenrod, Stephen TI The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID INTERCOMPARISON PROJECT ACCMIP; ATMOSPHERIC TRANSPORT; GENERAL-CIRCULATION; LOWERMOST STRATOSPHERE; UPPER TROPOSPHERE; CARBON-MONOXIDE; MODEL; AGE; CHEMISTRY; POLLUTION AB The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here, the authors present an analysis of the transit-time distribution (TTD) since air last contacted the NH midlatitude surface, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. Throughout the troposphere, the TTD is characterized by young modes and long tails. This results in mean transit times or "mean ages" Gamma that are significantly larger than their corresponding modal transit times or "modal ages" tau(mode), especially in the NH, where Gamma approximate to 0.5 yr, while tau(mode) < 20 days. In addition, the shape of the TTD changes throughout the troposphere as the ratio of the spectral width Delta-the second temporal moment of the TTD-to the mean age decreases sharply in the NH from similar to 2.5 at NH high latitudes to similar to 0.7 in the Southern Hemisphere (SH). Decreases in Delta/Gamma in the SH reflect a narrowing of the TTD relative to its mean and physically correspond to changes in the contributions of fast transport paths relative to slow eddy-diffusive recirculations. It is shown that fast transport paths control the patterns and seasonal cycles of idealized 5-and 50-day loss tracers in the Arctic and the tropics, respectively. The relationship between different TTD time scales and the idealized loss tracers, therefore, is conditional on the shape of the TTD. C1 [Orbe, Clara] NASA, Goddard Space Flight Ctr, Goddard Earth Sci Technol & Res, Mail Code 610-1, Greenbelt, MD 20771 USA. [Orbe, Clara] Johns Hopkins Univ, Baltimore, MD USA. [Waugh, Darryn W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Newman, Paul A.] NASA, Goddard Space Flight Ctr, Lab Atmospher Chem & Dynam, Greenbelt, MD USA. [Steenrod, Stephen] Univ Space Res Assoc, Columbia, MD USA. RP Orbe, C (reprint author), NASA, Goddard Space Flight Ctr, Goddard Earth Sci Technol & Res, Mail Code 610-1, Greenbelt, MD 20771 USA. EM clara.orbe@nasa.gov FU NASA Postdoctoral Program at the Goddard Space Flight Center; NSF [AGS-1403676]; NASA [NNX14AP58G] FX The authors are thankful for discussions with Gang Chen, who provided constructive feedback. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The authors also acknowledge support from NSF Grant AGS-1403676 (D.W.) and NASA Grant NNX14AP58G (D.W.). NR 58 TC 1 Z9 1 U1 4 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD OCT PY 2016 VL 73 IS 10 BP 3785 EP 3802 DI 10.1175/JAS-D-15-0289.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX8YZ UT WOS:000384679900001 ER PT J AU Tompson, SR AF Tompson, Sara R. TI Beyond Earth: Our Path to a New Home in the Planets SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Archives & Records Sect, Pasadena, CA 91109 USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Archives & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD OCT 1 PY 2016 VL 141 IS 16 BP 98 EP 98 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA DX8JR UT WOS:000384634400234 ER PT J AU Sehlke, A Whittington, AG AF Sehlke, Alexander Whittington, Alan G. TI The viscosity of planetary tholeiitic melts: A configurational entropy model SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Viscosity; Tholeiitic basalt; Silicate melt; Lava; Planetary volcanism; Configurational entropy ID MAGMATIC SILICATE LIQUIDS; GLASS-FORMING LIQUIDS; HEAT-CAPACITY; ALUMINOSILICATE MELTS; STRUCTURAL RELAXATION; REDOX EQUILIBRIA; SHEAR VISCOSITY; VISCOUS-FLOW; FERROUS IRON; LAVA FLOWS AB The viscosity (eta) of silicate melts is a fundamental physical property controlling mass transfer in magmatic systems. Viscosity can span many orders of magnitude, strongly depending on temperature and composition. Several models are available that describe this dependency for terrestrial melts quite well. Planetary basaltic lavas however are distinctly different in composition, being dominantly alkali-poor, iron-rich and/or highly magnesian. We measured the viscosity of 20 anhydrous tholeiitic melts, of which 15 represent known or estimated surface compositions of Mars, Mercury, the Moon, Io and Vesta, by concentric cylinder and parallel plate viscometry. The planetary basalts span a viscosity range of 2 orders of magnitude at liquidus temperatures and 4 orders of magnitude near the glass transition, and can be more or less viscous than terrestrial lavas. We find that current models under- and overestimate superliquidus viscosities by up to 2 orders of magnitude for these compositions, and deviate even more strongly from measured viscosities toward the glass transition. We used the Adam-Gibbs theory (A-G) to relate viscosity (eta) to absolute temperature (T) and the configurational entropy of the system at that temperature (S-conf), which is in the form of logg eta = A(e) + B-e/TSconf. Heat capacities (C-P) for glasses and liquids of our investigated compositions were calculated via available literature models. We show that the A-G theory is applicable to model the viscosity of individual complex tholeiitic melts containing 10 or more major oxides as well or better than the commonly used empirical equations. We successfully modeled the global viscosity data set using a constant A(e) of -3.34 +/- 0.22 log units and 12 adjustable sub-parameters, which capture the compositional and temperature dependence on melt viscosity. Seven sub-parameters account for the compositional dependence of B-e and 5 for S-conf. Our model reproduces the 496 measured viscosity data points with a 1 sigma root-mean-square deviation (rmsd) of 0.12 log units across 13 orders of measured melt viscosity. The model performed well in predicting the viscosity of lunar and martian melts not used in calibration, and should be used to calculate lava flow velocities and fluxes for anhydrous basaltic volcanism on other moons and planets. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Sehlke, Alexander] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sehlke, Alexander; Whittington, Alan G.] Univ Missouri, Dept Geol Sci, Columbia, MO USA. RP Sehlke, A (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Alexander.Sehlke@nasa.gov OI Sehlke, Alexander/0000-0001-7929-1776 FU NASA grant [NNX12AO44G] FX This work was supported by NASA grant NNX12AO44G to AW. We would like to thank for the helpful discussion at the 10th Silicate Melts Workshop 2015 held in La Petite Pierre (France), Matthieu Kervyn (U. Brussels) for providing a lava sample collected at Mt. Nyiragongo, and Einat Lev (LDEO) for providing a sample of Chengwatana flood basalt. We also want to thank Paul Carpenter at Washington University in St. Louis, who assisted with micro probe analyses and applying optimal conditions for analyzing investigated glasses, and K. Russell and two anonymous reviewers, as well as the associate editor for the constructive feedback on our viscosity model. NR 96 TC 2 Z9 2 U1 23 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT PY 2016 VL 191 BP 277 EP 299 DI 10.1016/j.gca.2016.07.027 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DX1DH UT WOS:000384105300017 ER PT J AU Cavosie, AJ Montalvo, PE Timms, NE Reddy, SM AF Cavosie, Aaron J. Montalvo, Pedro E. Timms, Nicholas E. Reddy, Steven M. TI Nanoscale deformation twinning in xenotime, a new shocked mineral, from the Santa Fe impact structure (New Mexico, USA) SO GEOLOGY LA English DT Article ID VREDEFORT DOME; SOUTH-AFRICA; U-PB; PLANAR MICROSTRUCTURES; VAAL RIVER; ZIRCON; ORTHOPHOSPHATES; CONSTRAINTS; PLASTICITY; ROCKS AB Shock microstructures in refractory accessory minerals such as zircon and monazite provide crucial evidence for deciphering impact-related deformation in a wide variety of planetary materials. Here we describe the first occurrence of shock deformation in xenotime, YPO4, from a shocked quartz-bearing shatter cone in granite at the Santa Fe impact structure (New Mexico, USA). Backscattered electron imaging shows that shocked xenotime grains near the surface of a shatter cone contain multiple orientations of closely spaced planar fractures. High-resolution electron backscatter diffraction mapping reveals that some of the planar microstructures in {112} contain deformation twin lamellae that range from 50 nm to 200 nm in width on the polished surface and occur in up to three crystallographic orientations. Other features attributed to impact, such as planar low-angle boundaries and planar deformation bands, record crystal-plastic deformation. Shatter cone formation and co-existing shocked quartz constrain minimum shock pressure experienced by the xenotime grains to 5-10 GPa. An upper limit of 20 GPa is tentatively assigned based on the absence of YPO4 polymorphs and shock twins in co-existing zircon. We propose that {112} deformation twins in xenotime constitute a diagnostic record of shock metamorphism, similar to {112} twins in zircon; they have not previously been reported in nature and occur in a rock with conspicuous evidence of shock deformation. Documentation of deformation twins in xenotime, a widely applied U-Pb geochronometer, can be used to identify hypervelocity deformation in shocked rocks, detrital grains, and other materials, and may be particularly ideal for recording low-pressure (<20 GPa) impact conditions that do not produce diagnostic shock microstructures in zircon. C1 [Cavosie, Aaron J.; Timms, Nicholas E.; Reddy, Steven M.] Curtin Univ, TIGeR Inst Geosci Res, Dept Appl Geol, Perth, WA 6102, Australia. [Cavosie, Aaron J.] Univ Wisconsin, Astrobiol Inst, NASA, Dept Geosci, Madison, WI 53706 USA. [Cavosie, Aaron J.; Montalvo, Pedro E.] Univ Puerto Rico Mayaguez, Dept Geol, Mayaguez, PR 00681 USA. RP Cavosie, AJ (reprint author), Curtin Univ, TIGeR Inst Geosci Res, Dept Appl Geol, Perth, WA 6102, Australia.; Cavosie, AJ (reprint author), Univ Wisconsin, Astrobiol Inst, NASA, Dept Geosci, Madison, WI 53706 USA.; Cavosie, AJ (reprint author), Univ Puerto Rico Mayaguez, Dept Geol, Mayaguez, PR 00681 USA. FU National Science Foundation [EAR-1145118]; NASA Astrobiology program; Curtin Research Fellowship; Microscopy and Microanalysis Facility at Curtin University FX R. and J. Rodriguez provided logistical support during field work. B. Hess prepared the sample. We thank editor B. Holdsworth, C. Koeberl, C. Packard, and L. Pittarello for thoughtful reviews. Support was provided by the National Science Foundation (grant EAR-1145118), the NASA Astrobiology program, a Curtin Research Fellowship, and the Microscopy and Microanalysis Facility at Curtin University. NR 27 TC 1 Z9 1 U1 8 U2 8 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD OCT PY 2016 VL 44 IS 10 BP 803 EP + DI 10.1130/G38179.1 PG 4 WC Geology SC Geology GA DX3WK UT WOS:000384307200005 ER PT J AU Jagodnik, KM Thomas, PS van den Bogert, AJ Branicky, MS Kirsch, RF AF Jagodnik, Kathleen M. Thomas, Philip S. van den Bogert, Antonie J. Branicky, Michael S. Kirsch, Robert F. TI Human-Like Rewards to Train a Reinforcement Learning Controller for Planar Arm Movement SO IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS LA English DT Article DE Control; functional electrical stimulation (FES); human-machine teaming; modeling; rehabilitation; reinforcement learning (RL); simulation; upper extremity ID SPINAL-CORD-INJURY; FUNCTIONAL ELECTRICAL-STIMULATION; SYSTEMS; MOTION; MUSCLE; MODEL; TIME AB High-level spinal cord injury (SCI) in humans causes paralysis below the neck. Functional electrical stimulation (FES) technology applies electrical current to nerves and muscles to restore movement, and controllers for upper extremity FES neuroprostheses calculate stimulation patterns to produce desired arm movement. However, currently available FES controllers have yet to restore natural movements. Reinforcement learning (RL) is a reward-driven control technique; it can employ user-generated rewards, and human preferences can be used in training. To test this concept with FES, we conducted simulation experiments using computer-generated "pseudohuman" rewards. Rewards with varying properties were used with an actor-critic RL controller for a planar two-degree-of-freedom biomechanical human arm model performing reaching movements. Results demonstrate that sparse, delayed pseudo-human rewards permit stable and effective RL controller learning. The frequency of reward is proportional to learning success, and human-scale sparse rewards permit greater learning than exclusively automated rewards. Diversity of training task sets did not affect learning. Longterm stability of trained controllers was observed. Using human-generated rewards to train RL controllers for upper-extremity FES systems may be useful. Our findings represent progress toward achieving human-machine teaming in control of upper-extremity FES systems for more natural arm movements based on human user preferences and RL algorithm learning capabilities. C1 [Jagodnik, Kathleen M.] NASA, Glenn Res Ctr, Fluid Phys & Transport Proc Branch, Cleveland, OH 44135 USA. [Thomas, Philip S.] Carnegie Mellon Univ, Sch Comp Sci, Brunskill Lab, Pittsburgh, PA 15213 USA. [van den Bogert, Antonie J.] Cleveland State Univ, Dept Mech Engn, Cleveland, OH 44115 USA. [Branicky, Michael S.] Univ Kansas, Sch Engn, Lawrence, KS 66045 USA. [Kirsch, Robert F.] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA. RP Jagodnik, KM (reprint author), NASA, Glenn Res Ctr, Fluid Phys & Transport Proc Branch, Cleveland, OH 44135 USA.; Thomas, PS (reprint author), Carnegie Mellon Univ, Sch Comp Sci, Brunskill Lab, Pittsburgh, PA 15213 USA.; van den Bogert, AJ (reprint author), Cleveland State Univ, Dept Mech Engn, Cleveland, OH 44115 USA.; Branicky, MS (reprint author), Univ Kansas, Sch Engn, Lawrence, KS 66045 USA.; Kirsch, RF (reprint author), Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA. EM kathleen.jagodnik@nasa.gov; pthomas@cs.umass.edu; a.vandenbogert@csuohio.edu; msb@ku.edu; rfk3@case.edu FU National Institutes of Health [TRN030167]; Veterans Administration Rehabilitation Research and Development predoctoral fellowship "Reinforcement Learning Control for an Upper-Extremity Neuroprosthesis,"; Ardiem Medical Arm Control Device Grant [W81XWH0720044]; NIH [T32 EB004314] FX This work was supported by the National Institutes of Health fellowship #TRN030167, Veterans Administration Rehabilitation Research and Development predoctoral fellowship "Reinforcement Learning Control for an Upper-Extremity Neuroprosthesis," NIH Training Grant T32 EB004314, and Ardiem Medical Arm Control Device Grant #W81XWH0720044. NR 40 TC 0 Z9 0 U1 6 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-2291 EI 2168-2305 J9 IEEE T HUM-MACH SYST JI IEEE T. Hum.-Mach. Syst. PD OCT PY 2016 VL 46 IS 5 BP 723 EP 733 DI 10.1109/THMS.2016.2558630 PG 11 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics SC Computer Science GA DX3NM UT WOS:000384279800006 ER PT J AU Wong, S Del Genio, AD Wang, T Kahn, BH Fetzer, EJ L'Ecuyer, TS AF Wong, Sun Del Genio, Anthony D. Wang, Tao Kahn, Brian H. Fetzer, Eric J. L'Ecuyer, Tristan S. TI Responses of Tropical Ocean Clouds and Precipitation to the Large-Scale Circulation: Atmospheric-Water-Budget-Related Phase Space and Dynamical Regimes SO JOURNAL OF CLIMATE LA English DT Article ID GLOBAL PRECIPITATION; CLIMATE SENSITIVITY; CMIP5 MODELS; PART II; MODIS; FEEDBACKS; REANALYSIS; CONFIGURATION; VALIDATION; MOISTURE AB An atmospheric-water-budget-related phase space is constructed with the tendency terms related to dynamical convergence (QCON equivalent to -Q del . V) and moisture advection (QADV equivalent to -V . del Q) in the water budget equation. Over the tropical oceans, QCON accounts for large-scale dynamical conditions related to conditional instability, and QADV accounts for conditions related to lower-tropospheric moisture gradient. Two reanalysis products [MERRA and ERA-Interim (ERAi)] are used to calculate QCON and QADV. Using the phase space as a reference frame, the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure (CTP) and cloud optical depth (COD) are used to evaluate simulated clouds in the GISS-E2 general circulation model. In regimes of divergence over the tropical oceans, moist advection yields frequent high-to midlevel medium-thickness to thick clouds associated with moderate stratiform precipitation, while dry advection yields low-level thin clouds associated with shallow convection with lowered cloud tops. In regimes with convergence, moist and dry advection modulate the relative abundance of high-level thick clouds and low-level thin to medium-thickness clouds. GISS-E2 qualitatively reproduces the cloud property dependence on moisture budget tendencies in regimes of convergence but with larger COD compared to MODIS. Low-level thick clouds in GISS-E2 are the most frequent in regimes of near-zero convergence and moist advection instead of those of large-scale divergence. Compared to the Global Precipitation Climatology Project product, MERRA, ERAi, and GISS-E2 have more rain in regimes with deep convection and less rain in regimes with shallow convection. C1 [Wong, Sun; Wang, Tao; Kahn, Brian H.; Fetzer, Eric J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [L'Ecuyer, Tristan S.] Univ Wisconsin Madison, Dept Atmospher & Ocean Sci, Madison, WI USA. RP Wong, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM sun.wong@jpl.nasa.gov RI Wang, Tao/C-2381-2011; L'Ecuyer, Tristan/E-5607-2012 OI Wang, Tao/0000-0003-3430-8508; L'Ecuyer, Tristan/0000-0002-7584-4836 FU National Aeronautics and Space Administration; NASA Modeling, Analysis, and Prediction (MAP) [NNH12ZDA001N-MAP]; NASA Precipitation Measurement Mission (PMM) [NNH15ZDA001N-PMM]; NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) [NNH12ZDA001N_MEASURES] FX We thank Jingbo Wu at NASA GISS for running the GISS-E2 model. We also thank Michael Bosilovich at NASA GSFC for discussion of properties of MERRA's total precipitable water and Ali Behrangi at JPL for discussion of precipitation data uncertainties. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work is supported by the NASA Modeling, Analysis, and Prediction (MAP; NNH12ZDA001N-MAP). Analysis of the precipitation data by Sun Wong is supported by the NASA Precipitation Measurement Mission (PMM) Science Team (NNH15ZDA001N-PMM). Data matching by Eric Fetzer, Sun Wong, and Tao Wang is supported by the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs; NNH12ZDA001N_MEASURES) projects. NR 48 TC 0 Z9 0 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2016 VL 29 IS 19 BP 7127 EP 7143 DI 10.1175/JCLI-D-15-0712.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX1ST UT WOS:000384148000017 ER PT J AU Miller, TF Paul, MV Oleson, SR AF Miller, Timothy F. Paul, Michael V. Oleson, Steven R. TI Combustion-based power source for Venus surface missions SO ACTA ASTRONAUTICA LA English DT Article DE Venus; Power; Stirling; Non-nuclear ID EXPLORATION; SYSTEM; PROPULSION; LANDER AB The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 W-e-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kW(e+PV) for 5 days (120 h), with less than 260 kg power/energy system mass total. This Lander would be of a size and cost suitable for a New Frontiers class of mission. (C) 2016 IAA Published by Elsevier Ltd. All rights reserved. C1 [Miller, Timothy F.; Paul, Michael V.] Penn State Univ, Appl Res Lab, POB 30, State Coll, PA 16803 USA. [Oleson, Steven R.] NASA Glenn Res Ctr, COMPASS Lab, MS 500-203,21000 Brookpk Rd, Cleveland, OH 44135 USA. RP Miller, TF (reprint author), Penn State Univ, Appl Res Lab, POB 30, State Coll, PA 16803 USA. EM nfn@psu.edu; mvp12@psu.edu; steven.r.oleson@nasa.gov FU NASA Innovative Advanced Concepts (NIAC) [NNX15AQ30G] FX The authors would like to thank the NASA Innovative Advanced Concepts (NIAC) (Grant # NNX15AQ30G) program for Phase I and II support of this effort. They would also like to thank the entire COMPASS team at NASA Glenn Research Center. We are also grateful for helpful comments by the external reviewers. NR 52 TC 0 Z9 0 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD OCT-NOV PY 2016 VL 127 BP 197 EP 208 DI 10.1016/j.actaastro.2016.65.006 PG 12 WC Engineering, Aerospace SC Engineering GA DW3EO UT WOS:000383525100019 ER PT J AU Heldmann, JL Colaprete, A Elphic, RC Bussey, B McGovern, A Beyer, R Lees, D Deans, M AF Heldmann, Jennifer L. Colaprete, Anthony Elphic, Richard C. Bussey, Ben McGovern, Andrew Beyer, Ross Lees, David Deans, Matt TI Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater SO ACTA ASTRONAUTICA LA English DT Article DE Moon; Mission; Lunar; Ice ID SOUTH-POLE; EPITHERMAL NEUTRONS; WATER ICE; MOON; SURFACE; EXPLORATION; VOLATILES; DEPOSITS; MERCURY; REGIONS AB Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits. (C) 2016 Published by Elsevier Ltd. on behalf of IAA. C1 [Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Beyer, Ross; Lees, David; Deans, Matt] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bussey, Ben; McGovern, Andrew] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Beyer, Ross] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. RP Heldmann, JL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Jennifer.Heldmann@nasa.gov FU NASA's Advanced Exploration Systems (AES) within the NASA Human Exploration and Operations Mission Directorate (HEOMD) FX This work was supported by NASA's Advanced Exploration Systems (AES) within the NASA Human Exploration and Operations Mission Directorate (HEOMD). NR 39 TC 0 Z9 0 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD OCT-NOV PY 2016 VL 127 BP 308 EP 320 DI 10.1016/j.actaastro.2016.06.014 PG 13 WC Engineering, Aerospace SC Engineering GA DW3EO UT WOS:000383525100029 ER PT J AU Kulchitsky, AV Johnson, JB Reeves, DM AF Kulchitsky, Anton V. Johnson, Jerome B. Reeves, David M. TI Resistance forces during boulder extraction from an asteroid SO ACTA ASTRONAUTICA LA English DT Article DE Discrete element method; Asteroid; Cohesion; Granular material; Asteroid redirect mission ID COEFFICIENT; RESTITUTION; COHESION; SPHERES AB Planning for NASA's Asteroid Redirect Mission (ARM) requires estimating the forces that appear during extraction of a boulder from the surface of an asteroid with unknown surface regolith properties. These forces are estimated for a vertical constant force or acceleration pull and a rolling, constant force, torque (peel) on a 4-m diameter spherical boulder using both analytic and discrete element method (DEM) models considering the effects of microgravity and regolith cohesion using Johnson-Kendall-Roberts (JKR) model. Estimates of the bulk asteroid regolith cohesion strength derived from lunar and asteroid regolith studies ranged from 25 Pa to 250 Pa. JKR cohesive forces at particle contacts depend on particle surface energy and effective curvature radius (particle size). DEM particle size dependent cohesion parameters are linked to estimated regolith cohesion strength by simulating shear and tension tests over a range of DEM particle surface energies resulting in the formulation of the dependence of particle surface energy as a function of cohesion strength and particle size. Maximum extraction forces occur for a vertical pull through the boulder center of mass with constant acceleration. Extraction force decreases for a constant force pull to 0.62p(c)S where S is the boulder surface area embedded in the regolith and pc is the cohesion strength of the regolith. Boulder extraction by peeling produces the smallest forces by up to more thari a factor of 2, as the failure across the boulder surface increases progressively rather than being fully engaged as occurs during a vertical pull extraction. Variations between DEM and analytic results differed from 9% to 17% over the range of regolith cohesion values and peel extraction leverage. (C) 2016 The Authors. Published by Elsevier Ltd. on behalf of IAA. C1 [Kulchitsky, Anton V.; Johnson, Jerome B.] Univ Alaska Fairbanks, Inst Northern Engn, POB 755910, Fairbanks, AK 99775 USA. [Reeves, David M.] NASA Langley Res Ctr, Space Mission Anal Branch, 1 N Dryden St Mail Stop 462, Hampton, VA 23681 USA. RP Kulchitsky, AV (reprint author), Univ Alaska Fairbanks, Inst Northern Engn, POB 755910, Fairbanks, AK 99775 USA. EM anton.kulchitsky@alaska.edu; jbjohnson5@alaska.edu; david.m.reeves@nasa.gov FU NASA Asteroid Redirect Robotic Mission (ARRM); Analytical Mechanics Associates, Inc.; NASA's Solar System Exploration Research Virtual Institute through VORTICES team (SSERVI CAN) [NNA14AB02A] FX The authors would like to thank the NASA Asteroid Redirect Robotic Mission (ARRM) and Analytical Mechanics Associates, Inc. for their funding and support during this work.; This work was also partially supported by NASA's Solar System Exploration Research Virtual Institute through the VORTICES team (SSERVI CAN NNA14AB02A). NR 27 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD OCT-NOV PY 2016 VL 127 BP 424 EP 437 DI 10.1016/j.actaastro.2016.06.027 PG 14 WC Engineering, Aerospace SC Engineering GA DW3EO UT WOS:000383525100040 ER PT J AU Wright, EL Mainzer, A Masiero, J Grav, T Bauer, J AF Wright, Edward L. Mainzer, Amy Masiero, Joseph Grav, Tommy Bauer, James TI THE ALBEDO DISTRIBUTION OF NEAR EARTH ASTEROIDS SO ASTRONOMICAL JOURNAL LA English DT Article DE minor planets; asteroids: general ID OBJECTS; PERFORMANCE; POPULATION AB The cryogenic Wide-field Infrared Survey Explorer (WISE) mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 near Earth asteroids (NEAs) observed by WISE. during its fully cryogenic mission can be fit quite well by a three. parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows f (x) = x exp[-x(2)/(2 sigma(2))]/sigma(2) for positive x. The peak value is at x = sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE. are in a very dark population peaking at p(V) = 0.030, while the other 74.7% of the NEAs seen by WISE. are in a moderately dark population peaking at p(V) = 0.168. A consequence of this bimodal distribution is that the congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H = 22 mag, since a 140 m diameter asteroid at the very dark peak has H = 23.7 mag, and more than 10% of NEAs are darker than p(V) = 0.03. C1 [Wright, Edward L.] UCLA Astron, POB 951547, Los Angeles, CA 90095 USA. [Mainzer, Amy; Masiero, Joseph; Bauer, James] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Grav, Tommy] Planetary Sci Inst, 1700 E Ft Lowell Rd 106, Tucson, AZ 85719 USA. [Bauer, James] Infrared Proc & Anal Ctr, 770 South Wilson Ave, Pasadena, CA 91125 USA. RP Wright, EL (reprint author), UCLA Astron, POB 951547, Los Angeles, CA 90095 USA. EM wright@astro.ucla.edu FU National Aeronautics and Space Administration FX This publication makes use of data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 14 TC 0 Z9 0 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2016 VL 152 IS 4 AR 79 DI 10.3847/0004-6256/152/4/79 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW7BB UT WOS:000383805000001 ER PT J AU Grebenkemper, JH Klemenz, S Albert, B Bux, SK Kauzlarich, SM AF Grebenkemper, Jason H. Klemenz, Sebastian Albert, Barbara Bux, Sabah K. Kauzlarich, Susan M. TI Effects of Sc and Y substitution on the structure and thermoelectric properties of Yb14MnSb11 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article; Proceedings Paper CT North American Solid State Chemistry Conference (NASSCC) CY MAY, 2015 CL Florida State Univ, Tallahassee, FL HO Florida State Univ DE Zintl; Thermoelectric material; Chemical pressure; Rare earth compounds ID TRANSPORT-PROPERTIES; ZINTL COMPOUNDS; PERFORMANCE AB Yb14MnSb11 is the most efficient bulk p-type thermoelectric material for high temperature applications. Materials with Y and Sc substitutions in Yb14MnSb11 were made both in Sn-flux and by ball milling. These small 3+ rare earth (RE) cations were introduced with the goal of providing chemical pressure on the structure. The RE3+ cation is smaller than Yb2+ and also donates one additional electron to this p-type semiconductor. In Yb14MnSb11 (RE = Sc, Y) the maximum x was about 0.5. X-ray diffraction experiments on the single crystals obtained from Sn-flux showed that Sc preferentially substitutes for Yb (1) and Yb(3), and decreases the size of the unit cell by about 0.3%. Y substitutes on all Yb sites and increases the size of the unit cell by about 0.2%. Samples with Yb(14-x)RExMnSb(11) (x similar to 0.3) were prepared via powder metallurgy and spark plasma sintering for transport and thermal conductivity measurements. Electron microprobe of the Sc-substituted sample showed small regions (<= 1 mu m) containing greater amounts of Sc, and X-ray powder diffraction of the ball milled Sc sample could be fitted as phase pure Yb(14-x)RExMnSb(11). Y-substituted samples showed larger regions of excess Y in electron microprobe, and small amounts of Yb4Sb3 in X-ray powder diffraction. The Sc sample has slightly reduced carrier concentration over optimized Yb14MnSb11, while the Y samples have even lower carrier concentrations. These carrier concentrations lead to comparable resistivity to Yb14MnSb11 in the Sc-substituted material, and higher resistivities in the Y-substituted material. All materials had similar Seebeck coefficients that slightly exceed Yb14MnSb11 at high temperatures, with the Sc-substituted sample having the highest despite having a higher carrier concentration. Sc-substituted samples also had a slightly higher thermal conductivity over the Y-substituted samples, which had comparable thermal conductivity to Yb14MnSb11. The zT values of the Sc and Y substituted samples are similar (zT(1000) (K) similar to 0.8), however below that of Yb14MnSb11 due to the compensation of Seebeck and resistivity. (C) 2016 Elsevier Inc. All rights reserved. C1 [Grebenkemper, Jason H.; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. [Klemenz, Sebastian; Albert, Barbara] Tech Univ Darmstadt, Eduard Zintl Inst Inorgan & Phys Chem, Alarich Weiss Str 12, D-64287 Darmstadt, Germany. [Bux, Sabah K.] CALTECH, Jet Prop Lab, Thermal Energy Convers Technol Grp, 4800 Oak Grove Dr,MS 277-207, Pasadena, CA 91109 USA. RP Kauzlarich, SM (reprint author), Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. NR 30 TC 2 Z9 2 U1 13 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD OCT PY 2016 VL 242 SI SI BP 55 EP 61 DI 10.1016/j.jssc.2016.03.015 PN 2 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DW0BC UT WOS:000383304900008 ER PT J AU Kosanovic, D Obradovic, N Pavlovic, VP Markovic, S Maricic, A Rasic, G Vlahovic, B Pavlovic, VB Ristic, MM AF Kosanovic, D. Obradovic, N. Pavlovic, V. P. Markovic, S. Maricic, A. Rasic, G. Vlahovic, B. Pavlovic, V. B. Ristic, M. M. TI The influence of mechanical activation on the morphological changes of Fe/BaTiO3 powder SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article DE Mechanical alloying and milling; Microstructure; Scanning electron microscopy; Raman spectroscopy; Multiferroic ID PHASE-TRANSFORMATION; RAMAN-SPECTROSCOPY; BATIO3; PRESSURE AB Crystal structure and morphology of mechanically activated nanocrystalline Fe/BaTiO3 was investigated using a combination of spectroscopic and microscopic methods. These show that mechanical activation led to the creation of new surfaces and the comminution of the initial powder particles. Prolonged milling resulted in formation of larger agglomerates of BaTiO3 and bimodal particle size distribution, where BaTiO3 particles were significantly larger than those of iron-containing phases. Milling times of 210 min and above lead to a significant decrease in temperature of the oxidation of iron in the sample, indicating abrupt change in reactivity. Raman spectroscopy analysis has revealed that activation had a pronounced influence on Fe/BaTiO3 lattice, thereby affecting both the stability of the crystal structure and the phase transition phenomena. (C) 2016 Published by Elsevier B.V. C1 [Kosanovic, D.; Obradovic, N.; Markovic, S.] Serbian Acad Arts & Sci, Inst Tech Sci, Knez Mihailova 35-IV, Belgrade 11000, Serbia. [Pavlovic, V. P.] Univ Belgrade, Fac Mech Engn, Belgrade, Serbia. [Maricic, A.] Univ Kragujevac, Fac Tech Sci Cacak, Sect Amorphous Syst, Joint Lab Adv Mat SASA, Cacak 32000, Serbia. [Rasic, G.; Vlahovic, B.] North Carolina Cent Univ, Durham, NC USA. [Rasic, G.; Vlahovic, B.] NASA, Univ Res Ctr Aerosp Device Res & Educ, Raleigh, NC USA. [Rasic, G.; Vlahovic, B.] NSF Ctr Res Excellence Sci & Technol, Computat Ctr Fundamental & Appl Sci & Educ, Raleigh, NC USA. [Ristic, M. M.] Serbian Acad Arts & Sci, Knez Mihailova 35, Belgrade 11000, Serbia. RP Kosanovic, D (reprint author), Serbian Acad Arts & Sci, Inst Tech Sci, Knez Mihailova 35-IV, Belgrade 11000, Serbia. EM kosanovic.darko@gmail.com OI Kosanovic, Darko/0000-0002-0819-8539 FU Ministry of Education, Science and Technological Development of the Republic of Serbia [OI 172057]; Serbian Academy of Sciences and Arts [F/198]; NSF [HRD-0833184]; NASA [NNX09AV07A]; NSF-PREM [1523617] FX This research was performed within the projects OI 172057, funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and the projects F/198, funded by the Serbian Academy of Sciences and Arts. This work is also supported by the NSF (HRD-0833184), NASA (NNX09AV07A) and NSF-PREM (1523617) awards. NR 38 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 EI 1873-4944 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD OCT PY 2016 VL 212 BP 89 EP 95 DI 10.1016/j.mseb.2016.07.016 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA DW7IG UT WOS:000383823800010 ER PT J AU Heyer, M Goldsmith, PF Yildiz, UA Snell, RL Falgarone, E Pineda, JL AF Heyer, M. Goldsmith, P. F. Yildiz, U. A. Snell, R. L. Falgarone, E. Pineda, J. L. TI Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE MHD; turbulence; waves; ISM: kinematics and dynamics; ISM: magnetic fields; ISM: molecules ID SMALL-SCALE DENSITY; HYDROMAGNETIC-WAVES; VELOCITY ANISOTROPY; MAGNETIC-FIELDS; STAR FORMATION; ORION; GAS; TURBULENCE; DUST AB The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of (CO)-C-12 and (CO)-C-13 J = 2-1 emission obtained with the 10-m Submillimeter Telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both (CO)-C-12 and (CO)-C-13, spatial variations of the J = 2-1 to J = 1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations are generated from the modulation of velocities and beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes are likely common features in molecular clouds that are sub-Alfvenic and may explain low column density, cirrus-like features similarly aligned with the magnetic field observed throughout the interstellar medium in far-infrared surveys of dust emission. C1 [Heyer, M.; Snell, R. L.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Goldsmith, P. F.; Yildiz, U. A.; Pineda, J. L.] Jet Prop Lab, 4800 Oak Groave Dr, Pasadena, CA 91109 USA. [Falgarone, E.] Ecole Normale Super, LERMA, CNRS, UMR 8112, 24 Rue Lhomond, F-75231 Paris 05, France. RP Heyer, M (reprint author), Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. EM heyer@astro.umass.edu RI Yildiz, Umut/C-5257-2011 OI Yildiz, Umut/0000-0001-6197-2864 FU National Science Foundation [AST-1140030] FX The authors thank L. Ziurys for granting additional time at the ARO to improve the sensitivity of the data and J. Bieging for guidance on calibration of the data. The Heinrich Hertz Submillimeter Telescope is operated by the ARO, which is part of Steward Observatory at The University of Arizona. The ARO is funded in part by National Science Foundation grant AST-1140030 to The University of Arizona. NR 35 TC 1 Z9 1 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 1 PY 2016 VL 461 IS 4 BP 3918 EP 3926 DI 10.1093/mnras/stw1567 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW3AS UT WOS:000383514900042 ER PT J AU Baxter, E Clampitt, J Giannantonio, T Dodelson, S Jain, B Huterer, D Bleem, L Crawford, T Efstathiou, G Fosalba, P Kirk, D Kwan, J Sanchez, C Story, K Troxel, MA Abbott, TMC Abdalla, FB Armstrong, R Benoit-Levy, A Benson, B Bernstein, GM Bernstein, RA Bertin, E Brooks, D Carlstrom, J Rosell, AC Kind, MC Carretero, J Chown, R Crocce, M Cunha, CE da Costa, LN Desai, S Diehl, HT Dietrich, JP Doel, P Evrard, AE Neto, AF Flaugher, B Frieman, J Gruen, D Gruendl, RA Gutierrez, G de Haan, T Holder, G Honscheid, K Hou, Z James, DJ Kuehn, K Kuropatkin, N Lima, M March, M Marshall, JL Martini, P Melchior, P Miller, CJ Miquel, R Mohr, JJ Nord, B Omori, Y Plazas, AA Reichardt, C Romer, AK Rykoff, ES Sanchez, E Sevilla-Noarbe, I Sheldon, E Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Stark, A Swanson, MEC Tarle, G Thomas, D Walker, AR Wechsler, RH AF Baxter, E. Clampitt, J. Giannantonio, T. Dodelson, S. Jain, B. Huterer, D. Bleem, L. Crawford, T. Efstathiou, G. Fosalba, P. Kirk, D. Kwan, J. Sanchez, C. Story, K. Troxel, M. A. Abbott, T. M. C. Abdalla, F. B. Armstrong, R. Benoit-Levy, A. Benson, B. Bernstein, G. M. Bernstein, R. A. Bertin, E. Brooks, D. Carlstrom, J. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Chown, R. Crocce, M. Cunha, C. E. da Costa, L. N. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Evrard, A. E. Fausti Neto, A. Flaugher, B. Frieman, J. Gruen, D. Gruendl, R. A. Gutierrez, G. de Haan, T. Holder, G. Honscheid, K. Hou, Z. James, D. J. Kuehn, K. Kuropatkin, N. Lima, M. March, M. Marshall, J. L. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Nord, B. Omori, Y. Plazas, A. A. Reichardt, C. Romer, A. K. Rykoff, E. S. Sanchez, E. Sevilla-Noarbe, I. Sheldon, E. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Stark, A. Swanson, M. E. C. Tarle, G. Thomas, D. Walker, A. R. Wechsler, R. H. TI Joint measurement of lensing-galaxy correlations using SPT and DES SV data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; cosmic background radiation; large-scale structure of the Universe ID SCIENCE VERIFICATION DATA; SOUTH-POLE TELESCOPE; PHOTOMETRIC REDSHIFT PDFS; BACKGROUND DAMPING TAIL; MATTER POWER SPECTRUM; DARK ENERGY SURVEY; SHEAR MEASUREMENT; DISTANT GALAXIES; MODEL; EVOLUTION AB We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimetre-wave data from the 2500 sq. deg. South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy-lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoured Lambda cold dark matter cosmological model. It also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys. C1 [Baxter, E.; Clampitt, J.; Jain, B.; Kwan, J.; Bernstein, G. M.; March, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Giannantonio, T.; Efstathiou, G.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Giannantonio, T.; Efstathiou, G.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Dodelson, S.; Benson, B.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Dodelson, S.; Bleem, L.; Crawford, T.; Benson, B.; Carlstrom, J.; Frieman, J.; Hou, Z.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Huterer, D.; Evrard, A. E.; Miller, C. J.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Bleem, L.; Carlstrom, J.; Hou, Z.] Univ Chicago, Dept Phys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Bleem, L.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Crawford, T.; Benson, B.; Carlstrom, J.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Fosalba, P.; Carretero, J.; Crocce, M.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Kirk, D.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Sanchez, C.; Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Story, K.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Story, K.; Cunha, C. E.; Gruen, D.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Troxel, M. A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Armstrong, R.; Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Sobreira, F.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Chown, R.; de Haan, T.; Holder, G.; Omori, Y.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Gruen, D.; Rykoff, E. S.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [de Haan, T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Reichardt, C.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, E-28040 Madrid, Spain. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Stark, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 12, Cambridge, MA 02138 USA. [Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. RP Baxter, E (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. EM ebax@sas.upenn.edu RI Lima, Marcos/E-8378-2010; OI Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658; Stark, Antony/0000-0002-2718-9996 FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago, University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; OzDES Membership Consortium; National Science Foundation [AST-1138766, PLR-1248097]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation [947]; US Department of Energy [DE-AC02-06CH11357] FX This paper has gone through internal review by the DES collaboration. Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; The SPT programme is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation through Grant GBMF#947 to the University of Chicago. Argonne National Laboratory's work was supported under the US Department of Energy contract DE-AC02-06CH11357. NR 65 TC 3 Z9 3 U1 5 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 1 PY 2016 VL 461 IS 4 BP 4099 EP 4114 DI 10.1093/mnras/stw1584 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW3AS UT WOS:000383514900057 ER PT J AU Maughan, BJ Giles, PA Rines, KJ Diaferio, A Geller, MJ Van Der Pyl, N Bonamente, M AF Maughan, Ben J. Giles, Paul A. Rines, Kenneth J. Diaferio, Antonaldo Geller, Margaret J. Van Der Pyl, Nina Bonamente, Massimiliano TI Hydrostatic and caustic mass profiles of galaxy clusters SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; galaxies: kinematics and dynamics; cosmology: observations; X-rays: galaxies: clusters ID WEAK-LENSING MASSES; X-RAY LUMINOSITY; TEMPERATURE RELATION; CROSS-CALIBRATION; SCALING RELATION; VIRIAL RADIUS; XMM-NEWTON; CHANDRA; SAMPLE; HECTOSPEC AB We compare X-ray and caustic mass profiles for a sample of 16 massive galaxy clusters. We assume hydrostatic equilibrium in interpreting the X-ray data, and use large samples of cluster members with redshifts as a basis for applying the caustic technique. The hydrostatic and caustic masses agree to better than approximate to 20 per cent on average across the radial range covered by both techniques (similar to[0.2-1.25] R-500). The mass profiles were measured independently and do not assume a common functional form. Previous studies suggest that, at R-500, the hydrostatic and caustic masses are biased low and high, respectively. We find that the ratio of hydrostatic to caustic mass at R-500 is 1.20(-0.11)(+0.13); thus it is larger than 0.9 at approximate to 3 sigma and the combination of under-and overestimation of the mass by these two techniques is approximate to 10 per cent at most. There is no indication of any dependence of the mass ratio on the X-ray morphology of the clusters, indicating that the hydrostatic masses are not strongly systematically affected by the dynamical state of the clusters. Overall, our results favour a small value of the so-called hydrostatic bias due to non-thermal pressure sources. C1 [Maughan, Ben J.; Giles, Paul A.; Van Der Pyl, Nina] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. [Rines, Kenneth J.] Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA. [Rines, Kenneth J.; Geller, Margaret J.] Smithsonian Astrophys Observ, 60 Garden St,MS 20, Cambridge, MA 02138 USA. [Diaferio, Antonaldo] Univ Turin, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy. [Diaferio, Antonaldo] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy. [Bonamente, Massimiliano] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Bonamente, Massimiliano] NASA, Natl Space Sci & Technol Ctr, Huntsville, AL 35812 USA. RP Maughan, BJ (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. EM ben.maughan@bristol.ac.uk FU STFC [ST/J001414/1, ST/M000907/1]; University of Torino [Progetti di Ateneo/CSP_TO_Call2_2012_0011 'Marco Polo']; INFN grant InDark; grant PRIN 'Fisica Astroparticellare Teorica' of the Italian Ministry of University and Research FX BJM and PAG acknowledge support from STFC grants ST/J001414/1 and ST/M000907/1. AD acknowledges support from the grant Progetti di Ateneo/CSP_TO_Call2_2012_0011 'Marco Polo' of the University of Torino, the INFN grant InDark, and the grant PRIN 2012 'Fisica Astroparticellare Teorica' of the Italian Ministry of University and Research. NR 56 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 1 PY 2016 VL 461 IS 4 BP 4182 EP 4191 DI 10.1093/mnras/stw1610 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW3AS UT WOS:000383514900063 ER PT J AU Stahle, DW Cook, ER Burnette, DJ Villanueva, J Cerano, J Burns, JN Griffin, D Cook, BI Acuna, R Torbenson, MCA Szejner, P Howard, IM AF Stahle, David W. Cook, Edward R. Burnette, Dorian J. Villanueva, Jose Cerano, Julian Burns, Jordan N. Griffin, Daniel Cook, Benjamin I. Acuna, Rodolfo Torbenson, Max C. A. Szejner, Paul Howard, Ian M. TI The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras SO QUATERNARY SCIENCE REVIEWS LA English DT Review DE Mexico; Tree-ring chronologies; Climate reconstruction; Palmer drought severity index; Drought; Pluvial; El Nino; La Nina; Social impacts ID NORTH-AMERICAN MONSOON; CONTINENTAL UNITED-STATES; SOUTHERN-OSCILLATION; MAYA CIVILIZATION; RAINFALL PATTERNS; BAJA-CALIFORNIA; SUMMER RAINFALL; CLIMATE-CHANGE; DUST BOWL; PRECIPITATION AB Mexico has suffered a long history and prehistory of severe sustained drought. Drought over Mexico is modulated by ocean-atmospheric variability in the Atlantic and Pacific, raising the possibility for long-range seasonal climate forecasting, which could help mediate the economic and social impacts of future dry spells. The instrumental record of Mexican climate is very limited before 1920, but tree-ring chronologies developed from old-growth forests in Mexico can provide an excellent proxy representation of the spatial pattern and intensity of past moisture regimes useful for the analysis of climate dynamics and climate impacts. The Mexican Drought Atlas (MXDA) has been developed from an extensive network of 252 climate sensitive tree-ring chronologies in and near Mexico. The MXDA reconstructions extend from 1400 CE-2012 and were calibrated with the instrumental summer WA) self-calibrating Palmer Drought Severity Index (scPDSI) on a 0.5 degrees latitude/longitude grid extending over land areas from 14 to 34 degrees N and 75-120 degrees W using Ensemble Point-by-Point Regression (EPPR) for the 1944-1984 period. The grid point reconstructions were validated for the period 1920-1943 against instrumental gridded scPDSI values based on the fewer weather station observations available during that interval. The MXDA provides a new spatial perspective on the historical impacts of moisture extremes over Mexico during the past 600-years, including the Aztec Drought of One Rabbit in 1454, the drought of El Ano de Hambre in 1785-1786, and the drought that preceded the Mexican Revolution of 1909-1910. The El Nino/Southern Oscillation (ENSO) is the most important ocean-atmospheric forcing of moisture variability detected with the MXDA. In fact, the reconstructions suggest that the strongest central equatorial Pacific sea surface temperature (SST) teleconnection to the soil moisture balance over North America may reside in northern Mexico. This ENSO signal has stronger and more time-stable correlations than computed for either the Atlantic Multidecadal Oscillation or Pacific Decadal Oscillation. The extended Multivariate ENSO Index is most highly correlated with reconstructed scPDSI over northern Mexico, where warm events favor moist conditions during the winter, spring, and early summer. This ENSO teleconnection to northern Mexico has been strong over the past 150 years, but it has been comparatively weak and non-stationary in the MXDA over central and southern Mexico where eastern tropical Pacific and Caribbean/tropical Atlantic SSTs seem to be more important. The ENSO teleconnection to northern Mexico is weaker in the available instrumental PDSI, but analyses based on the millennium climate simulations with the Community Earth System Model suggest that the moisture balance during the winter, spring, and early summer over northern Mexico may indeed be particularly sensitive to ENSO forcing. Nationwide drought is predicted to become more common with anthropogenic climate change, but the MXDA reconstructions indicate that intense "All Mexico" droughts have been rare over the past 600 years and their frequency does not appear to have increased substantially in recent decades. (C) 2016 Published by Elsevier Ltd. C1 [Stahle, David W.; Torbenson, Max C. A.; Howard, Ian M.] Univ Arkansas, Dept Geosci, Fayetteville, AR 72701 USA. [Cook, Edward R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Burnette, Dorian J.] Univ Memphis, Dept Earth Sci, Memphis, TN 38152 USA. [Villanueva, Jose; Cerano, Julian] INIFAP Ctr Nacl Invest Disciplinaria Relac Agua S, Lerdo, Mexico. [Burns, Jordan N.] Nature Conservancy, Denver, CO 80203 USA. [Griffin, Daniel] Univ Minnesota, Dept Geog Environm & Soc, Minneapolis, MN 55455 USA. [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Acuna, Rodolfo] Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico. [Szejner, Paul] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. RP Stahle, DW (reprint author), Univ Arkansas, Dept Geosci, Fayetteville, AR 72701 USA. EM dstahle@uark.edu RI Cook, Benjamin/H-2265-2012; OI Torbenson, Max/0000-0003-2720-2238; Szejner, Paul/0000-0002-7780-1215 FU National Science Foundation [GEO/ATM-0753399, AGS-1266014, AGS-1266015, AGS-1301587]; INIFAP; IAI; WWF FX Funded by the National Science Foundation under grant numbers GEO/ATM-0753399, AGS-1266014, AGS-1266015, and AGS-1301587. Support was also provided by INIFAP, IAI, and WWF. Lamont-Doherty Earth Observatory contribution number 8038. We thank Mark Brenner, Rosalinda Cervantes Martinez, Malcolm Cleaveland, Art Douglas, Vicenta Constante Garcia, Eladio Cornejo Olviedo, Juan Estrada Avalos, Song Feng, Sarah Metcalfe, Susan Milbrath, Gene Paull, Daniel Stahle, Lorenzo Vazquez Salem, and Matthew Therrell for advice and assistance. NR 125 TC 4 Z9 4 U1 17 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD OCT 1 PY 2016 VL 149 BP 34 EP 60 DI 10.1016/j.quascirev.2016.06.018 PG 27 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA DW7IW UT WOS:000383825400003 ER PT J AU Stampoulis, D Andreadis, KM Granger, SL Fisher, JB Turk, FJ Behrangi, A Ines, AV Das, NN AF Stampoulis, Dimitrios Andreadis, Konstantinos M. Granger, Stephanie L. Fisher, Joshua B. Turk, Francis J. Behrangi, Ali Ines, Amor V. Das, Narendra N. TI Assessing hydro-ecological vulnerability using microwave radiometric measurements from WindSat SO REMOTE SENSING OF ENVIRONMENT LA English DT Article ID INTERANNUAL RAINFALL VARIABILITY; DIFFERENCE VEGETATION INDEX; GLOBAL WATER CYCLE; CLIMATE-CHANGE; EAST-AFRICA; SOIL-MOISTURE; SOUTHERN-AFRICA; AMSR-E; TIME SCALES; PRECIPITATION AB The spatial distribution, magnitude and timing of precipitation events are being altered globally, often leading to extreme hydrologic conditions with serious implications to the environment and society. Motivated by the pressing need to understand, from a hydro-ecological perspective, the impact of the dynamic nature of the hydrologic cycle on the environment in water-stressed regions, we investigated how different habitats in East Africa behave under extreme hydrologic conditions. We assessed the hydro-ecological vulnerability of the region by studying the response of soil moisture and vegetation water content to precipitation deficiency. The spatial patterns and characteristics of the inter-relations among the three aforementioned hydrologic variables, as well as the sensitivity and resilience of vegetation water content and soil moisture, derived from WindSat, were investigated for different vegetation types during dry spells of varying duration, identified using the Tropical Rainfall Measuring Mission (TRMM), in 2003-2011. Forest/Woody Savanna (FWS) and Savanna/Grasslands (SG) are more sensitive to local hydrologic extremes, while Shrublands (SHR) and the soils that support it are the least impacted by these conditions. SG and FWS exhibit the highest vegetation water content resilience, whereas soil moisture persistence during dry spells is at its highest in SHR/SG. The environmental variability, illustrated by the spatial patterns of the aforementioned hydrologic properties, can potentially play a role in the enhancement of resilience. This study provides critical insight into the hydro-ecological vulnerability of East Africa using microwave remote sensing, and this information can be used towards advancing management and decision support systems that would improve societal well-being and economic development. (C) 2016 Elsevier Inc. All rights reserved. C1 [Stampoulis, Dimitrios; Andreadis, Konstantinos M.; Granger, Stephanie L.; Fisher, Joshua B.; Turk, Francis J.; Behrangi, Ali; Das, Narendra N.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Ines, Amor V.] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA. RP Stampoulis, D (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Dimitrios.Stampoulis@jpl.nasa.gov OI Fisher, Joshua/0000-0003-4734-9085 FU NASA Research Announcements (NRA) [NNH11ZDA001N-SERVIR]; National Aeronautics and Space Administration FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was supported by NASA Research Announcements (NRA) NNH11ZDA001N-SERVIR. We also acknowledge and appreciate Dr. Li Li from the Naval Research Laboratory (NRL) for providing the WindSat VWC and SM data, as well as the Associate Editor and the three anonymous reviewers for their constructive criticism that helped us greatly improve this manuscript. NR 107 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT PY 2016 VL 184 BP 58 EP 72 DI 10.1016/j.rse.2016.06.007 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DW7JU UT WOS:000383827800005 ER PT J AU Feng, M Sexton, JO Huang, CQ Anand, A Channan, S Song, XP Song, DX Kim, DH Noojipady, P Townshend, JR AF Feng, Min Sexton, Joseph O. Huang, Chengquan Anand, Anupam Channan, Saurabh Song, Xiao-Peng Song, Dan-Xia Kim, Do-Hyung Noojipady, Praveen Townshend, John R. TI Earth science data records of global forest cover and change: Assessment of accuracy in 1990, 2000, and 2005 epochs SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Accuracy assessment; Forest; Landsat; Global; Sampling ID THEMATIC MAP ACCURACY; LAND-COVER; ESTIMATING AREA; TROPICAL DEFORESTATION; RESOLUTION; INFERENCE; HABITAT; CLASSIFICATION; UNCERTAINTY; DESIGN AB The Global Land Cover Facility (GLCF) global forest-cover and -change dataset is a multi-temporal depiction of long-term (multi-decadal), global forest dynamics at high (30-m) resolution. Based on per-pixel estimates of percentage tree cover and their associated uncertainty, the dataset currently represents binary forest cover in nominal 1990, 2000, and 2005 epochs, as well as gains and losses over time. A comprehensive accuracy assessment of the GLCF dataset was performed using a global, design-based sample of 27,988 independent, visually interpreted reference points collected through a two-stage, stratified sampling design wherein experts visually identified forest cover and change in each of the 3 epochs based on Landsat and high-resolution satellite images, vegetation index profiles, and field photos. Consistent across epochs, the overall accuracy of the static forest-cover layers was 91%, and the overall accuracy of forest-cover change was >88% among the highest accuracies reported for recent global forest- and land-cover data products. Both commission error (CE) and omission error (OE) were low for static forest cover in each epoch and for the stable classes between epochs (CE < 3%, OE < 22%), but errors were larger for forest loss (45% <= CE < 62%, 47% < OE < 55%) and gain (66% <= CE < 85%, 61% < OE < 84%). Accuracy was lower in sparse forests and savannahs, i.e., where tree cover was at or near the 30% threshold used to discriminate forest from non-forest cover. Discrimination of forest had a low rate of commission error and slight negative bias, especially in areas with low tree cover. After adjusting global area estimates to reference data, 39.28 +/- 1.34 million km(2) and 38.81 +/- 1.34 million km(2) of forest were respectively identified in 2000 and 2005 globally, and 33.16 +/- 1.36 million km(2) of forest were estimated in the available coverage of Landsat data circa-1990. Forest loss and gain were estimated to have been 0.73 +/- 0.38 and 0.28 +/- 0.26 million km(2) between 2000 and 2005, and 1.08 +/- 0.53 and 0.53 +/- 0.47 million km(2) between 1990 and 2000. These estimates of accuracy are required for rigorous use of the data in the Earth sciences (e.g., ecology, economics, hydrology, climatology) as well as for fusion with other records of global change. The GLCF forest-cover and change dataset is available for free public download at the GLCF website (http://www.landcover.org). Published by Elsevier Inc. C1 [Feng, Min; Sexton, Joseph O.; Huang, Chengquan; Anand, Anupam; Channan, Saurabh; Song, Xiao-Peng; Song, Dan-Xia; Kim, Do-Hyung; Noojipady, Praveen; Townshend, John R.] Univ Maryland, Global Land Cover Facil, Dept Geog Sci, College Pk, MD 20742 USA. [Anand, Anupam] Global Environm Facil, Washington, DC 20433 USA. [Noojipady, Praveen] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. RP Feng, M (reprint author), Univ Maryland, Global Land Cover Facil, Dept Geog Sci, College Pk, MD 20742 USA. EM fengm@umd.edu FU National Aeronautics and Space Administration (NASA) program: Making Earth Science Data Records for Use in Research Environment [NNH06ZDA001N-MEaSUREs]; National Aeronautics and Space Administration (NASA) program: Land Cover and Land Use Change [NNH07ZDA001N-LCLUC]; National Aeronautics and Space Administration (NASA) program: NASA ACCESS [NH11ZDA001N-ACCESS]; National Aeronautics and Space Administration (NASA) program: NASA Indicators [NNH12ZDA001N-INCA] FX Support for this effort was provided by the following National Aeronautics and Space Administration (NASA) programs: Making Earth Science Data Records for Use in Research Environment (NNH06ZDA001N-MEaSUREs), Land Cover and Land Use Change (NNH07ZDA001N-LCLUC), NASA ACCESS (NH11ZDA001N-ACCESS) and NASA Indicators (NNH12ZDA001N-INCA). We thank Linda Jonescheit Owen of LPDAAC U.S. Geological Survey (USGS) for supporting our large Landsat data requests, and thank our colleagues Katie Collins, Dr. Fu-Jiang Liu, and Guang-Xiao Zhang for their efforts on interpreting the points. We would also like to thank the four anonymous reviewers whose constructive comments led to a better presentation of our research methods and results. NR 79 TC 2 Z9 2 U1 20 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT PY 2016 VL 184 BP 73 EP 85 DI 10.1016/j.rse.2016.06.012 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DW7JU UT WOS:000383827800006 ER PT J AU Colliander, A Njoku, EG Jackson, TJ Chazanoff, S McNairn, H Powers, J Cosh, MH AF Colliander, Andreas Njoku, Eni G. Jackson, Thomas J. Chazanoff, Seth McNairn, Heather Powers, Jarrett Cosh, Michael H. TI Retrieving soil moisture for non-forested areas using PALS radiometer measurements in SMAPVEX12 field campaign SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE SMAPVEXI2; PALS; SMAP; Soil moisture ID L-BAND; MICROWAVE EMISSION; WATER-CONTENT; SMAP MISSION; MODEL; ALGORITHM; FREQUENCY; SALINITY; SENSOR; COVER AB In this paper, soil moisture retrievals of surface soil moisture was investigated using L-band brightness temperature under diverse conditions and land cover types. The study focused on the PALS (Passive Active L-band System) radiometer data collected during the SMAPVEXI2 (Soil Moisture Active Passive Validation Experiment 2012) field experiment which took place in southern Manitoba, Canada in 2012. The experiment domain covers croplands with high clay content as well as croplands and grasslands with sandy soils. A retrieval algorithm was parameterized for these specific land types. The formulation of the retrieval algorithm is based on a traditional surface scattering assumption. Based on this data set we found that for the clayey croplands the surface scattering assumption is inadequate, and that the algorithm needed significant tuning for the sandy soils. Empirically-based parameters for retrieving soil moisture under these conditions were developed. We also applied the parameterized algorithm to the retrieval of soil moisture for the entire experiment domain. We found that the use of sub grid modeling improves the retrieval performance to a satisfactory level despite the challenging land types encountered. (C) 2016 Elsevier Inc. All rights reserved. C1 [Colliander, Andreas; Njoku, Eni G.; Chazanoff, Seth] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Jackson, Thomas J.; Cosh, Michael H.] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD USA. [McNairn, Heather; Powers, Jarrett] Agr & Agri Food Canada, Ottawa, ON, Canada. RP Colliander, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM andreas.colliander@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The SMAPVEX12 experiment data is archived at the National Snow and Ice Data Center (NSIDC), http://nsidc.org/data/smap. NR 66 TC 1 Z9 1 U1 13 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT PY 2016 VL 184 BP 86 EP 100 DI 10.1016/j.rse.2016.06.001 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DW7JU UT WOS:000383827800007 ER PT J AU Painter, TH Berisford, DF Boardman, JW Bormann, KJ Deems, JS Gehrke, F Hedrick, A Joyce, M Laidlaw, R Marks, D Mattmann, C McGurk, B Ramirez, P Richardson, M Skiles, SM Seidel, FC Winstral, A AF Painter, Thomas H. Berisford, Daniel F. Boardman, Joseph W. Bormann, Kathryn J. Deems, Jeffrey S. Gehrke, Frank Hedrick, Andrew Joyce, Michael Laidlaw, Ross Marks, Danny Mattmann, Chris McGurk, Bruce Ramirez, Paul Richardson, Megan Skiles, S. McKenzie Seidel, Felix C. Winstral, Adam TI The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Snow water equivalent; Snow albedo; Water resources; Scanning lidar; Imaging spectrometer ID SEMIARID MOUNTAIN CATCHMENT; WESTERN UNITED-STATES; COLORADO RIVER-BASIN; SIR-C/X-SAR; GRAIN-SIZE; ENERGY-BALANCE; DEPTH MEASUREMENTS; CLIMATE-CHANGE; MASS-BALANCE; COVERED AREA AB Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. Snowmelt timing and magnitude in mountains are controlled predominantly by absorption of solar radiation and the distribution of snow water equivalent (SWE), and yet both of these are very poorly known even in the best-instrumented mountain regions of the globe. Here we describe and present results from the Airborne Snow Observatory (ASO), a coupled imaging spectrometer and scanning lidar, combined with distributed snow modeling, developed for the measurement of snow spectral albedo/broadband albedo and snow depth/SWE. Snow density is simulated over the domain to convert snow depth to SWE. The result presented in this paper is the first operational application of remotely sensed snow albedo and depth/SWE to quantify the volume of water stored in the seasonal snow cover. The weekly values of SWE volume provided by the ASO program represent a critical increase in the information available to hydrologic scientists and resource managers in mountain regions. (C) 2016 Elsevier Inc. All rights reserved. C1 [Painter, Thomas H.; Berisford, Daniel F.; Bormann, Kathryn J.; Joyce, Michael; Laidlaw, Ross; Mattmann, Chris; Ramirez, Paul; Richardson, Megan; Skiles, S. McKenzie; Seidel, Felix C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Boardman, Joseph W.] Analyt Imaging & Geophys LLC, Boulder, CO USA. [Deems, Jeffrey S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Deems, Jeffrey S.] Natl Snow & Ice Data Ctr, Boulder, CO USA. [Gehrke, Frank] Calif Dept Water Resources, Sacramento, CA USA. [Hedrick, Andrew; Marks, Danny; Winstral, Adam] USDA ARS, Northwest Watershed Res Ctr, Boise, ID 83712 USA. [McGurk, Bruce] McGurk Hydrol, Orinda, CA USA. RP Painter, TH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM thomas.painter@jpl.nasa.gov RI Painter, Thomas/B-7806-2016; Deems, Jeffrey/E-6484-2016 OI Deems, Jeffrey/0000-0002-3265-8670 FU NASA; California Department of Water Resources; JPL investments; Colorado Water Conservation Board; City of San Francisco Public Utilities Commission; Turlock Irrigation District; Modesto Irrigation District; USDA Agricultural Research Service FX Funding for the Airborne Snow Observatory was provided by NASA, the California Department of Water Resources, JPL investments, Colorado Water Conservation Board, City of San Francisco Public Utilities Commission, Turlock Irrigation District, and Modesto Irrigation District, and USDA Agricultural Research Service. Modeling and density simulations were conducted at the Northwest Watershed Research Center in Boise, Idaho. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 87 TC 8 Z9 8 U1 23 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT PY 2016 VL 184 BP 139 EP 152 DI 10.1016/j.rse.2016.06.018 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DW7JU UT WOS:000383827800011 ER PT J AU Kishore, P Velicogna, I Ratnam, MV Basha, G Ouarda, TBMJ Namboothiri, SP Jiang, JH Sutterley, TC Madhavi, GN Rao, SVB AF Kishore, P. Velicogna, Isabella Ratnam, M. Venkat Basha, Ghouse Ouarda, T. B. M. J. Namboothiri, S. P. Jiang, J. H. Sutterley, Tyler C. Madhavi, G. N. Rao, S. V. B. TI Sudden stratospheric warmings observed in the last decade by satellite measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Stratospheric warming; Tropopause; Stratopause; Mesopause; Gravity wave energy ID GRAVITY-WAVE ACTIVITY; DATA ASSIMILATION SYSTEM; MIDDLE ATMOSPHERE; PLANETARY-WAVES; RAYLEIGH LIDAR; MODEL; CLIMATOLOGY; MESOSPHERE; TEMPERATURE; TROPOPAUSE AB In the present study, the influence of sudden stratospheric warming (SSW) that occurred in the last decade (2001/02-2012/13) in the northern hemisphere, simultaneously on the tropopause, stratopause, and mesopause is investigated for the first time using multi-satellite measurements. Multi-satellites include GPS Radio Occultation (GPS RO), Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) mission. Emphasis have been made to investigate up to what latitudes the effect of SSW will be seen on these pauses. This study also presents the characteristics, intensity and duration of the SSW events. A total of 9 SSW events are identified out of the 12 winters. The altitude of tropopause is observed to have decrease by similar to 0.7 km during SSW events in NH high latitudes and restricted to 60 degrees N and above. As expected, significant increase in the stratopause altitude is noticed, which reaches to almost similar to 80 km when compared to non-warming years and this effect was observed up to 50 degrees N. Thus, SSW effects on the tropopause and stratopause noticed at polar latitudes may not be felt directly at the tropical latitudes. Interestingly, large reduction in the mesopause altitudes (by 3-4 km) is observed during SSW events, which propagates to the tropical latitudes in some of the SSW winters. The gravity wave (GW) activity is also examined during these SSW events. (C) 2016 Elsevier Inc. All rights reserved. C1 [Kishore, P.; Velicogna, Isabella; Sutterley, Tyler C.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Velicogna, Isabella; Jiang, J. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Ratnam, M. Venkat; Basha, Ghouse] Govt India, Natl Atmospher Res Lab, Dept Space, Tirupati, Andhra Pradesh, India. [Basha, Ghouse; Ouarda, T. B. M. J.] Masdar Inst Sci & Technol, Inst Ctr Water & Environm iWATER, POB 54224, Abu Dhabi, U Arab Emirates. [Ouarda, T. B. M. J.] Natl Inst Sci Res, INRS ETE, Quebec City, PQ G1K 9A9, Canada. [Namboothiri, S. P.] Sree Narayana Gurukulam Coll Engn, Dept Elect & Commun Engn, Ernakulam, Kerala, India. [Madhavi, G. N.; Rao, S. V. B.] Sri Venkateswara Univ, Dept Phys, Tirupati, Andhra Pradesh, India. RP Kishore, P (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM kishore@uci.edu RI Sutterley, Tyler/Q-8325-2016; OI Sutterley, Tyler/0000-0002-6964-1194; Venkat Ratnam, M./0000-0002-3882-2523 FU Jet Propulsion Laboratory, California Institute of Technology - NASA FX We would like to thank all the members of GPS (CHAMP and COSMIC), AURA_MLS, SABER, ERA-Interim, and NASA MERRA (GEOS-5) re-analysis data centers for the public access of their data via their webpages. The authors wish to thank the Editor and three anonymous reviewers whose comments contributed to the improvement of the quality of the paper. Author J.H. Jiang acknowledge the support by the Jet Propulsion Laboratory, California Institute of Technology, sponsored by NASA. NR 55 TC 1 Z9 1 U1 14 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT PY 2016 VL 184 BP 263 EP 275 DI 10.1016/j.rse.2016.07.008 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DW7JU UT WOS:000383827800020 ER PT J AU Greaves, HE Vierling, LA Eitel, JUH Boelman, NT Magney, TS Prager, CM Griffin, KL AF Greaves, Heather E. Vierling, Lee A. Eitel, Jan U. H. Boelman, Natalie T. Magney, Troy S. Prager, Case M. Griffin, Kevin L. TI High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing; Climate change; Shrub expansion; Multisensor fusion; Random Forest; Imnavait ID NORTHERN ALASKA; VEGETATION MAP; RANDOM FORESTS; EXPANSION; COVER; CLASSIFICATION; COMMUNITIES; LANDSCAPE; ELEVATION; STANDS AB Accurate monitoring of climate-driven expansion of low-stature shrubs in Arctic tundra requires high-resolution maps of shrub biomass that can accurately quantify the current baseline over relevant spatial and temporal extents. In this study, our goal was to use airborne lidar and imagery to build accurate high -resolution shrub biomass maps for an important research landscape in the American Arctic. In a leave-one-out cross-validation analysis, optimized lidar-derived canopy volume was a good single predictor of harvested shrub biomass (R-2 = 0.62; RMSD = 219 g m(-2); slope = 1.08). However, model accuracy was improved by incorporating additional lidar-derived canopy metrics and airborne spectral metrics in a Random Forest regression approach (pseudo R-2 = 0.71; RMSD = 197 g m(-2): slope = 1.02). The best Random Forest model was used to map shrub biomass at 0.80 m resolution across three lidar collection footprints (similar to 12.5 km(2) total) near Toolik Field Station on Alaska's North Slope. We characterized model uncertainty by creating corresponding maps of the coefficient of variation in Random Forest shrub biomass estimates. We also explore potential benefits of incorporating lidar-derived topographic metrics, and consider tradeoffs inherent in employing different data sources for high -resolution vegetation mapping efforts. This study yielded maps that provide valuable, high -resolution spatial estimates of aboveground shrub biomass and canopy volume in a rapidly changing tundra ecosystem. (C) 2016 Elsevier Inc. All rights reserved. C1 [Greaves, Heather E.; Vierling, Lee A.; Eitel, Jan U. H.] Univ Idaho, Dept Nat Resources & Soc, Geospatial Lab Environm Dynam, 875 Perimeter Dr MS 1142, Moscow, ID 83844 USA. [Vierling, Lee A.; Eitel, Jan U. H.] Univ Idaho, McCall Outdoor Sci Sch, Mccall, ID 83638 USA. [Eitel, Jan U. H.; Griffin, Kevin L.] Columbia Univ, Lamont Doherty Earth Observ, 61 Rte 9W, Palisades, NY 10964 USA. [Boelman, Natalie T.; Griffin, Kevin L.] Columbia Univ, Dept Earth & Environm Sci, Mail Code 5505, New York, NY 10027 USA. [Magney, Troy S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr MS 233-300, Pasadena, CA 91109 USA. [Prager, Case M.; Griffin, Kevin L.] Columbia Univ, Dept Ecol Evolut & Environm Biol, 1200 Amsterdam Ave, New York, NY 10027 USA. RP Greaves, HE (reprint author), Univ Idaho, Dept Nat Resources & Soc, 875 Perimeter Dr MS 1142, Moscow, ID 83844 USA. EM hgreaves@uidaho.edu RI Griffin, Kevin/B-2629-2013 OI Griffin, Kevin/0000-0003-4124-3757 FU NASA Terrestrial Ecology [NNX12AK83G]; NASA Earth Science Fellowship [NNX15AP04H]; NASA Idaho Space Grant Fellowship [NNX10AM75H] FX This work was supported by NASA Terrestrial Ecology grant NNX12AK83G, NASA Earth Science Fellowship NNX15AP04H awarded to HEG, and NASA Idaho Space Grant Fellowship NNX10AM75H awarded to TSM. Airborne lidar and imagery data were collected by Kodiak Mapping, Inc., Palmer, AK, www.kodiakmapping.com. Field assistance from Moyo Ajayi, Rebecca Gibson, and Elizabeth Fortin was greatly appreciated. The authors are also grateful for the support of the staff and greater research community of Toolik Field Station, Institute of Arctic Biology, University of Alaska Fairbanks, with special thanks to Jason Stuckey, Randy Fulweber, and Jorge Noguera of Toolik GIS for assistance with GPS and lidar ground control. This manuscript was improved by constructive comments from three anonymous reviewers. NR 68 TC 2 Z9 2 U1 46 U2 46 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT PY 2016 VL 184 BP 361 EP 373 DI 10.1016/j.rse.2016.07.026 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DW7JU UT WOS:000383827800028 ER PT J AU Gastellu-Etchegorry, JP Yin, TG Lauret, N Grau, E Rubio, J Cook, BD Morton, DC Sun, GQ AF Gastellu-Etchegorry, Jean-Philippe Yin, Tiangang Lauret, Nicolas Grau, Eloi Rubio, Jeremy Cook, Bruce D. Morton, Douglas C. Sun, Guoqing TI Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE LiDAR; DART; Radiative transfer model; Multiple scattering; LVIS; Monte Carlo ray tracing; Ray Carlo; Box method ID RADIATIVE-TRANSFER MODEL; CANOPY REFLECTANCE MODELS; URBAN LANDSCAPES; LASER ALTIMETER; FOREST; RESOLUTION; IMAGES; ATMOSPHERE; VEGETATION; RETRIEVAL AB Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors. (C) 2016 Elsevier Inc. All rights reserved. C1 [Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy] Univ Toulouse, Ctr Etud Spatiales BIOsphere CESBIO, UPS, CNES,CNRS,IRD, F-31401 Toulouse 9, France. [Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gastellu-Etchegorry, JP; Yin, TG (reprint author), Univ Toulouse, Ctr Etud Spatiales BIOsphere CESBIO, UPS, CNES,CNRS,IRD, F-31401 Toulouse 9, France. EM jean-philippe.gastellu-etchegorry@cesbio.cnes.fr; tiangang.yin.85@gmail.com RI Morton, Douglas/D-5044-2012; OI Grau, Eloi/0000-0001-5757-7239 FU ANR; Centre National d'Etudes Spatiales (CNES); Magellium FX This work was supported by the ANR in the frame of the FOLI3D project, by the Centre National d'Etudes Spatiales (CNES) in the frame of TOSCA projects 'Stem-Leaf and 'Hypertropik', and by CNES and Magellium (http://www.magellium.fr/) for funding the PhD doctorate of Nicolas Lauret. Part of the work was conducted in the frame of the NASA project "DART-LiDAR". The authors are thankful to Audrey Ueberschlag who initiated the first comparison with LVIS data and to all scientists who contributed to DART development since its first steps in 1992. NR 54 TC 0 Z9 0 U1 14 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT PY 2016 VL 184 BP 418 EP 435 DI 10.1016/j.rse.2016.07.010 PG 18 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DW7JU UT WOS:000383827800033 ER PT J AU Koltunov, A Ustin, SL Quayle, B Schwind, B Ambrosia, VG Li, W AF Koltunov, Alexander Ustin, Susan L. Quayle, Brad Schwind, Brian Ambrosia, Vincent G. Li, Wei TI The development and first validation of the GOES Early Fire Detection (GOES-EFD) algorithm SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Geostationary; Satellite; Fire detection; Wildfire detection; Early wildfire detection; Wildfire; Detection timeliness; Fire monitoring; Remote sensing; GOES Early Fire Detection; GOES-EFD ID PRODUCT; SOUTH; AMERICA; IMAGERY; MODIS AB Decades of successful active fire mapping from space, have led to global informational products of growing importance to scientific community and operational agencies. In contrast, detecting fires from space faster than current conventional capabilities in the continental U.S. has not been considered attainable, except in remote, sparsely populated areas. We present a research prototype version of the GOES Early Fire Detection (GOES-EFD) algorithm focused on minimizing the time to first detection of a wildfire incident. The algorithm is designed for regional-scale surveillance and combines multitemporal anomaly tests developed in our previous work, contextual hot-spot tests, and dynamic event classification and tracking. The GOES-EFD version 0.4 was initially tested with 40-day summer 2006 data over central California. The algorithm identified most of large (final size> 2 ha) wildfires within 30 min and 31% of the wildfires were detected before they were reported by the public. Under identical operation conditions, GOES-EFD 0.4 provided quicker initial detection than the temporally filtered operational WF-ABBA algorithm (version 6.1) and committed fewer false alarms. There is a substantial potential for further reducing detection latency and increasing reliability. Following the ongoing optimizations, tests, and integration in collaboration with the fire management agencies and first responders, GOES-EFD could be deployed for regional scale real-time surveillance to complement existing fire identification methods. (C) 2016 Elsevier Inc. All rights reserved. C1 [Koltunov, Alexander; Ustin, Susan L.; Li, Wei] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing, Veihmeyer Hall,One Shields Ave, Davis, CA 95616 USA. [Quayle, Brad; Schwind, Brian] Forest Serv, USDA, RSAC, 2222 West 2300 South, Salt Lake City, UT 84119 USA. [Ambrosia, Vincent G.] Calif State Univ Monterey Bay, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Li, Wei] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China. RP Koltunov, A (reprint author), Univ Calif Davis, Ctr Spatial Technol & Remote Sensing, Veihmeyer Hall,One Shields Ave, Davis, CA 95616 USA. EM akoltunov@ucdavis.edu FU US Forest Service; University of California, Davis "Evaluating operational potential of geostationary early fire detection capabilities at regional level" [10-IA-11130400-009]; U.S. Department of Homeland Security [RSID-11-00096, HSHQDC-11-C-00158] FX This work was supported by US Forest Service, as the main sponsor, and University of California, Davis under Cost Share Agreement 10-IA-11130400-009 "Evaluating operational potential of geostationary early fire detection capabilities at regional level", with contribution by the U.S. Department of Homeland Security (Project No. RSID-11-00096; Contract No. HSHQDC-11-C-00158). We thank Ahmad Hakim-Elahi (UC Davis, Sponsored Program Office) and Bruce A. Davis (Dept. Homeland Security, Science & Technology Directorate) for their dedication to support GOES-EFD development. The GOES Imager data readout capability and technical assistance was provided by the CIMIS (California Irrigation Management Information System) program. We also thank Quinn Hart (UC Davis) for his assistance and advice that helped us preprocess GOES GVAR data; Mark Rosenberg (California Department of Forestry and Fire Protection, CAL FIRE) for providing geospatial wildfire data, support, and useful discussions; Mui Lay (UC Davis) for her great help with Landsat image interpretation; George Scheer (UC Davis) for computation and data management support; Mark Finco and Linda R. Smith (RedCastle Resources, Inc. /USDA Forest Service, RSAC) for assistance with graphics design; Mark Ruminski (NOAA, NESDIS) for helpful discussions of the algorithm. We are grateful to Elaine Prins (UW-Madison, CIMSS) for her highly valuable insights into operational geostationary wildfire detection and aspects of WF-ABBA algorithm, and thank two anonymous reviewers for useful suggestions and constructive criticism that significantly improved the manuscript. NR 40 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT PY 2016 VL 184 BP 436 EP 453 DI 10.1016/j.rse.2016.07.021 PG 18 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DW7JU UT WOS:000383827800034 ER PT J AU Maeda, EE Moura, YM Wagner, F Hilker, T Lyapustin, AI Wang, YJ Chave, J Mottus, M Aragao, LEOC Shimabukuro, Y AF Maeda, Eduardo Eiji Moura, Yhasmin Mendes Wagner, Fabien Hilker, Thomas Lyapustin, Alexei I. Wang, Yujie Chave, Jerome Mottus, Matti Aragao, Luiz E. O. C. Shimabukuro, Yosio TI Consistency of vegetation index seasonality across the Amazon rainforest SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION LA English DT Article DE MODIS; MAIAC; Seasonality; Phenology; EVI; NDVI; GEP; BRDF effect ID TROPICAL FOREST; DRY SEASON; ATMOSPHERIC CORRECTION; MODIS; VARIABILITY; DROUGHT; EVAPOTRANSPIRATION; REFLECTANCE; SENSITIVITY; CLIMATE AB Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in Vis seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between Vls, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing. (C) 2016 Elsevier B.V. All rights reserved. C1 [Maeda, Eduardo Eiji; Mottus, Matti] Univ Helsinki, Dept Geosci & Geog, POB 68, FI-00014 Helsinki, Finland. [Moura, Yhasmin Mendes; Wagner, Fabien; Aragao, Luiz E. O. C.; Shimabukuro, Yosio] Natl Inst Space Res INPE, Ave Astronautas 1758, Sao Jose Dos Campos, SP, Brazil. [Hilker, Thomas] Oregon State Univ, Coll Forestry, Corvallis, OR 97331 USA. [Hilker, Thomas] Univ Southampton, Dept Geog & Environm, Highfield Rd, Southampton S017 1BJ, Hants, England. [Lyapustin, Alexei I.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Wang, Yujie] Univ Maryland Baltimore Cty, 1000 Hilltop Cir, Baltimore, MD 21250 USA. [Chave, Jerome] CNRS, F-31062 Toulouse, France. [Chave, Jerome] Univ Paul Sabatier, UMR 5174, Lab Evolut & Divers Biol, F-31062 Toulouse, France. RP Maeda, EE (reprint author), Univ Helsinki, Dept Geosci & Geog, POB 68, FI-00014 Helsinki, Finland. EM eduardo.maeda@helsinki.fi FU Academy of Finland [266393]; Fapesp (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo) [13/14520-6]; "Investissement d'Avenir" grants by Agence Nationale de la Recherche (CEBA) [ANR-10-LABX-25-01, TULIP: ANR-10-LABX-0041] FX This study was financially supported by the Academy of Finland (Decision No. 266393). The authors would like to thank the publicly available LBA Flux Tower Network Data Compilation, in particular the projects' PIs Dr Antonio Nobre, Dr Volker Kirchhoff, Dr Antonio Manzi and Dr Humberto da Rocha. The authors thank Dr Natalia Restrepo-Coupe for her support with the "BrasilFlux" LBA Flux Tower Network Data. The leaf litterfall data for Caracarai site was kindly provided by Dr Carolina Volkmer de Castilho and Williamar Rodrigues Silva. Fabien Wagner is funded by the Fapesp (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, processo 13/14520-6). Jerome Chave is supported by "Investissement d'Avenir" grants managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01; TULIP: ANR-10-LABX-0041) NR 42 TC 1 Z9 1 U1 26 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0303-2434 J9 INT J APPL EARTH OBS JI Int. J. Appl. Earth Obs. Geoinf. PD OCT PY 2016 VL 52 BP 42 EP 53 DI 10.1016/j.jag.2016.05.005 PG 12 WC Remote Sensing SC Remote Sensing GA DV5XH UT WOS:000383003500005 ER PT J AU Milillo, P Perissin, D Salzer, JT Lundgren, P Lacava, G Milillo, G Serio, C AF Milillo, Pietro Perissin, Daniele Salzer, Jacqueline T. Lundgren, Paul Lacava, Giusy Milillo, Giovanni Serio, Carmine TI Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION LA English DT Article DE Time-series analysis; Dam; HST and HTT model; SAR; Interferometry ID DIFFERENTIAL SAR INTERFEROMETRY; PERMANENT SCATTERERS AB The availability of new constellations of synthetic aperture radar (SAR) sensors is leading to important advances in infrastructure monitoring. These constellations offer the advantage of reduced revisit times, providing low-latency data that enable analysis that can identify infrastructure instability and dynamic deformation processes. In this paper we use COSMO-SkyMed (CSK) and TerraSAR-X (TSX) data to monitor seasonal induced deformation at the Pertusillo dam (Basilicata, Italy) using multi-temporal SAR data analysis. We analyzed 198 images spanning 2010-2015 using a coherent and incoherent PS approach to merge COSMO-SkyMed adjacent tracks and TerraSAR-X acquisitions, respectively. We used hydrostatic-seasonal-temporal (HST) and hydrostatic-temperature-temporal (HTT) models to interpret the non-linear deformation at the dam wall using ground measurements together with SAR time-series analysis. Different look geometries allowed us to characterize the horizontal deformation field typically observed at dams. Within the limits of our models and the SAR acquisition sampling we found that most of the deformation at the Pertusillo dam can be explained by taking into account only thermal seasonal dilation and hydrostatic pressure. The different models show slightly different results when interpreting the aging term at the dam wall. The results highlight how short-revisit SAR satellites in combination with models widely used in the literature for interpreting pendulum and GPS data can be used for supporting structural health monitoring and provide valuable information to ground users directly involved in field measurements. (C) 2016 Elsevier B.V. All rights reserved. C1 [Milillo, Pietro; Lacava, Giusy; Serio, Carmine] Univ Basilicata, Scuola Ingn, Potenza, Italy. [Milillo, Pietro] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Milillo, Pietro; Lundgren, Paul] NASA, Jet Prop Lab, Pasadena, CA USA. [Perissin, Daniele] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. [Salzer, Jacqueline T.] GFZ German Res Ctr Geosci, Dept Phys Earth 2, Potsdam, Germany. [Milillo, Giovanni] ASI Italian Space Agcy, Matera, Italy. RP Milillo, P (reprint author), Univ Basilicata, Scuola Ingn, Potenza, Italy. EM pietro.milillo@unibas.it OI Serio, Carmine/0000-0002-5931-7681; Milillo, Giovanni/0000-0002-6045-5686; Milillo, Pietro/0000-0002-1171-3976 FU National Aeronautics and Space Administration Postdoctoral Program FX We thank the Italian Space Agency (ASI) for providing COSMO-SkyMed data for this project. Original COSMO-SkyMed product ASI Agenzia Spaziale Italiana (2014-2016). We thank the German Aerospace Centre (DLR) for providing TerraSAR-X data for this project. TerraSAR-X data were provided under proposal LAN2959. ALOS PALSAR data were provided courtesy of the Japan Aerospace Exploration Agency (JAXA), Minestry of Economy, Trade and Industry (METI), which were distributed by the Earth Remote Sensing Data Analysis Center (ERSDAC). METI and JAXA retain ownership of the original ALOS PALSAR data. All the reservoir data (from 2010 to June 2011) have been provided by the Ente per lo Sviluppo dell'Irrigazione e la Trasformazione Fondiaria agency of Potenza, Italy. The seismic data can be obtained from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) ISIDE database http://iside.rm.ingv.it/http://iside.rm.ingv.it/ (data available since 7 July 2015; last accessed July 2015). The work of P. Milillo was done while he was a visiting student researcher at Caltech and partially sponsored by the National Aeronautics and Space Administration Postdoctoral Program. NR 39 TC 3 Z9 3 U1 21 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0303-2434 J9 INT J APPL EARTH OBS JI Int. J. Appl. Earth Obs. Geoinf. PD OCT PY 2016 VL 52 BP 221 EP 229 DI 10.1016/j.jag.2016.06.013 PG 9 WC Remote Sensing SC Remote Sensing GA DV5XH UT WOS:000383003500020 ER PT J AU de Moura, YM Hilker, T Goncalves, FG Galvao, LS dos Santos, JR Lyapustin, A Maeda, EE Silva, CVD AF de Moura, Yhasmin Mendes Hilker, Thomas Goncalves, Fabio Guimaraes Galvao, Lenio Soares dos Santos, Joao Roberto Lyapustin, Alexei Maeda, Eduardo Eiji de Jesus Silva, Camila Valeria TI Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION LA English DT Article DE Canopy roughness; Multi-angle; MODIS; MAIAC; LiDAR; Anisotropy ID BIDIRECTIONAL REFLECTANCE MODEL; REMOTE-SENSING DATA; CANOPY STRUCTURE; DRY SEASON; LEAF-AREA; ATMOSPHERIC CORRECTION; STRUCTURE PARAMETERS; ABOVEGROUND BIOMASS; DECIDUOUS FOREST; CARBON DYNAMICS AB Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(2) = 0.54, RMSE = 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52 <= r(2) <= 0.61; p<0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(0)) from SeaWinds/QuikSCAT presented an r(2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. (C) 2016 Elsevier B.V. All rights reserved. C1 [de Moura, Yhasmin Mendes; Galvao, Lenio Soares; dos Santos, Joao Roberto; de Jesus Silva, Camila Valeria] INPE, Div Sensoriamento Remoto, BR-12245970 Sao Jose Dos Campos, SP, Brazil. [Hilker, Thomas] Oregon State Univ, Coll Forestry, Corvallis, OR 97331 USA. [Hilker, Thomas] Univ Southampton, Dept Geog & Environm, Southampton SO17 1BJ, Hants, England. [Goncalves, Fabio Guimaraes] Agrosatelite Geotecnol Aplicada, BR-88032005 Florianopolis, SC, Brazil. [Lyapustin, Alexei] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Maeda, Eduardo Eiji] Univ Helsinki, Dept Geosci & Geog, POB 68, FI-00014 Helsinki, Finland. RP de Moura, YM (reprint author), INPE, Div Sensoriamento Remoto, BR-12245970 Sao Jose Dos Campos, SP, Brazil. EM yhas.mendes@gmail.com OI Moura, Yhasmin/0000-0001-8494-8787 FU Brazilian Agricultural Research Corporation (EMBRAPA); US Forest Service; USAID; US Department of State; CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) [12881-13-9]; CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) [PVE 401025/2014-4]; Academy of Finland FX We are grateful to the NASA Center for Climate Simulation (NCCS) for computational support and access to their high performance cluster. MAIAC data for the Amazon basin are described and available for download at ftp://ladsweb.nascom.nasa.gov/MAIAC. LiDAR data were acquired by the Sustainable Landscapes Brazil project supported by the Brazilian Agricultural Research Corporation (EMBRAPA), the US Forest Service, and USAID, and the US Department of State. Thanks are also to CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) grant number 12881-13-9; and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico), grant number PVE 401025/2014-4. Dr Eduardo Maeda was supported by a research grant from the Academy of Finland. NR 64 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0303-2434 J9 INT J APPL EARTH OBS JI Int. J. Appl. Earth Obs. Geoinf. PD OCT PY 2016 VL 52 BP 580 EP 590 DI 10.1016/j.jag.2016.07.017 PG 11 WC Remote Sensing SC Remote Sensing GA DV5XH UT WOS:000383003500053 ER PT J AU Bolcar, MR Balasubramanian, K Crooke, J Feinberg, L Quijada, M Rauscher, BJ Redding, D Rioux, N Shaklan, S Stahl, HP Stahle, CM Thronson, H AF Bolcar, Matthew R. Balasubramanian, Kunjithapatham Crooke, Julie Feinberg, Lee Quijada, Manuel Rauscher, Bernard J. Redding, David Rioux, Norman Shaklan, Stuart Stahl, H. Philip Stahle, Carl M. Thronson, Harley TI Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE space telescopes; technology development; coronagraph; starshade; lightweight mirrors; ultra-stable systems ID CORONAGRAPH; LYOT AB The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5. (C) 2016 Society of Photo-Optical Instrumentation Engineers SPIE) C1 [Bolcar, Matthew R.; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Rioux, Norman; Stahle, Carl M.; Thronson, Harley] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Balasubramanian, Kunjithapatham; Redding, David; Shaklan, Stuart] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Stahl, H. Philip] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Bolcar, MR (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM matthew.bolcar@nasa.gov NR 66 TC 5 Z9 5 U1 4 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041209 PG 14 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500008 ER PT J AU Hennessy, J Balasubramanian, K Moore, CS Jewell, AD Nikzad, S France, K Quijada, M AF Hennessy, John Balasubramanian, Kunjithapatham Moore, Christopher S. Jewell, April D. Nikzad, Shouleh France, Kevin Quijada, Manuel TI Performance and prospects of far ultraviolet aluminum mirrors protected by atomic layer deposition SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE atomic layer deposition; aluminum; mirror; ultraviolet ID FLUORIDE THIN-FILMS; VACUUM-ULTRAVIOLET; OPTICAL-CONSTANTS; WAVELENGTH REGION; REFLECTANCE; COATINGS; SURFACE; MGF2; LIF; PRECURSORS AB Metallic aluminum mirrors remain the best choice for high reflectance applications at ultraviolet wavelengths (90 to 320 nm) and maintain good performance through optical and infrared wavelengths. Transparent protective coatings are required to prevent the formation of an oxide layer, which severely degrades reflectance at wavelengths below 250 nm. We report on the development of atomic layer deposition (ALD) processes for thin protective films of aluminum fluoride that are viable for application at substrate temperatures <200 degrees C. Reflectance measurements of aluminum films evaporated in ultrahigh vacuum conditions, and protected mirrors encapsulated with ALD AlF3 are used to evaluate the far ultraviolet (90 to 190 nm) and near ultraviolet (190 to 320 nm) performance of both the ALD material and the underlying metal. Optical modeling is used to predict the performance of optimized structures for future astronomical mirror applications. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Hennessy, John; Balasubramanian, Kunjithapatham; Jewell, April D.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Moore, Christopher S.; France, Kevin] Univ Colorado, Ctr Astrophys & Space Astron, Campus Box 391, Boulder, CO 80309 USA. [Moore, Christopher S.; France, Kevin] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Quijada, Manuel] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Hennessy, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM john.j.hennessy@jpl.nasa.gov NR 39 TC 2 Z9 2 U1 7 U2 7 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041206 PG 9 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500005 ER PT J AU Hicks, BA AF Hicks, Brian A. TI In Memoriam, Richard G. (Rick) Lyon SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Biographical-Item C1 [Hicks, Brian A.] Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Hicks, BA (reprint author), Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM brian.a.hicks@nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041202 PG 1 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500001 ER PT J AU Lee, N Backes, P Burdick, J Pellegrino, S Fuller, C Hogstrom, K Kennedy, B Kim, J Mukherjee, R Seubert, C Wu, YH AF Lee, Nicolas Backes, Paul Burdick, Joel Pellegrino, Sergio Fuller, Christine Hogstrom, Kristina Kennedy, Brett Kim, Junggon Mukherjee, Rudranarayan Seubert, Carl Wu, Yen-Hung TI Architecture for in-space robotic assembly of a modular space telescope SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE space telescope; robotic assembly; modular structure; segmented mirror ID PERFORMANCE; ALGORITHMS; RESOLUTION; PROJECT; ONBOARD; SYSTEM AB An architecture and conceptual design for a robotically assembled, modular space telescope (RAMST) that enables extremely large space telescopes to be conceived is presented. The distinguishing features of the RAMST architecture compared with prior concepts include the use of a modular deployable structure, a general-purpose robot, and advanced metrology, with the option of formation flying. To demonstrate the feasibility of the robotic assembly concept, we present a reference design using the RAMST architecture for a formation flying 100-m telescope that is assembled in Earth orbit and operated at the Sun-Earth Lagrange Point 2. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Lee, Nicolas; Pellegrino, Sergio; Hogstrom, Kristina] CALTECH, Grad Aeronaut Labs, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Backes, Paul; Fuller, Christine; Kennedy, Brett; Kim, Junggon; Mukherjee, Rudranarayan; Seubert, Carl; Wu, Yen-Hung] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Burdick, Joel] CALTECH, Dept Mech & Civil Engn, 1200 East Calif Blvd, Pasadena, CA 91125 USA. RP Pellegrino, S (reprint author), CALTECH, Grad Aeronaut Labs, 1200 East Calif Blvd, Pasadena, CA 91125 USA. EM sergiop@caltech.edu NR 94 TC 0 Z9 0 U1 6 U2 6 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041207 PG 15 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500006 ER PT J AU Rauscher, BJ Canavan, ER Moseley, SH Sadleir, JE Stevenson, T AF Rauscher, Bernard J. Canavan, Edgar R. Moseley, Samuel H. Sadleir, John E. Stevenson, Thomas TI Detectors and cooling technology for direct spectroscopic biosignature characterization SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE exoplanet; biosignature; electron multiplying charge coupled devices; microwave kinetic inductance device; transition-edge sensor; cryocooler ID X-RAY MICROCALORIMETERS; TRANSITION-EDGE SENSORS; ABSORBER DESIGN; TEMPERATURE; PERFORMANCE; SYSTEMS; LIMITS; EARTH AB Direct spectroscopic biosignature characterization (hereafter "biosignature characterization") will be a major focus for future space observatories equipped with coronagraphs or starshades. Our aim in this article is to provide an introduction to potential detector and cooling technologies for biosignature characterization. We begin by reviewing the needs. These include nearly noiseless photon detection at flux levels as low as <0.001 photons s(-1) pixel(-1) in the visible and near-infrared. We then discuss potential areas for further testing and/or development to meet these needs using noncryogenic detectors (electron multiplying charge coupled devices, HgCdTe array, HgCdTe APD array), and cryogenic single-photon detectors (microwave kinetic inductance device arrays and transition-edge sensor microcalorimeter arrays). Noncryogenic detectors are compatible with the passive cooling that is strongly preferred by coronagraphic missions but would add nonnegligible noise. Cryogenic detectors would require active cooling, but in return, deliver nearly quantum-limited performance. Based on the flight dynamics of past NASA missions, we discuss reasonable vibration expectations for a large UV-Optical-IR space telescope (LUVOIR) and preliminary cooling concepts that could potentially fit into a vibration budget without being the largest element. We believe that a cooler that meets the stringent vibration needs of a LUVOIR is also likely to meet those of a starshade-based Habitable Exoplanet Imaging Mission. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. C1 [Rauscher, Bernard J.; Moseley, Samuel H.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Canavan, Edgar R.] NASA, Goddard Space Flight Ctr, Cryogen & Fluids Branch, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Sadleir, John E.; Stevenson, Thomas] NASA, Goddard Space Flight Ctr, Detector Syst Branch, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Rauscher, BJ (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Bernard.J.Rauscher@nasa.gov NR 46 TC 0 Z9 0 U1 7 U2 7 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041212 PG 16 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500011 ER PT J AU Rioux, N Thronson, H Feinberg, L Stahl, HP Redding, D Jones, A Sturm, J Collins, C Liu, A Bolcar, M AF Rioux, Norman Thronson, Harley Feinberg, Lee Stahl, H. Phillip Redding, Dave Jones, Andrew Sturm, James Collins, Christine Liu, Alice Bolcar, Matthew TI Future large-aperture UVOIR space observatory: reference designs SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE advanced technology large-aperture space telescope; large UVOIR surveyor; high-definition space telescope; design concept; exoplanets; space telescope AB Our joint NASA GSFC/JPL/MSFC and STScI study team has used community-developed science goals to derive mission needs, design parameters, notional instruments, and candidate mission architectures for a future large-aperture, noncryogenic UVOIR space observatory. We describe the feasibility assessment of system dynamic stability that supports coronagraphy. The observatory is in a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2-m aperture telescope that stows within a 5-m diameter launch vehicle fairing. This paper presents results from the latest cycle of integrated modeling through January 2016. The latest findings support the feasibility of secondary mirror support struts with a thickness on the order of an inch. Thin struts were found not to have a significant negative effect on wavefront error stability. Struts with a width as small as 1 in. may benefit some coronagraph designs by allowing more optical throughput. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Rioux, Norman; Thronson, Harley; Feinberg, Lee; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice; Bolcar, Matthew] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Stahl, H. Phillip] NASA, Marshall Space Flight Ctr, Huntsville, AL 35811 USA. [Redding, Dave] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Rioux, N (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM norman.m.rioux@nasa.gov NR 13 TC 0 Z9 0 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041214 PG 9 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500013 ER PT J AU Stahl, HP Hopkins, RC Schnell, A Smith, DA Jackman, A Warfield, KR AF Stahl, H. Philip Hopkins, Randall C. Schnell, Andrew Smith, David Alan Jackman, Angela Warfield, Keith R. TI Designing astrophysics missions for NASA's Space Launch System SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE space telescopes; astrophysics; astronomy; Advanced Technology Large-Aperture Space Telescope; Large UV-Optical-IR; Habitable Exoplanet Imaging AB Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Jackman, Angela] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Smith, David Alan] Victory Solut, 4601 Corp Dr Suite F, Huntsville, AL 35805 USA. [Warfield, Keith R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Stahl, HP (reprint author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM h.philip.stahl@nasa.gov NR 51 TC 0 Z9 0 U1 2 U2 2 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041213 PG 18 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500012 ER PT J AU Stark, CC Shaklan, S Lisman, D Cady, E Savransky, D Roberge, A Mandell, AM AF Stark, Christopher C. Shaklan, Stuart Lisman, Doug Cady, Eric Savransky, Dmitry Roberge, Aki Mandell, Avi M. TI Maximized exoEarth candidate yields for starshades SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE telescopes; numerical methods; planetary systems ID MISSION; COMPLETENESS; OCCULTER; PLANETS AB The design and scale of a future mission to directly image and characterize potentially Earth-like planets will be impacted, to some degree, by the expected yield of such planets. Recent efforts to increase the estimated yields, by creating observation plans optimized for the detection and characterization of Earth-twins, have focused solely on coronagraphic instruments; starshade-based missions could benefit from a similar analysis. Here we explore how to prioritize observations for a starshade given the limiting resources of both fuel and time, present analytic expressions to estimate fuel use, and provide efficient numerical techniques for maximizing the yield of starshades. We implemented these techniques to create an approximate design reference mission code for starshades and used this code to investigate how exoEarth candidate yield responds to changes in mission, instrument, and astrophysical parameters for missions with a single starshade. We find that a starshade mission operates most efficiently somewhere between the fuel-and exposuretime-limited regimes and, as a result, is less sensitive to photometric noise sources as well as parameters controlling the photon collection rate in comparison to a coronagraph. We produced optimistic yield curves for starshades, assuming our optimized observation plans are schedulable and future starshades are not thrust-limited. Given these yield curves, detecting and characterizing several dozen exoEarth candidates requires either multiple starshades or an eta(Earth) greater than or similar to 0.3. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Stark, Christopher C.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Shaklan, Stuart; Lisman, Doug; Cady, Eric] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Roberge, Aki; Mandell, Avi M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Stark, CC (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM cstark@stsci.edu RI Savransky, Dmitry/M-1298-2014 OI Savransky, Dmitry/0000-0002-8711-7206 NR 18 TC 2 Z9 2 U1 0 U2 0 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041204 PG 17 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500003 ER PT J AU Thronson, H Bolcar, MR Clampin, M Crooke, J Feinberg, L Oegerle, W Rioux, N Stahl, HP Stapelfeldt, K AF Thronson, Harley Bolcar, Matthew R. Clampin, Mark Crooke, Julie Feinberg, Lee Oegerle, William Rioux, Norman Stahl, H. Philip Stapelfeldt, Karl TI Path to a UV/optical/IR flagship: review of ATLAST and its predecessors SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE space telescopes; exoplanets; Advanced Technology Large-Aperture Telescope; large ultraviolet, optical, and infrared; High-Definition Space Telescope; James Webb Space Telescope ID HUBBLE-SPACE-TELESCOPE AB Our recently completed study for the Advanced Technology Large-Aperture Space Telescope (ATLAST) was the culmination of three years of initially internally funded work that built upon earlier engineering designs, science objectives, and technology priorities. Beginning in the mid-1980s, multiple teams of astronomers, technologists, and engineers developed concepts for a large-aperture UV/optical/IR space observatory intended to follow the Hubble Space Telescope (HST). Here, we summarize since the first significant conferences on major post-HST ultraviolet, optical, and infrared (UVOIR) observatories the history of designs, scientific goals, key technology recommendations, and community workshops. Although the sophistication of science goals and the engineering designs both advanced over the past three decades, we note the remarkable constancy of major characteristics of large post-HST UVOIR concepts. As it has been a priority goal for NASA and science communities for a half-century, and has driven much of the technology priorities for major space observatories, we include the long history of concepts for searching for Earth-like worlds. We conclude with a capsule summary of our ATLAST reference designs developed by four partnering institutions over the past three years, which was initiated in 2013 to prepare for the 2020 National Academies' Decadal Survey. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Thronson, Harley; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Rioux, Norman; Stapelfeldt, Karl] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Oegerle, William] Siesta Key Inst Astrophys, 530 Givens St, Sarasota, FL 34242 USA. [Stahl, H. Philip] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Thronson, H (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Harley.A.Thronson@nasa.gov NR 49 TC 4 Z9 4 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041210 PG 11 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500009 ER PT J AU Werner, M Swain, M Vasisht, G Wang, X Macenka, S Mandell, A Domagal-Goldman, S Green, J Stark, C AF Werner, Michael Swain, Mark Vasisht, Gautam Wang, Xu Macenka, Steven Mandell, Avi Domagal-Goldman, Shawn Green, Joel Stark, Chris TI Extension of ATLAST/LUVOIR's capabilities to 5 mu m or beyond SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE space telescopes; Large Ultraviolet Optical Infrared telescope; infrared telescopes; exoplanets ID EXOPLANET ATMOSPHERES; ECLIPSE OBSERVATIONS; GIANT PLANETS; REFRACTION; CLEAR; JWST AB ATLAST is a particular realization of the Large Ultraviolet Optical Infrared telescope (LUVOIR), a similar to 10-m diameter space telescope being defined for consideration in the 2020 Decadal Review of astronomy and astrophysics. ATLAST/LUVOIR is generally thought of as an ambient temperature (similar to 300 K) system, and little consideration has been given to using it at infrared wavelengths longward of similar to 2 mu m. We assess the scientific and technical benefits of operating such a telescope further into the infrared, with particular emphasis on the study of exoplanets, which is a major science theme for ATLAST/LUVOIR. For the study of exoplanet atmospheres, the capability to work at least out to 5.0 mu m is highly desirable. Such an extension of the long wavelength limit of ATLAST would greatly increase its capabilities for studies of exoplanet atmospheres and provide powerful capabilities for the study of a wide range of astrophysical questions. We present a concept for a fiber-fed grating spectrometer, which would enable R = 200 spectroscopy on ATLAST with minimal impact on the other focal planet instruments. We conclude that it is technically feasible and highly desirable scientifically to extend the wavelength range of ATLAST to at least 5 mu m. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Werner, Michael; Swain, Mark; Vasisht, Gautam; Wang, Xu; Macenka, Steven] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mandell, Avi; Domagal-Goldman, Shawn] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Green, Joel; Stark, Chris] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. RP Werner, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Michael.w.werner@jpl.nasa.gov NR 20 TC 0 Z9 0 U1 0 U2 0 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2016 VL 2 IS 4 DI 10.1117/1.JATIS.2.4.041205 PG 10 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7PT UT WOS:000383129500004 ER PT J AU Son, YS Jeong, JH Lee, HJ Kim, JC AF Son, Youn-Suk Jeong, Jin-Ho Lee, Hyung Joo Kim, Jo-Chun TI A novel control system for nitrogen dioxide removal and energy saving from an underground subway stations SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Nitrogen dioxide (NO2); Activated carbon; Adsorption; Indoor air quality (IAQ); Subway; Energy saving ID AIR-POLLUTION; SHORT-TERM; ACTIVATED CARBONS; HUMAN HEALTH; NOX; CHILDREN; PLATFORM; FILTERS; SEOUL; PM10 AB The importance of indoor air quality in a subway system is growing rapidly because passengers' health and displeasure are interrelated. Among diverse indoor pollutants, nitrogen dioxide (NO2) emitted from automobiles may flow into a platform of underground subway through ventilation holes or stairs. The level of NO2 in an underground subway station should be managed to prevent its adverse effects because NO2 is harmful to health. In this study, a novel control system (self-control system) equipped with panel-type hybrid activated carbon beds were developed and applied to remove NO2 and save energy for ventilation from underground subway stations. To evaluate the removal efficiency by varying influential factors such as superficial gas velocity and relative humidity, we measured the NO2 concentration from diverse sampling points (ambient, platform, and before and after the hybrid activated carbon bed) before and after operating the self-control system. As a result, the NO2 concentration at the ventilation hole of the subway station (12.3-113.6 ppb) was higher than that at the air monitoring station (9.2-68.4 ppb, AIRKOREA operated by Ministry of Environment in Korea). The level of NO2 was changed by varying the relative humidity in ambient air. The removal efficiency of NO2 decreased from 66.3% to 60.5% and the pressure drop of hybrid activated carbon bed in the system increased from 2.2 mmAq to 5.4 mmAq when the superficial gas velocity (depending on inverter frequency) increased from 1.04 m/s to 1.82 m/s. Additionally, the removal efficiency of NO2 rapidly decreased with elapsed time and was affected by relative humidity and weather conditions. Finally, the level of NO2 in the platform was less than 50 ppb (which is the standard value recommended by the Ministry of Environment, Korea), when the hybrid activated carbon bed was set to 90 degrees (vertical direction on air flow). When the self-control system was operated in the heating ventilating, and air conditioning system of the underground subway station, the NO2 level in the platform was considerably controlled to below 50 ppb and the power consumption for ventilation reduced. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Son, Youn-Suk] Korea Atom Energy Res Inst, Res Div Ind & Environm, Jeongeup Si 580185, Jeollabuk Do, South Korea. [Jeong, Jin-Ho; Kim, Jo-Chun] Konkuk Univ, Dept Environm Engn, Seoul 143701, South Korea. [Lee, Hyung Joo] NASA, Postdoctoral Program, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kim, JC (reprint author), Konkuk Univ, Dept Environm Engn, Seoul 143701, South Korea. EM jckim@konkuk.ac.kr FU Seoul Development Institute [CS070160]; R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies - Ministry of Environment (MOE), Republic of Korea [2015A0220020]; Nuclear R&D program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2012M2A2A6008733] FX The authors would like to thank Clarian H. for her insightful contributions. This research was conducted with support from the Seoul Development Institute (CS070160). This research was also supported by R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE) (2015A0220020), Republic of Korea. This research was supported by the Nuclear R&D program (2012M2A2A6008733) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. NR 53 TC 0 Z9 0 U1 14 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD OCT 1 PY 2016 VL 133 BP 212 EP 219 DI 10.1016/j.jclepro.2016.05.116 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DT5TJ UT WOS:000381545200020 ER PT J AU Coustenis, A Atreya, S Castillo, J Mueller-Wodarg, I Spilker, L Strazzulla, G AF Coustenis, A. Atreya, S. Castillo, J. Mueller-Wodarg, I. Spilker, L. Strazzulla, G. TI Preface to the special issue of PSS on "Surfaces, atmospheres and magnetospheres of the outer planets and their satellites and ring systems: Part XI" SO PLANETARY AND SPACE SCIENCE LA English DT Editorial Material C1 [Coustenis, A.] Univ Paris Diderot, Univ Paris 06, CNRS, LESIA Observ Paris, Meudon, France. [Atreya, S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Castillo, J.] CALTECH, JPL, Pasadena, CA 91125 USA. [Mueller-Wodarg, I.] Imperial Coll, London, England. [Spilker, L.] Jet Prop Lab, Pasadena, CA USA. [Strazzulla, G.] INAF Osservatorio Astrofis Catania, Catania, Italy. RP Coustenis, A (reprint author), Univ Paris Diderot, Univ Paris 06, CNRS, LESIA Observ Paris, Meudon, France. EM athena.coustenis@obspm.fr NR 0 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD OCT 1 PY 2016 VL 130 SI SI BP 1 EP 2 DI 10.1016/j.pss.2016.08.001 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW0AH UT WOS:000383302800001 ER PT J AU Parro, LM Ruiz, J Pappalardo, RT AF Parro, Laura M. Ruiz, Javier Pappalardo, Robert T. TI Timing of chaotic terrain formation in Argadnel Regio, Europa, and implications for geological history SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Europa; Jupiter, Satellites; Chaos; Geological history; Surfaces; Geological processes ID STATE IMAGING DATA; ICE SHELL; SUBSURFACE OCEAN; RECONSTRUCTION; CONSTRAINTS; CONVECTION; EVOLUTION; SURFACE; ORIGIN; RATES AB Chaos terrains are among the most prominent landforms of Europa, and are generally among the youngest features recorded on the surface. Chaos units were formed by to endogenic activity, maybe related to solid-state convection and thermal diapirism in the ice shell, perhaps aided by melting of salt rich ice bodies below the surface. In this work, we analyze the different units of chaotic terrain in a portion of Argadnel Regio, a region located on the anti-Jovian hemisphere of Europa, and their possible timing in the general stratigraphic framework of this satellite. Two different chaos units can be differentiated, based on surface texture, morphology, and cross-cutting relationships with other units, and from interpretations based on pre-existing surface restoration through elimination of a low albedo band. The existence of two stratigraphically different chaos units implies that conditions for chaos formation occurred during more than a single discreet time on Europa, at least in Argadnel Regio, and perhaps in other places. The existence of older chaos units on Europa might be related to convective episodes possibly favored by local conditions in the icy shell, such as variations in grain size, abundance of non water ice-components, or regional thickness of the brittle lithosphere or the entire ice shell. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Parro, Laura M.; Ruiz, Javier] Univ Complutense Madrid, Fac Ciencias Geol, Dept Geodinam, E-28040 Madrid, Spain. [Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Mail Stop 321-560, Pasadena, CA 91109 USA. RP Parro, LM (reprint author), Univ Complutense Madrid, Fac CC Geol, Dept Geodinam, C Jose Antonio Novais 12, E-28040 Madrid, Spain. EM lmparro@ucm.es RI Ruiz, Javier/P-3975-2015 OI Ruiz, Javier/0000-0002-3937-8380 NR 32 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD OCT 1 PY 2016 VL 130 SI SI BP 24 EP 29 DI 10.1016/j.pss.2016.02.002 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW0AH UT WOS:000383302800004 ER PT J AU Mousis, O Atkinson, DH Spilker, T Venkatapathy, E Poncy, J Frampton, R Coustenis, A Reh, K Lebreton, JP Fletcher, LN Hueso, R Amato, MJ Colaprete, A Ferri, F Stam, D Wurz, P Atreya, S Aslam, S Banfield, DJ Calcutt, S Fischer, G Holland, A Keller, C Kessler, E Leese, M Levacher, P Morse, A Munoz, O Renard, JB Sheridan, S Schmider, FX Snik, F Waite, JH Bird, M Cavalie, T Deleuil, M Fortney, J Gautier, D Guillot, T Lunine, JI Marty, B Nixon, C Orton, GS Sanchez-Lavega, A AF Mousis, O. Atkinson, D. H. Spilker, T. Venkatapathy, E. Poncy, J. Frampton, R. Coustenis, A. Reh, K. Lebreton, J. -P. Fletcher, L. N. Hueso, R. Amato, M. J. Colaprete, A. Ferri, F. Stam, D. Wurz, P. Atreya, S. Aslam, S. Banfield, D. J. Calcutt, S. Fischer, G. Holland, A. Keller, C. Kessler, E. Leese, M. Levacher, P. Morse, A. Munoz, O. Renard, J. -B. Sheridan, S. Schmider, F. -X. Snik, F. Waite, J. H. Bird, M. Cavalie, T. Deleuil, M. Fortney, J. Gautier, D. Guillot, T. Lunine, J. I. Marty, B. Nixon, C. Orton, G. S. Sanchez-Lavega, A. TI The Hera Saturn entry probe mission SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn; Atmosphere; Probe ID DOPPLER WIND EXPERIMENT; DEEP ZONAL WINDS; GALILEO PROBE; JUPITERS ATMOSPHERE; MASS-SPECTROMETER; LIGHTNING STORMS; CASSINI ISS; ORIGIN; ROSETTA; PLANETS AB The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Mousis, O.; Levacher, P.; Deleuil, M.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Atkinson, D. H.] Univ Idaho, Dept Elect & Comp Engn, Moscow, ID 83843 USA. [Spilker, T.] Solar Syst Sci & Explorat, Monrovia, CA USA. [Venkatapathy, E.; Colaprete, A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Poncy, J.] Thales Alenia Space, Cannes, France. [Frampton, R.] Boeing Co, Huntington Beach, CA USA. [Coustenis, A.; Lebreton, J. -P.; Gautier, D.] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, Paris, France. [Reh, K.; Orton, G. S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Lebreton, J. -P.; Renard, J. -B.] Univ Orleans, LPC2E, CNRS, 3a Ave Rech Sci, F-45071 Orleans 2, France. [Fletcher, L. N.; Calcutt, S.] Univ Oxford, Clarendon Lab, Atmospher Ocean & Planetary Phys, Parks Rd, Oxford OX1 3PU, England. [Hueso, R.; Sanchez-Lavega, A.] Univ Basque Country, UPV EHU, Dept Fis Aplicada 1, ETS Ingn, Alameda Urquijo S-N, Bilbao 48013, Spain. [Hueso, R.; Sanchez-Lavega, A.] CSIC, Unidad Asociada Grp Ciencias Planetarias UPV EHU, Bilbao 48013, Spain. [Amato, M. J.; Aslam, S.; Nixon, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ferri, F.] Univ Padua, Ctr Ateneo Studi & Attivita Spaziali Giuseppe Col, Via Venezia 15, I-35131 Padua, Italy. [Stam, D.] Delft Univ Technol, Aerosp Engn, Delft, Netherlands. [Wurz, P.] Univ Bern, Inst Phys, Space Sci & Planetol, Sidlerstr 5, CH-3012 Bern, Switzerland. [Atreya, S.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Banfield, D. J.; Lunine, J. I.] Cornell Univ, Ctr Radiophys & Space Res, Space Sci Bldg, Ithaca, NY 14853 USA. [Fischer, G.] Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria. [Holland, A.; Leese, M.; Morse, A.; Sheridan, S.] Open Univ, Dept Phys Sci, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. [Keller, C.; Snik, F.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Kessler, E.] Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany. [Munoz, O.] CSIC, Inst Astrofis Andalucia, Glorieta Astron S-N, E-18008 Granada, Spain. [Schmider, F. -X.; Guillot, T.] Observ Cote Azur, Lab Lagrange, BP 4229, F-06304 Nice 4, France. [Waite, J. H.] Southwest Res Inst, San Antonio, TX 78228 USA. [Bird, M.] Univ Bonn, Bonn, Germany. [Cavalie, T.] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. [Fortney, J.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Marty, B.] Nancy Univ, CRPG CNRS, 15 Rue Notre Dame Pauvres, F-54501 Vandoeuvre Les Nancy, France. RP Mousis, O (reprint author), Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. EM olivier.mousis@lam.fr RI Nixon, Conor/A-8531-2009; OI Nixon, Conor/0000-0001-9540-9121; Calcutt, Simon/0000-0002-0102-3170; Munoz, Olga/0000-0002-5138-3932; Banfield, Don/0000-0003-2664-0164; Hueso, Ricardo/0000-0003-0169-123X NR 49 TC 1 Z9 1 U1 13 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD OCT 1 PY 2016 VL 130 SI SI BP 80 EP 103 DI 10.1016/j.pss.2015.06.020 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW0AH UT WOS:000383302800009 ER PT J AU Schoepfer, SD Algeo, TJ Ward, PD Williford, KH Haggart, JW AF Schoepfer, Shane D. Algeo, Thomas J. Ward, Peter D. Williford, Kenneth H. Haggart, James W. TI Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction? SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Triassic; Jurassic; euxinia; Panthalassic; ammonium; Wrangellia ID QUEEN-CHARLOTTE-ISLANDS; JURASSIC BOUNDARY; BRITISH-COLUMBIA; ORGANIC-CARBON; HYDROGEN-SULFIDE; PHOSPHORUS; CONSEQUENCES; STRATIGRAPHY; WRANGELLIA; AMMONITE AB The end-Triassic mass extinction has been characterized as a 'greenhouse extinction', related to rapid atmospheric warming and associated changes in ocean circulation and oxygenation. The response of the marine nitrogen cycle to these oceanographic changes, and the extent to which mass extinction intervals represent a deviation in nitrogen cycling from other ice-free 'greenhouse' periods of Earth history, remain poorly understood. The well-studied Kennecott Point section in Haida Gwaii, British Columbia, Canada, was deposited in the open Panthalassic Ocean, and is used here as a test case to better understand changes in the nitrogen cycle and marine productivity from the pre-crisis greenhouse of the Rhaetian to the latest-Rhaetian crisis interval. We estimated marine productivity from the late Norian to the early Hettangian using TOC- and P-based paleoproductivity transform equations, and then compared these estimates to records of sedimentary nitrogen isotopes, redox-sensitive trace elements, and biomarker data. Major negative excursions in delta N-15 (to <= 0 parts per thousand) correspond to periods of depressed marine productivity. During these episodes, the development of a stable pycnocline below the base of the photic zone suppressed vertical mixing and limited N availability in surface waters, leading to low productivity and increased nitrogen fixation, as well as ecological stresses in the photic zone. The subsequent shoaling of euxinic waters into the ocean surface layer was fatal for most Triassic marine fauna, although the introduction of regenerated NH4+ into the photic zone may have allowed phytoplankton productivity to recover. These results indicate that the open-ocean nitrogen cycle was influenced by climatic changes during the latest Triassic, despite having existed in a greenhouse state for over 50 million years previously, and that low N availability limited marine productivity for hundreds of thousands of years during the end-Triassic crisis. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved. C1 [Schoepfer, Shane D.] Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada. [Algeo, Thomas J.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Algeo, Thomas J.] China Univ Geosci, State Key Labs Biogeol & Environm Geol & Geol Pro, Wuhan 430074, Peoples R China. [Ward, Peter D.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Williford, Kenneth H.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Haggart, James W.] Geol Survey Canada Vancouver, Vancouver, BC V6B 5J3, Canada. RP Schoepfer, SD (reprint author), Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada. EM shane.schoepfer@ucalgary.ca FU University of Washington Department of Earth and Space Sciences; National Aeronautics and Space Administration; Sedimentary Geology and Paleobiology program of the U.S. National Science Foundation [EAR-1053449]; NASA Exobiology program [NNX13AJ1IG]; China University of Geosciences-Wuhan [GPMR201301, BGL21407] FX The authors would like to express our gratitude to the Haida First Nation of Haida Gwaii for access to the sampling locality. We would also like to thank the University of Washington Department of Earth and Space Sciences for funding much of this work. We would like to especially thank the staff of the UW IsoLab for their help with isotope measurements. KHW acknowledges support from the National Aeronautics and Space Administration for work performed at the Jet Propulsion Laboratory, California Institute of Technology. TJA gratefully acknowledges support from the Sedimentary Geology and Paleobiology program of the U.S. National Science Foundation (EAR-1053449), the NASA Exobiology program (NNX13AJ1IG), and the China University of Geosciences-Wuhan (programs GPMR201301 and BGL21407). NR 50 TC 0 Z9 0 U1 22 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 1 PY 2016 VL 451 BP 138 EP 148 DI 10.1016/j.epsl.2016.06.050 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DV0GH UT WOS:000382595500014 ER PT J AU Liu, Y Ma, C Beckett, JR Chen, Y Guan, YB AF Liu, Yang Ma, Chi Beckett, John R. Chen, Yang Guan, Yunbin TI Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Martian crust; hydrothermal fluid; monazite; xenotime; chevkinite-perrierite; trachyandesite ID CHEVKINITE-GROUP MINERALS; NORTHWEST AFRICA 7034; METAMORPHIC ROCKS; ELECTRON-MICROPROBE; REGOLITH BRECCIA; MARE BASALT; MONAZITE; APATITE; XENOTIME; ZIRCON AB Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 +/- 0.4 Ga (2 sigma), 1.1 +/- 0.5 Ga (2 sigma), and 2.8 +/- 0.7 Ga (2 sigma), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 degrees C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and-(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the low Yb content relative to Gd and Dy in xenotime suggest the possible formation of xenotime as a byproduct of fluid-zircon reactions. On the basis of relatively fresh apatite grains and lithic clasts in the same samples, we propose that the fluid-rock/mineral reactions occurred in the source rocks before their inclusion in NWA 7034 and 7533. Additionally, monazite-bearing apatite and REE-mineral-bearing clasts are possibly derived from different crustal origins. Thus, our results imply the wide-occurrence of hydrothermal fluids in the martian crust at 1 Ga or older, which were probably induced by impacts or large igneous intrusions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Liu, Yang; Chen, Yang] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Ma, Chi; Beckett, John R.; Guan, Yunbin] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Liu, Y (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yang.liu@jpl.nasa.gov FU Jet Propulsion Laboratory; NASA [NNN13D465T]; NSF [EAR-0318518, DMR-00800065] FX We thank Ann Coppin at JPL for her assistance in the literature search. The constructive comments of two anonymous reviewers significantly improved the manuscript. We acknowledge the allocation of two NWA 7034 samples by the Institute of Meteoritics, University of New Mexico. Y.L. thanks the support from the Jet Propulsion Laboratory, which is managed by the California Institute of Technology (Caltech) under the contract with NASA. This work is supported in part by NASA Cosmochemistry grants NNN13D465T to Y.L. The EMP and SEM analyses were performed at the Caltech Geological and Planetary Science Division Analytical Facility, which is supported in part by NSF grants EAR-0318518 and DMR-00800065. NR 51 TC 1 Z9 1 U1 12 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 1 PY 2016 VL 451 BP 251 EP 262 DI 10.1016/j.epsl.2016.06.041 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DV0GH UT WOS:000382595500025 ER PT J AU Panerai, F White, JD Cochell, TJ Schroeder, OM Mansour, NN Wright, MJ Martin, A AF Panerai, Francesco White, Jason D. Cochell, Thomas J. Schroeder, Olivia M. Mansour, Nagi N. Wright, Michael J. Martin, Alexandre TI Experimental measurements of the permeability of fibrous carbon at high-temperature SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Porous media; Permeability; Thermal protection systems ID CHARRING ABLATIVE MATERIALS; THERMAL PROTECTION; GAS-PERMEABILITY; PYROLYSIS-GAS; ABLATORS; FLOW AB A series of experiments was performed to obtain permeability data on FiberForm (R), a commercial carbon preform used for manufacturing thermal protection systems. A porous sample was placed in a quartz flow-tube heated by an isothermal furnace. The setup was instrumented to measure mass flow through and pressure drop across the sample. The intrinsic permeability and the Klinkenberg correction, which accounts for rarefied effects, were computed from the experimental data. The role of the gas temperature and pressure on the effective permeability is shown, and it is demonstrated that with proper data reduction, the intrinsic permeability is strictly a function of the micro-structure of the material. A function for the effective permeability of FiberForm, dependent on temperature, pressure, pore geometry, and type of gas is proposed. The intrinsic permeability was evaluated at K-0 = 5.57 x 10(-11) m(2), with a Klinkenberg parameter of 8c/d(p) = 2.51 x 10(5) m(-1) and a reference porosity of phi(dagger)=0.87. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Panerai, Francesco; Schroeder, Olivia M.; Martin, Alexandre] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. [White, Jason D.] SRI Int, Adv Technol & Syst Div, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. [Cochell, Thomas J.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. [Mansour, Nagi N.] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA. [Wright, Michael J.] NASA, Ames Res Ctr, Entry Syst & Technol Div, Moffett Field, CA 94035 USA. RP Martin, A (reprint author), Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. EM Alexandre.Martin@uky.edu OI Martin, Alexandre/0000-0003-2216-2468 FU NASA [NNX14AI97G] FX Financial support for this work was provided by NASA Award NNX14AI97G. The authors are grateful to J. Marschall for initiating this project and engaging in useful discussions, as well as to F.S. Milos and Y.-K. Chen for reviewing the manuscript and providing constructive comments. NR 17 TC 2 Z9 2 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD OCT PY 2016 VL 101 BP 267 EP 273 DI 10.1016/j.ijheatmasstransfer.2016.05.016 PG 7 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA DS1XB UT WOS:000380417300025 ER PT J AU Khorasgani, H Biswas, G Sankararaman, S AF Khorasgani, Hamed Biswas, Gautam Sankararaman, Shankar TI Methodologies for system-level remaining useful life prediction SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE System-level prognostics; Remaining useful life (RUL); Estimation and prediction algorithms; Stochastic simulation; Particle filters; First order reliability method; Uncertainty effects ID RELIABILITY-ANALYSIS; PROGNOSTICS; FRAMEWORK; FILTERS; STATE; MODEL AB While most prognostics approaches focus on accurate computation of the degradation rate and the remaining useful life (RUL) of individual components, it is the rate at which the performance of subsystems and systems degrade that is of greater interest to the operators and maintenance personnel of these systems. We develop a comprehensive methodology for system-level prognostics under different forms of uncertainty in this paper. Our approach combines an estimation scheme with a prediction scheme to compute the RUL as a stochastic distribution over the life of the system. We compare two prediction methods: (1) stochastic simulation and (2) the inverse first order reliability method (inverse-FORM). We compare the computational complexity and the accuracy of the two approaches using a case study of a system with several degrading components. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Khorasgani, Hamed; Biswas, Gautam] Vanderbilt Univ, Inst Software Integrated Syst, 221 Kirkland Hall, Nashville, TN 37235 USA. [Sankararaman, Shankar] NASA, SGT Inc, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Khorasgani, H (reprint author), Vanderbilt Univ, Inst Software Integrated Syst, 221 Kirkland Hall, Nashville, TN 37235 USA. EM hamed.g.khorasgani@vanderbilt.edu OI Khorasgani, Hamed/0000-0002-0892-6276 FU NASA SBIR [A1.04-9455, NNX15CA11C-QSI-DSC-15-002] FX The work is supported by NASA SBIR A1.04-9455 Phase 2 project with the award number NNX15CA11C-QSI-DSC-15-002. NR 34 TC 2 Z9 2 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD OCT PY 2016 VL 154 BP 8 EP 18 DI 10.1016/j.ress.2016.05.006 PG 11 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DT2QG UT WOS:000381324900002 ER PT J AU Carpenter, K Wiltsie, N Parness, A AF Carpenter, Kalind Wiltsie, Nick Parness, Aaron TI Rotary Microspine Rough Surface Mobility SO IEEE-ASME TRANSACTIONS ON MECHATRONICS LA English DT Article DE Climbing robots; mobile robots; robotics and automation; robots ID ADHESION; ROBOTS; ROBUST AB The Jet Propulsion Laboratory is developing a class of lightweight, highly mobile, crash-proof robots for reconnaissance and security applications. Arrays of independently compliant rotary microspines are used to build wheels that enable the robots to climb stairs, mount curbs, and climb rough vertical walls. This study presents many improvements to the rotary microspine wheels and several new configurations of the robotic platforms, including miniaturized robots weighing less than 10 g. New microspine flexure materials are presented including viscoelastic flexures that dampen the impact of individual hook elements, and mass-manufacturable microspines made using a single cast process over steel wire in place of elastic flexures. Rapid iteration of microspine designs was done using shape deposition manufacturing and a singlewheeled test robot. This process allowed new wheel concepts to go from design to testing in just three days. In addition, newconfigurations of robots with a powered wheel in the tail have improved reliability and demonstrated new capabilities like climbing heavily painted curbs, climbing stairs with overhanging face angles, and vertical climbing of concrete block buildings as tall as six stories. These results are presented in this paper and in the accompanying video. C1 [Carpenter, Kalind] CALTECH, Jet Prop Lab, Robot Vehicles & Manipulators Grp, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Wiltsie, Nick; Parness, Aaron] CALTECH, Jet Prop Lab, Extreme Environm Robot Grp, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. RP Carpenter, K (reprint author), CALTECH, Jet Prop Lab, Robot Vehicles & Manipulators Grp, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM kalind.c.carpenter@jpl.nasa.gov; Nicholas.Wiltsie@jpl.nasa.gov; aaron.Parness@jpl.nasa.gov FU Jet Propulsion Laboratory Office of the Chief Technologist FX The authors would like to thank the Jet Propulsion Laboratory Office of the Chief Technologist for their support of this work. NR 22 TC 0 Z9 0 U1 6 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4435 EI 1941-014X J9 IEEE-ASME T MECH JI IEEE-ASME Trans. Mechatron. PD OCT PY 2016 VL 21 IS 5 BP 2378 EP 2390 DI 10.1109/TMECH.2015.2511012 PG 13 WC Automation & Control Systems; Engineering, Manufacturing; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Engineering GA DU8OH UT WOS:000382472600016 ER PT J AU Toon, GC Blavier, JF Sung, K Rothman, LS Gordon, IE AF Toon, Geoffrey C. Blavier, Jean-Francois Sung, Keeyoon Rothman, Laurence S. Gordon, Iouli E. TI HITRAN spectroscopy evaluation using solar occultation FTIR spectra SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Spectroscopy; Infrared; Atmosphere; Remote Sensing; HITRAN ID DATABASE; (CH4)-C-12; PARAMETERS; REGION; SYSTEM; OXYGEN; BAND AB High resolution FTIR solar occultation spectra, acquired by the JPL MkIV Fourier transform spectrometer from balloon, covering 650-5650 cm(-1) at 0.01 cm(-1) resolution, are systematically analyzed using the last four versions of the HITRAN linelist (2000, 2004, 2008, 2012). The rms spectral fitting residuals are used to assess the quality and adequacy of the linelists as a function of wavenumber and altitude. Although there have been substantial overall improvements with each successive version of HITRAN, there are nevertheless a few spectral regions where the latest HITRAN version (2012) has regressed, or produces residuals that far exceed the noise level. A few of these instances are investigated further and their causes identified. We emphasize that fitting atmospheric spectra, in addition to laboratory spectra, should be part of the quality assurance for any new linelist before public release. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Toon, Geoffrey C.; Blavier, Jean-Francois; Sung, Keeyoon] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Rothman, Laurence S.; Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RP Toon, GC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Geoffrey.C.Toon@jpl.nasa.gov RI Sung, Keeyoon/I-6533-2015 FU NASA's Upper Atmosphere Research Program [NNH12ZDA001N-UACO]; NASA AURA program Grant [NNX14AI55G] FX We thank NASA's Upper Atmosphere Research Program who funded the JPL MkIV instrument through Grant NNH12ZDA001N-UACO. The Columbia Scientific Balloon Facility (CSBF) who launched the balloon and recovered the MkIV payload. The HITRAN team gratefully acknowledges support from the NASA AURA program Grant NNX14AI55G. We also thank the Worldwide spectroscopy community whose work is encapsulated in the HITRAN linelists. Part of this research was performed at the Jet Propulsion Laboratory, California of Technology, under contract with NASA. NR 27 TC 1 Z9 1 U1 3 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD OCT PY 2016 VL 182 BP 324 EP 336 DI 10.1016/j.jqsrt.2016.05.021 PG 13 WC Optics; Spectroscopy SC Optics; Spectroscopy GA DT2OZ UT WOS:000381321600028 ER PT J AU Oehler, DZ Mangold, N Hallet, B Fairen, AG Le Deit, L Williams, AJ Sletten, RS Martinez-Frias, J AF Oehler, Dorothy Z. Mangold, Nicolas Hallet, Bernard Fairen, Alberto G. Le Deit, Laetitia Williams, Amy J. Sletten, Ronald S. Martinez-Frias, Jesus TI Origin and significance of decameter-scale polygons in the lower Peace Vallis fan of Gale crater, Mars SO ICARUS LA English DT Article DE Mars; Mars climate; Mars surface ID UTOPIA PLANITIA; NORTHERN PLAINS; FAULT SYSTEMS; CRACKS; PINGOS; EVOLUTION; SEDIMENTATION; SHRINKAGE; SYNERESIS; SEQUENCE AB Decameter-scale polygons are extensively developed in the Bedded Fractured (BF) Unit of the lower Peace Vallis fan. The polygons occur in a likely extension of the Gillespie Lake Member, north of Yellowknife Bay, the section first drilled by the Mars Science Laboratory (MSL) mission. We examine hypotheses for the origin of these polygons to provide insight into the history of Gale crater. The polygons are similar to 4-30 m across, square to rectangular, and defined by similar to 0.5-4 m wide, generally straight troughs with orthogonal intersections. Polygon networks are typically oriented-orthogonal systems, with occasional nearly circular patterns, hundreds of meters across. Potential origins include cooling of lava, and for sedimentary units, syneresis, unloading, weathering, desiccation, impact processes, and cold-climate thermal contraction. Cold-climate thermal contraction is the hypothesis most consistent with the sedimentary nature of the BF Unit and the polygon morphology, geometry, networks, and apparent restriction to the coarse-grained Gillespie Lake Member. A periglacial setting further provides the best analogs for the circular networks and is consistent with geologic context and MSL data. Most of the decametric polygons appear to be ancient. They are confined to the Hesperian BF Unit, and only a few of their bounding fractures extend into younger or recently exposed units. In this regard, they differ from the majority of proposed thermal-contraction polygons on Mars, as those are generally thought to be young features, and, accordingly, the history of formation, preservation and reactivation of the decametric polygons is likely to be more complex than that of any proposed young polygons on Mars. The decametric polygons in the BF Unit may represent landforms developed in a cold but still comparatively wet interlude between a clement early Mars and the much drier and colder planet of today. (C) 2016 Elsevier Inc. All rights reserved. C1 [Oehler, Dorothy Z.] Johnson Space Ctr, Mission Sci, Astromat Res & Explorat Sci Div, Jacobs LZ Technol,JETS Contract, 2101 NASA Pkwy, Houston, TX 77058 USA. [Mangold, Nicolas; Le Deit, Laetitia] Univ Nantes, CNRS UMR 6112, LPG Nantes, Lab Planetol & Geodynam, Nantes, France. [Hallet, Bernard; Sletten, Ronald S.] Univ Washington, Dept Earth & Space Sci, POB 351360, Seattle, WA 98195 USA. [Fairen, Alberto G.] CSIC INTA, Ctr Astrobiol, Dept Planetol & Habitabil, Madrid 28850, Spain. [Fairen, Alberto G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Williams, Amy J.] Towson Univ, Dept Phys Astron & Geosci, 8000 York Rd, Towson, MD 21252 USA. [Martinez-Frias, Jesus] UCM, CSIC, Fac Ciencias Geol, Inst Geociencias,IGEO, C Jose Antonio Novais,2 Ciudad Univ, Madrid 28040, Spain. RP Oehler, DZ (reprint author), Johnson Space Ctr, Mission Sci, Astromat Res & Explorat Sci Div, Jacobs LZ Technol,JETS Contract, 2101 NASA Pkwy, Houston, TX 77058 USA. EM dorothy.z.oehler@nasa.gov FU Astromaterials Research and Exploration Science (ARES) Division at Johnson Space Center; NASA Mars Science Laboratory (MSL) Participating Scientist Grant [10-MSLPSP10-0094]; French National Agency for Space Studies, Centre National d'Etudes Spatiales (CNES); NASA Mars Science Laboratory via Malin Space Science Systems; Project "icyMARS" - European Research Council Starting Grant [307,496] FX DZO was supported by the Astromaterials Research and Exploration Science (ARES) Division at Johnson Space Center and the NASA Mars Science Laboratory (MSL) Participating Scientist Grant No. 10-MSLPSP10-0094. French authors (NM and LL) were supported by grants from the French National Agency for Space Studies, Centre National d'Etudes Spatiales (CNES). BH and RSS were supported by NASA Mars Science Laboratory via Malin Space Science Systems. AGF was supported by the Project "icyMARS", funded by the European Research Council Starting Grant No. 307,496. We thank Drs. Carlton C. Allen (ARES) and Devon Burr (University of Tennessee) for insights into martian periglacial land forms. We are grateful to Dr. Fred Calef III (Jet Propulsion Laboratory, MSL team) for preparing the HiRISE mosaic and the HiRISE DTM used in this paper. We thank Drs. Kyle House (US Geological Survey, Flagstaff) and Marli Miller (University of Oregon) for permission to use their images of desiccation polygons shown in Fig. 13 and Marli Miller for providing a high resolution version of her image. We also acknowledge the many contributions of the MSL science team to discussions, mapping, and data acquisition, and we thank Dr. Ken Edgett as well as two reviewers for their comments and suggestions which greatly improved the manuscript. NR 92 TC 2 Z9 2 U1 9 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2016 VL 277 BP 56 EP 72 DI 10.1016/j.icarus.2016.04.038 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS1UB UT WOS:000380385100004 ER PT J AU Horvath, DG Andrews-Hanna, JC Newman, CE Mitchell, KL Stiles, BW AF Horvath, David G. Andrews-Hanna, Jeffrey C. Newman, Claire E. Mitchell, Karl L. Stiles, Bryan W. TI The influence of subsurface flow on lake formation and north polar lake distribution on Titan SO ICARUS LA English DT Article DE Titan; Titan, hydrology; Titan, surface ID CASSINI RADAR; SEDIMENT TRANSPORT; METHANE CYCLE; SURFACE; MODEL; FEATURES; LIQUID; PERMEABILITY; SIMULATIONS; DISSOLUTION AB Observations of lakes, fluvial dissection of the surface, rapid variations in cloud cover, and lake shoreline changes indicate that Saturn's moon Titan is hydrologically active, with a hydrocarbon-based hydrological cycle dominated by liquid methane. Here we use a numerical model to investigate the Titan hydrological cycle - including surface, subsurface, and atmospheric components - in order to investigate the underlying causes of the observed distribution and sizes of lakes in the north polar region. The hydrocarbon-based hydrological cycle is modeled using a numerical subsurface flow model and analytical runoff scheme, driven by a general circulation model with an active methane-cycle. This model is run on synthetically generated topography that matches the fractal character of the observed topography, without explicit representation of the effects of erosion and deposition. At the scale of individual basins, intermediate to high permeability (10(-8)-10(-6) cm(2)) aquifers are required to reproduce the observed large stable lakes. However, at the scale of the entire north polar lake district, a high permeability aquifer results in the rapid flushing of methane through the aquifer from high polar latitudes to dry lower polar latitudes, where methane is removed by evaporation, preventing large lakes from forming. In contrast, an intermediate permeability aquifer slows the subsurface flow from high polar latitudes, allowing greater lake areas. The observed distribution of lakes is best matched by either a uniform intermediate permeability aquifer, or a combination of a high permeability cap at high latitudes surrounded by an intermediate permeability aquifer at lower latitudes, as could arise due to karstic processes at the north pole. The stability of Kraken Mare further requires reduction of the evaporation rate over the sea to 1% of the value predicted by the general circulation model, likely as a result of dissolved ethane, nitrogen, or organic solutes, and/or a climatic lake effect. These results reveal that subsurface flow through aquifers plays an important role in Titan's hydrological cycle, and exerts a strong influence over the distribution, size, and volatile budgets of Titan's lakes. (C) 2016 Elsevier Inc. All rights reserved. C1 [Horvath, David G.] Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA. [Horvath, David G.] Ctr Space Resources, 1500 Illinois St, Golden, CO 80401 USA. [Andrews-Hanna, Jeffrey C.] Southwest Res Inst, 1050 Walnut St, Boulder, CO 80302 USA. [Newman, Claire E.] Ashima Res, Suite 104,600 South Lake Ave, Pasadena, CA 91106 USA. [Mitchell, Karl L.; Stiles, Bryan W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Horvath, DG (reprint author), Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA.; Horvath, DG (reprint author), Ctr Space Resources, 1500 Illinois St, Golden, CO 80401 USA. EM dhorvath@mines.edu FU NASA Outer Planets Research Program [NNX10AQ06G] FX This work was supported by NASA Outer Planets Research Program grant NNX10AQ06G to JCAH. We are grateful to Reed Maxwell and Dave Benson for discussions that contributed to this work, and to Devon Burr and Alex Hayes for their thorough and thoughtful reviews of this manuscript. Some of this research was carried out at the California Institute of Technology Jet Propulsion Laboratory under a contract from NASA. NR 79 TC 0 Z9 0 U1 11 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2016 VL 277 BP 103 EP 124 DI 10.1016/j.icarus.2016.04.042 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS1UB UT WOS:000380385100008 ER PT J AU Fouchet, T Greathouse, TK Spiga, A Fletcher, LN Guerlet, S Leconte, J Orton, GS AF Fouchet, Thierry Greathouse, Thomas K. Spiga, Aymeric Fletcher, Leigh N. Guerlet, Sandrine Leconte, Jeremy Orton, Glenn S. TI Stratospheric aftermath of the 2010 Storm on Saturn as observed by the TEXES instrument. I. Temperature structure SO ICARUS LA English DT Article DE Saturn; atmosphere; Atmospheres; structure; Atmospheres; dynamics; Infrared observations ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; GREAT WHITE SPOTS; THERMAL STRUCTURE; OUTER PLANETS; GRAVITY-WAVES; SPACED DATA; MU-M; ATMOSPHERE; MODEL; OCCULTATION AB We report on spectroscopic observations of Saturn's stratosphere in July 2011 with the Texas Echelon Cross Echelle Spectrograph (TEXES) mounted on the NASA InfraRed Telescope Facility (IRTF). The observations, targeting several lines of the CH4 nu(4) band and the H-2 S(1) quadrupolar line, were designed to determine how Saturn's stratospheric thermal structure was disturbed by the 2010 Great White Spot. A study of Cassini Composite Infrared Spectrometer (CIRS) spectra had already shown the presence of a large stratospheric disturbance centered at a pressure of 2 hPa, nicknamed the beacon B0, and a tail of warm air at lower pressures (Fletcher et al. [2012] Icarus 221, 560-586). Our observations confirm that the beacon BO vertical structure determined by CIRS, with a maximum temperature of 180 +/- 1 K at 2 hPa, is overlain by a temperature decrease up to the 0.2-hPa pressure level. Our retrieved maximum temperature of 180 +/- 1 K is colder than that derived by CIRS (200 +/- 1 K), a difference that may be quantitatively explained by terrestrial atmospheric smearing. We propose a scenario for the formation of the beacon based on the saturation of gravity waves emitted by the GWS. Our observations also reveal that the tail is a planet-encircling disturbance in Saturn's upper stratosphere, oscillating between 0.2 and 0.02 hPa, showing a distinct wavenumber-2 pattern. We propose that this pattern in the upper stratosphere is either the signature of thermal tides generated by the presence of the warm beacon in the mid-stratosphere, or the signature of Rossby wave activity. (C) 2016 Elsevier Inc. All rights reserved. C1 [Fouchet, Thierry] Univ Paris Diderot, PSL Res Univ, CNRS, LESIA,Observ Paris,Sorbonne Paris Cite, 5 Pl Jules Janssen, Meudon, France. [Fouchet, Thierry] Univ Paris 06, Sorbonne Univ, UMR 8109, LESIA, Meudon, France. [Greathouse, Thomas K.] Southwest Res Inst, Div 15, 6220 Culebra Rd, San Antonio, TX 78228 USA. [Spiga, Aymeric; Guerlet, Sandrine] Univ Paris 06, Sorbonne Univ, UMR 8539, LMD, F-75005 Paris, France. [Fletcher, Leigh N.] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. [Leconte, Jeremy] Univ Bordeaux, LAB, UMR 5804, F-33270 Florac, France. [Leconte, Jeremy] CNRS, LAB, UMR 5804, F-33270 Floirac, France. [Orton, Glenn S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Fouchet, T (reprint author), Observ Paris, LESIA, Batiment 17,5 Pl Jules Janssen, F-92195 Meudon, France. EM Thierry.Fouchet@obspm.fr RI Spiga, Aymeric/O-4858-2014; Fouchet, Thierry/C-6374-2017; OI Spiga, Aymeric/0000-0002-6776-6268; Fouchet, Thierry/0000-0001-9040-8285; Greathouse, Thomas/0000-0001-6613-5731 FU INSU/CNRS Programme national de planetologie; Institut universitaire de France; NASA PAST Grant [NNX08AW33G, NNX14AG35G]; National Aeronautics and Space Administration FX T. Fouchet acknowledges support from the INSU/CNRS Programme national de planetologie and from the Institut universitaire de France.r T. Greathouse acknowledges support from NASA PAST Grant NNX08AW33G used to retrieve the data and support for paper preparation from NASA PAST Grant NNX14AG35G.r G. Orton acknowledges support to the Jet Propulsion Laboratory, California Institute of Technology, from the National Aeronautics and Space Administration. NR 56 TC 2 Z9 2 U1 2 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2016 VL 277 BP 196 EP 214 DI 10.1016/j.icarus.2016.04.030 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS1UB UT WOS:000380385100014 ER PT J AU Jorda, L Gaskell, R Capanna, C Hviid, S Lamy, P Durech, J Faury, G Groussin, O Gutierrez, P Jackman, C Keihm, SJ Keller, HU Knollenberg, J Kuhrt, E Marchi, S Mottola, S Palmer, E Schloerb, FP Sierks, H Vincent, JB A'Hearn, MF Barbieri, C Rodrigo, R Koschny, D Rickman, H Barucci, MA Bertaux, JL Bertini, I Cremonese, G Da Deppo, V Davidsson, B Debei, S De Cecco, M Fornasier, S Fulle, M Guttler, C Ip, WH Kramm, JR Kuppers, M Lara, LM Lazzarin, M Moreno, JJL Marzari, F Naletto, G Oklay, N Thomas, N Tubiana, C Wenzel, KP AF Jorda, L. Gaskell, R. Capanna, C. Hviid, S. Lamy, P. Durech, J. Faury, G. Groussin, O. Gutierrez, P. Jackman, C. Keihm, S. J. Keller, H. U. Knollenberg, J. Kuehrt, E. Marchi, S. Mottola, S. Palmer, E. Schloerb, F. P. Sierks, H. Vincent, J. -B. A'Hearn, M. F. Barbieri, C. Rodrigo, R. Koschny, D. Rickman, H. Barucci, M. A. Bertaux, J. L. Bertini, I. Cremonese, G. Da Deppo, V. Davidsson, B. Debei, S. De Cecco, M. Fornasier, S. Fulle, M. Guettler, C. Ip, W. -H. Kramm, J. R. Kueppers, M. Lara, L. M. Lazzarin, M. Lopez Moreno, J. J. Marzari, F. Naletto, G. Oklay, N. Thomas, N. Tubiana, C. Wenzel, K-P. TI The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations SO ICARUS LA English DT Article DE Comets, nucleus; Comets, dynamics; Comets, origin; Image processing; Data reduction techniques ID SPACE-TELESCOPE OBSERVATIONS; SOLAR-SYSTEM OBJECTS; NUCLEUS PROPERTIES; OSIRIS CAMERAS; HALLEY; SIZE; CONSTRAINTS; MORPHOLOGY; GEOLOGY; MODEL AB The Rosetta spacecraft reached Comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) in August 2014 at an heliocentric distance of 3.6 a.u. and was then put in orbit around its nucleus to perform detailed observations. Among the collected data are the images acquired by the OSIRIS instrument up to the perihelion passage of the comet in August 2015, which allowed us to map the entire nucleus surface at high-resolution in the visible. Stereophotoclinometry methods have been used to reconstruct a global high-resolution shape model and to monitor its rotational parameters using data collected up to perihelion. The nucleus has a conspicuous bilobate shape with overall dimensions along its principal axes of (4.34 +/- 0.02) x (2.60 +/- 0.02) x (2.12 +/- 0.06) km. The best-fit ellipsoid dimensions of the individual lobes along their principal axes of inertia are found to be 4.10 x 3.52 x 1.63 km and 2.50 x 2.14 x 1.641cm. Their volume amounts to 66% and 27% of the total volume of the nucleus. The two lobes are connected by a "neck" whose volume has been estimated to represent similar to 7% of the total volume of the comet. Combining the derived volume of 18.8 +/- 0.3 km(3) with the mass of 9.982 +/- 0.003 x 10(12) kg determined by the Rosetta/RSI experiment, we obtained a bulk density of the nucleus of 532 +/- 7 kg m(-3). Together with the companion value of 535 35 kg m-3 deduced from the stereophotogrammetry shape model of the nucleus (Preusker et al. [2015] Astron. Astrophys. 583, A33), these constitute the first reliable and most accurate determination of the density of a cometary nucleus to date. The calculated porosity is quite large, ranging approximately from 70% to 75% depending upon the assumed density of the dust grains and the dust-to-ice mass ratio. The nature of the porosity, either micro or macro or both, remains unconstrained. The coordinates of the center of gravity are not compatible with a uniform nucleus density. The direction of the offset between the center of gravity and the center of figure suggests that the big lobe has a slightly higher bulk density compared to the small one. the center of mass position cannot be explained by different, but homogenous densities in the two lobes. The initial rotational period of 12.4041 +/- 0.0001 h of the nucleus persisted until October 2014. It then slightly increased to a maximum of 12.4304h reached on 19 May 2015 and finally dropped to 12.305 h just before perihelion on August 10, 2015. A periodogram analysis of the (RA, Dec) direction of the Z-axis of the comet obtained in parallel with the shape reconstruction exhibits a highly significant minima at 11.5 +/- 0.5 day clearly indicating an excited rotational state with an amplitude of 0.15 +/- 0.03 degrees. (C) 2016 Elsevier Inc. All rights reserved. C1 [Jorda, L.; Capanna, C.; Lamy, P.; Groussin, O.] Univ Aix Marseille, Lab Astrophys Marseille, UMR7326, CNRS, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France. [Gaskell, R.; Palmer, E.] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [Hviid, S.; Knollenberg, J.; Kuehrt, E.; Mottola, S.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. [Durech, J.] Charles Univ Prague, Fac Math & Phys, Astron Inst, V Holesovickch 2, CR-18000 Prague, Czech Republic. [Faury, G.] AKKA Technol, 6 Rue Roger Camboulives, F-31100 Toulouse, France. [Gutierrez, P.; Lara, L. M.; Lopez Moreno, J. J.] CSIC, Inst Astrofis Andalucia, Aptd 3004, E-18080 Granada, Spain. [Jackman, C.] KinetX Aerosp Inc, 21 W Easy St, Simi Valley, CA 93065 USA. [Keihm, S. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Keller, H. U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Marchi, S.] Southwest Res Inst, 1050 Walnut St, Boulder, CO 80302 USA. [Schloerb, F. P.] Univ Massachusetts, 619 Lederle Grad Res Tower, Amherst, MA 01003 USA. [Sierks, H.; Vincent, J. -B.; Guettler, C.; Kramm, J. R.; Oklay, N.; Tubiana, C.] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. [A'Hearn, M. F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Barbieri, C.; Lazzarin, M.; Marzari, F.] Univ Padua, Dept Phys & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Rodrigo, R.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Rodrigo, R.] Int Space Sci Inst, Hallerstr 6, CH-3012 Bern, Switzerland. [Koschny, D.] ESA RSSD, Keplerlaan 1,Postbus 299, NL-2201 AZ Noordwijk, Netherlands. [Rickman, H.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. [Rickman, H.; Davidsson, B.] PAS Space Res Ctr, Bartycka 18A, PL-00716 Warsaw, Poland. [Barucci, M. A.; Fornasier, S.] Univ Paris Diderot, Univ Paris 06, CNRS, LESIA,Obs Paris, 5 Pl J Janssen, F-92195 Meudon, France. [Bertaux, J. L.] CNRS UVSQ IPSL, LATMOS, 11 Blvd Alembert, F-78280 Guyancourt, France. [Bertini, I.; Naletto, G.] Univ Padua, Ctr Ateneo Studi & Attivita Spaziali Giuseppe Col, Via Venezia 15, I-35131 Padua, Italy. [Cremonese, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Da Deppo, V.; Naletto, G.] CNR IFN UOS Padova LUXOR, Via Trasea 7, I-35131 Padua, Italy. [Debei, S.] Univ Padua, Dept Ind Engn, Via Venezia 1, I-35131 Padua, Italy. [De Cecco, M.] Univ Trento, Via Mesiano 77, I-38100 Trento, Italy. [Fulle, M.] INAF, Osservatorio Astron, Via Tiepolo 11, I-34014 Trieste, Italy. [Ip, W. -H.] Natl Cent Univ, Inst Space Sci, Chungli 32054, Taiwan. [Kueppers, M.] ESA ESAC, POB 78, Villanueva De La Caliada 28691, Spain. [Naletto, G.] Univ Padua, Dept Informat Engn, Via Gradenigo 6-B, I-35131 Padua, Italy. [Thomas, N.] Univ Bern, Phys Inst, Sidlerstr 5, CH-3012 Bern, Switzerland. [Wenzel, K-P.] ESA SSO, Keplerlaan 1,Postbus 299, NL-2201 AZ Noordwijk, Netherlands. RP Jorda, L (reprint author), Univ Aix Marseille, Lab Astrophys Marseille, UMR7326, CNRS, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France. EM laurent.jorda@lam.fr RI Naletto, Giampiero/S-6329-2016; Gutierrez, Pedro/K-9637-2014; Durech, Josef/C-5634-2017; OI Naletto, Giampiero/0000-0003-2007-3138; Gutierrez, Pedro/0000-0002-7332-6269; Durech, Josef/0000-0003-4914-3646; fulle, marco/0000-0001-8435-5287 FU DLR; CNES; ASI; MEC; NASA; SNSB; Czech Science Foundation [15-04816S] FX The support of the national funding agencies DLR, CNES, ASI, MEC, NASA, and SNSB is gratefully acknowledged. We also thank the Rosetta Science Operations Center and the Rosetta Mission Operations Center for the successful operations of the Rosetta spacecraft and of its instrumental payload during all the Rosetta mission.; The work of JD was supported by the Grant 15-04816S of the Czech Science Foundation. NR 82 TC 9 Z9 9 U1 5 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2016 VL 277 BP 257 EP 278 DI 10.1016/j.icarus.2016.05.002 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS1UB UT WOS:000380385100017 ER PT J AU Jackson, RS Wiens, RC Vaniman, DT Beegle, L Gasnault, O Newsom, HE Maurice, S Meslin, PY Clegg, S Cousin, A Schroder, S Williams, JM AF Jackson, R. S. Wiens, R. C. Vaniman, D. T. Beegle, L. Gasnault, O. Newsom, H. E. Maurice, S. Meslin, P. -Y. Clegg, S. Cousin, A. Schroder, S. Williams, J. M. TI ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars SO ICARUS LA English DT Article DE Experimental techniques; Mars; Mars, surface ID INSTRUMENT SUITE; SYSTEM; UNIT AB The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. The drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, while the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. However, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected. (C) 2016 Elsevier Inc. All rights reserved. C1 [Jackson, R. S.; Newsom, H. E.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Wiens, R. C.; Clegg, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Vaniman, D. T.] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [Beegle, L.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Maurice, S.; Meslin, P. -Y.] Univ Toulouse, UPS OMP, IRAP, F-31000 Toulouse, France. [Maurice, S.; Meslin, P. -Y.; Cousin, A.; Schroder, S.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Williams, J. M.] Western Washington Univ, 516 High St, Bellingham, WA 98225 USA. RP Jackson, RS (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. EM ryansteelejackson@yahoo.com RI Gasnault, Olivier/F-4327-2010 OI Gasnault, Olivier/0000-0002-6979-9012 FU Mars Science Laboratory project; Centre National d'Etudes Spatiales (CNES) on the French part of the ChemCam project FX This work was supported by the Mars Science Laboratory project, with additional support from the Centre National d'Etudes Spatiales (CNES) on the French part of the ChemCam project. In addition, the authors would like to thank JPL for designing and leading this successful mission. The lead author would also like to thank his wife and parents for their support. NR 23 TC 0 Z9 0 U1 10 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2016 VL 277 BP 330 EP 341 DI 10.1016/j.icarus.2016.04.026 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS1UB UT WOS:000380385100023 ER PT J AU Rogers, JH Fletcher, LN Adamoli, G Jacquesson, M Vedovato, M Orton, GS AF Rogers, J. H. Fletcher, L. N. Adamoli, G. Jacquesson, M. Vedovato, M. Orton, G. S. TI A dispersive wave pattern on Jupiter's fastest retrograde jet at 20 degrees S SO ICARUS LA English DT Article DE Jupiter; Atmospheres; dynamics ID SOUTH EQUATORIAL BELT; 5-MICRON HOT-SPOTS; SMALL-SCALE WAVES; NONLINEAR SIMULATIONS; VERTICAL STRUCTURE; JOVIAN ATMOSPHERE; CLOUD STRUCTURE; 2009-2010 FADE; THERMAL WAVES; CASSINI ISS AB A compact wave pattern has been identified on Jupiter's fastest retrograding jet at 20 degrees S (the SEBs) on the southern edge of the South Equatorial Belt. The wave has been identified in both reflected sunlight from amateur observations between 2010 and 2015, thermal infrared imaging from the Very Large Telescope and near infrared imaging from the Infrared Telescope Facility. The wave pattern is present when the SEB is relatively quiescent and lacking large-scale disturbances, and is particularly notable when the belt has undergone a fade (whitening). It is generally not present when the SEB exhibits its usual large-scale convective activity ('rifts'). Tracking of the wave pattern and associated white ovals on its southern edge over several epochs have permitted a measure of the dispersion relationship, showing a strong correlation between the phase speed (-43.2 to -21.2 m/s) and the longitudinal wavelength, which varied from 4.4 to 10.0 degrees longitude over the course of the observations. Infrared imaging sensing low pressures in the upper troposphere suggest that the wave is confined to near the cloud tops. The wave is moving westward at a phase speed slower (i.e., less negative) than the peak retrograde wind speed (-62 m/s), and is therefore moving east with respect to the SEBs jet peak. Unlike the retrograde NEBn jet near degrees N, which is a location of strong vertical wind shear that sometimes hosts Rossby wave activity, the SEBs jet remains retrograde throughout the upper troposphere, suggesting the SEBs pattern cannot be interpreted as a classical Rossby wave. 2D windspeeds and thermal gradients measured by Cassini in 2000 are used to estimate the quasi-geostrophic potential vorticity gradient as a means of understanding the origin of the a wave. We find that the vorticity gradient is dominated by the baroclinic term and becomes negative (changes sign) in a region near the cloud-top level (400-700 mbar) associated with the SEBs. Such a sign reversal is a necessary (but not sufficient) condition for the growth of baroclinic instabilities, which is a potential source of the meandering wave pattern. (C) 2016 Elsevier Inc. All rights reserved. C1 [Rogers, J. H.] British Astron Assoc, Burlington House, London W1J 0DU, England. [Fletcher, L. N.] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. [Adamoli, G.; Jacquesson, M.] British Astron Assoc, JUPOS Team, London, England. [Vedovato, M.] Unione Astrofili Italiani, JUPOS Team, Rome, Italy. [Orton, G. S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Rogers, JH (reprint author), British Astron Assoc, Burlington House, London W1J 0DU, England. EM jrogers11@btinternet.com FU Royal Society Research Fellowship at the University of Leicester; NASA from Planetary Astronomy program; Paranal UT3/Melipal Observatory [286.C-5009A]; NASAs Infrared Telescope Facility [2015B010] FX This study has been made possible by the efforts of numerous amateur observers (listed in reports on the BAA and JUPOS web sites) and the JUPOS project developed by Grischa Hahn and Hans-Jorg Mettig. Fletcher was supported by a Royal Society Research Fellowship at the University of Leicester. Orton was supported by NASA from its Planetary Astronomy program through an award issued by the Jet Propulsion Laboratory, California Institute of Technology. We thank P. Irwin and colleagues for the use of the NEMESIS retrieval algorithm for the original CIRS spectral inversions in 2009, and P. Read for his constructive comments on the dynamic implications of this wave detection. We also thank two anonymous reviewers for their helpful criticism of this manuscript. We wish to thank the director and staff of the ESO Very Large Telescope for their assistance with the execution of the VISIR observations. This investigation was partially based on thermal-infrared observations acquired at the Paranal UT3/Melipal Observatory using Directors Discretionary Time (program ID 286.C-5009A) and near infrared observations acquired at NASAs Infrared Telescope Facility (program 2015B010), both led by PI Glenn Orton. We also express thanks to Padma Yanamandra-Fisher, Gregory Villard and Shirley Trinh for assistance during the IRTF observations, and Michael Sola for initial reduction of the NSFCam2 observations. The authors wish to recognise and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 62 TC 1 Z9 1 U1 7 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2016 VL 277 BP 354 EP 369 DI 10.1016/j.icarus.2016.05.028 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS1UB UT WOS:000380385100025 ER PT J AU Morisson, M Szopa, C Carrasco, N Buch, A Gautier, T AF Morisson, Marietta Szopa, Cyril Carrasco, Nathalie Buch, Arnaud Gautier, Thomas TI Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis SO ICARUS LA English DT Article DE Titan; Atmospheres, composition; Experimental techniques; Saturn, satellites; Prebiotic chemistry ID THOLINS; ATMOSPHERE; CHEMISTRY; HAZE; SPECTROSCOPY; SURFACE; PLASMA; MATTER; AMINO; WINDS AB Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N-2. The samples were pyrolyzed at temperatures covering the 200-700 degrees C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600 degrees C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the samples even if the number of released compounds can significantly differ. The hydrocarbon chain content increases in tholins when the CH4 ratio increases. A semi-quantitative study of the nitrites (most abundant chemical family in our chromatograms) released during the pyrolysis shows the existence of a correlation between the amount of a nitrite released and its molecular mass, similarly to the previous quantification of nitrites in the plasma gas-phase. Moreover, numerous nitrites are present both in tholins and in the gas phase, confirming their suspected role in the gas phase as precursors of the solid organic particles. (C) 2016 Elsevier Inc. All rights reserved. C1 [Morisson, Marietta; Buch, Arnaud] Ecole Cent Supelec, LGPM, Chatenay Malabry, France. [Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie] Univ Paris 06, CNRS, UVSQ Univ Paris Saclay, LATMOS IPSL, Guyancourt, France. [Szopa, Cyril; Carrasco, Nathalie] Inst Univ France, F-75005 Paris, France. [Gautier, Thomas] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Morisson, M (reprint author), Ecole Cent Supelec, LGPM, Chatenay Malabry, France.; Morisson, M (reprint author), Univ Paris Saclay, Cent Supelec, Lab Chem Engn & Mat, F-92295 Chatenay Malabry, France. EM marietta.morisson@centralesupelec.fr RI Carrasco, Nathalie/D-2365-2012 OI Carrasco, Nathalie/0000-0002-0596-6336 FU Programme National de Planetologie (PNP, INSU/CNES, France); European Research Council [636829] FX We gratefully acknowledge the Programme National de Planetologie (PNP, INSU/CNES, France) for support of this research. NC acknowledges the European Research Council for their financial support (ERC Starting Grant PRIMCHEM, grant agreement no636829). We thank David Dubois for his help in the English improvement of the article. NR 56 TC 0 Z9 0 U1 14 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2016 VL 277 BP 442 EP 454 DI 10.1016/j.icarus.2016.05.038 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS1UB UT WOS:000380385100033 ER PT J AU Yin, A Zuza, AV Pappalardo, RT AF Yin, An Zuza, Andrew V. Pappalardo, Robert T. TI Mechanics of evenly spaced strike-slip faults and its implications for the formation of tiger-stripe fractures on Saturn's moon Enceladus (vol 266, pg 204, 2016) SO ICARUS LA English DT Correction C1 [Yin, An; Zuza, Andrew V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Yin, An; Zuza, Andrew V.] Univ Calif Los Angeles, Inst Planets & Exoplanets, Los Angeles, CA 90095 USA. [Pappalardo, Robert T.] CALTECH, Jet Prop Lab, M-S 321-560, Pasadena, CA 91109 USA. RP Yin, A (reprint author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.; Yin, A (reprint author), Univ Calif Los Angeles, Inst Planets & Exoplanets, Los Angeles, CA 90095 USA. EM ayin54@gmail.com NR 1 TC 0 Z9 0 U1 6 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2016 VL 277 BP 466 EP 466 DI 10.1016/j.icarus.2016.06.025 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DS1UB UT WOS:000380385100035 ER PT J AU Rafael, S Martins, H Sa, E Carvalho, D Borrego, C Lopes, M AF Rafael, S. Martins, H. Sa, E. Carvalho, D. Borrego, C. Lopes, M. TI Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Energy fluxes; Heat waves; Resilience measures; Urban areas; Future climate ID CENTRAL-EUROPEAN CITY; BALANCE SCHEME SUEWS; WATER-BALANCE; HEAT-STORAGE; ANTHROPOGENIC HEAT; WHITE ROOFS; GREEN ROOF; MODEL; CITIES; ISLAND AB Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of +200 W m(-2)) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximumreductions of -62.8 and -35 W m(-2), respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. (C) 2016 Elsevier B.V. All rights reserved. C1 [Rafael, S.; Martins, H.; Sa, E.; Carvalho, D.; Borrego, C.; Lopes, M.] Univ Aveiro, CESAM, Dept Environm & Planning, P-3810193 Aveiro, Portugal. [Martins, H.] SMHI, Ross Ctr, SE-60176 Norrkoping, Sweden. [Carvalho, D.] NASA, Goddard Space Flight Ctr, GMAO, Greenbelt, MD USA. [Carvalho, D.] Univ Space Res Assoc, GESTAR, Columbia, MD USA. RP Rafael, S (reprint author), Univ Aveiro, CESAM, Dept Environm & Planning, P-3810193 Aveiro, Portugal. EM sandra.rafael@ua.pt RI Rafael, Sandra/K-1890-2014; CESAM, UA/M-3762-2015 OI Rafael, Sandra/0000-0002-6559-4802; FU CLICURB project [EXCL/AAG-MAA/0383/2012]; European Funds through COMPETE; National Funds through the Portuguese Science Foundation (FCT) [PEst-C/MAR/LA0017/2013]; Portuguese 'Ministerio da Educacao e Ciencia'; POHP/FSE [SFRH/BD/103184/2014] FX The authors acknowledge the financial support of CLICURB project (EXCL/AAG-MAA/0383/2012), supported in the scope of the European Funds through COMPETE and by National Funds through the Portuguese Science Foundation (FCT) within project PEst-C/MAR/LA0017/2013. An acknowledgement to the Portuguese 'Ministerio da Educacao e Ciencia' and POHP/FSE funding program for the PhD grant of Sandra Rafael (SFRH/BD/103184/2014). NR 73 TC 0 Z9 0 U1 20 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD OCT 1 PY 2016 VL 566 BP 1500 EP 1510 DI 10.1016/j.scitotenv.2016.06.037 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA DS8VK UT WOS:000381060900144 PM 27317136 ER PT J AU Perez, LM Carpenter, JM Andrews, SM Ricci, L Isella, A Linz, H Sargent, AI Wilner, DJ Henning, T Deller, AT Chandler, CJ Dullemond, CP Lazio, J Menten, KM Corder, SA Storm, S Testi, L Tazzari, M Kwon, W Calvet, N Greaves, JS Harris, RJ Mundy, LG AF Perez, Laura M. Carpenter, John M. Andrews, Sean M. Ricci, Luca Isella, Andrea Linz, Hendrik Sargent, Anneila I. Wilner, David J. Henning, Thomas Deller, Adam T. Chandler, Claire J. Dullemond, Cornelis P. Lazio, Joseph Menten, Karl M. Corder, Stuartt A. Storm, Shaye Testi, Leonardo Tazzari, Marco Kwon, Woojin Calvet, Nuria Greaves, Jane S. Harris, Robert J. Mundy, Lee G. TI Spiral density waves in a young protoplanetary disk SO SCIENCE LA English DT Article ID GRAVITATING CIRCUMSTELLAR DISCS; STAR-FORMATION; AB AURIGAE; MWC 758; ARMS; ACCRETION; OPHIUCHUS; IMAGES; PLANET; ALMA AB Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk. C1 [Perez, Laura M.; Menten, Karl M.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Carpenter, John M.; Corder, Stuartt A.] Joint Atacama Large Millimeter Submillimeter Arra, Ave Alonso Cordova 3107, Santiago, Chile. [Andrews, Sean M.; Ricci, Luca; Wilner, David J.; Storm, Shaye] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Isella, Andrea] Rice Univ, 6100 Main St, Houston, TX 77005 USA. [Linz, Hendrik; Henning, Thomas] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Sargent, Anneila I.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Deller, Adam T.] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Chandler, Claire J.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. [Dullemond, Cornelis P.] Heidelberg Univ, Ctr Astron, Albert Ueberle Str 2, Heidelberg, Germany. [Lazio, Joseph] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91106 USA. [Testi, Leonardo; Tazzari, Marco] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Testi, Leonardo] Ist Nazl Astrofis INAF Osservatorio Astrofis Arce, Largo E Fermi 5, I-50125 Florence, Italy. [Kwon, Woojin] Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 34055, South Korea. [Kwon, Woojin] Korea Univ Sci & Technol, 217 Gajeong Ro, Daejeon 34113, South Korea. [Calvet, Nuria] Univ Michigan, 830 Dennison Bldg,500 Church St, Ann Arbor, MI 48109 USA. [Greaves, Jane S.] Cardiff Univ, Sch Phys & Astron, 4 Parade, Cardiff CF24 3AA, S Glam, Wales. [Harris, Robert J.] Univ Illinois, 1002 West Green St, Urbana, IL 61801 USA. [Mundy, Lee G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Perez, LM (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM lperez@mpifr-bonn.mpg.de OI Tazzari, Marco/0000-0003-3590-5814; Deller, Adam/0000-0001-9434-3837 FU Alexander von Humboldt Foundation; NSF [AST-1109334/1535809, AST 1140063]; NASA Origins of Solar Systems program [NNX14AD26G] FX We thank L. Loinard for useful discussions. L.M.P. acknowledges support from the Alexander von Humboldt Foundation. A.I. acknowledges support from NSF award AST-1109334/1535809 and from the NASA Origins of Solar Systems program through award NNX14AD26G. A.I.S. is partially supported by NSF grant AST 1140063. The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation (NSF) operated under cooperative agreement by Associated Universities Inc. (AUI). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2013.1.00498.S, which can be obtained from the ALMA Science Data Archive, https://almascience.nrao.edu/alma-data (raw format) and from https://safe.nrao.edu/evla/disks/elias2-27 in the calibrated fits format used for analysis here. ALMA is a partnership of the European Southern Observatory (ESO) (representing its member states), NSF (USA) and the National Institute of Natural Sciences (Japan), together with the National Research Council (Canada), National Science Council and Academia Sinica's Institute of Astronomy and Astrophysics (Taiwan), and the Korea Astronomy and Space Science Institute (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and the National Astronomical Observatory of Japan. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 30 TC 7 Z9 7 U1 2 U2 2 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 30 PY 2016 VL 353 IS 6307 BP 1519 EP 1521 DI 10.1126/science.aaf8296 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB8YU UT WOS:000387678700040 PM 27708098 ER PT J AU Jones, CM Hoffmayer, ER Gropp, RP AF Jones, Christian M. Hoffmayer, Eric R. Gropp, Robin P. TI First record of a leucistic Narcine bancrofti (Elasmobranchii, Narcinidae) from the northern Gulf of Mexico SO CYBIUM LA English DT Article DE Narcinidae; Narcine bancrofti; Gulf of Mexico; Leucism; First record ID ALBINISM; SHARK C1 [Jones, Christian M.; Hoffmayer, Eric R.; Gropp, Robin P.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, PO Drawer 1207, Pascagoula, MS 39567 USA. RP Jones, CM (reprint author), Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, PO Drawer 1207, Pascagoula, MS 39567 USA. EM christian.jones@noaa.gov; eric.hoffmayer@noaa.gov; robin.gropp@noaa.gov NR 16 TC 0 Z9 0 U1 3 U2 3 PU SOC FRANCAISE D ICHTYOLOGIE PI PARIS PA MUSEUM NATL D HISTOIRE NATURELLE, 43 RUE CUVIER, 75231 PARIS, FRANCE SN 0399-0974 J9 CYBIUM JI Cybium PD SEP 30 PY 2016 VL 40 IS 3 BP 249 EP 251 PG 3 WC Zoology SC Zoology GA EA3YA UT WOS:000386544000009 ER PT J AU Park, Y Krause, E Dodelson, S Jain, B Amara, A Becker, MR Bridle, SL Clampitt, J Crocce, M Fosalba, P Gaztanaga, E Honscheid, K Rozo, E Sobreira, F Sanchez, C Wechsler, RH Abbott, T Abdalla, FB Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Rosell, AC Kind, MC Carretero, J Castander, FJ da Costa, LN Depoy, DL Desai, S Dietrich, JP Doel, P Eifler, TF Neto, AF Fernandez, E Finley, DA Flaugher, B Gerdes, DW Gruen, D Gruendl, RA Gutierrez, G James, DJ Kent, S Kuehn, K Kuropatkin, N Lima, M Maia, MAG Marshall, JL Melchior, P Miller, CJ Miquel, R Nichol, RC Ogando, R Plazas, AA Roe, N Romer, AK Rykoff, ES Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Soares-Santos, M Suchyta, E Swanson, MEC Tarle, G Thaler, J Vikram, V Walker, AR Weller, J Zuntz, J AF Park, Y. Krause, E. Dodelson, S. Jain, B. Amara, A. Becker, M. R. Bridle, S. L. Clampitt, J. Crocce, M. Fosalba, P. Gaztanaga, E. Honscheid, K. Rozo, E. Sobreira, F. Sanchez, C. Wechsler, R. H. Abbott, T. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Carnero Rosell, A. Carrasco Kind, M. Carretero, J. Castander, F. J. da Costa, L. N. DePoy, D. L. Desai, S. Dietrich, J. P. Doel, P. Eifler, T. F. Fausti Neto, A. Fernandez, E. Finley, D. A. Flaugher, B. Gerdes, D. W. Gruen, D. Gruendl, R. A. Gutierrez, G. James, D. J. Kent, S. Kuehn, K. Kuropatkin, N. Lima, M. Maia, M. A. G. Marshall, J. L. Melchior, P. Miller, C. J. Miquel, R. Nichol, R. C. Ogando, R. Plazas, A. A. Roe, N. Romer, A. K. Rykoff, E. S. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Soares-Santos, M. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Vikram, V. Walker, A. R. Weller, J. Zuntz, J. TI Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL PARAMETER CONSTRAINTS; HALO OCCUPATION DISTRIBUTION; THEORETICAL FRAMEWORK; POWER SPECTRA; MATTER; MASS; PROBE; COMBINATION; DEPENDENCE; SUPERNOVAE AB The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties. C1 [Park, Y.; Dodelson, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Park, Y.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Krause, E.; Becker, M. R.; Wechsler, R. H.; Burke, D. L.; Rykoff, E. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Dodelson, S.; Sobreira, F.; Allam, S.; Buckley-Geer, E.; Finley, D. A.; Flaugher, B.; Gutierrez, G.; Kent, S.; Kuropatkin, N.; Scarpine, V.; Soares-Santos, M.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Jain, B.; Clampitt, J.; Eifler, T. F.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Amara, A.] Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Becker, M. R.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Bridle, S. L.; Zuntz, J.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England. [Crocce, M.; Fosalba, P.; Gaztanaga, E.; Carretero, J.; Castander, F. J.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans,S-N, Barcelona 08193, Spain. [Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Sobreira, F.; Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Sanchez, C.; Carretero, J.; Fernandez, E.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Wechsler, R. H.; Burke, D. L.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Abbott, T.; James, D. J.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carrasco Kind, M.; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 West Green St, Urbana, IL 61801 USA. [Carrasco Kind, M.; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [DePoy, D. L.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.] Univ Munich, Dept Phys, Scheinerstr 1, D-81679 Munich, Germany. [Desai, S.; Dietrich, J. P.; Weller, J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Dietrich, J. P.; Gruen, D.; Weller, J.] Univ Munich, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.; Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Dept Fis Matemat, Inst Fis, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Roe, N.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Thaler, J.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Park, Y (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.; Park, Y (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. EM youngsoo@uchicago.edu; lise@slac.stanford.edu RI Lima, Marcos/E-8378-2010; Gaztanaga, Enrique/L-4894-2014; Ogando, Ricardo/A-1747-2010; OI Gaztanaga, Enrique/0000-0001-9632-0815; Ogando, Ricardo/0000-0003-2120-1154; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia; Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Dark Energy Survey; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council (ERC) under the European Union's Seventh Framework Programme including ERC [FP7/2007-2013, 240672, 291329, 306478]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-1125897]; U.S. Department of Energy [DE-FG02-95ER40896] FX Funding for the DES projects has been provided by the U.S. Department of Energy; the U.S. National Science Foundation; the Ministry of Science and Education of Spain; the Science and Technology Facilities Council of the United Kingdom; the Higher Education Funding Council for England; the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; the Kavli Institute of Cosmological Physics at the University of Chicago; the Center for Cosmology and Astro-Particle Physics at the Ohio State University; the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University; Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao; the Deutsche Forschungsgemeinschaft; and the collaborating institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant No. AST-1138766. The collaborating institutions are Argonne National Laboratory; the University of California at Santa Cruz; the University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid; the University of Chicago; University College London; the DES-Brazil Consortium; the University of Edinburgh; the Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; the University of Illinois at Urbana-Champaign; the Institut de Ciencies de l'Espai (IEEC/CSIC); the Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe; the University of Michigan; the National Optical Astronomy Observatory; the University of Nottingham; the Ohio State University; the University of Pennsylvania; the University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; the University of Sussex; and Texas A&M University. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2012-39559, No. ESP2013-48274, and No. FPA2013-47986, and Centro de Excelencia Severo Ochoa Grant No. SEV-2012-0234. Research leading to these results has received funding from the European Research Council (ERC) under the European Union's Seventh Framework Programme (Grant No. FP7/2007-2013) including ERC Grants No. 240672, No. 291329, and No. 306478. This paper has gone through internal review by the DES collaboration. The DES publication number for this article is DES-2015-0056. The Fermilab preprint number is FERMILAB-PUB-15-311-A. This work was partially supported by the Kavli Institute for Cosmological Physics at the University of Chicago through Grant No. NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. The work of S. D. is supported by the U.S. Department of Energy, including Award No. DE-FG02-95ER40896. NR 49 TC 2 Z9 2 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 30 PY 2016 VL 94 IS 6 AR 063533 DI 10.1103/PhysRevD.94.063533 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DZ6IZ UT WOS:000385967100002 ER PT J AU Andersen, LM Hofmann, DC Vecchio, KS AF Andersen, Laura M. Hofmann, Douglas C. Vecchio, Kenneth S. TI Effect of zirconium purity on the glass-forming-ability and notch toughness of Cu43Zr43Al7Be7 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Bulk amorphous alloys; Crystallization; Toughness; Zirconium; Hafnium; Weibull statistics ID BULK METALLIC-GLASS; MECHANICAL-PROPERTIES; THERMAL-STABILITY; ZR-AG; ALLOYS; OXYGEN; CRYSTALLIZATION; STRENGTH; HF; COMPRESSION AB The effect of substituting standard grade zirconium lump (99.8% excluding up to 4% hafnium) for high purity zirconium crystal bar (99.5%) in a Cu43Zr43Al7Be7 bulk metallic glass (BMG) is examined. The final hafnium content in the BMG specimens was found to range from 0 to 0.44 at%. Introducing low purity zirconium significantly decreased the glass-forming-ability and reduced the notch toughness of the BMG. In contrast, when adding high purity hafnium to Cu43Zr43Al7Be7 made with high purity zirconium, no significant change in the glass-forming-ability or toughness was observed. This suggests that the introduction of low purity zirconium in BMGs creates a more complex response than a simple addition of hafnium. It is likely that other impurities in the material, such as oxygen, play a role in the complex crystallization kinetics and change in mechanical properties. The notch toughness was measured through four-point-bend tests, which showed a decrease in notch toughness from an average of similar to 53 MPa m(1/2) for the high purity samples to an average of similar to 29 MPa m(1/2) with full substitution of low purity zirconium. A similar decrease in glass-forming-ability and toughness is observed in commercially synthesized high purity Cu43Zr43Al7Be7. The large scale commercial process is expected to introduced some unintentional impurities, which decrease the properties of the BMG in the same way as the lower purity elements. Lastly, Weibull statistics are used to provide an analysis of variability in toughness for both ingots synthesized in a small laboratory arc-melter and those synthesized commercially. (C) 2016 Elsevier B.V. All rights reserved. C1 [Andersen, Laura M.; Vecchio, Kenneth S.] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Hofmann, Douglas C.] CALTECH, Jet Prop Lab, NASA, Mat Dev & Mfg Technol Grp, MS 18-105,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Vecchio, KS (reprint author), Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM kvecchio@ucsd.edu FU Achievement Rewards for College Scientists (ARCS) Foundation; NASA's Science Mission Directorate; Space Technology Mission Directorate through the Game Changing Development program [NAS7-03001]; Presidential Early Career Award; NASA FX Financial support from the Achievement Rewards for College Scientists (ARCS) Foundation is gratefully acknowledged. D.C. Hofmann acknowledges financial support from NASA's Science Mission Directorate and Space Technology Mission Directorate through the Game Changing Development program under Prime Contract # NAS7-03001 and from the Presidential Early Career Award. Part of this research was done at the jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 29 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD SEP 30 PY 2016 VL 674 BP 397 EP 405 DI 10.1016/j.msea.2016.08.009 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DV9WL UT WOS:000383292800047 ER PT J AU Khaykin, SM Pommereau, JP Riviere, ED Held, G Ploeger, F Ghysels, M Amarouche, N Vernier, JP Wienhold, FG Ionov, D AF Khaykin, Sergey M. Pommereau, Jean-Pierre Riviere, Emmanuel D. Held, Gerhard Ploeger, Felix Ghysels, Melanie Amarouche, Nadir Vernier, Jean-Paul Wienhold, Frank G. Ionov, Dmitry TI Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL) from high-resolution balloon observations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CHEMICAL LAGRANGIAN MODEL; IN-SITU MEASUREMENTS; LOWER STRATOSPHERE; LAND CONVECTION; ATMOSPHERIC APPLICATIONS; TROPOSPHERIC AIR; CIRRUS CLOUDS; VAPOR BUDGET; DEHYDRATION; IMPACT AB High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3 degrees S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20 degrees S. A signature of local cross-tropopause transport of water is observed in a particular sounding, performed on a convective day and revealing water vapour enhancements of up to 0.6 ppmv as high as the 404K (17.8 km) level. These are shown to originate from convective overshoots upwind detected by an S-band weather radar operating locally in Bauru. The accurate in situ observations uncover two independent moisture pathways into the tropical lower stratosphere, which are hardly detectable by space-borne sounders. We argue that the moistening by horizontal transport is limited by the weak meridional gradients of water, whereas the fast convective cross-tropopause transport, largely missed by global models, can have a substantial effect, at least at a regional scale. C1 [Khaykin, Sergey M.; Pommereau, Jean-Pierre] Univ Versailles St Quentin, CNRS, LATMOS, Guyancourt, France. [Riviere, Emmanuel D.; Ghysels, Melanie] Univ Reims, GSMA, Reims, France. [Riviere, Emmanuel D.; Ghysels, Melanie] CNRS, Reims, France. [Held, Gerhard] UNESP, Inst Pesquisas Meteorol IPMet, Bauru, SP, Brazil. [Ploeger, Felix] Forschungszentrum Julich, IEK 7, Julich, Germany. [Amarouche, Nadir] CNRS, Div Tech INSU, Meudon, France. [Vernier, Jean-Paul] Sci Syst & Applicat Inc, Hampton, VA USA. [Vernier, Jean-Paul] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Wienhold, Frank G.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Ionov, Dmitry] St Petersburg State Univ, St Petersburg, Russia. [Ghysels, Melanie] NIST, Gaithersburg, MD 20899 USA. RP Khaykin, SM (reprint author), Univ Versailles St Quentin, CNRS, LATMOS, Guyancourt, France. EM sergey.khaykin@latmos.ipsl.fr RI Ploeger, Felix/A-1393-2013 FU French Agence Nationale de la Recherche (ANR) [ANR-2010-BLAN-609-01]; ARISE2 project [653980] FX This work and the TRO-pico project (http://www.univ-reims.eu/minisite_134/tro-pico/homepage-presentation-of -the-project, 12171,21885.html) were supported by the French Agence Nationale de la Recherche (ANR) under contract ANR-2010-BLAN-609-01 and H2020 ARISE2 project (ref. 653980, http://arise-project.eu/). We express our sincere gratitude to the personnel of IPMet for providing an infrastructure and manpower, especially for their invaluable help with the balloon operation during the campaign. We also thank three anonymous reviewers for useful remarks that helped to improve the article. NR 54 TC 0 Z9 0 U1 8 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD SEP 29 PY 2016 VL 16 IS 18 BP 12273 EP 12286 DI 10.5194/acp-16-12273-2016 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8RD UT WOS:000385396900004 ER PT J AU Ruane, AC Teichmann, C Arnell, NW Carter, TR Ebi, KL Frieler, K Goodess, CM Hewitson, B Horton, R Kovats, RS Lotze, HK Mearns, LO Navarra, A Ojima, DS Riahi, K Rosenzweig, C Themessl, M Vincent, K AF Ruane, Alex C. Teichmann, Claas Arnell, Nigel W. Carter, Timothy R. Ebi, Kristie L. Frieler, Katja Goodess, Clare M. Hewitson, Bruce Horton, Radley Kovats, R. Sari Lotze, Heike K. Mearns, Linda O. Navarra, Antonio Ojima, Dennis S. Riahi, Keywan Rosenzweig, Cynthia Themessl, Matthias Vincent, Katharine TI The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6 SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID SCENARIOS; MODELS; CITIES; 21ST-CENTURY; PROJECTIONS; ECOSYSTEMS; FISHERIES; MALARIA; AFRICA; RISK AB This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decision-makers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs and indicated user needs for the gridding and processing of model output. C1 [Ruane, Alex C.; Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Teichmann, Claas] Helmholtz Zentrum Geesthacht, Climate Serv Ctr Germany GERICS, Hamburg, Germany. [Arnell, Nigel W.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Carter, Timothy R.] Finnish Environm Inst SYKE, Helsinki, Finland. [Ebi, Kristie L.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Frieler, Katja] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany. [Goodess, Clare M.] Univ East Anglia, Sch Environm Sci, Climat Res Unit, Norwich, Norfolk, England. [Hewitson, Bruce] Univ Cape Town, Climate Syst Anal Grp, Cape Town, South Africa. [Horton, Radley] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Kovats, R. Sari] London Sch Hyg & Trop Med, Ctr Global Change & Hlth, London, England. [Lotze, Heike K.] Dalhousie Univ, Dept Biol, Halifax, NS, Canada. [Mearns, Linda O.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Navarra, Antonio] Ctr EuroMediterraneo Cambiamenti Climat, Bologna, Italy. [Navarra, Antonio] Ist Nazl Geofis & Vulcanol, Bologna, Italy. [Ojima, Dennis S.] Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Ft Collins, CO 80523 USA. [Riahi, Keywan] Int Inst Appl Syst Anal, Laxenburg, Austria. [Themessl, Matthias] CCCA, Vienna, Austria. [Vincent, Katharine] Kulima Integrated Dev Solut Pty Ltd, Johannesburg, South Africa. [Vincent, Katharine] Univ Witwatersrand, Johannesburg, South Africa. RP Ruane, AC (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM alexander.c.ruane@nasa.gov FU NASA Modeling, Analysis, and Prediction Program FX The authors are grateful for contributions of the VIACS communities, in particular those who responded to requests for information related to variables and experimental simulation priorities, observational data sets, and gridding needs. We also thank Martin Juckes for his engagement regarding the development of VIACS variable packages within the CMIP archive structure. We also acknowledge participants at the Aspen Global Change Institute on the Experimental Design of CMIP6 in August 2014, which contributed initial conversations on the potential of an Advisory Board. Alex C. Ruane's work was supported in part by the NASA Modeling, Analysis, and Prediction Program. NR 91 TC 2 Z9 2 U1 11 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD SEP 29 PY 2016 VL 9 IS 9 BP 3493 EP 3515 DI 10.5194/gmd-9-3493-2016 PG 23 WC Geosciences, Multidisciplinary SC Geology GA DY8NB UT WOS:000385386000002 ER PT J AU Christiansen, F Putman, NF Farman, R Parker, DM Rice, MR Polovina, JJ Balazs, GH Hays, GC AF Christiansen, F. Putman, N. F. Farman, R. Parker, D. M. Rice, M. R. Polovina, J. J. Balazs, G. H. Hays, G. C. TI Spatial variation in directional swimming enables juvenile sea turtles to reach and remain in productive waters SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Animal tracking; Caretta caretta; HYCOM; Lagrangian drifters; Movement ecology; Ocean currents ID MAGNETIC NAVIGATION BEHAVIOR; LONG-DISTANCE MIGRATION; CARETTA-CARETTA; MARINE TURTLES; TRANSOCEANIC MIGRATIONS; SURFACE TEMPERATURE; CIRCULATION MODEL; PACIFIC-OCEAN; MAP; TRAJECTORIES AB Ocean currents play an important role in the movement and distribution of organisms and for small animals it is often assumed that their movements in the ocean are determined by passive drift. Here we challenge this assumption by conducting an experiment at the scale of an entire ocean basin to test whether small (similar to 35 cm) juvenile loggerhead sea turtles Caretta caretta move independently of ocean currents. By comparing the trajectories of 46 satellite tracked turtles (11502 positions, 12850 tracking days) with Lagrangian drifters (3716303 positions, 927529 tracking days) and virtual particles tracked within the Hybrid Coordinate Ocean Model (HYCOM), we found that in certain areas turtles moved in a similar manner to ocean currents, but in other areas turtle movement was markedly different from ocean currents, with turtles moving to areas thousands of kilometres from where they would have drifted passively. We further found that turtles were distributed in more-productive areas than would be expected if their movement depended on passive transport only. These findings demonstrate that regional variation in directional swimming contributes to young sea turtles reaching more favourable developmental habitats and supports laboratory work suggesting that young turtles have a map sense to determine their location in a seemingly featureless ocean. C1 [Christiansen, F.; Hays, G. C.] Deakin Univ, Sch Life & Environm Sci, Geelong Ctr Integrat Ecol, Warrnambool Campus, Geelong, Vic 3280, Australia. [Christiansen, F.] Murdoch Univ, Sch Vet & Life Sci, Cetacean Res Unit, Murdoch, WA 6150, Australia. [Putman, N. F.] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Putman, N. F.] Natl Ocean & Atmospher Adm, Atlantic Oceanog & Meteorol Lab, 4301 Rickenbacker Causeway, Miami, FL 33149 USA. [Farman, R.] Aquarium Lagons, BP 8185, Noumea 98807, New Caledonia. [Parker, D. M.] Univ Hawaii, Joint Inst Marine & Atmospher Res, 2032 SE Oregon State Univ Dr, Newport, OR 97365 USA. [Rice, M. R.] Hawaii Preparatory Acad, 65-1692 Kohala Mt Rd, Kamuela, HI 96743 USA. [Polovina, J. J.; Balazs, G. H.] NOAA, Pacific Islands Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2570 Dole St, Honolulu, HI 96822 USA. RP Christiansen, F (reprint author), Deakin Univ, Sch Life & Environm Sci, Geelong Ctr Integrat Ecol, Warrnambool Campus, Geelong, Vic 3280, Australia.; Christiansen, F (reprint author), Murdoch Univ, Sch Vet & Life Sci, Cetacean Res Unit, Murdoch, WA 6150, Australia. EM f.christiansen@murdoch.edu.au RI Putman, Nathan/A-9723-2017 OI Putman, Nathan/0000-0001-8485-7455 FU Pacific Islands Regional Office, NMFS, NOAA; NOAA Atlantic Oceanographic & Meteorological Laboratory FX We thank E. van Sebille and D. R. Kobayashi for helpful discussions during analyses. We thank L. Jim and the students from the Hawaii Preparatory Academy for help in the field. We thank K. Frutchey and R. Clarke of the Pacific Islands Regional Office, NMFS, NOAA for providing funding. Support for N.F.P. was provided by the NOAA Atlantic Oceanographic & Meteorological Laboratory. The animals used in this study were raised in captivity under permits from the New Caledonia government for the conduction of this experiment (permit 3189-2010/ARR/DENV issued 31 December 2010). All applicable government rules for proper sea turtle care and humane treatment were followed (no animals were sacrificed). We thank C. J. Limpus and 2 anonymous reviewers for their constructive comments, which helped to improve this manuscript. G.C.H. and F.C. formulated this study. G.H.B. conceived the turtle tracking project and coordinated the fieldwork, M.R.R. coordinated and performed the field work and D.M.P. assembled the turtle tracking data. F.C., N.F.P. and G.C.H. led the data analysis and writing. Other authors contributed to manuscript drafts. NR 54 TC 1 Z9 1 U1 6 U2 6 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PD SEP 28 PY 2016 VL 557 BP 247 EP 259 DI 10.3354/meps11874 PG 13 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA EB1LR UT WOS:000387114000018 ER PT J AU Tiira, J Moisseev, DN von Lerber, A Ori, D Tokay, A Bliven, LF Petersen, W AF Tiira, Jussi Moisseev, Dmitri N. von Lerber, Annakaisa Ori, Davide Tokay, Ali Bliven, Larry F. Petersen, Walter TI Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID PARTICLE TERMINAL VELOCITIES; RADAR REFLECTIVITY; SIZE SPECTRA; OPTICAL DISDROMETER; VIDEO DISDROMETER; ICE CLOUDS; HYDROMETEORS; DISTRIBUTIONS; PARAMETERS; MASS AB In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. A relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies, but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass-dimensional relations of snow are retrieved. For snow rates more than 0.2 mm h(-1), a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed. C1 [Tiira, Jussi; Moisseev, Dmitri N.; Ori, Davide] Univ Helsinki, Dept Phys, Helsinki, Finland. [Moisseev, Dmitri N.; von Lerber, Annakaisa] Finnish Meteorol Inst, Helsinki, Finland. [von Lerber, Annakaisa] Aalto Univ, Sch Elect Engn, Espoo, Finland. [Ori, Davide] Univ Bologna, Dept Biol Geol & Environm Sci, Bologna, Italy. [Ori, Davide] Univ Bologna, Dept Phys & Astron, Bologna, Italy. [Tokay, Ali] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Tokay, Ali] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Bliven, Larry F.] NASA GSFC Wallops Flight Facil, Wallops Isl, VA USA. [Petersen, Walter] NASA MSFC Earth Sci Off, Natl Space Sci & Technol Ctr, Huntsville, AL USA. RP Tiira, J (reprint author), Univ Helsinki, Dept Phys, Helsinki, Finland. EM jussi.tiira@helsinki.fi OI Tiira, Jussi/0000-0003-0851-3989 FU Academy of Finland [263333]; Academy of Finland Finnish Center of Excellence program [272041]; Vilho, Yrjo and Kalle Vaisala Foundation; SESAR Joint Undertaking Horizon 2020 grant [699221]; NASA Global Precipitation Measurement Mission ground validation program; Office of Science of the US Department of Energy ARM program FX We would like to acknowledge the Hyytiala station and University of Helsinki personnel for the daily tasks with measurements, in particular Matti Leskinen and Janne Levula. The research of Jussi Tiira and Dmitri N. Moisseev was supported by Academy of Finland (grant no. 263333) and the Academy of Finland Finnish Center of Excellence program (grant no. 272041). Annakaisa von Lerber was funded by grant of the Vilho, Yrjo and Kalle Vaisala Foundation and by SESAR Joint Undertaking Horizon 2020 grant agreement no. 699221 (PNOWWA). The instrumentation used in this study was supported by NASA Global Precipitation Measurement Mission ground validation program and by the Office of Science of the US Department of Energy ARM program. NR 56 TC 1 Z9 1 U1 4 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD SEP 28 PY 2016 VL 9 IS 9 BP 4825 EP 4841 DI 10.5194/amt-9-4825-2016 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8KH UT WOS:000385378300002 ER PT J AU Gomez, RG Vines, SK Fuselier, SA Cassak, PA Strangeway, RJ Petrinec, SM Burch, JL Trattner, KJ Russell, CT Torbert, RB Pollock, C Young, DT Lewis, WS Mukherjee, J AF Gomez, R. G. Vines, S. K. Fuselier, S. A. Cassak, P. A. Strangeway, R. J. Petrinec, S. M. Burch, J. L. Trattner, K. J. Russell, C. T. Torbert, R. B. Pollock, C. Young, D. T. Lewis, W. S. Mukherjee, J. TI Stable reconnection at the dusk flank magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAGNETIC RECONNECTION; X-LINE; DAYSIDE MAGNETOPAUSE; EARTHS MAGNETOPAUSE; NORTHWARD IMF; SHEAR; ELECTRON; FLOW; EVENTS; JETS AB The dusk flank magnetopause was surveyed with instruments on board the Magnetospheric Multiscale (MMS) spacecraft on 28 August 2015 between 13: 55 UT and 14: 15 UT during a period of persistent southward interplanetary magnetic field (IMF) with varying dawn-dusk component. Plasma measurements (500 eV electrons, > 2 keV ions) revealed the existence of at least one active reconnection region that persisted throughout the interval. The reconnection region convected equatorward despite the poleward and tailward magnetosheath flow, which ranged from slightly sub-Alfvenic to slightly super-Alfvenic throughout the interval. These results suggest that magnetic reconnection moved in response to changes in the IMF clock angle rather than the magnetosheath flow, which is corroborated using predictions of the maximum magnetic shear model. C1 [Gomez, R. G.; Vines, S. K.; Fuselier, S. A.; Burch, J. L.; Young, D. T.; Lewis, W. S.; Mukherjee, J.] Southwest Res Inst, San Antonio, TX 78238 USA. [Vines, S. K.; Fuselier, S. A.] Univ Texas San Antonio, San Antonio, TX USA. [Cassak, P. A.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV USA. [Strangeway, R. J.; Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA USA. [Petrinec, S. M.] Lockheed Martin ATC, Palo Alto, CA USA. [Trattner, K. J.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. [Torbert, R. B.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Pollock, C.] NASA, GSFC, Greenbelt, MD USA. RP Gomez, RG (reprint author), Southwest Res Inst, San Antonio, TX 78238 USA. EM rgomez@swri.edu RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 34 TC 1 Z9 1 U1 11 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 28 PY 2016 VL 43 IS 18 BP 9374 EP 9382 DI 10.1002/2016GL069692 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DY8PS UT WOS:000385392900003 ER PT J AU Love, JJ Pulkkinen, A Bedrosian, PA Jonas, S Kelbert, A Rigler, EJ Finn, CA Balch, CC Rutledge, R Waggel, RM Sabata, AT Kozyra, JU Black, CE AF Love, Jeffrey J. Pulkkinen, Antti Bedrosian, Paul A. Jonas, Seth Kelbert, Anna Rigler, E. Joshua Finn, Carol A. Balch, Christopher C. Rutledge, Robert Waggel, Richard M. Sabata, Andrew T. Kozyra, Janet U. Black, Carrie E. TI Geoelectric hazard maps for the continental United States SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GEOMAGNETICALLY INDUCED CURRENTS; USARRAY MAGNETOTELLURIC DATA; ELECTRICAL-RESISTIVITY; EARTH; SYSTEM; NETWORK; FIELDS; SPACE; STORM AB In support of a multiagency project for assessing induction hazards, we present maps of extreme-value geoelectric amplitudes over about half of the continental United States. These maps are constructed using a parameterization of induction: estimates of Earth surface impedance, obtained at discrete geographic sites from magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades of magnetic observatory data. Geoelectric amplitudes are estimated for geomagnetic waveforms having 240 s sinusoidal period and amplitudes over 10 min that exceed a once-per-century threshold. As a result of the combination of geographic differences in geomagnetic activity and Earth surface impedance, once-per-century geoelectric amplitudes span more than 2 orders of magnitude and are an intricate function of location. For north-south induction, once-per-century geoelectric amplitudes across large parts of the United States have a median value of 0.26 V/km; for east-west geomagnetic variation the median value is 0.23 V/km. At some locations, once-per-century geoelectric amplitudes exceed 3 V/km. C1 [Love, Jeffrey J.; Kelbert, Anna; Rigler, E. Joshua; Finn, Carol A.] US Geol Survey, Geomagnetism Program, Box 25046, Denver, CO 80225 USA. [Pulkkinen, Antti] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Bedrosian, Paul A.] US Geol Survey, Crustal Geophys & Geochem Sci Ctr, Box 25046, Denver, CO 80225 USA. [Jonas, Seth] Inst Def Anal, Sci & Technol Policy Inst, Washington, DC USA. [Balch, Christopher C.; Rutledge, Robert] NOAA, Space Weather Predict Ctr, Boulder, CO USA. [Waggel, Richard M.] Fed Energy Regulatory Commiss, Off Energy Infrastruct Secur, Washington, DC USA. [Sabata, Andrew T.] Fed Emergency Management Assoc, Denton, TX USA. [Kozyra, Janet U.; Black, Carrie E.] Natl Sci Fdn, 4201 Wilson Blvd, Arlington, VA 22230 USA. RP Love, JJ (reprint author), US Geol Survey, Geomagnetism Program, Box 25046, Denver, CO 80225 USA. EM jlove@usgs.gov OI Kelbert, Anna/0000-0003-4395-398X FU operation of magnetic observatories and INTERMAGNET for promoting high standards of observatory practice FX We thank J. Campanya, A.D. Chave, J. McCarthy, R. Sharma, J.L. Slate, A. Veeramany, and J.R. Woodroffe for reviewing a draft manuscript. We thank E.E. Bernabeu, W.S. Leith, and W. Murtagh for their useful conversations. Magnetic observatory data were obtained from either the Kyoto or Edinburgh World Data Centers or from INTERMAGNET. We thank the national institutes that support the operation of magnetic observatories and INTERMAGNET for promoting high standards of observatory practice (www.intermagnet.org). Geoelectric data can be obtained from the Kakioka Magnetic Observatory. EarthScope impedance tensors can be obtained from the Data Management Center of the Incorporated Research Institutions for Seismology (ds.iris.edu/ds/products/emtf). Views expressed in this paper do not necessarily represent those of FERC. NR 61 TC 1 Z9 1 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 28 PY 2016 VL 43 IS 18 BP 9415 EP 9424 DI 10.1002/2016GL070469 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DY8PS UT WOS:000385392900008 ER PT J AU Hwang, KJ Sibeck, DG Giles, BL Pollock, CJ Gershman, D Avanov, L Paterson, WR Dorelli, JC Ergun, RE Russell, CT Strangeway, RJ Mauk, B Cohen, IJ Torbert, RB Burch, JL AF Hwang, K. -J. Sibeck, D. G. Giles, B. L. Pollock, C. J. Gershman, D. Avanov, L. Paterson, W. R. Dorelli, J. C. Ergun, R. E. Russell, C. T. Strangeway, R. J. Mauk, B. Cohen, I. J. Torbert, R. B. Burch, J. L. TI The substructure of a flux transfer event observed by the MMS spacecraft SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLUSTER OBSERVATIONS; RECONNECTION; MAGNETOPAUSE; FIELD; FLOW; MAGNETOMETER; PLASMA AB On 15 August 2015, MMS (Magnetospheric Multiscale mission), skimming the dusk magnetopause, detected an isolated region of an increased magnetic strength and bipolar B-n, indicating a flux transfer event (FTE). The four spacecraft in a tetrahedron allowed for investigations of the shape and motion of the FTE. In particular, high-resolution particle data facilitated our exploration of FTE substructures and their magnetic connectivity inside and surrounding the FTE. Combined field and plasma observations suggest that the core fields are open, magnetically connected to the northern magnetosphere from which high-energy particles leak; ion "D" distributions characterize the axis of flux ropes that carry old-opened field lines; counterstreaming electrons superposed by parallel-heated components populate the periphery surrounding the FTE; and the interface between the core and draped regions contains a separatrix of newly opened magnetic field lines that emanate from the X line above the FTE. C1 [Hwang, K. -J.; Sibeck, D. G.; Giles, B. L.; Gershman, D.; Avanov, L.; Paterson, W. R.; Dorelli, J. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Hwang, K. -J.] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA. [Pollock, C. J.] Denali Sci LLC, Healy, AK USA. [Ergun, R. E.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. [Russell, C. T.; Strangeway, R. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Mauk, B.; Cohen, I. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. RP Hwang, KJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.; Hwang, KJ (reprint author), Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA. EM kyoung-joo.hwang@nasa.gov RI NASA MMS, Science Team/J-5393-2013; Cohen, Ian/K-3038-2015; Mauk, Barry/E-8420-2017 OI NASA MMS, Science Team/0000-0002-9504-5214; Cohen, Ian/0000-0002-9163-6009; Mauk, Barry/0000-0001-9789-3797 FU NASA's MMS project at the Goddard Space Flight Center FX This study was supported, in part, by NASA's MMS project at the Goddard Space Flight Center with data from MMS. MMS data sets were provided by the MMS science working group teams through the link (http://lasp.colorado.edu/mms/sdc/public/). We acknowledge MMS FPI (Thomas E. Moore, Yoshifumi Saito, Jean-Andre Sauvaud, Victoria Coffey, Benoit Lavraud, Michael Chandler, and Conrad Schiff), Fields and EPD teams for providing data. K.J.H. thanks members of the MMS Modeling/Theory team for useful discussions. NR 43 TC 1 Z9 1 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 28 PY 2016 VL 43 IS 18 BP 9434 EP 9443 DI 10.1002/2016GL070934 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DY8PS UT WOS:000385392900010 ER PT J AU Oman, LD Douglass, AR Salawitch, RJ Canty, TP Ziemke, JR Manyin, M AF Oman, Luke D. Douglass, Anne R. Salawitch, Ross J. Canty, Timothy P. Ziemke, Jerald R. Manyin, Michael TI The effect of representing bromine from VSLS on the simulation and evolution of Antarctic ozone SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SHORT-LIVED BROMOCARBONS; STRATOSPHERIC OZONE; TROPOSPHERIC BRO; SUBSTANCES; RETRIEVAL; EMISSIONS; RECOVERY; CHLORINE; TRENDS; LIMB AB We use the Goddard Earth Observing System Chemistry-Climate Model, a contributor to both the 2010 and 2014 World Meteorological Organization Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine (Br-y) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Bry are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument on NASA's Aura satellite. In addition, the near-zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Bry source from VSLS. C1 [Oman, Luke D.; Douglass, Anne R.; Ziemke, Jerald R.; Manyin, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Salawitch, Ross J.; Canty, Timothy P.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Ziemke, Jerald R.] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Manyin, Michael] Sci Syst & Applicat Inc, Lanham, MD USA. RP Oman, LD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM luke.d.oman@nasa.gov RI Salawitch, Ross/B-4605-2009; Douglass, Anne/D-4655-2012; Canty, Timothy/F-2631-2010 OI Salawitch, Ross/0000-0001-8597-5832; Canty, Timothy/0000-0003-0618-056X FU NASA ACMAP, Aura; MAP program FX We thank the NASA ACMAP, Aura, and MAP program for supporting this research. We would like to thank two anonymous reviewers for their helpful comments and suggestions to improve this manuscript. We also thank those involved in model development at GSFC and high-performance computing resources provided by NASA's Advanced Supercomputing (NAS) Division and the NASA Center for Climate Simulation (NCCS). All data and model output used in these figures will be available with the link to this publication at the GEOSCCM website (http://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/); additional information is available by contacting the corresponding author (luke.d.oman@nasa.gov). NR 39 TC 1 Z9 1 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 28 PY 2016 VL 43 IS 18 BP 9869 EP 9876 DI 10.1002/2016GL070471 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DY8PS UT WOS:000385392900062 ER PT J AU Coats, S Smerdon, JE Cook, BI Seager, R Cook, ER Anchukaitis, KJ AF Coats, S. Smerdon, J. E. Cook, B. I. Seager, R. Cook, E. R. Anchukaitis, K. J. TI Internal ocean-atmosphere variability drives megadroughts in Western North America SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ATLANTIC MULTIDECADAL OSCILLATION; LAST MILLENNIUM; TROPICAL PACIFIC; PAST MILLENNIUM; CLIMATE; DROUGHTS; RECONSTRUCTIONS; TIME AB Multidecadal droughts that occurred during the Medieval Climate Anomaly represent an important target for validating the ability of climate models to adequately characterize drought risk over the near-term future. A prominent hypothesis is that these megadroughts were driven by a centuries-long radiatively forced shift in the mean state of the tropical Pacific Ocean. Here we use a novel combination of spatiotemporal tree ring reconstructions of Northern Hemisphere hydroclimate to infer the atmosphere-ocean dynamics that coincide with megadroughts over the American West and find that these features are consistently associated with 10-30 year periods of frequent cold El Nino-Southern Oscillation conditions and not a centuries-long shift in the mean of the tropical Pacific Ocean. These results suggest an important role for internal variability in driving past megadroughts. State-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5, however, do not simulate a consistent association between megadroughts and internal variability of the tropical Pacific Ocean, with implications for our confidence in megadrought risk projections. C1 [Coats, S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Smerdon, J. E.; Cook, B. I.; Seager, R.; Cook, E. R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Cook, B. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Anchukaitis, K. J.] Univ Arizona, Sch Geog & Dev, Tucson, AZ USA. [Anchukaitis, K. J.] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. RP Coats, S (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM sloan.coats@colorado.edu RI Smerdon, Jason/F-9952-2011; Cook, Benjamin/H-2265-2012 FU NSF [AGS-1243204, AGS-1401400, ATM-0402474, AGS-1304245]; NASA; [AGS-1338734] FX S.C., J.E.S., and R.S. were supported by NSF awards AGS-1243204 and AGS-1401400. B.I.C. was supported by NASA. K.J.A. and E.R.C. were supported by NSF awards ATM-0402474 and AGS-1304245. K.J.A. was further supported by AGS-1338734. LDEO contribution number is 8058. The data used are listed in the references in section 2 and Table S1. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (Table S1) for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portal. We thank three anonymous reviewers for comments that greatly improved the quality of this manuscript. NR 55 TC 1 Z9 1 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 28 PY 2016 VL 43 IS 18 BP 9886 EP 9894 DI 10.1002/2016GL070105 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DY8PS UT WOS:000385392900064 ER PT J AU Pearson, JC Yu, SS Pirali, O AF Pearson, John C. Yu, Shanshan Pirali, Olivier TI Modeling the spectrum of the 2 nu(2) and nu(4) states of ammonia to experimental accuracy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INVERSION-ROTATION SPECTRA; PYRAMIDAL XY3 MOLECULES; LASER HETERODYNE MEASUREMENTS; SYMMETRIC-TOP MOLECULES; FILM DIODE-LASER; TUNED LAMB-DIP; FORBIDDEN TRANSITIONS; CENTRIFUGAL-DISTORTION; STARK SPECTROSCOPY; VIBRATIONAL SYSTEM AB The vibrational spectrum of ammonia has received an enormous amount of attention due to its potential prevalence in hot exo-planet atmospheres and persistent challenges in assigning and modeling highly excited and often highly perturbed states. Effective Hamiltonian models face challenges due to strong coupling between the large amplitude inversion and the other small amplitude vibrations. To date, only the ground and nu(2) positions could be modeled to experimental accuracy using effective Hamiltonians. Several previous attempts to analyze the 2 nu(2) and nu(4) energy levels failed to model both the microwave and infrared transitions to experimental accuracy. In this work, we performed extensive experimental measurements and data analysis for the 2 nu(2) and nu(4) inversion-rotation and vibrational transitions. We measured 159 new transition frequencies with microwave precision and assigned 1680 new ones from existing Fourier transform spectra recorded in Synchrotron SOLEIL. The newly assigned data significantly expand the range of assigned quantum numbers; combined with all the previously published high-resolution data, the 2 nu(2) and nu(4) states are reproduced to experimental accuracy using a global model described here. Achieving experimental accuracy required inclusion of a number of terms in the effective Hamiltonian that were neglected in previous work. These terms have also been neglected in the analysis of states higher than 2 nu(2) and nu(4) suggesting that the inversion-rotation-vibration spectrum of ammonia may be far more tractable to effective Hamiltonians than previously believed. Published by AIP Publishing. C1 [Pearson, John C.; Yu, Shanshan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Pirali, Olivier] Univ Paris Saclay, Univ Paris 11, CNRS, Inst Sci Mol ISMO, F-91405 Orsay, France. [Pirali, Olivier] SOLEIL Synchrotron, AILES Beamline, F-91192 Gif Sur Yvette, France. RP Pearson, JC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM john.c.pearson@jpl.nasa.gov RI Yu, Shanshan/D-8733-2016 NR 67 TC 0 Z9 0 U1 11 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2016 VL 145 IS 12 AR 124301 DI 10.1063/1.4961656 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DZ0XI UT WOS:000385562600023 PM 27782623 ER PT J AU Hudson, RL AF Hudson, R. L. TI Infrared spectra and band strengths of CH3SH, an interstellar molecule SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID FUNDAMENTAL ABSORPTION-BANDS; OPTICAL-CONSTANTS; ASTROCHEMICAL INTEREST; VIBRATIONAL-SPECTRA; METHYL MERCAPTAN; SOLID METHANOL; OSTWALDS RULE; ICES; METHANETHIOL; INTENSITIES AB Three solid phases of CH3SH (methanethiol or methyl mercaptan) have been prepared and their mid-infrared spectra recorded at 10-110 K, with an emphasis on the 17-100 K region. Refractive indices have been measured at two temperatures and used to estimate ice densities and infrared band strengths. Vapor pressures for the two crystalline phases of CH3SH at 110 K are estimated. The behavior of amorphous CH3SH on warming is presented and discussed in terms of Ostwald's step rule. Comparisons to CH3OH under similar conditions are made, and some inconsistencies and ambiguities in the CH3SH literature are examined and corrected. C1 [Hudson, R. L.] NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hudson, RL (reprint author), NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM reggie.hudson@nasa.gov FU NASA's Astrophysics Research and Analysis program; NASA Astrobiology Institute's Goddard Center for Astrobiology FX Robert Ferrante digitized some literature spectra for comparison to the new work presented here. He and Perry Gerakines worked on the computer routine for fitting fringe patterns, a version of which is available at http://science.gsfc.nasa.gov/691/cosmicice/constants.html for interested parties. This investigation was supported by a grant from NASA's Astrophysics Research and Analysis program with additional funding from the NASA Astrobiology Institute's Goddard Center for Astrobiology. NR 47 TC 1 Z9 1 U1 6 U2 6 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD SEP 28 PY 2016 VL 18 IS 36 BP 25756 EP 25763 DI 10.1039/c6cp01475e PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DX3CB UT WOS:000384249300108 PM 27603120 ER PT J AU Vu, KT Dingle, JH Bahreini, R Reddy, PJ Apel, EC Campos, TL DiGangi, JP Diskin, GS Fried, A Herndon, SC Hills, AJ Hornbrook, RS Huey, G Kaser, L Montzka, DD Nowak, JB Pusede, SE Richter, D Roscioli, JR Sachse, GW Shertz, S Stell, M Tanner, D Tyndall, GS Walega, J Weibring, P Weinheimer, AJ Pfister, G Flocke, F AF Vu, Kennedy T. Dingle, Justin H. Bahreini, Roya Reddy, Patrick J. Apel, Eric C. Campos, Teresa L. DiGangi, Joshua P. Diskin, Glenn S. Fried, Alan Herndon, Scott C. Hills, Alan J. Hornbrook, Rebecca S. Huey, Greg Kaser, Lisa Montzka, Denise D. Nowak, John B. Pusede, Sally E. Richter, Dirk Roscioli, Joseph R. Sachse, Glen W. Shertz, Stephen Stell, Meghan Tanner, David Tyndall, Geoffrey S. Walega, James Weibring, Peter Weinheimer, Andrew J. Pfister, Gabriele Flocke, Frank TI Impacts of the Denver Cyclone on regional air quality and aerosol formation in the Colorado Front Range during FRAPPE 2014 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; TROPOSPHERIC CARBON-MONOXIDE; IONIZATION MASS-SPECTROMETRY; GENERATING PARTICLE BEAMS; NATURAL-GAS OPERATIONS; UNITED-STATES CITIES; NITROGEN DEPOSITION; ROCKY-MOUNTAINS; BROWN CLOUD; CONTROLLED DIMENSIONS AB We present airborne measurements made during the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPE) project to investigate the impacts of the Denver Cyclone on regional air quality in the greater Denver area. Data on trace gases, non-refractory submicron aerosol chemical constituents, and aerosol optical extinction (beta(ext)) at lambda = 632 nm were evaluated in the presence and absence of the surface mesoscale circulation in three distinct study regions of the Front Range: In-Flow, Northern Front Range, and the Denver metropolitan area. Pronounced increases in mass concentrations of organics, nitrate, and sulfate in the Northern Front Range and the Denver metropolitan area were observed during the cyclone episodes (27-28 July) compared to the non-cyclonic days (26 July, 2-3 August). Organic aerosols dominated the mass concentrations on all evaluated days, with a 45% increase in organics on cyclone days across all three regions, while the increase during the cyclone episode was up to similar to 80% over the Denver metropolitan area. In the most aged air masses (NOx/NOy < 0.5), back-ground organic aerosols over the Denver metropolitan area increased by a factor of similar to 2.5 due to transport from Northern Front Range. Furthermore, enhanced partitioning of nitric acid to the aerosol phase was observed during the cyclone episodes, mainly due to increased abundance of gas phase ammonia. During the non-cyclone events, beta(ext) displayed strong correlations (r = 0.71) with organic and nitrate in the Northern Front Range and only with organics (r = 0.70) in the Denver metropolitan area, while correlation of beta(ext) during the cyclone was strongest (r = 0.86) with nitrate over Denver. Mass extinction efficiency (MEE) values in the Denver metropolitan area were similar on cyclone and non-cyclone days despite the dominant influence of different aerosol species on beta(ext). Our analysis showed that the meteorological patterns associated with the Denver Cyclone increased aerosol mass loadings in the Denver metropolitan area mainly by transporting aerosols and/or aerosol precursors from the northern regions, leading to impaired visibility and air quality deterioration. C1 [Vu, Kennedy T.; Dingle, Justin H.; Bahreini, Roya] Univ Calif Riverside, Environm Toxicol Grad Program, Riverside, CA 92521 USA. [Bahreini, Roya] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. [Reddy, Patrick J.; Apel, Eric C.; Campos, Teresa L.; Hills, Alan J.; Hornbrook, Rebecca S.; Kaser, Lisa; Montzka, Denise D.; Shertz, Stephen; Stell, Meghan; Tyndall, Geoffrey S.; Weinheimer, Andrew J.; Pfister, Gabriele; Flocke, Frank] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling Lab, Boulder, CO 80301 USA. [DiGangi, Joshua P.; Diskin, Glenn S.] NASA Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA. [Fried, Alan; Richter, Dirk; Walega, James; Weibring, Peter] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80303 USA. [Herndon, Scott C.; Nowak, John B.; Roscioli, Joseph R.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Huey, Greg; Tanner, David] Georgia Inst Technol, Dept Earth & Atmospher Sci, Atlanta, GA 30033 USA. [Pusede, Sally E.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Sachse, Glen W.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Reddy, Patrick J.] NCAR, Boulder, CO 80301 USA. RP Bahreini, R (reprint author), Univ Calif Riverside, Environm Toxicol Grad Program, Riverside, CA 92521 USA.; Bahreini, R (reprint author), Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. EM roya.bahreini@ucr.edu FU NIEHS; Colorado Department of Public Health and Environment (CDPHE); USDA National Institute of Food and Agriculture, Hatch project [233133] FX Kennedy T. Vu was partially supported by the NIEHS, T32 Research Training in Environmental Toxicology Grant. The authors would like to recognize Daniel Adams and Michael Fournier (University of California, Riverside CNAS machine shop) for their technical knowledge, NCAR Research Aviation Facility (RAF) technicians for their support during integration and throughout the field campaign, Joshua Schwarz (NOAA-ESRL) for providing the secondary diffuser inlet system, Charles A. Brock (NOAA-ESRL) for providing the condensation particle counter for field calibrations, Ron Cohen and Carly Ebben (University of California, Berkeley) for TD-LIF data, and A. M. Thompson and W. Brune (NASA/Goddard and Penn State) for sonde data from the Penn State NATIVE sampling trailer. Project support and funding was from the Colorado Department of Public Health and Environment (CDPHE) as well as the USDA National Institute of Food and Agriculture, Hatch project Accession No. 233133. NR 116 TC 1 Z9 1 U1 12 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD SEP 27 PY 2016 VL 16 IS 18 BP 12039 EP 12058 DI 10.5194/acp-16-12039-2016 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY8JP UT WOS:000385376400001 ER PT J AU Halliday, HS Thompson, AM Wisthaler, A Blake, DR Hornbrook, RS Mikoviny, T Muller, M Eichler, P Apel, EC Hills, AJ AF Halliday, Hannah S. Thompson, Anne M. Wisthaler, Armin Blake, Donald R. Hornbrook, Rebecca S. Mikoviny, Tomas Mueller, Markus Eichler, Philipp Apel, Eric C. Hills, Alan J. TI Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE oil and natural gas; volatile organic compounds; benzene; regional pollution; Colorado Natural Gas Emissions; Wattenburg Gas Field ID VOLATILE ORGANIC-COMPOUNDS; REGIONAL AIR-QUALITY; COMPOUND EMISSIONS; NONMETHANE HYDROCARBONS; SOURCE APPORTIONMENT; MIXING RATIOS; OZONE IMPACTS; UNITED-STATES; UINTAH BASIN; WESTERN US AB High time resolution measurements of volatile organic compounds (VOCs) were collected using a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the Platteville Atmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (O&NG) development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene=0.53 ppbv, maximum benzene=29.3 ppbv), primarily at night (mean nighttime benzene=0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO. C1 [Halliday, Hannah S.; Thompson, Anne M.] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. [Thompson, Anne M.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wisthaler, Armin; Mikoviny, Tomas] Univ Oslo, Dept Chem, Oslo, Norway. [Wisthaler, Armin; Mueller, Markus; Eichler, Philipp] Univ Innsbruck, Inst Ion Phys & Appl Phys, Innsbruck, Austria. [Blake, Donald R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Hornbrook, Rebecca S.; Apel, Eric C.; Hills, Alan J.] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling Lab, POB 3000, Boulder, CO 80307 USA. RP Thompson, AM (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA.; Thompson, AM (reprint author), Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Wisthaler, A (reprint author), Univ Oslo, Dept Chem, Oslo, Norway.; Wisthaler, A (reprint author), Univ Innsbruck, Inst Ion Phys & Appl Phys, Innsbruck, Austria. EM anne.m.thompson@nasa.gov; armin.wisthaler@kjemi.uio.no RI Thompson, Anne /C-3649-2014; Muller, Markus/L-1699-2014 OI Thompson, Anne /0000-0002-7829-0920; Muller, Markus/0000-0003-4110-8950 FU NASA [NNX10AR39G, NNX11AQ44G, NNG05GO62G]; Visiting Scientist Program at the National Institute of Aerospace (NIA); European Commission [287382]; DISCOVER-AQ FX We wish to acknowledge NASA grants NNX10AR39G (DISCOVER-AQ), NNX11AQ44G, and NNG05GO62G (extended) to the Pennsylvania State University. PTR-MS measurements during DISCOVER-AQ were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). A. W. and T.M. received support from the Visiting Scientist Program at the National Institute of Aerospace (NIA). P.E. received support from the European Commission's 7th Framework Programme under grant agreement 287382 (PIMMS ITN). The canister measurements collected at the Platteville Atmospheric Observatory were supported by funding from DISCOVER-AQ. The National Center for Atmospheric Research ran the FRappe campaign to correspond DISCOVE-AQ campaign and is sponsored by the National Science Foundation. We thank the DISCOVER-AQ leadership, Jim Crawford and Mary Kleb, and the FRAPPE leadership, Gabrielle Pfister and Frank Flocke, for arranging the use of the Platteville Atmospheric Observatory. Generous field support came from NOAA/ESRL's Physical Sciences and Chemical Sciences Division through Gerhard Huebler, Tom Ayers, Eric Williams, and David Fahey. Discussions with Patrick Reddy and Daniel Bon (CDPHE) were very helpful, as well as input from Lisa McKenzie (Colorado School of Public Health). Thanks and acknowledgments for perseverance during the data collection stage are extended to Ryan Stauffer, Bianca Baier, and Nikolay Balashov, and many thanks to William Brune at Penn State for his continued support of this work. All data used in this publication are accessible through NASA Langley's data repository (https://www-air.larc.nasa.gov/data.htm). NR 71 TC 4 Z9 4 U1 11 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 27 PY 2016 VL 121 IS 18 BP 11055 EP 11074 DI 10.1002/2016JD025327 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ4NS UT WOS:000385836000039 ER PT J AU Vernier, JP Fairlie, TD Deshler, T Natarajan, M Knepp, T Foster, K Wienhold, FG Bedka, KM Thomason, L Trepte, C AF Vernier, Jean-Paul Fairlie, T. Duncan Deshler, Terry Natarajan, Murali Knepp, Travis Foster, Katie Wienhold, Frank G. Bedka, Kristopher M. Thomason, Larry Trepte, Charles TI In situ and space-based observations of the Kelud volcanic plume: The persistence of ash in the lower stratosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE stratosphere; volcano; aerosol ID SIZE DISTRIBUTION MEASUREMENTS; AEROSOL-SIZE; PINATUBO ERUPTION; LIDAR; CLOUDS; CLIMATE; LARAMIE; CIRCULATION; BACKSCATTER; ATMOSPHERE AB Volcanic eruptions are important causes of natural variability in the climate system at all time scales. Assessments of the climate impact of volcanic eruptions by climate models almost universally assume that sulfate aerosol is the only radiatively active volcanic material. We report satellite observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite after the eruption of Mount Kelud (Indonesia) on 13 February 2014 of volcanic materials in the lower stratosphere. Using these observations along with in situ measurements with the Compact Optical Backscatter AerosoL Detector (COBALD) backscatter sondes and optical particle counters (OPCs) made during a balloon field campaign in northern Australia, we find that fine ash particles with a radius below 0.3 mu m likely represented between 20 and 28% of the total volcanic cloud aerosol optical depth 3months after the eruption. A separation of 1.5-2km between the ash and sulfate plumes is observed in the CALIOP extinction profiles as well as in the aerosol number concentration measurements of the OPC after 3months. The settling velocity of fine ash with a radius of 0.3 mu m in the tropical lower stratosphere is reduced by 50% due to the upward motion of the Brewer-Dobson circulation resulting a doubling of its lifetime. Three months after the eruption, we find a mean tropical clear-sky radiative forcing at the top of the atmosphere from the Kelud plume near -0.08W/m(2) after including the presence of ash; a value similar to 20% higher than if sulfate alone is considered. Thus, surface cooling following volcanic eruptions could be affected by the persistence of ash and should be considered in climate simulations. C1 [Vernier, Jean-Paul; Knepp, Travis] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Vernier, Jean-Paul; Fairlie, T. Duncan; Natarajan, Murali; Knepp, Travis; Bedka, Kristopher M.; Thomason, Larry; Trepte, Charles] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Deshler, Terry; Foster, Katie] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Wienhold, Frank G.] Swiss Fed Inst Technol ETHZ, Zurich, Switzerland. RP Vernier, JP (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA.; Vernier, JP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM jeanpaul.vernier@nasa.gov NR 50 TC 1 Z9 1 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 27 PY 2016 VL 121 IS 18 BP 11104 EP 11118 DI 10.1002/2016JD025344 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ4NS UT WOS:000385836000033 ER PT J AU Xu, L Middlebrook, AM Liao, J de Gouw, JA Guo, HY Weber, RJ Nenes, A Lopez-Hilfiker, FD Lee, BH Thornton, JA Brock, CA Neuman, JA Nowak, JB Pollack, IB Welti, A Graus, M Warneke, C Ng, NL AF Xu, Lu Middlebrook, Ann M. Liao, Jin de Gouw, Joost A. Guo, Hongyu Weber, Rodney J. Nenes, Athanasios Lopez-Hilfiker, Felipe D. Lee, Ben H. Thornton, Joel A. Brock, Charles A. Neuman, J. Andrew Nowak, John B. Pollack, Ilana B. Welti, Andre Graus, Martin Warneke, Carsten Ng, Nga Lee TI Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant plumes during Southeast Nexus SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Southeast Nexus (SENEX) study; isoprene; isoprene epoxydiols (IEPOX); sulfate; organic aerosol; heterogeneous reaction ID UNITED-STATES; MASS-SPECTROMETRY; REACTIVE UPTAKE; ANTHROPOGENIC EMISSIONS; HYGROSCOPIC GROWTH; EPOXIDE FORMATION; GROUND SITE; EPOXYDIOLS; PHOTOOXIDATION; ACIDITY AB We investigate the effects of anthropogenic sulfate on secondary organic aerosol (SOA) formation from biogenic isoprene through airborne measurements in the southeastern United States as part of the Southeast Nexus (SENEX) field campaign. In a flight over Georgia, organic aerosol (OA) is enhanced downwind of the Harllee Branch power plant but not the Scherer power plant. We find that the OA enhancement is likely caused by the rapid reactive uptake of isoprene epoxydiols (IEPOX) in the sulfate-rich plume of Harllee Branch, which was emitting at least 3 times more sulfur dioxide (SO2) than Scherer, and more aerosol sulfate was produced downwind. The contrast in the evolution of isoprene-derived OA concentration between two power plants with different SO2 emissions provides an opportunity to investigate the magnitude and mechanisms of particle sulfate on isoprene-derived OA formation. We estimate that 1 mu gsm(-3) reduction of sulfate would decrease the isoprene-derived OA by 0.230.08 mu gsm(-3). Based on a parameterization of the IEPOX heterogeneous reactions, we find that the effects of sulfate on isoprene-derived OA formation in the power plant plume arises from enhanced particle surface area and particle acidity, which increases both IEPOX uptake to particles and subsequent aqueous-phase reactions, respectively. The observed relationships between isoprene-OA, sulfate, particle pH, and particle water in previous field studies are explained using these findings. C1 [Xu, Lu; Nenes, Athanasios; Ng, Nga Lee] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Middlebrook, Ann M.; Liao, Jin; Brock, Charles A.; Neuman, J. Andrew; Nowak, John B.; Pollack, Ilana B.; Graus, Martin; Warneke, Carsten] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. [Liao, Jin; de Gouw, Joost A.; Neuman, J. Andrew; Nowak, John B.; Pollack, Ilana B.; Welti, Andre; Graus, Martin; Warneke, Carsten] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Liao, Jin] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Liao, Jin] Univ Space Res Assoc, Columbia, MD USA. [de Gouw, Joost A.] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. [Guo, Hongyu; Weber, Rodney J.; Nenes, Athanasios; Ng, Nga Lee] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Nenes, Athanasios] Fdn Res, Inst Chem Engn Sci ICE HT, Patras, Greece. [Nenes, Athanasios] Natl Observ Athens, Inst Environm Res & Sustainable Dev, Palea Penteli, Greece. [Lopez-Hilfiker, Felipe D.; Lee, Ben H.; Thornton, Joel A.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Nowak, John B.] Aerodyne Res Inc, Billerica, MA USA. [Pollack, Ilana B.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Welti, Andre] Leibniz Inst Tropospher Res, Dept Phys, Leipzig, Germany. [Graus, Martin] Univ Innsbruck, Inst Meteorol & Geophys, Innsbruck, Austria. RP Ng, NL (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.; Ng, NL (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM ng@chbe.gatech.edu RI de Gouw, Joost/A-9675-2008; Neuman, Andy/A-1393-2009; Pollack, Ilana/F-9875-2012; Middlebrook, Ann/E-4831-2011; Thornton, Joel/C-1142-2009; Manager, CSD Publications/B-2789-2015; OI de Gouw, Joost/0000-0002-0385-1826; Neuman, Andy/0000-0002-3986-1727; Middlebrook, Ann/0000-0002-2984-6304; Thornton, Joel/0000-0002-5098-4867; Nowak, John/0000-0002-5697-9807 FU National Science Foundation (NSF) [1242258]; U.S. Environmental Protection Agency [RD-83540301]; U.S. Environmental Protection Agency (EPA) [R835410] FX We are thankful for the staff at the NOAA Aircraft Operations Center and the WP-3D flight crew for help in instrumenting the aircraft and for conducting the flights. Georgia Tech researchers were supported by National Science Foundation (NSF) grant 1242258. N.L. Ng acknowledges U.S. Environmental Protection Agency STAR grant RD-83540301. A. Nenes acknowledges U.S. Environmental Protection Agency (EPA) STAR grant R835410. This publication's contents are solely the responsibility of the grantee and do not necessarily represent the official views of the U.S. EPA. Further, U.S. EPA does not endorse the purchase of any commercial products or services mentioned in the publication. The authors would like to thank Roya Bahreini, Thomas F. Hanisco, and Glenn M. Wolfe for helpful discussions. We thank Jason M. St. Clair, John D. Crounse, Alex P. Teng, Tran B. Nguyen, and Paul O. Wennberg for the triple quadrupole CIMS data. We thank the Kymberlee Osborne and Stefan France for synthesizing the authentic IEPOX. Data from the SENEX study are publicly available at http://www.esrl.noaa.gov/csd/projects/senex/. The research data beyond the SENEX campaign can be accessed upon request to the corresponding author. NR 81 TC 3 Z9 3 U1 17 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 27 PY 2016 VL 121 IS 18 BP 11137 EP 11153 DI 10.1002/2016JD025156 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ4NS UT WOS:000385836000035 ER PT J AU Feger, BJ Thompson, JW Dubois, LG Kommaddi, RP Foster, MW Mishra, R Shenoy, SK Shibata, Y Kidane, YH Moseley, MA Carnell, LS Bowles, DE AF Feger, Bryan J. Thompson, J. Will Dubois, Laura G. Kommaddi, Reddy P. Foster, Matthew W. Mishra, Rajashree Shenoy, Sudha K. Shibata, Yoichiro Kidane, Yared H. Moseley, M. Arthur Carnell, Lisa S. Bowles, Dawn E. TI Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection SO SCIENTIFIC REPORTS LA English DT Article ID SPECTROMETRY-BASED PROTEOMICS; UNFOLDED PROTEIN RESPONSE; ROTATING-WALL VESSEL; SIMULATED MICROGRAVITY; DYNAMIC SILAC; GENE; EXPRESSION; APOPTOSIS; TURNOVER; BIOLOGY AB On Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy. C1 [Feger, Bryan J.; Mishra, Rajashree; Bowles, Dawn E.] Duke Univ, Dept Surg, Med Ctr, Durham, NC 27710 USA. [Thompson, J. Will; Dubois, Laura G.; Foster, Matthew W.; Moseley, M. Arthur] Duke Univ, Duke Prote & Metabol Shared Resource, Med Ctr, Durham, NC 27710 USA. [Kommaddi, Reddy P.; Foster, Matthew W.; Shenoy, Sudha K.] Duke Univ, Dept Med, Med Ctr, Durham, NC 27710 USA. [Shibata, Yoichiro] Univ N Carolina, Dept Genet, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA. [Shibata, Yoichiro] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Kidane, Yared H.] Wyle Sci Technol & Engn Grp, Houston, TX 77058 USA. [Kidane, Yared H.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Carnell, Lisa S.] NASA, Langley Res Ctr, Hampton, VA 23666 USA. RP Bowles, DE (reprint author), Duke Univ, Dept Surg, Med Ctr, Durham, NC 27710 USA. EM dawn.bowles@duke.edu FU National Aeronautics and Space Association [NNX12AK76G] FX This work was supported by the National Aeronautics and Space Association grant NNX12AK76G to Dawn E. Bowles. NR 52 TC 1 Z9 1 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 27 PY 2016 VL 6 AR 34091 DI 10.1038/srep34091 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DX0VS UT WOS:000384084800001 PM 27670941 ER PT J AU Wen, HY Sano, Y Takahata, N Tomonaga, Y Ishida, A Tanaka, K Kagoshima, T Shirai, K Ishibashi, J Yokose, H Tsunogai, U Yang, TF AF Wen, Hsin-Yi Sano, Yuji Takahata, Naoto Tomonaga, Yama Ishida, Akizumi Tanaka, Kentaro Kagoshima, Takanori Shirai, Kotaro Ishibashi, Jun-ichiro Yokose, Hisayoshi Tsunogai, Urumu Yang, Tsanyao F. TI Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the Tokara Islands, Southern Japan SO SCIENTIFIC REPORTS LA English DT Article ID EAST PACIFIC RISE; BACK-ARC BASIN; IZU-BONIN ARC; OKINAWA TROUGH; KAGOSHIMA BAY; NATURAL GASES; HE-3/HE-4 RATIOS; WAKAMIKO CRATER; CARBON; ISOTOPES AB Shallow submarine volcanoes have been newly discovered near the Tokara Islands, which are situated at the volcanic front of the northern Ryukyu Arc in southern Japan. Here, we report for the first time the volatile geochemistry of shallow hydrothermal plumes, which were sampled using a CTD-RMS system after analyzing water column images collected by multi-beam echo sounder surveys. These surveys were performed during the research cruise KS-14-10 of the R/V Shinsei Maru in a region stretching from the Wakamiko Crater to the Tokara Islands. The He-3 flux and methane flux in the investigated area are estimated to be (0.99-2.6) x 10(4) atoms/cm(2)/sec and 6-60 t/yr, respectively. The methane in the region of the Tokara Islands is a mix between abiotic methane similar to that found in the East Pacific Rise and thermogenic one. Methane at the Wakamiko Crater is of abiotic origin but affected by isotopic fractionation through rapid microbial oxidation. The helium isotopes suggest the presence of subduction-type mantle helium at the Wakamiko Crater, while a larger crustal component is found close to the Tokara Islands. This suggests that the Tokara Islands submarine volcanoes are a key feature of the transition zone between the volcanic front and the spreading back-arc basin. C1 [Wen, Hsin-Yi; Sano, Yuji; Yang, Tsanyao F.] Natl Taiwan Univ, Dept Geosci, Taipei, Taiwan. [Wen, Hsin-Yi; Sano, Yuji; Takahata, Naoto; Tomonaga, Yama; Ishida, Akizumi; Tanaka, Kentaro; Kagoshima, Takanori; Shirai, Kotaro] Univ Tokyo, Atmosphere & Ocean Res Inst, Tokyo 1138654, Japan. [Ishibashi, Jun-ichiro] Kyushu Univ, Dept Earth & Planetary Sci, Fukuoka 812, Japan. [Yokose, Hisayoshi] Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 860, Japan. [Tsunogai, Urumu] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi 4648601, Japan. [Wen, Hsin-Yi] Ind Technol Res Inst, Green Energy & Environm Res Labs, Hsinchu, Taiwan. [Tomonaga, Yama] Univ Bern, Inst Geol Sci, CH-3012 Bern, Switzerland. [Ishida, Akizumi] Univ Wisconsin Madison, Dept Geosci, WiscSIMS Lab, NASA,Astrobiol Inst, Madison, WI USA. RP Wen, HY (reprint author), Natl Taiwan Univ, Dept Geosci, Taipei, Taiwan.; Wen, HY (reprint author), Univ Tokyo, Atmosphere & Ocean Res Inst, Tokyo 1138654, Japan.; Wen, HY (reprint author), Ind Technol Res Inst, Green Energy & Environm Res Labs, Hsinchu, Taiwan. EM d99224009@ntu.edu.tw RI Tsunogai, Urumu/C-8303-2011; Shirai, Kotaro/B-5758-2012; OI Tsunogai, Urumu/0000-0002-1517-3284; Shirai, Kotaro/0000-0003-3922-5971; Tomonaga, Yama/0000-0003-2871-8826 FU National Science Council of Taiwan for Graduate Students Study Abroad Program [102-2917-I-002-110]; EU Seventh Framework Programme for Reach and Technological Development (Marine Curie International Outgoing Fellowship) [PIOF-GA-2012-332404]; MEXT, Japan [15H05830] FX We would like to thank the captain and crew of the R/V Shinsei Maru for their kind collaboration during the cruise of KS-14-10 leg-2. Constructive comments and suggestions made by two anonymous are very helpful for improving an early version of this manuscript. H.W. thanks the National Science Council of Taiwan for the Graduate Students Study Abroad Program for a visiting fellowship (102-2917-I-002-110). This research was also partly supported by funding from the EU Seventh Framework Programme for Reach and Technological Development (Marine Curie International Outgoing Fellowship to Y.T., Contract PIOF-GA-2012-332404) and a Grant-in-Aid for Science Research (15H05830) from MEXT, Japan. NR 49 TC 0 Z9 0 U1 9 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 27 PY 2016 VL 6 AR 34126 DI 10.1038/srep34126 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DX2ST UT WOS:000384221800001 PM 27671524 ER PT J AU Li, F Choudhari, M Paredes, P Duan, L AF Li, Fei Choudhari, Meelan Paredes, Pedro Duan, Lian TI High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer SO PHYSICAL REVIEW FLUIDS LA English DT Article ID LAMINAR-TURBULENT TRANSITION; DIRECT NUMERICAL-SIMULATION; HIFIRE-5 ELLIPTIC CONE; SECONDARY INSTABILITY; ROUGHNESS; STABILITY; SCHEMES; MODES AB Hypersonic boundary layer flows over a circular cone at moderate incidence angle can support strong crossflow instability in between the windward and leeward rays on the plane of symmetry. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite-amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7 degrees half-angle circular cone in a Mach 6 free stream. The analysis is based on both quasiparallel stability theory in the form of a partial-differential-equation-based eigenvalue analysis and plane marching parabolized stability equations that account for the effects of the nonparallel basic state on the growth of secondary disturbances. Depending on the local amplitude of the stationary crossflow mode, the most unstable high-frequency disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of the dominant secondary disturbances of either type are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany. Including transverse surface curvature within the quasiparallel predictions does not alter the topology of the unstable modes; however, the resulting changes in both mode shape and disturbance growth rate are rather significant and curvature can be either stabilizing or destabilizing depending on the disturbance frequency and mode type. Nonparallel effects are shown to be strongly destabilizing for secondary instabilities originating from both Mack modes and instabilities of the inclined shear layer bounding the crossflow vortex. Consequently, the two types of instabilities are found to achieve logarithmic amplification factors of up to N = 10 and N = 7, respectively. Results also reveal possible phase synchronization between a pair of modes that may have a significant influence on their overall amplification. C1 [Li, Fei; Choudhari, Meelan; Paredes, Pedro] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Duan, Lian] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA. RP Li, F (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. RI Choudhari, Meelan/F-6080-2017 OI Choudhari, Meelan/0000-0001-9120-7362 NR 68 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-990X J9 PHYS REV FLUIDS JI Phys. Rev. Fluids PD SEP 26 PY 2016 VL 1 IS 5 AR 053603 DI 10.1103/PhysRevFluids.1.053603 PG 32 WC Physics, Fluids & Plasmas SC Physics GA EF3PF UT WOS:000390235900003 ER PT J AU Fortenberry, RC Moore, MM Lee, TJ AF Fortenberry, Ryan C. Moore, Megan M. Lee, Timothy J. TI Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; DIFFUSE INTERSTELLAR BANDS; ACETALDEHYDE ENOLATE ANION; DIPOLE-BOUND ANIONS; BASIS-SETS; AUTODETACHMENT SPECTROSCOPY; VIBRATIONAL FREQUENCIES; CARBON CHAINS; MOLECULES; ELECTRON AB Some anions are known to exhibit excited states independent of external forces such as dipole moments and induced polarizabilities. Such States exist simply as a result of the stabilization of valence accepting orbitals whereby the binding energy of the extra electron is greater than the valence excitation energy. Closed-shell anions are interesting candidates for such transitions since their ground-state, spirt-paired nature makes the anions more,stable from the beginning. Consequently, this Work shows the point beyond which deprotonated, dosed-shell polycyclic aromatic hydrocarbons (PAHs) and those PAHs containing nitrogen :heteroatoms (PANHs) will exhibit valence-excited states. This behavior has already been demonstrated in some PANHs and for anistropically extended PAHs. This work establishes a general trend for PAHs/PANHs of arbitrary size and directional extension, whether in one dimension or two.. Once seven six-membered rings make up a PAH/PANH, valence excited states are present. For most classes of PAHs/PANHs, this number is closer to four. Even though most of these excited states are weak absorbers, the sheet number of PAHs present in various astronomical environments should make them significant, contributors to. astronomical spectra. C1 [Fortenberry, Ryan C.; Moore, Megan M.] Georgia Southern Univ, Dept Chem, Statesboro, GA 30460 USA. [Lee, Timothy J.] NASA, Ames Res Ctr, MS 245-1, Moffett Field, CA 94035 USA. RP Fortenberry, RC (reprint author), Georgia Southern Univ, Dept Chem, Statesboro, GA 30460 USA. EM rfortenberry@georgiasouthern.edu RI Lee, Timothy/K-2838-2012 FU Georgia Southern University; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH13ZDA017C] FX R.C.F. and M.M.M. acknowledge the support Georgia Southern University for the start-up funds necessary to undertake this work. This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement Notice NNH13ZDA017C issued through the Science Mission Directorate. The ball-and-stick figures are produced with the CheMVP program developed at the Center for Computational Quantum Chemistry at the University of Georgia, and the MOs in Figures 5 and 6 are created through the WebMO computational chemistry graphical user interface (ref 71). NR 71 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 22 PY 2016 VL 120 IS 37 BP 7327 EP 7334 DI 10.1021/acs.jpca.6b06654 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DX0EJ UT WOS:000384034300011 PM 27585793 ER PT J AU Allwood, AC AF Allwood, Abigail C. TI Evidence of life in Earth's oldest rocks SO NATURE LA English DT Editorial Material ID WEST GREENLAND; CARBON C1 [Allwood, Abigail C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Allwood, AC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM abigail.c.allwood@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 21 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD SEP 22 PY 2016 VL 537 IS 7621 BP 500 EP 501 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DW3MO UT WOS:000383545900045 PM 27580031 ER PT J AU Park, RS Konopliv, AS Bills, BG Rambaux, N Castillo-Rogez, JC Raymond, CA Vaughan, AT Ermakov, AI Zuber, MT Fu, RR Toplis, MJ Russell, CT Nathues, A Preusker, F AF Park, R. S. Konopliv, A. S. Bills, B. G. Rambaux, N. Castillo-Rogez, J. C. Raymond, C. A. Vaughan, A. T. Ermakov, A. I. Zuber, M. T. Fu, R. R. Toplis, M. J. Russell, C. T. Nathues, A. Preusker, F. TI A partially differentiated interior for (1) Ceres deduced from its gravity field and shape SO NATURE LA English DT Article ID INERTIA; MOMENT; SATELLITES; ORIGIN; VESTA AB Remote observations of the asteroid (1) Ceres from ground-and space-based telescopes have provided its approximate density and shape, leading to a range of models for the interior of Ceres, from homogeneous to fully differentiated(1-6). A previously missing parameter that can place a strong constraint on the interior of Ceres is its moment of inertia, which requires the measurement of its gravitational variation(1,7) together with either precession rate(8,9) or a validated assumption of hydrostatic equilibrium(10). However, Earthbased remote observations cannot measure gravity variations and the magnitude of the precession rate is too small to be detected(9). Here we report gravity and shape measurements of Ceres obtained from the Dawn spacecraft, showing that it is in hydrostatic equilibrium with its inferred normalized mean moment of inertia of 0.37. These data show that Ceres is a partially differentiated body, with a rocky core overlaid by a volatile-rich shell, as predicted in some studies(1,4,6). Furthermore, we show that the gravity signal is strongly suppressed compared to that predicted by the topographic variation. This indicates that Ceres is isostatically compensated(11), such that topographic highs are supported by displacement of a denser interior. In contrast to the asteroid (4) Vesta(8,12), this strong compensation points to the presence of a lower-viscosity layer at depth, probably reflecting a thermal rather than compositional gradient(1,4). To further investigate the interior structure, we assume a two-layer model for the interior of Ceres with a core density of 2,460-2,900 kilograms per cubic metre (that is, composed of CI and CM chondrites(13)), which yields an outer-shell thickness of 70-190 kilometres. The density of this outer shell is 1,6801,950 kilograms per cubic metre, indicating a mixture of volatiles and denser materials such as silicates and salts(14). Although the gravity and shape data confirm that the interior of Ceres evolved thermally(1,4,6,) its partially differentiated interior indicates an evolution more complex than has been envisioned for mid-sized (less than 1,000 kilometres across) ice-rich rocky bodies. C1 [Park, R. S.; Konopliv, A. S.; Bills, B. G.; Castillo-Rogez, J. C.; Raymond, C. A.; Vaughan, A. T.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Rambaux, N.] Univ Lille 1, Univ Paris 06, Sorbonne Univ, IMCCE,Observ Paris,PSL Res Univ,CNRS, 77 Ave Denfert Rochereau, F-75014 Paris, France. [Ermakov, A. I.; Zuber, M. T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Fu, R. R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Toplis, M. J.] Univ Toulouse, UPS, CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Nathues, A.] Max Planck Inst Solar Syst Res, Gottingen, Germany. [Preusker, F.] DLR, Inst Planetary Res, Dept Planetary Geodesy, Rutherfordstr 2, D-12489 Berlin, Germany. RP Park, RS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ryan.S.Park@jpl.nasa.gov OI Ermakov, Anton/0000-0002-7020-7061 FU National Aeronautics and Space Administration; MESR; French National Programme of Planetology (PNP); CNES FX This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank the Dawn operations team for the development, cruise, orbital insertion and operations of the Dawn spacecraft at Ceres. R.S.P. thanks W. M. Folkner, E. M. Mazarico, and M. D. Rayman for comments and suggestions. N.R. is grateful to the CNU, Section 34, for supporting a six-month full-time research project through CRCT-2015 funding delivered by the MESR and acknowledges funding from the French National Programme of Planetology (PNP). M.J.T. acknowledges funding by the CNES. Government sponsorship acknowledged. All rights reserved. NR 30 TC 8 Z9 8 U1 16 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD SEP 22 PY 2016 VL 537 IS 7621 BP 515 EP + DI 10.1038/nature18955 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DW3MO UT WOS:000383545900048 PM 27487219 ER PT J AU Switzer, ER Watts, DJ AF Switzer, Eric R. Watts, Duncan J. TI Robust likelihoods for inflationary gravitational waves from maps of cosmic microwave background polarization SO PHYSICAL REVIEW D LA English DT Article ID B-MODE POLARIZATION; BOUND-CONSTRAINED OPTIMIZATION; POWER SPECTRUM ESTIMATION; PROBE WMAP OBSERVATIONS; ANISOTROPY-PROBE; STATISTICAL-ANALYSIS; DATA SETS; CMB; ALGORITHM; SKY AB The B-mode polarization of the cosmic microwave background provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance or be removed through reprocessing the data. C1 [Switzer, Eric R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Watts, Duncan J.] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA. RP Switzer, ER (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 52 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 22 PY 2016 VL 94 IS 6 AR 063526 DI 10.1103/PhysRevD.94.063526 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DW8AM UT WOS:000383875600002 ER PT J AU Bialas, J Oommen, T Rebbapragada, U Levin, E AF Bialas, James Oommen, Thomas Rebbapragada, Umaa Levin, Eugene TI Object-based classification of earthquake damage from high-resolution optical imagery using machine learning SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE GEOBIA; machine learning; earthquake; object-based classification ID SELECTION AB Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Bialas, James; Oommen, Thomas] Michigan Technol Univ, Geol & Min Engn & Sci, 1400 Townsend Dr, Houghton, MI 49931 USA. [Rebbapragada, Umaa] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Levin, Eugene] Michigan Technol Univ, Sch Technol, 1400 Townsend Dr, Houghton, MI 49931 USA. RP Bialas, J (reprint author), Michigan Technol Univ, Geol & Min Engn & Sci, 1400 Townsend Dr, Houghton, MI 49931 USA. EM jpbialas@mtu.edu FU National Science Foundation [1300720] FX Research described in this paper was carried out in part at the Jet Propulsion Laboratory, under contract with the National Aeronautics and Space Administration. Copyright 2015 California Institute of Technology. This material is based upon work supported by the National Science Foundation under Grant No. 1300720. NR 17 TC 0 Z9 0 U1 5 U2 5 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD SEP 21 PY 2016 VL 10 AR 036025 DI 10.1117/1.JRS.10.036025 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA EE8LX UT WOS:000389878400001 ER PT J AU Merten, J AF Merten, Julian TI Mesh-free free-form lensing - I. Methodology and application to mass reconstruction SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: strong; gravitational lensing: weak; methods: numerical; galaxies: clusters: general; dark matter; large-scale structure of Universe ID RADIAL BASIS FUNCTIONS; GALAXY CLUSTERS; X-RAY; DARK-MATTER; MULTIPLE IMAGES; COMBINING WEAK; ARC STATISTICS; YOUNG GALAXY; ABELL 2744; CLASH AB Many applications and algorithms in the field of gravitational lensing make use of meshes with a finite number of nodes to analyse and manipulate data. Specific examples in lensing are astronomical CCD images in general, the reconstruction of density distributions from lensing data, lens-source plane mapping or the characterization and interpolation of a point spread function. We present a numerical framework to interpolate and differentiate in the mesh-free domain, defined by nodes with coordinates that follow no regular pattern. The framework is based on radial basis functions (RBFs) to smoothly represent data around the nodes. We demonstrate the performance of Gaussian RBF-based, mesh-free interpolation and differentiation, which reaches the sub-percent level in both cases. We use our newly developed framework to translate ideas of free-form mass reconstruction from lensing on to the mesh-free domain. By reconstructing a simulated mock lens we find that strong-lensing only reconstructions achieve < 10 per cent accuracy in the areas where these constraints are available but provide poorer results when departing from these regions. Weak-lensing only reconstructions give < 10 per cent accuracy outside the strong-lensing regime, but cannot resolve the inner core structure of the lens. Once both regimes are combined, accurate reconstructions can be achieved over the full field of view. The reconstruction of a simulated lens, using constraints that mimics real observations, yields accurate results in terms of surface-mass density, Navarro-Frenk-White profile (NFW) parameters, Einstein radius and magnification map recovery, encouraging the application of this method to real data. C1 [Merten, Julian] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. [Merten, Julian] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Merten, Julian] CALTECH, MC 249-17, Pasadena, CA 91125 USA. RP Merten, J (reprint author), Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England.; Merten, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Merten, J (reprint author), CALTECH, MC 249-17, Pasadena, CA 91125 USA. EM julian.merten@physics.ox.ac.uk FU NASA; NASA [HST-GO-13343.05-A, HST-GO-13386.13-A]; European Union under REA [627288] FX I want to send a warm thank you to Bengt Fornberg for helping me to understand and implement the concept of radial basis functions for the purpose of finite differencing. I also thank Matthias Bartelmann, Massimo Meneghetti, and Leonidas Moustakas for inspiring discussions and Stefano Borgani for providing the numerical simulation used in our realistic ray-tracing scenario. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA and I acknowledge support from NASA Grants HST-GO-13343.05-A and HST-GO-13386.13-A. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement number 627288. NR 67 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2016 VL 461 IS 3 BP 2328 EP 2345 DI 10.1093/mnras/stw1413 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW2OG UT WOS:000383481100005 ER PT J AU Richardson, ND Madura, TI St-Jean, L Moffat, AFJ Gull, TR Russell, CMP Damineli, A Teodoro, M Corcoran, MF Walter, FM Clementel, N Groh, JH Hamaguchi, K Hillier, DJ AF Richardson, Noel D. Madura, Thomas I. St-Jean, Lucas Moffat, Anthony F. J. Gull, Theodore R. Russell, Christopher M. P. Damineli, Augusto Teodoro, Mairan Corcoran, Michael F. Walter, Frederick M. Clementel, Nicola Groh, Jose H. Hamaguchi, Kenji Hillier, D. John TI To v(infinity) and beyond! The He I absorption variability across the 2014.6 periastron passage of eta Carinae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: close; stars: early-type; stars: individual: eta Car; stars: mass-loss; stars: variables: S Doradus; stars: winds, outflows ID BINARY COLLIDING WINDS; 3D RADIATIVE-TRANSFER; MASSIVE STARS; ALPHA VARIATIONS; COMPANION; EMISSION; SIMULATIONS; EVENT; SPECTROSCOPY; CONSTRAINTS AB We have monitored the massive binary star. Carinae with the CTIO/Small and Moderate Aperture Research Telescope System 1.5 m telescope and CHIRON spectrograph from the previous apastron passage of the system through the recent 2014.6 periastron passage. Our monitoring has resulted in a large, homogeneous data set with an unprecedented time-sampling, spectral resolving power, and signal to noise. This allowed us to investigate temporal variability previously unexplored in the system and discover a kinematic structure in the P Cygni absorption troughs of neutral helium wind lines. The features observed occurred prior to the periastron passage and are seen as we look through the trailing arm of the wind-wind collision shock cone. We show that the bulk of the variability is repeatable across the last five periastron passages, and that the absorption occurs in the inner 230 au of the system. In addition, we found an additional, high-velocity absorption component superimposed on the P Cygni absorption troughs that has been previously unobserved in these lines, but which bears resemblance to the observations of the He I lambda 10830 angstrom feature across previous cycles. Through a comparison of the current smoothed particle hydrodynamical simulations, we show that the observed variations are likely caused by instabilities in the wind-wind collision region in our line of sight, coupled with stochastic variability related to clumping in the winds. C1 [Richardson, Noel D.] Univ Toledo, Dept Phys & Astron, Ritter Observ, Toledo, OH 43606 USA. [Richardson, Noel D.; St-Jean, Lucas; Moffat, Anthony F. J.] Univ Montreal, Dept Phys, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Richardson, Noel D.; St-Jean, Lucas; Moffat, Anthony F. J.] Univ Montreal, CRAQ, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Madura, Thomas I.; Gull, Theodore R.; Teodoro, Mairan] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. [Madura, Thomas I.; Teodoro, Mairan] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 20146 USA. [Russell, Christopher M. P.] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Damineli, Augusto] IAG USP, Rua Matao 1226, BR-05508090 Sao Paulo, SP, Brazil. [Corcoran, Michael F.; Hamaguchi, Kenji] NASA, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Corcoran, Michael F.; Hamaguchi, Kenji] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Walter, Frederick M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Clementel, Nicola] South African Astron Observ, POB 9, ZA-7935 Observatory, South Africa. [Groh, Jose H.] Univ Dublin, Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland. [Hillier, D. John] Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA. [Hillier, D. John] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, 3941 OHara St, Pittsburgh, PA 15260 USA. RP Richardson, ND (reprint author), Univ Toledo, Dept Phys & Astron, Ritter Observ, Toledo, OH 43606 USA.; Richardson, ND (reprint author), Univ Montreal, Dept Phys, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada.; Richardson, ND (reprint author), Univ Montreal, CRAQ, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada. EM noel.richardson@utoledo.edu RI Damineli, Augusto/P-8829-2016; OI Damineli, Augusto/0000-0002-7978-2994; Richardson, Noel/0000-0002-2806-9339 FU NASA [NAS 5-26555]; University of Minnesota; Space Telescope Science Institute; NASA; CRAQ (Centre de Recherche en Astrophysique du Quebec) postdoctoral fellowship; University of Toledo; Helen Luedtke Brooks Endowed Professorship; NSERC (Canada); FRQNT (Quebec); NASA Postdoctoral Program at the Goddard Space Flight Center; FAPESP [2011/51680-6]; HST-GO [12508.02-A] FX We are thankful to our referee, Ian Howarth, for a thoughtful and critical review that greatly improved this paper. This work was based on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory (NOAO Prop. IDs: 2012A-0216, 2012B-0194, 2013B-0328, and 2015A-0109; PI: N. Richardson), which is operated by the Association of Universities for Research in Astronomy (AURA) and the Small and Moderate Aperture Research Telescope System (SMARTS) under a cooperative agreement with the National Science Foundation. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs # 12013, 12507, 12750, 13054 and 13395. This work was largely helped through previous discussions with Douglas Gies (Georgia State University) which led to successful observing proposals. Some SMARTS observations with CHIRON were prompted by conversations with Roberta Humphreys and Kris Davidson (University of Minnesota), whom we thank for their contributions. Some of the spectra were obtained under the aegis of Stony Brook University, whose participation has been supported by the office of the Provost. These observations would not have been made possible without the careful scheduling by the SMARTS staff at Yale University, most notably Emily MacPherson and Imran Hasan and the queue observing expertly done by Carlos Corco, Alberto Miranda, Rodrigo Hernandez, and Manuel Hernandez. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. This research has made use of the data archive for the HST Treasury Program on Eta Carinae (GO 9973) which is available online at http://etacar.umn.edu. The archive is supported by the University of Minnesota and the Space Telescope Science Institute under contract with NASA.; NDR is grateful for his former CRAQ (Centre de Recherche en Astrophysique du Quebec) postdoctoral fellowship and for postdoctoral support by the University of Toledo and by the Helen Luedtke Brooks Endowed Professorship. AFJM is grateful for financial support from NSERC (Canada) and FRQNT (Quebec). CMPR is and TIM was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. AD thanks FAPESP for financial support through grant 2011/51680-6. DJH acknowledges support from HST-GO 12508.02-A. NR 59 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2016 VL 461 IS 3 BP 2540 EP 2558 DI 10.1093/mnras/stw1415 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW2OG UT WOS:000383481100021 ER PT J AU Christodoulou, DM Contopoulos, I Kazanas, D Steiner, JF Papadopoulos, DB Laycock, SGT AF Christodoulou, D. M. Contopoulos, I. Kazanas, D. Steiner, J. F. Papadopoulos, D. B. Laycock, S. G. T. TI On the theoretical framework of magnetized outflows from stellar-mass black holes and related observations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; magnetic fields; ISM: jets and outflows; X-rays: binaries ID X-RAY BINARIES; ACTIVE GALACTIC NUCLEI; COSMIC BATTERY; ACCRETION DISKS; RELATIVISTIC JETS; GRS 1915+105; RADIO JETS; CYGNUS X-1; LMC X-3; FE-LINE AB The spins of stellar-mass black holes (BHs) and the power outputs of their jets are measurable quantities. Unfortunately, the currently employed methods do not agree and the results are controversial. Two major issues concern the measurements of BH spin and beam (jet) power. The former issue can be resolved by future observations. But the latter issue can be resolved now, if we pay attention to what is expected from theoretical considerations. The question of whether a correlation has been found between the power outputs of few objects and the spins of their BHs is moot because BH beam power does not scale with the square of the spin of the BH. We show that the theoretical BH beam power is a strongly non-linear function of spin that cannot be approximated by a quadratic relation, as is generally stated when the influence of the magnetic field is not accounted for in the Blandford & Znajek model. The BH beam power of ballistic jets should scale a lot more steeply with BH spin irrespective of the magnetic field assumed to thread the horizon and the spin range considered. This behaviour may already be visible in the analyses of radio observations by Narayan & McClintock and Russell et al. In agreement with previous studies, we also find that the power output that originates in the inner regions of the surrounding accretion discs is higher than that from the BHs and it cannot be ignored in investigations of continuous compact jets from these systems. C1 [Christodoulou, D. M.; Laycock, S. G. T.] Univ Massachusetts, Lowell Ctr Space Sci & Technol, Lowell, MA 01854 USA. [Christodoulou, D. M.] Univ Massachusetts, Dept Math Sci, Lowell, MA 01854 USA. [Contopoulos, I.] Acad Athens, Res Ctr Astron & Appl Math, Athens 11527, Greece. [Contopoulos, I.] Natl Res Nucl Univ, 31 Kashirskoe Highway, Moscow 115409, Russia. [Kazanas, D.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Code 663, Greenbelt, MD 20771 USA. [Steiner, J. F.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Papadopoulos, D. B.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece. [Laycock, S. G. T.] Univ Massachusetts, Dept Phys & Appl Phys, Lowell, MA 01854 USA. RP Christodoulou, DM (reprint author), Univ Massachusetts, Lowell Ctr Space Sci & Technol, Lowell, MA 01854 USA.; Christodoulou, DM (reprint author), Univ Massachusetts, Dept Math Sci, Lowell, MA 01854 USA. EM dimitris_christodoulou@uml.edu FU NASA [NNX14-AF77G]; NASA ADAP grant; NASA Einstein Fellowship [PF5-160144] FX We thank the referee whose comments led to a thorough analysis of the error bars in our calculations. DMC and SGTL were supported in part by NASA grant NNX14-AF77G. DK was supported by a NASA ADAP grant. JFS was supported by NASA Einstein Fellowship grant PF5-160144. NR 54 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2016 VL 461 IS 3 BP 2650 EP 2657 DI 10.1093/mnras/stw1518 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW2OG UT WOS:000383481100028 ER PT J AU Bernardi, G Zwart, JTL Price, D Greenhill, LJ Mesinger, A Dowell, J Eftekhari, T Ellingson, SW Kocz, J Schinzel, F AF Bernardi, G. Zwart, J. T. L. Price, D. Greenhill, L. J. Mesinger, A. Dowell, J. Eftekhari, T. Ellingson, S. W. Kocz, J. Schinzel, F. TI Bayesian constraints on the global 21-cm signal from the Cosmic Dawn SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; methods: statistical; cosmology: observations; dark ages, reionization, first stars; diffuse radiation ID CM POWER SPECTRUM; SIMILAR-TO 20; MURCHISON-WIDEFIELD-ARRAY; INTERGALACTIC MEDIUM; MODEL SELECTION; DARK-MATTER; PAPER-64 CONSTRAINTS; PARAMETER-ESTIMATION; RADIATIVE FEEDBACK; GALAXY FORMATION AB The birth of the first luminous sources and the ensuing epoch of reionization are best studied via the redshifted 21-cm emission line, the signature of the first two imprinting the last. In this work, we present a fully Bayesian method, HIBAYES, for extracting the faint, global (sky-averaged) 21-cm signal from the much brighter foreground emission. We show that a simplified (but plausible) Gaussian model of the 21-cm emission from the Cosmic Dawn epoch (15 less than or similar to z less than or similar to 30), parametrized by an amplitude A(HI), a frequency peak nu(HI) and a width sigma(HI), can be extracted even in the presence of a structured foreground frequency spectrum (parametrized as a seventh-order polynomial), provided sufficient signal-to-noise (400 h of observation with a single dipole). We apply our method to an early, 19-min-long observation from the Large aperture Experiment to detect the Dark Ages, constraining the 21-cm signal amplitude and width to be -890 < A(HI) < 0 mK and sigma(HI) > 6.5 MHz (corresponding to Delta z > 1.9 at redshift z similar or equal to 20) respectively at the 95-per cent confidence level in the range 13.2 < z < 27.4 (100 > nu > 50 MHz). C1 [Bernardi, G.] SKA South Africa, 3rd Floor,Pk Rd, ZA-7405 Pinelands, South Africa. [Bernardi, G.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Bernardi, G.; Price, D.; Greenhill, L. J.; Eftekhari, T.] Harvard Smithsonian Ctr Astrophys, Garden St 60, Cambridge, MA 02138 USA. [Zwart, J. T. L.] Univ Western Cape, Dept Phys & Astron, Private Bag X17, ZA-7535 Bellville, Cape Town, South Africa. [Zwart, J. T. L.] Univ Cape Town, Dept Astron, Astrophys Cosmol & Grav Ctr, Private Bag X3, ZA-7701 Rondebosch, South Africa. [Mesinger, A.] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. [Dowell, J.; Schinzel, F.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Ellingson, S. W.] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. [Kocz, J.] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91104 USA. RP Bernardi, G (reprint author), SKA South Africa, 3rd Floor,Pk Rd, ZA-7405 Pinelands, South Africa.; Bernardi, G (reprint author), Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.; Bernardi, G (reprint author), Harvard Smithsonian Ctr Astrophys, Garden St 60, Cambridge, MA 02138 USA. EM giannibernardi75@gmail.com OI Zwart, Jonathan/0000-0002-4967-946X; Eftekhari, Tarraneh/0000-0003-0307-9984 FU NSF [AST/1106059, PHY/0835713]; South Africa National Research Foundation; Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence 'Origin and Structure of the Universe'; Ministry of Foreign Affairs and International Cooperation, Directorate General for the Country Promotion [ZA14GR02] FX We thank an anonymous referee for helpful comments that considerably improved the manuscript. GB thanks Judd Bowman, Andrea Ferrara, Adrian Liu and Aaron Ewall-Wice for useful inputs and comments on this work and Jordan Mirocha for help with ARES. The LEDA experiment is supported by NSF grants AST/1106059 and PHY/0835713. JZ gratefully acknowledges a South Africa National Research Foundation Square Kilometre Array Research Fellowship. This research was supported by the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence 'Origin and Structure of the Universe'. With the support of the Ministry of Foreign Affairs and International Cooperation, Directorate General for the Country Promotion (Bilateral Grant Agreement ZA14GR02 - Mapping the Universe on the Pathway to SKA). NR 73 TC 4 Z9 4 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2016 VL 461 IS 3 BP 2847 EP 2855 DI 10.1093/mnras/stw1499 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW2OG UT WOS:000383481100041 ER PT J AU Vaughan, S Uttley, P Markowitz, AG Huppenkothen, D Middleton, MJ Alston, WN Scargle, JD Farr, WM AF Vaughan, S. Uttley, P. Markowitz, A. G. Huppenkothen, D. Middleton, M. J. Alston, W. N. Scargle, J. D. Farr, W. M. TI False periodicities in quasar time-domain surveys SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; methods: statistical; quasars: general ID ACTIVE GALACTIC NUCLEI; BLACK-HOLE BINARIES; RAPID OPTICAL VARIABILITY; DAMPED RANDOM-WALK; KEPLER OBSERVATIONS; TRANSIENT SURVEY; DRIVEN; FLUCTUATIONS; GALAXIES AB There have recently been several reports of apparently periodic variations in the light curves of quasars, e.g. PG 1302-102 by Graham et al. Any quasar showing periodic oscillations in brightness would be a strong candidate to be a close binary supermassive black hole and, in turn, a candidate for gravitational wave studies. However, normal quasars - powered by accretion on to a single, supermassive black hole - usually show stochastic variability over a wide range of time-scales. It is therefore important to carefully assess the methods for identifying periodic candidates from among a population dominated by stochastic variability. Using a Bayesian analysis of the light curve of PG 1302-102, we find that a simple stochastic process is preferred over a sinusoidal variation. We then discuss some of the problems one encounters when searching for rare, strictly periodic signals among a large number of irregularly sampled, stochastic time series, and use simulations of quasar light curves to illustrate these points. From a few thousand simulations of steep spectrum ('red noise') stochastic processes, we find many simulations that display few-cycle periodicity like that seen in PG 1302-102. We emphasize the importance of calibrating the false positive rate when the number of targets in a search is very large. C1 [Vaughan, S.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Uttley, P.] Univ Amsterdam, Anton Pannekoek Inst Astron, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Markowitz, A. G.] Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Huppenkothen, D.] NYU, Ctr Data Sci, 726 Broadway,7th Floor, New York, NY 10003 USA. [Middleton, M. J.; Alston, W. N.] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Scargle, J. D.] NASA, Ames Res Ctr, Astrobiol & Space Sci Div, Moffett Field, CA 94035 USA. [Farr, W. M.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. RP Vaughan, S (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM sav2@le.ac.uk FU STFC [ST/K001000/1]; European Union [312789]; STFC; Moore-Sloan Data Science Environment at NYU; National Aeronautics and Space Administration through the Science Mission Directorate Near-Earth Objects Observations Program [NNG05GF22G]; US National Science Foundation [AST-0909182, AST-1313422] FX We thank an anonymous referee for a prompt and thoughtful report. SV acknowledges support from STFC consolidated grant ST/K001000/1. WNA acknowledges support from the European Union Seventh Framework Programme (FP7/2013-2017) under grant agreement n. 312789, StrongGravity. MJM acknowledges support from an STFC Ernest Rutherford fellowship. DH acknowledges support by the Moore-Sloan Data Science Environment at NYU. This research made use of NASA's Astrophysics Data System. The CSS survey is funded by the National Aeronautics and Space Administration under Grant No. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Program. The CRTS survey is supported by the US National Science Foundation under grants AST-0909182 and AST-1313422. SV thanks Tom Maccarone for early discussions of some ideas in this paper, and C. Bailer-Jones for advice about his R code. NR 37 TC 5 Z9 5 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2016 VL 461 IS 3 BP 3145 EP 3152 DI 10.1093/mnras/stw1412 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW2OG UT WOS:000383481100062 ER PT J AU Soergel, B Flender, S Story, KT Bleem, L Giannantonio, T Efstathiou, G Rykoff, E Benson, BA Crawford, T Dodelson, S Habib, S Heitmann, K Holder, G Jain, B Rozo, E Saro, A Weller, J Abdalla, FB Allam, S Annis, J Armstrong, R Benoit-Levy, A Bernstein, GM Carlstrom, JE Rosell, AC Kind, MC Castander, FJ Chiu, I Chown, R Crocce, M Cunha, CE D'Andrea, CB da Costa, LN de Haan, T Desai, S Diehl, HT Dietrich, JP Doel, P Estrada, J Evrard, AE Flaugher, B Fosalba, P Frieman, J Gaztanaga, E Gruen, D Gruendl, RA Holzapfel, WL Honscheid, K James, DJ Keisler, R Kuehn, K Kuropatkin, N Lahav, O Lima, M Marshall, JL McDonald, M Melchior, P Miller, CJ Miquel, R Nord, B Ogando, R Omori, Y Plazas, AA Rapetti, D Reichardt, CL Romer, AK Roodman, A Saliwanchik, BR Sanchez, E Schubnell, M Sevilla-Noarbe, I Sheldon, E Smith, RC Soares-Santos, M Sobreira, F Stark, A Suchyta, E Swanson, MEC Tarle, G Thomas, D Vieira, JD Walker, AR Whitehorn, N AF Soergel, B. Flender, S. Story, K. T. Bleem, L. Giannantonio, T. Efstathiou, G. Rykoff, E. Benson, B. A. Crawford, T. Dodelson, S. Habib, S. Heitmann, K. Holder, G. Jain, B. Rozo, E. Saro, A. Weller, J. Abdalla, F. B. Allam, S. Annis, J. Armstrong, R. Benoit-Levy, A. Bernstein, G. M. Carlstrom, J. E. Carnero Rosell, A. Kind, M. Carrasco Castander, F. J. Chiu, I. Chown, R. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. de Haan, T. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Estrada, J. Evrard, A. E. Flaugher, B. Fosalba, P. Frieman, J. Gaztanaga, E. Gruen, D. Gruendl, R. A. Holzapfel, W. L. Honscheid, K. James, D. J. Keisler, R. Kuehn, K. Kuropatkin, N. Lahav, O. Lima, M. Marshall, J. L. McDonald, M. Melchior, P. Miller, C. J. Miquel, R. Nord, B. Ogando, R. Omori, Y. Plazas, A. A. Rapetti, D. Reichardt, C. L. Romer, A. K. Roodman, A. Saliwanchik, B. R. Sanchez, E. Schubnell, M. Sevilla-Noarbe, I. Sheldon, E. Smith, R. C. Soares-Santos, M. Sobreira, F. Stark, A. Suchyta, E. Swanson, M. E. C. Tarle, G. Thomas, D. Vieira, J. D. Walker, A. R. Whitehorn, N. CA DES Collaboration SPT Collaboration TI Detection of the kinematic Sunyaev-Zel'dovich effect with DES Year 1 and SPT SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; cosmic background radiation; large-scale structure of Universe ID SOUTH-POLE TELESCOPE; MICROWAVE BACKGROUND ANISOTROPIES; RELAXED GALAXY CLUSTERS; LARGE-SCALE STRUCTURE; DIGITAL SKY SURVEY; DARK-MATTER HALOS; SZ SURVEY; X-RAY; PECULIAR VELOCITIES; COSMOLOGICAL CONSTRAINTS AB We detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of 4.2 sigma by combining a cluster catalogue derived from the first year data of the Dark Energy Survey with cosmic microwave background temperature maps from the South Pole Telescope Sunyaev-Zel'dovich Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template, we measure the average central optical depth of the cluster sample, (tau) over bar (e) = (3.75 +/- 0.89) x 10(-3). We compare the extracted signal to realistic simulations and find good agreement with respect to the signal to noise, the constraint on (tau) over bar (e), and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales greater than or similar to 100 Mpc. C1 [Soergel, B.; Giannantonio, T.; Efstathiou, G.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Soergel, B.; Giannantonio, T.; Efstathiou, G.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Flender, S.; Bleem, L.; Habib, S.; Heitmann, K.; Carlstrom, J. E.] Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Lemont, IL 60439 USA. [Flender, S.; Bleem, L.; Benson, B. A.; Crawford, T.; Dodelson, S.; Habib, S.; Heitmann, K.; Carlstrom, J. E.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Story, K. T.; Rykoff, E.; Cunha, C. E.; Gruen, D.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Story, K. T.; Keisler, R.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Giannantonio, T.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Rykoff, E.; Gruen, D.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Benson, B. A.; Dodelson, S.; Allam, S.; Annis, J.; Diehl, H. T.; Estrada, J.; Flaugher, B.; Frieman, J.; Kuropatkin, N.; Nord, B.; Soares-Santos, M.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Benson, B. A.; Crawford, T.; Dodelson, S.; Carlstrom, J. E.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Habib, S.; Heitmann, K.] Argonne Natl Lab, MCS Div, 9700 S Cass Ave, Lemont, IL 60439 USA. [Holder, G.; Chown, R.; Omori, Y.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Jain, B.; Bernstein, G. M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Rozo, E.] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85721 USA. [Saro, A.; Chiu, I.; Desai, S.; Dietrich, J. P.; Rapetti, D.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Saro, A.; Weller, J.; Chiu, I.; Desai, S.; Dietrich, J. P.; Rapetti, D.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Weller, J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Weller, J.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Abdalla, F. B.; Benoit-Levy, A.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Armstrong, R.; Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Benoit-Levy, A.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Carlstrom, J. E.] Univ Chicago, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.; Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Castander, F. J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [D'Andrea, C. B.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [de Haan, T.; Holzapfel, W. L.; Whitehorn, N.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Evrard, A. E.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Barcelona, Spain. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Saliwanchik, B. R.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Private Bag X54001, ZA-4000 Durban, South Africa. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Complutense 40, Madrid 28040, Spain. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Stark, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Vieira, J. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Soergel, B (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.; Soergel, B (reprint author), Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. EM bsoergel@ast.cam.ac.uk RI Lima, Marcos/E-8378-2010; Ogando, Ricardo/A-1747-2010; Gaztanaga, Enrique/L-4894-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Gaztanaga, Enrique/0000-0001-9632-0815; Weller, Jochen/0000-0002-8282-2010; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658; Stark, Antony/0000-0002-2718-9996 FU Isaac Newton Studentship at the University of Cambridge; Science and Technologies Facilities Council (STFC); Kavli Foundation; STFC [ST/L000636/1]; Australian Research Council [DP150103208]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766, PLR-1248097]; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union including ERC [240672, 291329, 306478]; NSF Physics Frontier Center [PHY-0114422]; Gordon and Betty Moore Foundation [947]; US Department of Energy [DE-AC02-06CH11357]; DOE/SC [DE-AC02-06CH11357] FX BS thanks Anthony Challinor, Jens Chluba, Suet-Ying Mak, Emmanuel Schaan, and Fabian Schmidt for helpful discussions. BS further acknowledges support from an Isaac Newton Studentship at the University of Cambridge and from the Science and Technologies Facilities Council (STFC). KTS acknowledges support from the Kavli Foundation. TG further thanks David Bacon for useful discussion, and acknowledges support from the Kavli Foundation and STFC grant ST/L000636/1. CR acknowledges support from the Australian Research Council's Discovery Projects scheme (DP150103208).; Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; The South Pole Telescope programme is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation through Grant GBMF#947 to the University of Chicago.; Argonne National Laboratory's work was supported under the US Department of Energy contract DE-AC02-06CH11357. This research used resources of the ALCF, which is supported by DOE/SC under contract DE-AC02-06CH11357. NR 102 TC 6 Z9 6 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2016 VL 461 IS 3 BP 3172 EP 3193 DI 10.1093/mnras/stw1455 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW2OG UT WOS:000383481100065 ER PT J AU Brightman, M Harrison, FA Barret, D Davis, SW Furst, F Madsen, KK Middleton, M Miller, JM Stern, D Tao, L Walton, DJ AF Brightman, Murray Harrison, Fiona A. Barret, Didier Davis, Shane W. Furst, Felix Madsen, Kristin K. Middleton, Matthew Miller, Jon M. Stern, Daniel Tao, Lian Walton, Dominic J. TI A BROADBAND X-RAY SPECTRAL STUDY OF THE INTERMEDIATE-MASS BLACK HOLE CANDIDATE M82 X-1 WITH NuSTAR, CHANDRA, AND SWIFT SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; X-rays: binaries; X-rays: individual (M82 X-1) ID QUASI-PERIODIC OSCILLATIONS; SUPERCRITICAL ACCRETION FLOW; XMM-NEWTON; STARBURST GALAXIES; DISK MODELS; STATE; TELESCOPE; EMISSION; IDENTIFICATION AB M82 X-1 is one of the brightest ultraluminous X-ray sources (ULXs) known, which, assuming Eddington-limited accretion and other considerations, makes it one of the best intermediate-mass black-hole (IMBH) candidates. However, the ULX may still be explained by super-Eddington accretion onto a stellar remnant black hole. We present simultaneous NuSTAR, Chandra, and Swift/XRT observations during the peak of a flaring episode with the aim of modeling the emission of M82 X-1 and yielding insights into its nature. We find that thin accretion disk models all require accretion rates at or above the Eddington limit in order to reproduce the spectral shape, given a range of black-hole masses and spins. Since at these high Eddington ratios the thin-disk model breaks down due to radial advection in the disk, we discard the results of the thin-disk models as unphysical. We find that the temperature profile as a function of disk radius (T(r) proportional to r(-p)) is significantly flatter (p = 0.55(-0.04)(+0.07)) than expected for a standard thin disk (p = 0.75). A flatter profile is instead characteristic of a slim disk, which is highly suggestive of super-Eddington accretion. Furthermore, radiation hydrodynamical simulations of super-Eddington accretion have shown that the predicted spectra of these systems are very similar to what we observe for M82 X-1. We therefore conclude that M82 X-1 is a super-Eddington accretor. Our mass estimates inferred from the inner disk radius imply a stellar remnant black hole (M-BH = 26(-6)(+9) M-circle dot) when assuming zero spin and face-on inclination, or an IMBH for maximal spin and a highly inclined disk. C1 [Brightman, Murray; Harrison, Fiona A.; Furst, Felix; Madsen, Kristin K.; Tao, Lian; Walton, Dominic J.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. [Barret, Didier] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Barret, Didier] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Davis, Shane W.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Middleton, Matthew] Inst Astron, Madingley Rd, Cambridge CB3 OHA, England. [Miller, Jon M.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA. [Stern, Daniel; Walton, Dominic J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Brightman, M (reprint author), CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. OI Madsen, Kristin/0000-0003-1252-4891 FU NASA; European Research Council under the European Union's Seventh Framework Programme (FP)/ERC Grant [617001] FX This work made use of Director's Discretionary Time on Chandra, for which we thank Belinda Wilkes for approving and the Chandra X-ray Center for implementing. We also use Director's Discretionary Time on NuSTAR, for which we thank Fiona Harrison for approving and the NuSTAR SOC for co-ordinating with Chandra. The NuSTAR mission is a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). A.Z. acknowledges funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 617001. NR 52 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2016 VL 829 IS 1 AR 28 DI 10.3847/0004-637X/829/1/28 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8IY UT WOS:000385374500028 ER PT J AU Feng, YK Line, MR Fortney, JJ Stevenson, KB Bean, J Kreidberg, L Parmentier, V AF Feng, Y. Katherina Line, Michael R. Fortney, Jonathan J. Stevenson, Kevin B. Bean, Jacob Kreidberg, Laura Parmentier, Vivien TI THE IMPACT OF NON-UNIFORM THERMAL STRUCTURE ON THE INTERPRETATION OF EXOPLANET EMISSION SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: composition; stars: individual (WASP-43) ID HOT-JUPITER ATMOSPHERES; SYSTEMATIC RETRIEVAL ANALYSIS; HUBBLE-SPACE-TELESCOPE; HD 209458B; BROWN DWARFS; PHOTOMETRIC VARIABILITY; IRRADIATED ATMOSPHERES; DISEQUILIBRIUM CARBON; BAYESIAN-INFERENCE; MODEL SELECTION AB The determination of atmospheric structure and molecular abundances of planetary atmospheres via spectroscopy involves direct comparisons between models and data. While varying in sophistication, most model spectra comparisons fundamentally assume one-dimensional (1D) model physics. However, knowledge from general circulation models and of solar system planets suggests that planetary atmospheres are inherently three-dimensional in their structure and composition. We explore the potential biases resulting from standard "1D" assumptions within a Bayesian atmospheric retrieval framework. Specifically, we show how the assumption of a single 1D thermal profile can bias our interpretation of the thermal emission spectrum of a hot Jupiter atmosphere that is composed of two thermal profiles. We retrieve spectra of unresolved model planets as observed with a combination of the Hubble Space Telescope Wide Field Camera 3 (WFC3)+Spitzer Infrared Array Camera (IRAC) as well as the James Webb Space Telescope (JWST) under varying differences in the two thermal profiles. For WFC3+IRAC, there is a significantly biased estimate of CH4 abundance using a 1D model when the contrast is 80%. For JWST, two thermal profiles are required to adequately interpret the data and estimate the abundances when contrast is greater than 40%. We also apply this preliminary concept to the recent WFC3+IRAC phase curve data of the hot Jupiter WASP-43b. We see similar behavior as present in our simulated data: while the H2O abundance determination is robust, CH4 is artificially well-constrained to incorrect values under the 1D assumption. Our work demonstrates the need to evaluate model assumptions in order to extract meaningful constraints from atmospheric spectra and motivates exploration of optimal observational setups. C1 [Feng, Y. Katherina; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA. [Line, Michael R.] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Line, Michael R.] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. [Line, Michael R.] Arizona State Univ Tempe, Sch Earth & Space Explorat, Tempe, AZ 85297 USA. [Stevenson, Kevin B.; Bean, Jacob; Kreidberg, Laura] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Parmentier, Vivien] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Feng, YK (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA. FU National Science Foundation [DGE1339067, AST-1229745]; University of California, Santa Cruz; NASA through Hubble Fellowship - Space Telescope Science Institute [51362]; Hubble grant [HST-GO-13467.03-A]; NSF [A16-0321-001]; NASA [NNX02AH23G, NAS 5-26555] FX We thank Xi Zhang, Caroline Morley, Mark Swain, and Gautam Vasisht for useful and instructive conversations. We also thank Tom Greene for providing us with estimated JWST uncertainties. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant DGE1339067. The computation for this research was performed by the UCSC Hyades supercomputer, which is supported by the National Science Foundation (award number AST-1229745) and University of California, Santa Cruz. M.R.L. acknowledges support provided by NASA through Hubble Fellowship grant 51362 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under the contract NAS 5-26555. J.J.F. acknowledges the support of Hubble grant HST-GO-13467.03-A, NSF grant A16-0321-001, and NASA grant NNX02AH23G. Based on observations made with the NASA/ESA Hubble Space Telescope and the NASA Spitzer Space Telescope. NR 40 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2016 VL 829 IS 1 AR 52 DI 10.3847/0004-637X/829/1/52 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8IY UT WOS:000385374500052 ER PT J AU Frank, KA Zhekov, SA Park, S McCray, R Dwek, E Burrows, DN AF Frank, Kari A. Zhekov, Svetozar A. Park, Sangwook McCray, Richard Dwek, Eli Burrows, David N. TI CHANDRA OBSERVES THE END OF AN ERA IN SN 1987A SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; ISM: supernova remnants; X-rays: individual (SN 1987A); X-rays: ISM ID SUPERNOVA REMNANT 1987A; XMM-NEWTON OBSERVATIONS; TRIPLE-RING NEBULA; RAY LIGHT-CURVE; CIRCUMSTELLAR RING; EQUATORIAL RING; EVOLUTION; RESOLUTION; SN-1987A AB Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at similar to 8 x 10(-12) erg s(-1) cm(-2) since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10,000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies <2 keV. Images show a reversal of the east-west asymmetry between 7000 and 8000 days after the explosion. The latest images suggest the southeastern side of the equatorial ring (ER) is beginning to fade. Consistent with the latest optical and infrared results, our Chandra analysis indicates the blast wave is now leaving the dense ER, which marks the beginning of a major change in the evolutionary phase of the supernova remnant 1987A. C1 [Frank, Kari A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Zhekov, Svetozar A.] Inst Astron, 72 Tsarigradsko Chaussee Blvd, Sofia 1784, Bulgaria. [Zhekov, Svetozar A.] Natl Astron Observ, 72 Tsarigradsko Chaussee Blvd, Sofia 1784, Bulgaria. [Park, Sangwook] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [McCray, Richard] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Burrows, David N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Frank, KA (reprint author), Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. EM kafrank@psu.edu FU National Aeronautics and Space Administration [GO3-14058X, GO4-15056X, GO5-16054X]; National Aeronautics Space Administration [NAS8-03060] FX The authors would like to thank G. Zanardo for providing the 44 GHz images and P. Broos for assistance with the ACIS pileup correction. The scientific results reported in this article are based on observations made by the Chandra X-ray Observatory and have made use of software provided by the Chandra X-ray Center in the application package CIAO. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Numbers GO3-14058X, GO4-15056X, and GO5-16054X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. NR 39 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2016 VL 829 IS 1 AR 40 DI 10.3847/0004-637X/829/1/40 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8IY UT WOS:000385374500040 ER PT J AU Lien, A Sakamoto, T Barthelmy, SD Baumgartner, WH Cannizzo, JK Chen, K Collins, NR Cummings, JR Gehrels, N Krimm, HA Markwardt, CB Palmer, DM Stamatikos, M Troja, E Ukwatta, TN AF Lien, Amy Sakamoto, Takanori Barthelmy, Scott D. Baumgartner, Wayne H. Cannizzo, John K. Chen, Kevin Collins, Nicholas R. Cummings, Jay R. Gehrels, Neil Krimm, Hans A. Markwardt, Craig. B. Palmer, David M. Stamatikos, Michael Troja, Eleonora Ukwatta, T. N. TI THE THIRD SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID HARD X-RAY; COMPREHENSIVE ANALYSIS; EXTENDED EMISSION; LIGHT CURVES; LUMINOSITY FUNCTION; SPECTRAL CATALOG; COMPLETE SAMPLE; TIME DILATION; GRB 130925A; BAT AB To date, the Burst Alert Telescope (BAT) onboard Swift has detected similar to 1000 gamma-ray bursts (GRBs), of which similar to 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past similar to 11 years up through GRB 151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html. In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (similar to 2% of the BAT GRBs) in this search with confirmed emission beyond similar to 1000 s of event data, and only two GRBs (GRB 100316D and GRB 101024A) with detections in the survey data prior to the starting of event data. C1 [Lien, Amy; Baumgartner, Wayne H.; Cannizzo, John K.; Collins, Nicholas R.; Krimm, Hans A.; Troja, Eleonora] CRESST, Greenbelt, MD 20771 USA. [Lien, Amy; Baumgartner, Wayne H.; Cannizzo, John K.; Collins, Nicholas R.; Krimm, Hans A.; Troja, Eleonora] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lien, Amy; Baumgartner, Wayne H.; Cannizzo, John K.; Collins, Nicholas R.] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Sakamoto, Takanori] Aoyama Gakuin Univ, Coll Sci & Engn, Dept Math & Phys, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. [Barthelmy, Scott D.; Cummings, Jay R.; Gehrels, Neil; Markwardt, Craig. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chen, Kevin] Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA USA. [Krimm, Hans A.] Univ Space Res Assoc, 10211 Wincopin Circle,Suite 500, Columbia, MD 21044 USA. [Palmer, David M.; Ukwatta, T. N.] Loa Alamos Natl Lab, Space & Remote Sensing ISR 2, Los Alamos, NM 87544 USA. [Stamatikos, Michael] Ohio State Univ, Dept Astron, Dept Phys, Columbus, OH 43210 USA. [Stamatikos, Michael] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Troja, Eleonora] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Troja, Eleonora] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Lien, A (reprint author), CRESST, Greenbelt, MD 20771 USA.; Lien, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 67 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2016 VL 829 IS 1 AR 7 DI 10.3847/0004-637X/829/1/7 PG 47 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8IY UT WOS:000385374500007 ER PT J AU Morris, PW Gupta, H Nagy, Z Pearson, JC Ossenkopf-Okada, V Falgarone, E Lis, DC Gerin, M Melnick, G Neufeld, DA Bergin, EA AF Morris, Patrick W. Gupta, Harshal Nagy, Zsofia Pearson, John C. Ossenkopf-Okada, Volker Falgarone, Edith Lis, Dariusz C. Gerin, Maryvonne Melnick, Gary Neufeld, David A. Bergin, Edwin A. TI HERSCHEL/HIFI SPECTRAL MAPPING OF C+, CH+, AND CH IN ORION BN/KL: THE PREVAILING ROLE OF ULTRAVIOLET IRRADIATION IN CH+ FORMATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: abundances; ISM: clouds; ISM: lines and bands; ISM: molecules; molecular processes ID PHOTON-DOMINATED REGIONS; STAR-FORMING REGIONS; DIFFUSE INTERSTELLAR-MEDIUM; VIBRATIONALLY EXCITED H-2; MOLECULAR LINE EMISSION; C-12/C-13 ISOTOPE RATIO; MEUDON PDR CODE; KL HOT CORE; PHYSICAL CONDITIONS; ROTATIONAL-EXCITATION AB The CH+ ion is a key species in the initial steps of interstellar carbon chemistry. Its formation in diverse environments where it is observed is not well understood, however, because the main production pathway is so endothermic (4280 K) that it is unlikely to proceed at the typical temperatures of molecular clouds. We investigate the formation of this highly reactive molecule with the first velocity-resolved spectral mapping of the CH+ J. = 1-0, 2-1 rotational transitions, three sets of CH Lambda-doubled triplet lines, C-12(+) and C-13(+) P-2(3/2)-P-2(1/2),andCH(3)OH 835 GHz E-symmetry Q-branch transitions, obtained with Herschel/HIFI over a region of approximate to 12 arcmin(2) centered on the Orion BN/KL source. We present the spatial morphologies and kinematics, cloud boundary conditions, excitation temperatures, column densities, and C-12(+) optical depths. Emission from all of C+, CH+, and CH is indicated to arise in the diluted gas, outside the explosive, dense BN/KL outflow. Our models show that UV irradiation provides favorable conditions for steady-state production of CH+ in this environment. Surprisingly, no spatial or kinematic correspondences of the observed species are found with H-2 S(1) emission tracing shocked gas in the outflow. We propose that C+ is being consumed by rapid production of CO to explain the lack of both C+ and CH+ in the outflow. Hence, in star-forming environments containing sources of shocks and strong UV radiation, a description of the conditions leading to CH+ formation and excitation is incomplete without including the important-possibly dominant-role of UV irradiation. C1 [Morris, Patrick W.; Gupta, Harshal] CALTECH, NASA, Herschel Sci Ctr, IPAC M-C 100-22, Pasadena, CA 91125 USA. [Gupta, Harshal] Natl Sci Fdn, Div Astron Sci, 4201 Wilson Blvd,Suite 1045, Arlington, VA 22230 USA. [Nagy, Zsofia; Ossenkopf-Okada, Volker] Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. [Nagy, Zsofia] Univ Toledo, Dept Phys & Astron, 2801 West Bancroft St, Toledo, OH 43606 USA. [Pearson, John C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Falgarone, Edith; Gerin, Maryvonne] Univ Paris 06, Sorbonne Univ, PSL Res Univ, LERMA,Observ Paris,CNRS,Ecole Normale Super, F-75005 Paris, France. [Lis, Dariusz C.] Univ Paris 06, Sorbonne Univ, PSL Res Univ, LERMA,Observ Paris,CNRS, F-75014 Paris, France. [Lis, Dariusz C.] CALTECH, Cahill Ctr Astron & Astrophys MC 301 17, Pasadena, CA 91125 USA. [Melnick, Gary] Harvard Smithsonian Ctr Astrophys, 60 Garden St,Mail Stop 66, Cambridge, MA 02138 USA. [Neufeld, David A.] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA. [Bergin, Edwin A.] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. RP Morris, PW (reprint author), CALTECH, NASA, Herschel Sci Ctr, IPAC M-C 100-22, Pasadena, CA 91125 USA. EM pmorris@ipac.caltech.edu FU NASA (Herschel GT funding); JPL/Caltech; Deutsche Forschungsgemeinschaft (DFG) [SFB 956, C1]; CNES; INSU program PCMI; National Science Foundation (NSF) FX This work is based on observations made with the HIFI instrument on the Herschel Space Observatory, which was designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States (the National Aeronautics and Space Administration, NASA) under the leadership of the Netherlands Institute for Space Research (SRON), Groningen, The Netherlands, and with major contributions from Germany, France, and the US. We express our gratitude to Nathan Crockett for helpful discussions and providing the Orion BN/KL continuum data, and to John Bally and Nathan Cunningham for providing the H2 observations of the BN/KL outflow. We also thank Octavio Roncero and Alexandre Zanchet for providing their CH+ state-to-state formation rates, and we especially appreciate support with the Meudon PDR code from Frank Le Petit. We are grateful to the HIFI Instrument Control Center team for its many years of dedicated work and support. We also thank an anonymous referee for thorough review of the manuscript and thoughtful comments to improve its quality. Support for this work was provided by NASA (Herschel GT funding) through an award issued by JPL/Caltech. V.O. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) via the collaborative research grant SFB 956, project C1. E.F. and M.G. thank the CNES and the INSU program PCMI for funding. A part of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. H.G. acknowledges support from the National Science Foundation (NSF). Any opinions, findings, and conclusions in this article are those of the authors, and do not necessarily reflect the views of the NSF. NR 139 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2016 VL 829 IS 1 AR 15 DI 10.3847/0004-637X/829/1/15 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8IY UT WOS:000385374500015 ER PT J AU Shporer, A Fuller, J Isaacson, H Hambleton, K Thompson, SE Prsa, A Kurtz, DW Howard, AW O'Leary, RM AF Shporer, Avi Fuller, Jim Isaacson, Howard Hambleton, Kelly Thompson, Susan E. Prsa, Andrej Kurtz, Donald W. Howard, Andrew W. O'Leary, Ryan M. TI RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; techniques: radial velocities ID ECCENTRIC BINARY-SYSTEMS; SOLAR-TYPE STARS; ECLIPSING BINARIES; SPECTROSCOPIC BINARIES; STELLAR COMPANIONS; ORBITAL SOLUTIONS; FALSE POSITIVES; DATA RELEASE; IDENTIFICATION; PULSATIONS AB Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity-period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories. C1 [Shporer, Avi] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Fuller, Jim] CALTECH, TAPIR, Walter Burke Inst Theoret Phys, Mailcode 350-17, Pasadena, CA 91125 USA. [Fuller, Jim] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Kohn Hall, Santa Barbara, CA 93106 USA. [Isaacson, Howard] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hambleton, Kelly; Prsa, Andrej] Villanova Univ, Dept Astrophys & Planetary Sci, 800 East Lancaster Ave, Villanova, PA 19085 USA. [Hambleton, Kelly; Kurtz, Donald W.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Thompson, Susan E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Thompson, Susan E.] SETI Inst, 189 Bernardo Ave Suite 100, Mountain View, CA 94043 USA. [Howard, Andrew W.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [O'Leary, Ryan M.] Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA. [O'Leary, Ryan M.] NIST, 440 UCB, Boulder, CO 80309 USA. RP Shporer, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. OI Kurtz, Donald/0000-0002-1015-3268; Isaacson, Howard/0000-0002-0531-1073; Shporer, Avi/0000-0002-1836-3120 FU NASA through the Sagan Fellowship Program; NSF at Caltech [AST-1205732]; NASA Office of Space Science [NNX09AF08G]; Kepler Guest Observer Program; NSF through a Lee DuBridge Fellowship at Caltech; NASA [NAS5-26555]; NASA Science Mission directorate FX We are grateful to the referee, Maxwell Moe, for his thorough reading of the manuscript and his meticulous comments that have helped improve this paper. We warmly thank Ben Fulton, Evan Sinukoff, Lauren Weiss, Lea Hirsch, Erik Petigura, and Geoff Marcy for contributions to the Keck/HIRES observations. This work was performed in part at the Jet Propulsion Laboratory, under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. JF acknowledges partial support from NSF under grant no. AST-1205732 and through a Lee DuBridge Fellowship at Caltech. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This research has made use of NASA's Astrophysics Data System Service. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. We acknowledge the support of the Kepler Guest Observer Program. NR 57 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2016 VL 829 IS 1 AR 34 DI 10.3847/0004-637X/829/1/34 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8IY UT WOS:000385374500034 ER PT J AU van Velzen, S Mendez, AJ Krolik, JH Gorjian, V AF van Velzen, S. Mendez, A. J. Krolik, J. H. Gorjian, V. TI DISCOVERY OF TRANSIENT INFRARED EMISSION FROM DUST HEATED BY STELLAR TIDAL DISRUPTION FLARES SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion; accretion disks; black hole physics; dust, extinction; galaxies: general ID MASSIVE BLACK-HOLE; ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; REVERBERATION MEASUREMENTS; SDSS J095209.56+214313.3; SWIFT J164449.3+573451; SURVEY-EXPLORER; FOLLOW-UP; GALAXIES; STAR AB Stars that pass within the Roche radius of a supermassive black hole will be tidally disrupted, yielding a sudden injection of gas close to the black hole horizon which produces an electromagnetic flare. A few dozen of these flares have been discovered in recent years, but current observations provide poor constraints on the bolometric luminosity and total accreted mass of these events. Using images from the Wide-field Infrared Survey Explorer, we have discovered transient 3.4 mu m emission from several previously known tidal disruption flares. The observations can be explained by dust heated to its sublimation temperature due to the intense radiation of the tidal flare. From the break in the infrared light curve we infer that this hot dust is located similar to 0.1 pc from the supermassive black hole. Since the dust has been heated by absorbing UV and (potentially) soft X-ray photons of the flare, the reprocessing light curve yields an estimate of the bolometric flare luminosity. For the flare PTF-09ge, we infer that the most likely value of the luminosity integrated over frequencies at which dust can absorb photons is 8 x 10(44) erg s(-1), with a factor of 3 uncertainty due to the unknown temperature of the dust. This bolometric luminosity is a factor similar to 10 larger than the observed blackbody luminosity. Our work is the first to probe dust in the nuclei of non-active galaxies on sub-parsec scales. The observed infrared luminosity implies a covering factor similar to 1% for the nuclear dust in the host galaxies. C1 [van Velzen, S.; Mendez, A. J.; Krolik, J. H.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gorjian, V.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP van Velzen, S (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM sjoert@jhu.edu OI Krolik, Julian/0000-0002-2995-7717 FU National Aeronautics and Space Administration; NASA through a Hubble Fellowship [HST-HF2-51350] FX We thank B. Ochsendorf and K. Tchernyshyov for useful discussions. We thank the referee for the useful comments. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/ California Institute of Technology, funded by the National Aeronautics and Space Administration. SvV is supported by NASA through a Hubble Fellowship (HST-HF2-51350). NR 61 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2016 VL 829 IS 1 AR 19 DI 10.3847/0004-637X/829/1/19 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8IY UT WOS:000385374500019 ER PT J AU Wong, KW Irwin, JA Wik, DR Sun, M Sarazin, CL Fujita, Y Reiprich, TH AF Wong, Ka-Wah Irwin, Jimmy A. Wik, Daniel R. Sun, Ming Sarazin, Craig L. Fujita, Yutaka Reiprich, Thomas H. TI SUZAKU X-RAY OBSERVATIONS OF THE NEAREST NON-COOL CORE CLUSTER, ANTLIA: DYNAMICALLY YOUNG BUT WITH REMARKABLY RELAXED OUTSKIRTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: intracluster medium; galaxies: groups: individual (the Antlia Cluster); intergalactic medium; large-scale structure of universe; X-rays: galaxies: clusters ID GALAXY CLUSTERS; VIRIAL RADIUS; INTRACLUSTER MEDIUM; GAS PROPERTIES; REPRESENTATIVE SAMPLE; NON-EQUIPARTITION; PERSEUS CLUSTER; MASS FRACTION; VIRGO CLUSTER; NEARBY GROUPS AB We present the results of seven Suzaku mosaic observations (>200 ks in total) of the nearest non-cool core cluster, the Antlia Cluster (or Group), beyond its degree-scale virial radius in its eastern direction. The temperature is consistent with the scaled profiles of many other clusters. Its pressure follows the universal profile. The density slope in its outskirts is significantly steeper than that of the nearest cool core cluster (Virgo) with a similar temperature as Antlia, but shallower than those of the massive clusters. The entropy increases all the way out to R-200, which is consistent in value with the baseline model predicted by a gravity heating-only mechanism in the outskirts. Antlia is quite relaxed in this direction. However, the entropy inside similar to R-500 is significantly higher than the baseline model, which is similar to many other nearby low mass clusters or groups. The enclosed gas-mass fraction does not exceed the cosmic value out to 1.3R(200). Thus, there is no evidence of significant gas clumping, electron-ion non-equipartition, or departure from the hydrostatic equilibrium approximation that are suggested to explain the entropy and gas fraction anomalies found in the outskirts of some massive clusters. We also present scaling relations for the gas fraction (f(gas, 200)), entropy (K-200), and temperature (T-500) using 22 groups and clusters with published data in the literature. The enclosed baryon fraction at R-200 is broadly consistent with the cosmic value. The power law slope of the K-200-T-500 relation is 0.638 +/- 0.205. The entropy deficit at R-200 cannot be fully accounted for by the bias or deviation in the gas fraction. C1 [Wong, Ka-Wah] Eureka Sci Inc, 2452 Delmer St Suite 100, Oakland, CA 94602 USA. [Wong, Ka-Wah] Minnesota State Univ, Dept Phys & Astron, Mankato, MN 56001 USA. [Irwin, Jimmy A.] Univ Alabama, Dept Phys & Astron, Box 870324, Tuscaloosa, AL 35487 USA. [Wik, Daniel R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Wik, Daniel R.] Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. [Sun, Ming] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Sarazin, Craig L.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Fujita, Yutaka] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Reiprich, Thomas H.] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. RP Wong, KW (reprint author), Eureka Sci Inc, 2452 Delmer St Suite 100, Oakland, CA 94602 USA.; Wong, KW (reprint author), Minnesota State Univ, Dept Phys & Astron, Mankato, MN 56001 USA. EM kw6k@email.virginia.edu OI Irwin, Jimmy/0000-0003-4307-8521; Sarazin, Craig/0000-0003-0167-0981 FU NASA ADAP grant [NNX13AI52G, NNX13AI53G]; Chandra grant [GO3-14128A, GO5-16131X]; NASA XMM-Newton grant [NNX15AG26]; KAKENHI [15K05080]; Deutsche Forschungsgemeinschaft (D.F.G.) [RE 1462/5, RE 1462/6] FX We thank Lucas Johnson, Dacheng Lin, Peter Maksym, Eric Miller, Evan Million, Yuanyuan Su, and Mihoko Yukita for useful discussions. We thank all PIs of the relevant observations and authors of the published works we used for their original efforts. K.W.W. and J.A.I. were supported by NASA ADAP grants NNX13AI52G and NNX13AI53G, as well as Chandra grant GO3-14128A. C.L.S. was partially supported by Chandra grant GO5-16131X and NASA XMM-Newton grant NNX15AG26. Y.F. was supported by KAKENHI No. 15K05080. T.H.R. acknowledges support by the Deutsche Forschungsgemeinschaft (D.F.G.) through Heisenberg research grant RE 1462/5 and grant RE 1462/6. NR 97 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2016 VL 829 IS 1 AR 49 DI 10.3847/0004-637X/829/1/49 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8IY UT WOS:000385374500049 ER PT J AU Adriani, O Akaike, Y Asano, K Asaoka, Y Bagliesi, MG Bigongiari, G Binns, WR Bonechi, S Bongi, M Brogi, P Buckley, JH Cannady, N Castellini, G Checchia, C Cherry, ML Collazuol, G Di Felice, V Ebisawa, K Fuke, H Guzik, TG Hams, T Hareyama, M Hasebe, N Hibino, K Ichimura, M Ioka, K Ishizaki, W Israel, MH Javaid, A Kasahara, K Kataoka, J Kataoka, R Katayose, Y Kato, C Kawanaka, N Kawakubo, Y Kitamura, H Krawczynski, HS Krizmanic, JF Kuramata, S Lomtadze, T Maestro, P Marrocchesi, PS Messineo, AM Mitchell, JW Miyake, S Mizutani, K Moiseev, AA Mori, K Mori, M Mori, N Motz, HM Munakata, K Murakami, H Nakagawa, YE Nakahira, S Nishimura, J Okuno, S Ormes, JF Ozawa, S Pacini, L Palma, F Papini, P Penacchioni, AV Rauch, BF Ricciarini, S Sakai, K Sakamoto, T Sasaki, M Shimizu, Y Shiomi, A Sparvoli, R Spillantini, P Stolzi, F Takahashi, I Takayanagi, M Takita, M Tamura, T Tateyama, N Terasawa, T Tomida, H Torii, S Tsunesada, Y Uchihori, Y Ueno, S Vannuccini, E Wefel, JP Yamaoka, K Yanagita, S Yoshida, A Yoshida, K Yuda, T AF Adriani, O. Akaike, Y. Asano, K. Asaoka, Y. Bagliesi, M. G. Bigongiari, G. Binns, W. R. Bonechi, S. Bongi, M. Brogi, P. Buckley, J. H. Cannady, N. Castellini, G. Checchia, C. Cherry, M. L. Collazuol, G. Di Felice, V. Ebisawa, K. Fuke, H. Guzik, T. G. Hams, T. Hareyama, M. Hasebe, N. Hibino, K. Ichimura, M. Ioka, K. Ishizaki, W. Israel, M. H. Javaid, A. Kasahara, K. Kataoka, J. Kataoka, R. Katayose, Y. Kato, C. Kawanaka, N. Kawakubo, Y. Kitamura, H. Krawczynski, H. S. Krizmanic, J. F. Kuramata, S. Lomtadze, T. Maestro, P. Marrocchesi, P. S. Messineo, A. M. Mitchell, J. W. Miyake, S. Mizutani, K. Moiseev, A. A. Mori, K. Mori, M. Mori, N. Motz, H. M. Munakata, K. Murakami, H. Nakagawa, Y. E. Nakahira, S. Nishimura, J. Okuno, S. Ormes, J. F. Ozawa, S. Pacini, L. Palma, F. Papini, P. Penacchioni, A. V. Rauch, B. F. Ricciarini, S. Sakai, K. Sakamoto, T. Sasaki, M. Shimizu, Y. Shiomi, A. Sparvoli, R. Spillantini, P. Stolzi, F. Takahashi, I. Takayanagi, M. Takita, M. Tamura, T. Tateyama, N. Terasawa, T. Tomida, H. Torii, S. Tsunesada, Y. Uchihori, Y. Ueno, S. Vannuccini, E. Wefel, J. P. Yamaoka, K. Yanagita, S. Yoshida, A. Yoshida, K. Yuda, T. TI CALET UPPER LIMITS ON X-RAY AND GAMMA-RAY COUNTERPARTS OF GW151226 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst; general - gravitational waves ID BURSTS AB We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gammarays from similar to 1 GeV up to 10 TeV with a field of view of similar to 2 sr. The CALET gamma-ray burst monitor (CGBM) views similar to 3 sr and similar to 2 pi sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV-1 MeV and 40 keV-20 MeV bands respectively. We place a 90% upper limit of 2 x 10(-7) erg cm(-2) s(-1) in the 1-100 GeV band where CAL reaches 15% of the integrated LIGO probability (similar to 1.1 sr). The CGBM 7 sigma upper limits are 1.0 x 10(-6) erg cm(-2) s(-1) (7-500 keV) and 1.8. x. 10(-6) erg cm(-2) s(-1) (50-1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3-5. x. 10(49) erg s(-1), which is significantly lower than typical short GRBs. C1 [Adriani, O.; Bongi, M.; Castellini, G.; Mori, N.; Pacini, L.; Papini, P.; Ricciarini, S.; Spillantini, P.; Vannuccini, E.] Univ Florence, Via Sansone 1, I-50019 Sesto, Fiorentino, Italy. [Adriani, O.; Bagliesi, M. G.; Bigongiari, G.; Bonechi, S.; Bongi, M.; Brogi, P.; Castellini, G.; Di Felice, V.; Maestro, P.; Marrocchesi, P. S.; Mori, N.; Pacini, L.; Palma, F.; Papini, P.; Ricciarini, S.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Vannuccini, E.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Piazza Caprettari 70, I-00186 Rome, Italy. [Adriani, O.; Bongi, M.; Castellini, G.; Mori, N.; Pacini, L.; Papini, P.; Ricciarini, S.; Spillantini, P.; Vannuccini, E.] CNR, Natl Res Council, Inst Appl Phys IFAC, Via Madonna Piano 10, I-50019 Sesto, Fiorentino, Italy. [Akaike, Y.; Krizmanic, J. F.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA. [Akaike, Y.; Hams, T.; Krizmanic, J. F.; Moiseev, A. A.; Sakai, K.; Sasaki, M.] CRESST, Greenbelt, MD 20771 USA. [Akaike, Y.; Hams, T.; Krizmanic, J. F.; Moiseev, A. A.; Sakai, K.; Sasaki, M.] Astroparticle Phys Lab NASA GSFC, Greenbelt, MD 20771 USA. [Asano, K.; Ishizaki, W.; Takita, M.; Yuda, T.] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan. [Asaoka, Y.; Nakahira, S.; Torii, S.] Japan Aerosp Explorat Agcy, Human Spaceflight Technol Directorate, JEM Miss Operat & Integrat Ctr, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. [Asaoka, Y.; Hasebe, N.; Kasahara, K.; Kataoka, J.; Mori, K.; Murakami, H.; Ozawa, S.; Torii, S.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. [Bagliesi, M. G.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Maestro, P.; Marrocchesi, P. S.; Penacchioni, A. V.; Stolzi, F.] Univ Siena, Via Banchi Sotto 55, I-53100 Siena, Italy. [Binns, W. R.; Buckley, J. H.; Israel, M. H.; Krawczynski, H. S.; Rauch, B. F.] Washington Univ, Dept Phys, One Brookings Dr, St Louis, MO 63130 USA. [Cannady, N.; Cherry, M. L.; Guzik, T. G.; Javaid, A.; Wefel, J. P.] Louisiana State Univ, Dept Phys & Astron, 202 Nicholson Hall, Baton Rouge, LA 70803 USA. [Checchia, C.; Collazuol, G.] Univ Padua, Dept Phys & Astron, Via Marzolo 8, I-35131 Padua, Italy. [Di Felice, V.; Palma, F.; Sparvoli, R.] Univ Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy. [Ebisawa, K.; Fuke, H.; Mori, K.; Nakagawa, Y. E.; Nishimura, J.; Takayanagi, M.; Tomida, H.; Ueno, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Hams, T.; Sakai, K.] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Hareyama, M.] St Marianna Univ, Sch Med, Miyamae Ku, 2-16-1 Sugao, Kawasaki, Kanagawa 2168511, Japan. [Hibino, K.; Okuno, S.; Shimizu, Y.; Tamura, T.; Tateyama, N.] Kanagawa Univ, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan. [Ichimura, M.; Kuramata, S.] Hirosaki Univ, Grad Sch Sci & Technol, Fac Sci & Technol, Bunkyo Ku, Hirosaki, Aomori 0368561, Japan. [Ioka, K.] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan. [Kataoka, R.] Natl Inst Polar Res, 10-3 Midori Cho, Tachikawa, Tokyo 1908518, Japan. [Katayose, Y.] Yokohama Natl Univ, Div Intelligent Syst Engn, Fac Engn, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan. [Kato, C.; Munakata, K.] Shinshu Univ, Fac Sci, 3-1-1 Asahi, Matsumoto, Nagano 3908621, Japan. [Kawanaka, N.] Univ Tokyo, Sch Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 113003, Japan. [Kawakubo, Y.; Sakamoto, T.; Yoshida, A.] Aoyama Gakuin Univ, Dept Math & Phys, Coll Sci & Engn, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. [Kitamura, H.; Uchihori, Y.] Natl Inst Radiol Sci, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan. [Lomtadze, T.; Messineo, A. M.] Univ Pisa, Pisa, Italy. [Lomtadze, T.; Messineo, A. M.] Ist Nazl Fis Nucl, Pisa, Italy. [Mitchell, J. W.] NASA, GSFC, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Miyake, S.] Ibaraki Coll, Natl Inst Technol, Dept Elect & Elect Syst Engn, 866 Nakane, Hitachinaka, Ibaraki 3128508, Japan. [Mizutani, K.] Saitama Univ, Shimo Okubo 255, Saitama 3388570, Japan. [Moiseev, A. A.; Sasaki, M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mori, M.] Ritsumeikan Univ, Dept Phys Sci, Coll Sci & Engn, Shiga 5258577, Japan. [Motz, H. M.] Waseda Univ, Int Ctr Sci & Engn Programs, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Phys Bldg,Room 211,2112 East Wesley Ave, Denver, CO 80208 USA. [Penacchioni, A. V.] ASDC, Via Politecn Snc, I-00133 Rome, Italy. [Shiomi, A.] Nihon Univ, Coll Ind Technol, 1-2-1 Izumi, Narashino, Chiba 2758575, Japan. [Takahashi, I.] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. [Terasawa, T.] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Tsunesada, Y.] Osaka City Univ, Grad Sch Sci, Div Math & Phys, 3-3-138 Sugimoto, Sumiyoshi, Osaka 5588585, Japan. [Yamaoka, K.] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Yanagita, S.] Ibaraki Univ, Grad Sch Sci & Engn, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. [Yoshida, K.] Shibaura Inst Technol, Dept Elect Informat Syst, 307 Fukasaku, Minuma, Saitama 3378570, Japan. RP Adriani, O (reprint author), Univ Florence, Via Sansone 1, I-50019 Sesto, Fiorentino, Italy. RI Palma, Francesco/K-3224-2015 OI Palma, Francesco/0000-0001-7076-8830 FU ASI; NASA [RTOP 14-APRA14-0075, NNX16AC02G, NNX16AB99G, NNX11AE06G]; JSPS [26220708]; MEXT-Supported Program for the Strategic Research Foundation at Private Universities in Waseda University [S1101021]; MEXT [24103002] FX We would like to thank the anonymous referee for comments and suggestions that materially improved the paper. We gratefully acknowledge JAXA's contributions for CALET development and operation on ISS. We express our sincere thanks to ASI and NASA for their support to the CALET project. This work is partially supported by JSPS Grant-in-Aid for Scientific Research (S) number 26220708 and MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2011-2015) S1101021 in Waseda University. This work is also supported in part by MEXT Grant-in-Aid for Scientific Research on Innovative Areas number 24103002. US CALET work is supported by NASA under RTOP 14-APRA14-0075 (GSFC) and grants NNX16AC02G (WUSL), NNX16AB99G (LSU), and NNX11AE06G (Denver). NR 17 TC 3 Z9 3 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2016 VL 829 IS 1 AR L20 DI 10.3847/2041-8205/829/1/L20 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8WG UT WOS:000385412000020 ER PT J AU Howell, SB Everett, ME Horch, EP Winters, JG Hirsch, L Nusdeo, D Scott, NJ AF Howell, Steve B. Everett, Mark E. Horch, Elliott P. Winters, Jennifer G. Hirsch, Lea Nusdeo, Dan Scott, Nicholas J. TI SPECKLE IMAGING EXCLUDES LOW-MASS COMPANIONS ORBITING THE EXOPLANET HOST STAR TRAPPIST-1 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: imaging; stars: individual (TRAPPIST-1, 2MASS J23062928-0502285) ID KEPLER; TELESCOPE; PROGRAM; PLANETS; SYSTEMS; DWARFS; K2 AB We have obtained the highest-resolution images available of TRAPPIST-1 using the Gemini-South telescope and our speckle imaging camera. Observing at 692 and 883 nm, we reached the diffraction limit of the telescope providing a best resolution of 27 mas or, at the distance of TRAPPIST-1, a spatial resolution of 0.32 au. Our imaging of the star extends from 0.32 to 14.5 au. We show that to a high confidence level, we can exclude all possible stellar and brown dwarf companions, indicating that TRAPPIST-1 is a single star. C1 [Howell, Steve B.; Scott, Nicholas J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Everett, Mark E.] Natl Opt Astron Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. [Horch, Elliott P.] Southern Connecticut State Univ, Dept Phys, 501 Crescent St, New Haven, CT 06515 USA. [Winters, Jennifer G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Hirsch, Lea] Univ Calif Berkeley, Dept Astron, 510 Campbell Hall, Berkeley, CA 94720 USA. [Nusdeo, Dan] Georgia State Univ, Dept Phys & Astron, POB 5060, Atlanta, GA 30302 USA. RP Howell, SB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. FU John Templeton Foundation; Gemini Observatory [GS-2016A-Q-80] FX We wish to thank the staff of the Gemini-South Observatory for their kind assistance with our visiting instrument and during our observation run. The referee made a number of suggestions that led to a better presentation. Elisa Quintana provided helpful discussions on the topic of planet stability under the influence of a disturbing companion star. J.W. is supported through a grant from the John Templeton Foundation. The opinions expressed here do not necessarily reflect the views of the John Templeton Foundation. These results are based on observations obtained as part of the program GS-2016A-Q-80 at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina), and Ministerio da Ciencia, Tecnologia e Inovacao (Brazil). NR 19 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2016 VL 829 IS 1 AR L2 DI 10.3847/2041-8205/829/1/L2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8WG UT WOS:000385412000002 ER PT J AU Hurley, K Svinkin, DS Aptekar, RL Golenetskii, SV Frederiks, DD Boynton, W Mitrofanov, IG Golovin, DV Kozyrev, AS Litvak, ML Sanin, AB Rau, A von Kienlin, A Zhang, X Connaughton, V Meegan, C Cline, T Gehrels, N AF Hurley, K. Svinkin, D. S. Aptekar, R. L. Golenetskii, S. V. Frederiks, D. D. Boynton, W. Mitrofanov, I. G. Golovin, D. V. Kozyrev, A. S. Litvak, M. L. Sanin, A. B. Rau, A. von Kienlin, A. Zhang, X. Connaughton, V. Meegan, C. Cline, T. Gehrels, N. TI THE INTERPLANETARY NETWORK RESPONSE TO LIGO GW150914 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: general; gravitational waves ID CATALOG AB We have performed a blind search for a gamma-ray transient of arbitrary duration and energy spectrum around the time of the LIGO gravitational-wave event GW150914 with the six-spacecraft interplanetary network (IPN). Four gamma-ray bursts were detected between 30 hr prior to the event and 6.1 hr after it, but none could convincingly be associated with GW150914. No other transients were detected down to limiting 15-150 keV fluences of roughly 5 x10-(8) -5 x 10(-7) erg cm(-2). We discuss the search strategies and temporal coverage of the IPN on the day of the event and compare the spatial coverage to the region where GW150914 originated. We also report the negative result of a targeted search for the Fermi-GBM event reported in conjunction with GW150914. C1 [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.] Ioffe Phys Tech Inst, Politekhn Skaya 26, St Petersburg 194021, Russia. [Boynton, W.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.] Space Res Inst, 84-32 Profsoyuznaya, Moscow 117997, Russia. [Rau, A.; von Kienlin, A.; Zhang, X.] Max Planck Inst Extraterr Phys, Giessenbachstr,Postfach 1312, D-85748 Garching, Germany. [Connaughton, V.; Meegan, C.] Univ Alabama, NSSTC, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Cline, T.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. RP Hurley, K (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM khurley@ssl.berkeley.edu FU NASA [NNX15AU74G]; RFBR [15-02-00532] FX This research has made use of data, software, and/or web tools obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), a service of the Astrophysics Science Division at NASA/GSFC and of the Smithsonian Astrophysical Observatory's High Energy Astrophysics Division. We thank Amy Lien for help with the Swift data. K.H. is grateful for support under NASA grant NNX15AU74G. R.L.A. and S.V.G. gratefully acknowledge support from RFBR grant 15-02-00532. NR 5 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2016 VL 829 IS 1 AR L12 DI 10.3847/2041-8205/829/1/L12 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8WG UT WOS:000385412000012 ER PT J AU Konopacky, QM Rameau, J Duchene, G Filippazzo, JC Godfrey, PAG Marois, C Nielsen, EL Pueyo, L Rafikov, RR Rice, EL Wang, JJ Ammons, SM Bailey, VP Barman, TS Bulger, J Bruzzone, S Chilcote, JK Cotten, T Dawson, RI De Rosa, RJ Doyon, R Esposito, TM Fitzgerald, MP Follette, KB Goodsell, S Graham, JR Greenbaum, AZ Hibon, P Hung, LW Ingraham, P Kalas, P Lafreniere, D Larkin, JE Macintosh, BA Maire, J Marchis, F Marley, MS Matthews, BC Metchev, S Millar-Blanchaer, MA Oppenheimer, R Palmer, DW Patience, J Perrin, MD Poyneer, LA Rajan, A Rantakyro, FT Savransky, D Schneider, AC Sivaramakrishnan, A Song, I Soummer, R Thomas, S Wallace, JK Ward-Duong, K Wiktorowicz, SJ Wolff, SG AF Konopacky, Quinn M. Rameau, Julien Duchene, Gaspard Filippazzo, Joseph C. Godfrey, Paige A. Giorla Marois, Christian Nielsen, Eric L. Pueyo, Laurent Rafikov, Roman R. Rice, Emily L. Wang, Jason J. Ammons, S. Mark Bailey, Vanessa P. Barman, Travis S. Bulger, Joanna Bruzzone, Sebastian Chilcote, Jeffrey K. Cotten, Tara Dawson, Rebekah I. De Rosa, Robert J. Doyoon, Rene Esposito, Thomas M. Fitzgerald, Michael P. Follette, Katherine B. Goodsell, Stephen Graham, James R. Greenbaum, Alexandra Z. Hibon, Pascale Hung, Li-Wei Ingraham, Patrick Kalas, Paul Lafreniere, David Larkin, James E. Macintosh, Bruce A. Maire, Jerome Marchis, Franck Marley, Mark S. Matthews, Brenda C. Metchev, Stanimir Millar-Blanchaer, Maxwell A. Oppenheimer, Rebecca Palmer, David W. Patience, Jenny Perrin, Marshall D. Poyneer, Lisa A. Rajan, Abhijith Rantakyroe, Fredrik T. Savransky, Dmitry Schneider, Adam C. Sivaramakrishnan, Anand Song, Inseok Soummer, Remi Thomas, Sandrine Wallace, J. Kent Ward-Duong, Kimberly Wiktorowicz, Sloane J. Wolff, Schuyler G. TI DISCOVERY OF A SUBSTELLAR COMPANION TO THE NEARBY DEBRIS DISK HOST HR 2562 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs; instrumentation: adaptive optics; planet-disk interactions; stars: individual (HR 2562) ID KARHUNEN-LOEVE EIGENIMAGES; GEMINI PLANET IMAGER; GIANT PLANETS; GRAVITATIONAL-INSTABILITY; CANDIDATE MEMBERS; KINEMATIC GROUPS; MASS COMPANION; MOVING GROUPS; YOUNG; STARS AB We present the discovery of a brown dwarf companion to the debris disk host star HR 2562. This object, discovered with the Gemini Planet Imager (GPI), has a projected separation of 20.3 +/- 0.3 au (0".618 +/- 0".004) from the star. With the high astrometric precision afforded by GPI, we have confirmed, to more than 5 sigma, the common proper motion of HR 2562B with the star, with only a month-long time baseline between observations. Spectral data in the J-, H-, and K-bands show a morphological similarity to L/T transition objects. We assign a spectral type of L7 +/- 3 to HR 2562B. and derive a luminosity of log(L-bol/L-circle dot) = -4.62 +/- 0.12, corresponding to a mass of 30 +/- 15 M-Jup from evolutionary models at an estimated age of the system of 300-900 Myr. Although the uncertainty in the age of the host star is significant, the spectra and photometry exhibit several indications of youth for HR 2562B. The source has a position angle that is consistent with an orbit in the same plane as the debris disk recently resolved with Herschel. Additionally, it appears to be interior to the debris disk. Though the extent of the inner hole is currently too uncertain to place limits on the mass of HR 2562B, future observations of the disk with higher spatial resolution may be able to provide mass constraints. This is the first brown-dwarf-mass object found to reside in the inner hole of a debris disk, offering the opportunity to search for evidence of formation above the deuterium burning limit in a circumstellar disk. C1 [Konopacky, Quinn M.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Rameau, Julien] Univ Montreal, Inst Rech Exoplanetes, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Duchene, Gaspard; De Rosa, Robert J.; Esposito, Thomas M.; Graham, James R.; Kalas, Paul] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Duchene, Gaspard] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France. [Filippazzo, Joseph C.; Perrin, Marshall D.; Sivaramakrishnan, Anand] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Godfrey, Paige A. Giorla; Rice, Emily L.] CUNY City Coll, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Godfrey, Paige A. Giorla; Rice, Emily L.] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA. [Godfrey, Paige A. Giorla; Rice, Emily L.] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Marois, Christian] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada. [Marois, Christian] Univ Victoria, Dept Phys & Astron, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada. [Nielsen, Eric L.; Marchis, Franck] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Nielsen, Eric L.; Bailey, Vanessa P.; Follette, Katherine B.; Macintosh, Bruce A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Rafikov, Roman R.] Inst Adv Study, Princeton, NJ 08540 USA. [Ammons, S. Mark; Palmer, David W.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA USA. [Barman, Travis S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Bulger, Joanna] NAOJ, Subaru Telescope, 650 N Aohoku Pl, Hilo, HI 96720 USA. [Bruzzone, Sebastian] Univ Western Ontario, Ctr Planetary Sci & Explorat, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Chilcote, Jeffrey K.; Maire, Jerome; Millar-Blanchaer, Maxwell A.] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Cotten, Tara; Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Dawson, Rebekah I.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, 525 Davey Lab, University Pk, PA 16802 USA. [Fitzgerald, Michael P.; Larkin, James E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Goodsell, Stephen] Univ Durham, Dept Phys, Durham DH1, England. [Goodsell, Stephen; Rantakyroe, Fredrik T.] Gemini Observ, Casilla 603, La Serena, Chile. [Greenbaum, Alexandra Z.; Wolff, Schuyler G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hibon, Pascale] European Southern Observ, Alonso Cordova 3107, Santiago, Chile. [Ingraham, Patrick; Thomas, Sandrine] Large Synopt Survey Telescope, 950 N Cherry Ave, Tucson, AZ USA. [Marley, Mark S.] NASA, Ames Res Ctr, Div Space Sci, Mail Stop 245-3, Moffett Field, CA 94035 USA. [Metchev, Stanimir] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Millar-Blanchaer, Maxwell A.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Patience, Jenny; Ward-Duong, Kimberly] Arizona State Univ, Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Schneider, Adam C.] Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. [Wallace, J. Kent] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wiktorowicz, Sloane J.] Aerosp Corp, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA. RP Konopacky, QM (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. EM qkonopacky@ucsd.edu RI Savransky, Dmitry/M-1298-2014; OI Savransky, Dmitry/0000-0002-8711-7206; Duchene, Gaspard/0000-0002-5092-6464; Fitzgerald, Michael/0000-0002-0176-8973; Wang, Jason/0000-0003-0774-6502; Filippazzo, Joseph/0000-0002-0201-8306; Rice, Emily/0000-0002-3252-5886; Greenbaum, Alexandra/0000-0002-7162-8036; Bailey, Vanessa/0000-0002-5407-2806 FU Fonds de Recherche du Quebec; NSF [AST-1518332, AST-1411868, AST-141378, AST-1211568, DGE-1232825, AST-1313132]; NASA [NNX15AD95G/NEXSS, NNX15AC89G, NNX14AJ80G]; U.S. Department of Energy [DE-AC52-07NA27344] FX The authors thank Richard Gray for his clarifying points on spectral classification. We also thank Adam Burgasser and Daniella Bardalez-Gagliuffi for helpful discussions. We also thank the anonymous referee whose comments improved this manuscript. This research has benefited from the SpeX Prism Library and SpeX Prism Library Analysis Toolkit, maintained by Adam Burgasser at http://www.browndwarfs.org/spexprism, from the BANYAN II web tool at http://www.astro.umontreal.ca/gagne/banyanII.php?targetname=HR+2562&reso lve=Resolve, and from the SIMBAD database, operated at CDS, Strasbourg, France. This work is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the National Research Council (Canada), CONICYT (Chile), the australian Research Council (australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). J.R., R.D. and D.L. acknowledge support from the Fonds de Recherche du Quebec. This work was supported by NSF grants AST-1518332 (R.J.D.R., J.R.G., J.J.W., T.M.E., P.K)., AST-1411868 (B.M., A.R., K.W.D.), AST-141378 (G.D.), AST-1211568 (P.A.G., E.L.R.), DGE-1232825 (A.Z.G.), and AST-1313132 (J.F.C., E.L.R.). This work was supported by NASA grants NNX15AD95G/NEXSS and NNX15AC89G (R.J.D.R., J.R.G., P.K., J.J.W., T.M.E.), and NNX14AJ80G (E.L.N., S.C.B., B.M., F.M., M.P.). Portions of this work were performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (S.M.A., L.P., D.P.). NR 46 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2016 VL 829 IS 1 AR L4 DI 10.3847/2041-8205/829/1/L4 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8WG UT WOS:000385412000004 ER PT J AU Singer, LP Chen, HY Holz, DE Farr, WM Price, LR Raymond, V Cenko, SB Gehrels, N Cannizzo, J Kasliwal, MM Nissanke, S Coughlin, M Farr, B Urban, AL Vitale, S Veitch, J Graff, P Berry, CPL Mohapatra, S Mandel, I AF Singer, Leo P. Chen, Hsin-Yu Holz, Daniel E. Farr, Will M. Price, Larry R. Raymond, Vivien Cenko, S. Bradley Gehrels, Neil Cannizzo, John Kasliwal, Mansi M. Nissanke, Samaya Coughlin, Michael Farr, Ben Urban, Alex L. Vitale, Salvatore Veitch, John Graff, Philip Berry, Christopher P. L. Mohapatra, Satya Mandel, Ilya TI GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE catalogs - galaxies; distances and redshifts - gravitational waves - surveys ID GAMMA-RAY BURSTS; NEUTRON-STAR MERGERS; COMPACT BINARY COALESCENCE; GRAVITATIONAL-WAVES; PARAMETER-ESTIMATION; TRANSIENT EVENTS; OBJECT MERGERS; COUNTERPARTS; SEARCHES; DETECTORS AB The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO's sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes. C1 [Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John] NASA, Astroparticle Phys Lab, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA. [Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Price, Larry R.; Raymond, Vivien] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Raymond, Vivien] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Kasliwal, Mansi M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Nissanke, Samaya] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands. [Coughlin, Michael] Harvard Univ, Dept Phys & Astron, Cambridge, MA 02138 USA. [Urban, Alex L.] Univ Wisconsin, Leonard E Parker Ctr Gravitat Cosmol & Astrophys, Milwaukee, WI 53201 USA. [Vitale, Salvatore; Mohapatra, Satya] MIT, LIGO Lab, 185 Albany St, Cambridge, MA 02139 USA. [Graff, Philip] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Singer, LP (reprint author), NASA, Astroparticle Phys Lab, Goddard Space Flight Ctr, Mail Code 661, Greenbelt, MD 20771 USA. OI Singer, Leo/0000-0001-9898-5597; Farr, Will/0000-0003-1540-8562; Chen, Hsin-Yu/0000-0001-5403-3762; Berry, Christopher/0000-0003-3870-7215; Veitch, John/0000-0002-6508-0713 FU NSF [1066293] FX We thank the Aspen Center for Physics and NSF grant #1066293 for hospitality during the conception, writing, and editing of this paper. We thank P. Shawhan and F. Tombesi for detailed feedback on the manuscript. Supplementary material, including a sample of reconstructed GW volume FITS files, will be made available at https://dcc.ligo.org/P1500071/public/html. See the Supplement (Singer et al. 2016) in the journal for more details. This is LIGO document P1500071-v7. NR 45 TC 3 Z9 3 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2016 VL 829 IS 1 AR L15 DI 10.3847/2041-8205/829/1/L15 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY8WG UT WOS:000385412000015 ER PT J AU Huang, FT Mayr, HG Russell, JM Mlynczak, MG AF Huang, Frank T. Mayr, Hans G. Russell, James M., III Mlynczak, Martin G. TI Ozone and temperature decadal responses to solar variability in the stratosphere and lower mesosphere, based on measurements from SABER on TIMED SO ANNALES GEOPHYSICAE LA English DT Article DE Atmospheric composition and structure (middle atmosphere - composition and chemistry) ID LOWER THERMOSPHERE; LONG-TERM; TRENDS AB We have derived ozone and temperature responses to solar variability over a solar cycle, from 2002 to 2014 at 20-60aEuro-km and 48A degrees aEuro-S-48A degrees aEuro-N, based on data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Simultaneous results for ozone and temperature with this kind of spatial coverage have not been previously available, and they provide the opportunity to study correlations between ozone and temperature responses. In previous studies, there has not been general agreement on the details or, at times, even the broad behavior of the responses to decadal solar variability. New results from a different dataset should supply new information on this important and interesting subject. A multiple regression is applied to obtain responses as a function of the solar 10.7aEuro-cm flux. Positive responses mean that they are larger at solar maximum than at solar minimum of the solar cycle. Both ozone and temperature responses are found be positive or negative, depending on location. Generally, from similar to aEuro-25 to 60aEuro-km, the ozone and temperature responses are mostly out of phase (negatively correlated) with each other as a function of solar variability, with some exceptions in the lower altitudes. These negative correlations are maintained even though the individual ozone (temperature) responses can change signs as a function of altitude and latitude, because the corresponding temperature (ozone) responses change signs in step with each other. From similar to aEuro-50 to 60aEuro-km, ozone responses are relatively small, varying from similar to aEuro--1 to similar to aEuro-2aEuro-%aEuro-100aEuro-sfu(-1) (solar flux units), while temperature responses can approach similar to aEuro-2aEuro-A degrees KaEuro-100aEuro-sfu(-1). From similar to aEuro-25 to similar to aEuro-40aEuro-km, the ozone responses have become mostly positive at all latitudes and approach a maximum of similar to aEuro-5aEuro-%aEuro-100aEuro-sfu(-1) near the Equator and similar to aEuro-30-35aEuro-km. In contrast, at low latitudes, the temperature responses have become negative but also reach a local maximum (near 32aEuro-km) in magnitude. The ozone and temperature responses remain mostly out of phase, with isolated exceptions at midlatitudes between similar to aEuro-25 and 45aEuro-km. The general negative correlations are consistent with the idea that photochemistry is more in control in the upper stratosphere and lower mesosphere. The correlation coefficients between the solar 10.7aEuro-cm flux and the ozone and temperature themselves from 2002 to 2014 are positive (negative) in regions where the responses are positive (negative). This supports our results since the correlations are independent of the multiple regression used to derive the responses. We also compare with previous results. C1 [Huang, Frank T.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Mayr, Hans G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. [Mlynczak, Martin G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Mayr, HG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM fthuang@verizon.net NR 40 TC 0 Z9 0 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 0992-7689 EI 1432-0576 J9 ANN GEOPHYS-GERMANY JI Ann. Geophys. PD SEP 20 PY 2016 VL 34 IS 9 BP 801 EP 813 DI 10.5194/angeo-34-801-2016 PG 13 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DX5GS UT WOS:000384408400002 ER PT J AU Rollins, AW Thornberry, TD Ciciora, SJ McLaughlin, RJ Watts, LA Hanisco, TF Baumann, E Giorgetta, FR Bui, TV Fahey, DW Gao, RS AF Rollins, Andrew W. Thornberry, Troy D. Ciciora, Steven J. McLaughlin, Richard J. Watts, Laurel A. Hanisco, Thomas F. Baumann, Esther Giorgetta, Fabrizio R. Bui, Thaopaul V. Fahey, David W. Gao, Ru-Shan TI A laser-induced fluorescence instrument for aircraft measurements of sulfur dioxide in the upper troposphere and lower stratosphere SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ATMOSPHERIC AEROSOL NUCLEATION; CROSS-SECTION MEASUREMENTS; TRACE GASES; 295 K; SO2; PHOTOABSORPTION; POLLUTION; NM; EMISSIONS; SYSTEM AB This work describes the development and testing of a new instrument for in situ measurements of sulfur dioxide (SO2) on airborne platforms in the upper troposphere and lower stratosphere (UT-LS). The instrument is based on the laser-induced fluorescence technique and uses the fifth harmonic of a tunable fiber-amplified semiconductor diode laser system at 1084.5aEuro-nm to excite SO2 at 216.9aEuro-nm. Sensitivity and background checks are achieved in flight by additions of SO2 calibration gas and zero air, respectively. Aircraft demonstration was performed during the NASA Volcano-Plume Investigation Readiness and Gas-Phase and Aerosol Sulfur (VIRGAS) experiment, which was a series of flights using the NASA WB-57F during October 2015 based at Ellington Field and Harlingen, Texas. During these flights, the instrument successfully measured SO2 in the UT-LS at background (non-volcanic) conditions with a precision of 2aEuro-ppt at 10aEuro-s and an overall uncertainty determined primarily by instrument drifts of +/-(16aEuro-%aEuro-+aEuro-0.9aEuro-ppt). C1 [Rollins, Andrew W.; Thornberry, Troy D.; McLaughlin, Richard J.; Watts, Laurel A.; Fahey, David W.] Cooperat Inst Res Environm Sci, Boulder, CO USA. [Rollins, Andrew W.; Thornberry, Troy D.; Ciciora, Steven J.; McLaughlin, Richard J.; Watts, Laurel A.; Fahey, David W.; Gao, Ru-Shan] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Hanisco, Thomas F.] NOAA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Baumann, Esther; Giorgetta, Fabrizio R.] NIST, Boulder, CO USA. [Bui, Thaopaul V.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Rollins, AW (reprint author), Cooperat Inst Res Environm Sci, Boulder, CO USA.; Rollins, AW (reprint author), NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. EM andrew.rollins@noaa.gov RI Fahey, David/G-4499-2013; Rollins, Andrew/G-7214-2012; Manager, CSD Publications/B-2789-2015 OI Fahey, David/0000-0003-1720-0634; FU NOAA Atmospheric Chemistry, Carbon Cycle, and Climate Program; NASA Radiation Sciences Program FX This research was funded by the NOAA Atmospheric Chemistry, Carbon Cycle, and Climate Program and by the NASA Radiation Sciences Program. We would like to thank the NASA WB-57F crew and management team for support during VIRGAS integration and flights. We thank K. Rosenlof, P. Newman and E. Ray for organization and flight planning during VIRGAS. NR 40 TC 0 Z9 0 U1 5 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD SEP 20 PY 2016 VL 9 IS 9 BP 4601 EP 4613 DI 10.5194/amt-9-4601-2016 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX5GN UT WOS:000384407900002 ER PT J AU Wolfe, GM Marvin, MR Roberts, SJ Travis, KR Liao, J AF Wolfe, Glenn M. Marvin, Margaret R. Roberts, Sandra J. Travis, Katherine R. Liao, Jin TI The Framework for 0-D Atmospheric Modeling (F0AM) v3.1 SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; TROPICAL RAIN-FOREST; GAS-PHASE CHEMISTRY; EXCHANGE CAFE MODEL; ISOPRENE OXIDATION; TROPOSPHERIC DEGRADATION; PHOTOCHEMICAL DATA; OZONE PRODUCTION; OH REACTIVITY; UNITED-STATES AB The Framework for 0-D Atmospheric Modeling (F0AM) is a flexible and user-friendly MATLAB-based platform for simulation of atmospheric chemistry systems. The F0AM interface incorporates front-end configuration of observational constraints and model setups, making it readily adaptable to simulation of photochemical chambers, Lagrangian plumes, and steady-state or time-evolving solar cycles. Six different chemical mechanisms and three options for calculation of photolysis frequencies are currently available. Example simulations are presented to illustrate model capabilities and, more generally, highlight some of the advantages and challenges of 0-D box modeling. C1 [Wolfe, Glenn M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Wolfe, Glenn M.; Liao, Jin] NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Greenbelt, MD USA. [Marvin, Margaret R.; Roberts, Sandra J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Travis, Katherine R.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Liao, Jin] Univ Space Res Assoc, Columbia, MD USA. RP Wolfe, GM (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA.; Wolfe, GM (reprint author), NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Greenbelt, MD USA. EM glenn.m.wolfe@nasa.gov RI Wolfe, Glenn/D-5289-2011 FU NOAA Climate and Global Change Postdoctoral Fellowship Program; NASA ACCDAM grant [NNX14AP48G]; NASA Earth Systems Science Fellowship FX We are grateful to Kirk Ullmann for providing the TUV model executable and Markus Muller for providing the setup and data for the Lagrangian plume example. Photolysis parameterizations are based on code developed by John Crounse, Fabian Paulot, and Wyatt Merrill. Jen Kaiser provided helpful feedback on the model documentation. Emma D'Ambro provided helpful comments on the manuscript. We are also indebted to the many scientists and crew members of the DISCOVER-AQ, SENEX and SOAS field missions for collecting observations used to constrain the example simulations. Glenn M. Wolfe acknowledges support from the NOAA Climate and Global Change Postdoctoral Fellowship Program and NASA ACCDAM grant NNX14AP48G. Margaret R. Marvin acknowledges support from a NASA Earth Systems Science Fellowship. NR 52 TC 0 Z9 0 U1 6 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD SEP 20 PY 2016 VL 9 IS 9 BP 3309 EP 3319 DI 10.5194/gmd-9-3309-2016 PG 11 WC Geosciences, Multidisciplinary SC Geology GA DX5KH UT WOS:000384419400001 ER PT J AU Tang, S Chen, B McKay, CP Navarro-Gonzalezv, R Wang, AX AF Tang, Suning Chen, Bin McKay, Christopher P. Navarro-Gonzalezv, Rafael Wang, Alan X. TI Detection of trace organics in Martian soil analogs using fluorescence-free surface enhanced 1064-nm Raman Spectroscopy SO OPTICS EXPRESS LA English DT Article ID MARS; MOLECULES; PHOENIX; SEARCH; TOOL AB A significant technology challenge in planetary missions is the in situ detection of organics at the sub-part-per-million (ppm) level in soils. This article reports the organic compound detection in Mars-like soils at the sub-ppm level using an ultra-sensitive spectral sensing technique based on fluorescence-free surface-enhanced Raman scattering (SERS), which has a significantly improved sensitivity and reduced fluorescence noise. Raman spectral detection of ppm level organics in Antarctic Dry Valley and Mojave Desert soils have been obtained for the first time, which otherwise are not detected by other Raman spectral techniques. (C) 2016 Optical Society of America C1 [Tang, Suning] Crystal Res Inc, 2711 Hillcrest Ave,Suite 208, Antioch, CA 94531 USA. [Chen, Bin; McKay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Navarro-Gonzalezv, Rafael] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad Univ, Mexico City 04510, DF, Mexico. [Wang, Alan X.] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. RP Tang, S (reprint author), Crystal Res Inc, 2711 Hillcrest Ave,Suite 208, Antioch, CA 94531 USA. EM suningtang@eocrystal.com RI Gonzalez, Rafael/D-1748-2009 FU NASA Ames Research Center [NNX14CA26P, NNX15CA12C]; Universidad Nacional Autonoma de Mexico [DGAPA-IN109416]; National Council of Science and Technology of Mexico [220626] FX NASA Ames Research Center (NNX14CA26P, NNX15CA12C); Universidad Nacional Autonoma de Mexico (DGAPA-IN109416); National Council of Science and Technology of Mexico (220626). NR 20 TC 0 Z9 0 U1 6 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 19 PY 2016 VL 24 IS 19 BP 22104 EP 22109 DI 10.1364/OE.24.022104 PG 6 WC Optics SC Optics GA EB7AO UT WOS:000387537600080 PM 27661945 ER PT J AU Carroll, ML Brown, ME Wooten, MR Donham, JE Hubbard, AB Ridenhour, WB AF Carroll, Mark L. Brown, Molly E. Wooten, Margaret R. Donham, Joel E. Hubbard, Alfred B. Ridenhour, William B. TI In situ air temperature and humidity measurements over diverse land covers in Greenbelt, Maryland, November 2013-November 2015 SO EARTH SYSTEM SCIENCE DATA LA English DT Article ID URBAN HEAT-ISLAND; UNITED-STATES; DENSITY AB As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al., 2016) and can be found by following this link: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1319. C1 [Carroll, Mark L.; Wooten, Margaret R.; Hubbard, Alfred B.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Carroll, Mark L.; Wooten, Margaret R.; Hubbard, Alfred B.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Brown, Molly E.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Donham, Joel E.] NASA, Goddard Space Flight Ctr, Med & Environm Management Div, Greenbelt, MD USA. [Ridenhour, William B.] NASA, Goddard Space Flight Ctr, Engn & Construct Branch, Greenbelt, MD USA. RP Carroll, ML (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA.; Carroll, ML (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. EM mark.carroll@nasa.gov FU NASA Headquarters Earth Science Division FX Funding for this project was provided by NASA Headquarters Earth Science Division through the Climate Adaptation Science Investigator working group. The authors would like to thank the two reviewers, whose insightful comments helped refine the text, and the Oak Ridge DAAC for hosting the data. NR 8 TC 0 Z9 0 U1 8 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1866-3508 EI 1866-3516 J9 EARTH SYST SCI DATA JI Earth Syst. Sci. Data PD SEP 19 PY 2016 VL 8 IS 2 BP 415 EP 423 DI 10.5194/essd-8-415-2016 PG 9 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Geology; Meteorology & Atmospheric Sciences GA DX4AE UT WOS:000384319200001 ER PT J AU Rasool, QZ Zhang, R Lash, B Cohan, DS Cooter, EJ Bash, JO Lamsal, LN AF Rasool, Quazi Z. Zhang, Rui Lash, Benjamin Cohan, Daniel S. Cooter, Ellen J. Bash, Jesse O. Lamsal, Lok N. TI Enhanced representation of soil NO emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2 SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID NITRIC-OXIDE EMISSIONS; UNITED-STATES; AGRICULTURAL SOILS; NITROGEN-OXIDES; FERTILIZER APPLICATION; TILE DRAINAGE; N2O EMISSIONS; OMI; CHINA; CHEMISTRY AB Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12 km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O-3 response to projected emissions reductions. C1 [Rasool, Quazi Z.; Zhang, Rui; Lash, Benjamin; Cohan, Daniel S.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. [Cooter, Ellen J.; Bash, Jesse O.] US EPA, Computat Exposure Div, Natl Exposure Res Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Lamsal, Lok N.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD 21046 USA. [Lamsal, Lok N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lash, Benjamin] Univ Calif, Sch Nat Sci, Merced, CA USA. RP Cohan, DS (reprint author), Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. EM cohan@rice.edu FU NASA's Air Quality Applied Sciences Team; Texas Air Quality Research Program FX This work was supported by NASA's Air Quality Applied Sciences Team through a tiger team project grant for DYNAMO: DYnamic Inputs of Natural Conditions for Air Quality Models and by the Texas Air Quality Research Program. NR 66 TC 0 Z9 0 U1 12 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD SEP 16 PY 2016 VL 9 IS 9 BP 3177 EP 3197 DI 10.5194/gmd-9-3177-2016 PG 21 WC Geosciences, Multidisciplinary SC Geology GA DX4AL UT WOS:000384320000001 ER PT J AU Millan, LF Livesey, NJ Santee, ML Neu, JL Manney, GL Fuller, RA AF Millan, Luis F. Livesey, Nathaniel J. Santee, Michelle L. Neu, Jessica L. Manney, Gloria L. Fuller, Ryan A. TI Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MIDDLE ATMOSPHERE MODEL; BREWER-DOBSON CIRCULATION; CHEMISTRY EXPERIMENT ACE; WATER-VAPOR; TROPOSPHERIC OZONE; VALIDATION; TEMPERATURE; AURA/MLS; ERRORS; FTS AB This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS), the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders, while HALOE and ACE-FTS represent coarse nonuniform sampling patterns characteristic of solar occultation instruments. First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we find that coarse nonuniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that coarse nonuniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for example, fingerprints of greenhouse gas warming and stratospheric ozone recovery) than coarse nonuniform sampling such as that of solar occultation instruments. C1 [Millan, Luis F.; Livesey, Nathaniel J.; Santee, Michelle L.; Neu, Jessica L.; Fuller, Ryan A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Manney, Gloria L.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Manney, Gloria L.] NorthWest Res Associates, Redmond, WA USA. RP Millan, LF (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM lmillan@jpl.nasa.gov RI Millan, Luis/J-2759-2015 FU National Aeronautics and Space Administration FX Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with the National Aeronautics and Space Administration. We thank David Plummer of Environment Canada for his assistance in obtaining the CMAM30-SD dataset. NR 48 TC 0 Z9 0 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD SEP 16 PY 2016 VL 16 IS 18 BP 11521 EP 11534 DI 10.5194/acp-16-11521-2016 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX3YH UT WOS:000384313300001 ER PT J AU St Clair, JM Rivera-Rios, JC Crounse, JD Praske, E Kim, MJ Wolfe, GM Keutsch, FN Wennberg, PO Hanisco, TF AF St Clair, Jason M. Rivera-Rios, Jean C. Crounse, John D. Praske, Eric Kim, Michelle J. Wolfe, Glenn M. Keutsch, Frank N. Wennberg, Paul O. Hanisco, Thomas F. TI Investigation of a potential HCHO measurement artifact from ISOPOOH SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ISOPRENE OXIDATION; NORTH-AMERICA; FORMALDEHYDE; EMISSIONS; HYDROPEROXIDES; INSTRUMENT; FIELD AB Recent laboratory experiments have shown that a first generation isoprene oxidation product, ISOPOOH, can decompose to methyl vinyl ketone (MVK) and methacrolein (MACR) on instrument surfaces, leading to overestimates of MVK and MACR concentrations. Formaldehyde (HCHO) was suggested as a decomposition co-product, raising concern that in situ HCHO measurements may also be affected by an ISOPOOH interference. The HCHO measurement artifact from ISOPOOH for the NASA In Situ Airborne Formaldehyde instrument (ISAF) was investigated for the two major ISOPOOH isomers, (1,2)-ISOPOOH and (4,3)-ISOPOOH, under dry and humid conditions. The dry conversion of ISOPOOH to HCHO was 3 +/- 2% and 6 +/- 4% for (1,2)-ISOPOOH and (4,3)ISOPOOH, respectively. Under humid (relative humidity of 40-60 %) conditions, conversion to HCHO was 6 +/- 4% for (1,2)-ISOPOOH and 10 +/- 5% for (4,3)-ISOPOOH. The measurement artifact caused by conversion of ISOPOOH to HCHO in the ISAF instrument was estimated for data obtained on the 6 September 2013 flight of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Prompt ISOPOOH conversion to HCHO was the source of < 4% of the observed HCHO, including in the high-isoprene boundary layer. Time-delayed conversion, where previous exposure to ISOPOOH affects measured HCHO later in the flight, was conservatively estimated to be < 10% of observed HCHO, and is significant only when high ISOPOOH sampling periods immediately precede periods of low HCHO. C1 [St Clair, Jason M.; Wolfe, Glenn M.; Hanisco, Thomas F.] NASA Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [St Clair, Jason M.; Wolfe, Glenn M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Keutsch, Frank N.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Crounse, John D.; Kim, Michelle J.; Wennberg, Paul O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Praske, Eric] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Rivera-Rios, Jean C.; Keutsch, Frank N.] Harvard Univ, Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Rivera-Rios, Jean C.; Keutsch, Frank N.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Wennberg, Paul O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP St Clair, JM (reprint author), NASA Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA.; St Clair, JM (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. EM jason.m.stclair@nasa.gov RI Wolfe, Glenn/D-5289-2011; Crounse, John/C-3700-2014 OI Crounse, John/0000-0001-5443-729X FU National Science Foundation [AGS 1628491, 1628530, 1247421, 1321987, AGS PRF 1524860]; NASA [NNH12ZDA001N-UACO] FX F. N. Keutsch and J. C. Rivera-Rios were supported by the National Science Foundation (AGS 1628491, 1628530, 1247421, 1321987). J. M. St. Clair, G. M. Wolfe, and T. F. Hanisco were supported by NASA (NNH12ZDA001N-UACO). M. J. Kim was supported by the National Science Foundation (AGS PRF 1524860). NR 22 TC 1 Z9 1 U1 11 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD SEP 16 PY 2016 VL 9 IS 9 BP 4561 EP 4568 DI 10.5194/amt-9-4561-2016 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX5GI UT WOS:000384407400001 ER PT J AU Nasta, P Gates, JB Wada, Y AF Nasta, Paolo Gates, John B. Wada, Yoshihide TI Impact of climate indicators on continental-scale potential groundwater recharge in Africa SO HYDROLOGICAL PROCESSES LA English DT Article DE potential groundwater recharge; rainfall; drought; seasonality; storm frequency; Africa ID ASSESSMENT-TOOL SWAT; WATER AVAILABILITY; SOUTHERN AFRICA; VARIABILITY; CATCHMENT; AQUIFER; TRENDS; RESOURCES; SOIL; PRECIPITATION AB In the last decades, human activity has been contributing to climate change that is closely associated with an increase in temperatures, increase in evaporation, intensification of extreme dry and wet rainfall events, and widespread melting of snow and ice. Understanding the intricate linkage between climate warming and the hydrological cycle is crucial for sustainable management of groundwater resources, especially in a vulnerable continent like Africa. This study investigates the relationship between climate-change drivers and potential groundwater recharge (PGR) patterns across Africa for a long-term record (1960-2010). Water-balance components were simulated by using the PCR-GLOBWB model and were reproduced in both gridded maps and latitudinal trends that vary in space with minima on the Tropics and maxima around the Equator. Statistical correlations between temperature, storm occurrences, drought, and PGR were examined in six climatic regions of Africa. Surprisingly, different effects of climate-change controls on PGR were detected as a function of latitude in the last three decades (1980-2010). Temporal trends observed in the Northern Hemisphere of Africa reveal that the increase in temperature is significantly correlated to the decline of PGR, especially in the Northern Equatorial Africa. The climate indicators considered in this study were unable to explain the alarming negative trend of PGR observed in the Sahelian region, even though the Standardized Precipitation-Evapotranspiration Index (SPEI) values report a 15% drought stress. On the other hand, increases in temperature have not been detected in the Southern Hemisphere of Africa, where increasing frequency of storm occurrences determine a rise of PGR, particularly in southern Africa. Time analysis highlights a strong seasonality effect, while PGR is in-phase with rainfall patterns in the summer (Northern Hemisphere) and winter (Southern Hemisphere) and out-of-phase during the fall season. This study helps to elucidate the mechanism of the processes influencing groundwater resources in six climatic zones of Africa, even though modelling results need to be validated more extensively with direct measurements in future studies. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Nasta, Paolo; Gates, John B.] Univ Nebraska, Dept Earth & Atmospher Sci, 211 Bessey Hall, Lincoln, NE 68588 USA. [Wada, Yoshihide] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. [Wada, Yoshihide] Univ Utrecht, Fac Geosci, Dept Phys Geog, Heidelberglaan2, NL-3584 CS Utrecht, Netherlands. [Wada, Yoshihide] Int Inst Appl Syst Anal, Schlosspl 1, A-2361 Laxenburg, Austria. RP Nasta, P (reprint author), Univ Nebraska, Dept Earth & Atmospher Sci, 211 Bessey Hall, Lincoln, NE 68588 USA. EM paolo.nasta@unina.it OI nasta, paolo/0000-0001-9654-566X FU Robert B. Daugherty Water for Food Institute-Nebraska Water Center at the University of Nebraska; Japan Society for the Promotion of Science (JSPS) [JSPS-2014-878] FX This project was supported by the 'Robert B. Daugherty Water for Food Institute-Nebraska Water Center at the University of Nebraska'. The authors wish to thank Ludovicus P. H. van Beek and Marc F. P. Bierkens for providing the access to the dataset of the PCR-GLOBWB model. We are grateful to Adam Caprez for helping to set up the data processing in the super-computing cluster. Y. Wada is supported by the Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship (grant no. JSPS-2014-878). NR 78 TC 0 Z9 0 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 EI 1099-1085 J9 HYDROL PROCESS JI Hydrol. Process. PD SEP 15 PY 2016 VL 30 IS 19 BP 3420 EP 3433 DI 10.1002/hyp.10869 PG 14 WC Water Resources SC Water Resources GA DW3US UT WOS:000383569200006 ER PT J AU Fioletov, VE McLinden, CA Krotkov, N Li, C Joiner, J Theys, N Carn, S Moran, MD AF Fioletov, Vitali E. McLinden, Chris A. Krotkov, Nickolay Li, Can Joiner, Joanna Theys, Nicolas Carn, Simon Moran, Mike D. TI A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SULFUR-DIOXIDE EMISSIONS; GROUND-BASED MEASUREMENTS; FIRED POWER-PLANTS; SATELLITE RETRIEVALS; EL-CHICHON; MAPPING SPECTROMETER; SURFACE MEASUREMENTS; BOUNDARY-LAYER; AIR-POLLUTION; VOLCANO AB Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(-1) to more than 4000 kt yr(-1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005-2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(-1) and not detected by OMI. C1 [Fioletov, Vitali E.; McLinden, Chris A.; Joiner, Joanna; Moran, Mike D.] Environm Canada, Air Qual Res Div, Toronto, ON, Canada. [Krotkov, Nickolay; Li, Can] NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Green Belt, MD USA. [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Theys, Nicolas] Belgian Inst Space Aeron BIRA IASB, Brussels, Belgium. [Carn, Simon] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Carn, Simon] Smithsonian Inst, Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20560 USA. RP Fioletov, VE (reprint author), Environm Canada, Air Qual Res Div, Toronto, ON, Canada. EM vitali.fioletov@outlook.com FU NASA Earth Science Division FX We acknowledge the NASA Earth Science Division, specifically the Aura science team program, for funding OMI SO2 product development and analysis. The Dutch/Finnish-built OMI instrument is part of the NASA EOS Aura satellite payload. The OMI project is managed by KNMI and the Netherlands Space Agency (NSO). We would like to thank Arlin Krueger and an anonymous reviewer for their comments that helped us improve the manuscript. NR 91 TC 5 Z9 5 U1 22 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD SEP 15 PY 2016 VL 16 IS 18 BP 11497 EP 11519 DI 10.5194/acp-16-11497-2016 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX3CW UT WOS:000384251700002 ER PT J AU Han, RQ Wang, H Hu, ZZ Kumar, A Li, WJ Long, LN Schemm, JKE Peng, PT Wang, WQ Si, D Jia, XL Zhao, M Vecchi, GA Larow, TE Lim, YK Schubert, SD Camargo, SJ Henderson, N Jonas, JA Walsh, KJE AF Han, Rongqing Wang, Hui Hu, Zeng-Zhen Kumar, Arun Li, Weijing Long, Lindsey N. Schemm, Jae-Kyung E. Peng, Peitao Wang, Wanqiu Si, Dong Jia, Xiaolong Zhao, Ming Vecchi, Gabriel A. Larow, Timothy E. Lim, Young-Kwon Schubert, Siegfried D. Camargo, Suzana J. Henderson, Naomi Jonas, Jeffrey A. Walsh, Kevin J. E. TI An Assessment of Multimodel Simulations for the Variability of Western North Pacific Tropical Cyclones and Its Association with ENSO SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODELS; EL-NINO; HIGH-RESOLUTION; INTERANNUAL VARIABILITY; SEASONAL PREDICTIONS; TYPHOON TRACKS; CLIMATE-CHANGE; EVENTS; PRECIPITATION; TEMPERATURE AB An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Nino-Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation. Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Nino-namely, eastern Pacific (EP) and central Pacific (CP) El Nino-and weaker activity during La Nina. However, none of the models capture the differences in TC activity between EP and CP El Nino as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Nino events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Nino. C1 [Han, Rongqing; Li, Weijing; Si, Dong; Jia, Xiaolong] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China. [Wang, Hui; Hu, Zeng-Zhen; Kumar, Arun; Long, Lindsey N.; Schemm, Jae-Kyung E.; Peng, Peitao; Wang, Wanqiu] NOAA, NWS, NCEP, Climate Predict Ctr, College Pk, MD USA. [Long, Lindsey N.] Innovim, Greenbelt, MD USA. [Zhao, Ming; Vecchi, Gabriel A.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Larow, Timothy E.] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA. [Lim, Young-Kwon; Schubert, Siegfried D.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Lim, Young-Kwon] IM Syst Grp, Goddard Earth Sci Technol & Res, Greenbelt, MD USA. [Camargo, Suzana J.; Henderson, Naomi] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Jonas, Jeffrey A.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Jonas, Jeffrey A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Walsh, Kevin J. E.] Univ Melbourne, Sch Earth Sci, Parkville, Vic, Australia. RP Wang, H (reprint author), NOAA, Climate Predict Ctr, NCWCP, 5830 Univ Res Court, College Pk, MD 20740 USA. EM hui.wang@noaa.gov RI Camargo, Suzana/C-6106-2009; Vecchi, Gabriel/A-2413-2008; Hu, Zeng-Zhen/B-4373-2011; Zhao, Ming/C-6928-2014 OI Camargo, Suzana/0000-0002-0802-5160; Vecchi, Gabriel/0000-0002-5085-224X; Hu, Zeng-Zhen/0000-0002-8485-3400; FU National Basic Research Program of China [2013CB430203, 2012CB417205]; National Nature Science Foundation of China [91437215, 41575090]; China Meteorological Special Program [GYHY201506013, GYHY201406022, GYHY201306028]; Major International (Regional) Joint Research Project of National Science Foundation of China [41520104008] FX Most of this work was finished during a visit by Dr. Han to the Climate Prediction Center, NCEP/NWS/NOAA. This research was jointly supported by the National Basic Research Program of China under Grants 2013CB430203 and 2012CB417205, Key project of National Nature Science Foundation of China under Grant 91437215, the China Meteorological Special Program under Grants GYHY201506013, GYHY201406022, and GYHY201306028, the National Nature Science Foundation of China under Grant 41575090, and the Major International (Regional) Joint Research Project of National Science Foundation of China (41520104008). The authors thank three anonymous reviewers and the editor for their insightful and constructive comments and suggestions. NR 63 TC 1 Z9 1 U1 12 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD SEP 15 PY 2016 VL 29 IS 18 BP 6401 EP 6423 DI 10.1175/JCLI-D-15-0720.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DW7JZ UT WOS:000383828300001 ER PT J AU Lim, YK Schubert, SD Reale, O Molod, AM Suarez, MJ Auera, BM AF Lim, Young-Kwon Schubert, Siegfried D. Reale, Oreste Molod, Andrea M. Suarez, Max J. Auera, Benjamin M. TI Large-Scale Controls on Atlantic Tropical Cyclone Activity on Seasonal Time Scales SO JOURNAL OF CLIMATE LA English DT Article ID US LANDFALLING HURRICANES; MADDEN-JULIAN OSCILLATION; SEA-SURFACE TEMPERATURE; VERTICAL WIND SHEAR; INTERANNUAL VARIABILITY; EL-NINO; CLIMATE SIMULATIONS; ARAKAWA-SCHUBERT; MODEL; PREDICTION AB Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally constrained simulations with the NASA Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model. The climate modes investigated are El Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic meridional mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well-known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic) led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Nino index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes and not just to ENSO alone. Examination of seasonal predictability reveals that the predictive skill of the three modes is limited over tropics to subtropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO. C1 [Lim, Young-Kwon; Schubert, Siegfried D.; Reale, Oreste; Molod, Andrea M.; Suarez, Max J.; Auera, Benjamin M.] NASA, GSFC, Global Modeling & Assimilat Off, Bldg 33,8800 Greenbelt Rd, Greenbelt, MD USA. [Lim, Young-Kwon] IM Syst Grp, Goddard Earth Sci Technol & Res, Rockville, MD USA. [Reale, Oreste; Suarez, Max J.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Greenbelt, MD USA. [Molod, Andrea M.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Auera, Benjamin M.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Lim, YK (reprint author), NASA, GSFC, Global Modeling & Assimilat Off, Bldg 33,8800 Greenbelt Rd, Greenbelt, MD USA. EM young-kwon.lim@nasa.gov FU NASA Modeling, Analysis, and Prediction (MAP) Program (Goddard Space Flight Center) [802678.02.17.01.29] FX This work is supported by the NASA Modeling, Analysis, and Prediction (MAP) Program (Goddard Space Flight Center Award 802678.02.17.01.29). The authors are grateful to anonymous reviewers for their helpful comments and suggestions. NR 71 TC 0 Z9 0 U1 16 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD SEP 15 PY 2016 VL 29 IS 18 BP 6727 EP 6749 DI 10.1175/JCLI-D-16-0098.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DW7JZ UT WOS:000383828300018 ER PT J AU Sabra, MS AF Sabra, Mohammad S. TI Geant4 validation of neutron production on thick targets bombarded with 120 GeV protons (vol 358, pg 245, 2015) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Correction C1 [Sabra, Mohammad S.] NASA, Marshall Space Flight Ctr, Postdoctoral Program, Huntsville, AL 35805 USA. RP Sabra, MS (reprint author), NASA, Marshall Space Flight Ctr, Postdoctoral Program, Huntsville, AL 35805 USA. EM mohammad.s.sabra@nasa.gov NR 1 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2016 VL 383 BP 250 EP 251 DI 10.1016/j.nimb.2016.07.010 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DV5YT UT WOS:000383007300032 ER PT J AU Steenstra, ES Martin, DJP McDonald, FE Paisarnsombat, S Venturino, C O'Hara, S Calzada-Diaz, A Bottoms, S Leader, MK Klaus, KK van Westrenen, W Needham, DH Kring, DA AF Steenstra, Edgar S. Martin, Dayl J. P. McDonald, Francesca E. Paisarnsombat, Sarinya Venturino, Christian O'Hara, Sean Calzada-Diaz, Abigail Bottoms, Shelby. Leader, Mark K. Klaus, Kurt K. van Westrenen, Wim Needham, Debra H. Kring, David A. TI Analyses of robotic traverses and sample sites in the Schrodinger basin for the HERACLES human-assisted sample return mission concept SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Schrodinger; Moon; Exploration; Lunar; Sample return mission ID IMPACT MELT; LUNAR; MOON; HISTORY; STRATIGRAPHY; EXPLORATION; CLEMENTINE; ORIGIN AB The International Space Exploration Coordination Group (ISECG) developed an integrated Global Exploration Roadmap (GER) that outlines plans for human-assisted sample return from the lunar surface in similar to 2024 and for human presence on the lunar surface in similar to 2028. Previous studies have identified the Schrodinger basin, situated on the far side of the Moon, as a prime target for lunar science and exploration where a significant number of the scientific concepts reviewed by the National Research Council (NRC, 2007) can be addressed. In this study, two robotic mission traverses within the Schrodinger basin are proposed based on a 3 year mission plan in support of the HERACLES human-assisted sample return mission concept. A comprehensive set of modern remote sensing data (LROC imagery, LOLA topography, M-3 and Clementine spectral data) has been integrated to provide high -resolution coverage of the traverses and to facilitate identification of specific sample localities. We also present a preliminary Concept of Operations (ConOps) study based on a set of notional rover capabilities and instrumental payload. An extended robotic mission to the Schrodinger basin will allow for significant sample return opportunities from multiple distinct geologic terrains and will address multiple high -priority NRC (2007) scientific objectives. Both traverses will offer the first opportunity to (i) sample pyroclastic material from the lunar farside, (ii) sample Schrodinger impact melt and test the lunar cataclysm hypothesis, (iii) sample deep crustal lithologies in an uplifted peak ring and test the lunar magma ocean hypothesis and (iv) explore the top of an impact melt sheet, enhancing our ability to interpret Apollo samples. The shorter traverse will provide the first opportunity to sample farside mare deposits, whereas the longer traverse has significant potential to collect SPA impact melt, which can be used to constrain the basin-forming epoch. These robotic missions will revalidate existing lunar surface capabilities and pioneer new ones and, thus, provide important precursor results for subsequent human missions to the lunar surface. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Steenstra, Edgar S.; van Westrenen, Wim] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Martin, Dayl J. P.; McDonald, Francesca E.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Williamson Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Paisarnsombat, Sarinya] Univ New Brunswick, Dept Earth Sci, Fredericton, NB E3B 5A3, Canada. [Venturino, Christian] Univ Buffalo, Dept Geol, 126 Cooke Hall, Buffalo, NY 14260 USA. [O'Hara, Sean] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL USA. [Calzada-Diaz, Abigail] Birkbeck Univ London, Dept Earth & Planetary Sci, London, England. [Bottoms, Shelby.; Leader, Mark K.; Klaus, Kurt K.] Boeing Co, Houston, TX USA. [Needham, Debra H.] Oak Ridge Associated Univ, Goddard Space Flight Ctr, Oak Ridge, TN 37831 USA. [Kring, David A.] Lunar & Planetary Inst, Ctr Lunar Sci & Explorat, Houston, TX USA. [Paisarnsombat, Sarinya] Univ New Brunswick, Planetary & Space Sci Ctr, Dept Earth Sci, Room 221,2 Bailey Dr,POB 4400, Fredericton, NB E3B 5A3, Canada. [O'Hara, Sean] Univ Illinois, 845 West Taylor St MC 186, Chicago, IL 60607 USA. [Calzada-Diaz, Abigail] Univ London, Dept Earth & Planetary Sci, Malet St, London WC1E 7HX, England. [Bottoms, Shelby.; Leader, Mark K.; Klaus, Kurt K.] 100 North Riverside, Chicago, IL 60606 USA. [van Westrenen, Wim] Vrije Univ Amsterdam, Fac Earth & Life Sci, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. [Needham, Debra H.] NASAs Goddard Space Flight Ctr, Publ Inquiries, Mail Code 130, Greenbelt, MD 20771 USA. [Kring, David A.] Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. RP Steenstra, ES (reprint author), Fac Earth & Life Sci, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. EM e.s.steenstra@vu.nl; dayl.martin@manchester.ac.uk; francesca.mcdonald@postgrad.manchester.ac; sarinya.p@unb.ca; csv@buffalo.edu; seanoha@gmail.com; abigailcalzada@gmail.com; shelby.m.bottoms@gmail.com; markleader@utexas.edu; klaus@lpi.usra.edu; w.van.westrenen@vu.nl; debra.m.hurwitz@nasa.gov; kring@lpi.usra.edu FU NASA [NNA14AB07A] FX This work was carried out through the 2015 Exploration Science Summer Intern Program hosted by the Lunar and Planetary Institute (LPI). This research was supported in part by NASA Solar System Exploration Research Virtual Institute contract NNA14AB07A (David A. Kring PI). We thank the staff at LPI for their help and support throughout the internship. LPI Contribution No. 1915. NR 63 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2016 VL 58 IS 6 BP 1050 EP 1065 DI 10.1016/j.asr.2016.05.041 PG 16 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DT9QR UT WOS:000381837900020 ER PT J AU Moores, JE Schieber, J Kling, AM Haberle, RM Moore, CA Anderson, MS Katz, I Yavrouian, A Malin, MC Olson, T Rafkin, SCR Lemmon, MT Sullivan, RJ Comeaux, K Vasavada, AR AF Moores, John E. Schieber, Juergen Kling, Alexandre M. Haberle, Robert M. Moore, Casey A. Anderson, Mark S. Katz, Ira Yavrouian, Andre Malin, Michael C. Olson, Timothy Rafkin, Scot C. R. Lemmon, Mark T. Sullivan, Robert J. Comeaux, Keith Vasavada, Ashwin R. TI Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Mars; Atmosphere; Dust settling; UV photolysis; Surface-atmosphere interactions ID CHEMCAM INSTRUMENT SUITE; GALE CRATER; PLANETARY-ATMOSPHERES; ENGINEERING CAMERAS; SURFACE; MISSION; SYSTEM; SIMULATIONS; PHOTOLYSIS; MODEL AB Imaging during and after the landing of the Mars Science Laboratory (MSL) rover in 2012 provides a means to examine two transitory phenomena for the first time: the settling of the plume of material raised by the powered terminal descent, and the possible dispersal of 140 kg of hydrazine into the atmosphere as fine-grained solid carbazic acid. The peri-landing images, acquired by the Mars Descent Imager (MARDI) and the rover hazard cameras (Hazcams), allow the first comparison of post -landing geological assessment of surface deflation with the plume itself. Examination of the Hazcam images acquired over a period of 4011 s shows that only a small fraction (350-1000 kg) of the total mass of fine-grained surface material displaced by the landing (4000 kg) remained in the atmosphere for this duration. Furthermore, a large component of this dust occurs as particles for which the characteristic optical radius is 20-60 gm, preventing them from being substantially mixed with the atmospheric column by eddy diffusion. Examination of the MARDI record over 225 s post -landing reveals a rapidly settling component that comprised approximately 1800-2400 kg and had a larger particle size with an optical radius of 360-470 mu m. The possible release of hydrazine by the sky crane stage also may have created particles of carbazic acid that would, analogous to the dust, spread through eddy diffusivity and settle to the ground. Peri-landing Hazcam images of the plume created during sky crane destruction constrains the particle radius to be either less than 23 gm or greater than 400 mu m. When combined with a Lagrangian model of the atmosphere, such particle sizes suggest that the carbazic acid was either deposited very near the sky crane crash site, or was widely dispersed as small particles which would have been quickly photodissociated to volatile ammonia and carbon dioxide. Surfaces visited by the MSL rover, Curiosity, would have received at most <0.2 ppb of carbazic acid and levels of sky crane related organics would have fallen well below the detection threshold of the Sample Analysis at Mars (SAM) instruments within 4-6 sols, well before the rover acquired its first samples over 60 sols into the mission. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Moores, John E.; Moore, Casey A.] York Univ, CRESS, N York, ON M3J 1P3, Canada. [Schieber, Juergen] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Kling, Alexandre M.] USRA Ames Res Ctr, Mountain View, CA USA. [Haberle, Robert M.] Ames Res Ctr, Moffett Field, CA USA. [Anderson, Mark S.; Katz, Ira; Yavrouian, Andre] Jet Prop Lab, Pasadena, CA USA. [Malin, Michael C.] Malin Space Sci Syst, San Diego, CA USA. [Olson, Timothy] Salish Kootenai Coll, Pablo, MT USA. [Rafkin, Scot C. R.] Southwest Res Inst, San Antonio, TX USA. [Lemmon, Mark T.] Texas A&M Univ, College Stn, TX 77843 USA. [Sullivan, Robert J.] Cornell Univ, Ithaca, NY 14853 USA. [Comeaux, Keith; Vasavada, Ashwin R.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Moores, JE (reprint author), York Univ, CRESS, N York, ON M3J 1P3, Canada. EM jmoores@yorku.ca; jschiebe@indiana.edu; alexandre.m.kling@nasa.gov; robert.m.haberle@nasa.gov; camoore@yorku.ca; Mark.S.Anderson@jpl.nasa.gov; Ira.Katz@jpl.nasa.gov; andre.h.yavrouian@gmail.com; malin@msss.com; tim_olson@skc.edu; rafkin.swri@gmail.com; lemmon@tamu.edu; rjs33@cornell.edu; Keith.A.Comeaux@jpl.nasa.gov; ashwin.r.vasavada@jpl.nasa.gov RI Lemmon, Mark/E-9983-2010 OI Lemmon, Mark/0000-0002-4504-5136 FU Canadian Space Agency; Mars Science Laboratory Participating Scientist program FX We would like to thank the many team members in MSL science and engineering that helped to make this journey possible. J.M. and C.M. were supported in the work by the Mars Science Laboratory Participating Scientist program with funding provided by the Canadian Space Agency. The authors are deeply indebted to Ken Edgett whose advice and many helpful suggestions greatly improved this manuscript. Furthermore, Stanley P. Sander of the Jet Propulsion Laboratory provided invaluable advice as to the theoretical destruction rates of Carbazic Acid based on chromophore analogues. NR 48 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2016 VL 58 IS 6 BP 1066 EP 1092 DI 10.1016/j.asr.2016.05.051 PG 27 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DT9QR UT WOS:000381837900021 ER PT J AU MacKenzie, SM Caswell, TE Phillips-Lander, CM Stavros, EN Hofgartner, JD Sun, VZ Powell, KE Steuer, CJ O'Rourke, JG Dhaliwal, JK Leung, CWS Petro, EM Wynne, JJ Phan, S Crismani, M Krishnamurthy, A John, KK DeBruin, K Budney, CJ Mitchell, KL AF MacKenzie, Shannon M. Caswell, Tess E. Phillips-Lander, Charity M. Stavros, E. Natasha Hofgartner, Jason D. Sun, Vivian Z. Powell, Kathryn E. Steuer, Casey J. O'Rourke, Joseph G. Dhaliwal, Jasmeet K. Leung, Cecilia W. S. Petro, Elaine M. Wynne, J. Judson Phan, Samson Crismani, Matteo Krishnamurthy, Akshata John, Kristen K. DeBruin, Kevin Budney, Charles J. Mitchell, Karl L. TI THEO concept mission: Testing the Habitability of Enceladus's Ocean SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Enceladus; Mission concept studies ID SATURNS E-RING; CITY HYDROTHERMAL FIELD; LIQUID WATER RESERVOIR; SOUTH-POLAR TERRAIN; MASS-SPECTROMETER; ROSETTA ORBITER; TIDAL STRESSES; CASSINI-VIMS; VAPOR PLUMES; LIFE AB Saturn's moon Enceladus offers a unique opportunity in the search for life and habitable environments beyond Earth, a key theme of the National Research Council's 2013-2022 Decadal Survey. A plume of water vapor and ice spews from Enceladus's south polar region. Cassini data suggest that this plume, sourced by a liquid reservoir beneath the moon's icy crust, contain organics, salts, and water rock interaction derivatives. Thus, the ingredients for life as we know it liquid water, chemistry, and energy sources are available in Enceladus's subsurface ocean. We have only to sample the plumes to investigate this hidden ocean environment. We present a New Frontiers class, solar -powered Enceladus orbiter that would take advantage of this opportunity, Testing the Habitability of Enceladus's Ocean (THEO). Developed by the 2015 Jet Propulsion Laboratory Planetary Science Summer School student participants under the guidance of TeamX, this mission concept includes remote sensing and in situ analyses with a mass spectrometer, a sub -mm radiometer spectrome ter, a camera, and two magnetometers. These instruments were selected to address four key questions for ascertaining the habitability of Enceladus's ocean within the context of the moon's geological activity: (1) how are the plumes and ocean connected? (2) are the abiotic conditions of the ocean suitable for habitability? (3) how stable is the ocean environment? (4) is there evidence of biological processes? By taking advantage of the opportunity Enceladus's plumes offer, THEO represents a viable, solar -powered option for exploring a potentially habitable ocean world of the outer solar system. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [MacKenzie, Shannon M.] Univ Idaho, Dept Phys, Moscow, ID USA. [Caswell, Tess E.; Sun, Vivian Z.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Phillips-Lander, Charity M.] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA. [Stavros, E. Natasha; DeBruin, Kevin; Budney, Charles J.; Mitchell, Karl L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hofgartner, Jason D.] Cornell Univ, Dept Astron, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Powell, Kathryn E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Steuer, Casey J.] Univ Michigan, Dept Climate & Space Sci Engn, Ann Arbor, MI 48109 USA. [O'Rourke, Joseph G.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Dhaliwal, Jasmeet K.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Leung, Cecilia W. S.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Petro, Elaine M.] Univ Maryland, Dept Aerosp Engn, College Pk, MD 20742 USA. [Wynne, J. Judson] Univ Arizona, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA. [Wynne, J. Judson] Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA. [Phan, Samson] Stanford Univ, Dept Engn, Stanford, CA 94305 USA. [Crismani, Matteo] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Krishnamurthy, Akshata] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [John, Kristen K.] NASA Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX USA. RP MacKenzie, SM (reprint author), Univ Idaho, Dept Phys, Moscow, ID USA. EM s.mackenzie.france@gmail.com FU NASA HQ Science Mission Directorate; NASA Planetary Science Division; NASA Radioisotope Power Systems Program; NASA Earth and Space Science Fellowship Program [NNX14AO30H] FX The THEO team would like to thank the Planetary Science Summer School mentoring team and staff whose efforts made the experience possible: Anita M. Sohus, Leslie L. Lowes, Jessica Parker, and Greg Baerg. We also gratefully acknowledge the TeamX members for their patience, expertise, and insight: Pamela Clark, Alfred Nash, Timothy Koch, Matt Bennett, Austin Lee, Roger Klemm, Enrique Baez, Brian Bairstow, Adam Nelessen, Gregory Welz, Melissa Vick, Morgan Henry, Ted Sweetser, Ron Hall, Jarius Hihn, Masashi Mizukami, Bill Smythe, Michael Sekerak, Vaughn Cable, Eric Sunada, Daniel Forgette, Jennifer Miller, Yogi Krikorian, Try Lam, Dhack Muthulingham, and Patrick Ward. As the culminating event of our summer school, the following volunteers served on a review panel: Farah Alibay, Luther Beegle, Richard Bennett, Ramon P. DePaula, Kevin Hand, Keith Grogan, Young Lee, and Rob Sherwood. We thank the panel for their time and constructive critiques that strengthened our "proposal" and thus the results presented in this paper. Thanks also to task managers J. Cutts, M. Viotti, and R. Zimmerman-Brachman. Finally, we express our gratitude to NASA HQ Science Mission Directorate, the NASA Planetary Science Division, and the NASA Radioisotope Power Systems Program for providing continued financial support for JPL's Planetary Science Summer school.; SMM acknowledges support from the NASA Earth and Space Science Fellowship Program - Grant NNX14AO30H. NR 101 TC 1 Z9 1 U1 21 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2016 VL 58 IS 6 BP 1117 EP 1137 DI 10.1016/j.asr.2016.05.037 PG 21 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA DT9QR UT WOS:000381837900023 ER PT J AU Ebmeier, SK Elliott, JR Nocquet, JM Biggs, J Mothes, P Jarrin, P Yepez, M Aguaiza, S Lundgren, P Samsonov, SV AF Ebmeier, Susanna K. Elliott, John R. Nocquet, Jean-Mathieu Biggs, Juliet Mothes, Patricia Jarrin, Paul Yepez, Marco Aguaiza, Santiago Lundgren, Paul Samsonov, Sergey V. TI Shallow earthquake inhibits unrest near Chiles-Cerro Negro volcanoes, Ecuador-Colombian border SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE volcanic hazard; earthquake; InSAR; GPS ID STRESS INTERACTION; NORTHERN ANDES; HALF-SPACE; DEFORMATION; SEISMICITY; ERUPTIONS; ICELAND; CALDERA; INSAR; MODEL AB Magma movement or reservoir pressurisation can drive swarms of low-magnitude volcano-tectonic earthquakes, as well as occasional larger earthquakes (>M5) on local tectonic faults. Earthquakes >M5 near volcanoes are challenging to interpret in terms of evolving volcanic hazard, but are often associated with eruptions, and in some cases enhance the ascent of magma. We present geodetic observations from the first episode of unrest known to have occurred near Chiles and Cerro Negro de Mayasquer volcanoes on the Ecuador-Colombian border. A swarm of volcano-tectonic seismicity in October 2014 culminated in a M-w 5.6 earthquake south of the volcanoes. Satellite radar data spanning this earthquake detect displacements that are consistent with dextral oblique slip on a reverse fault at depths of 1.4-3.4 km within a SSW-NNE trending fault zone that last ruptured in 1886. GPS station measurements capture 20 days of uplift before the earthquake, probably originating from a pressure source similar to 10-15 km south of Volcan Chiles, at depths exceeding 13 km. After the Mw 5.6 earthquake, uplift ceased and the rate of seismicity began to decrease. Potential mechanisms for this decline in activity include a decrease in the rate of movement of magma into the shallow crust, possibly caused by the restriction of fluid pathways. Our observations demonstrate that an earthquake triggered during volcanic unrest can inhibit magmatic processes, and have implications for the hazard interpretation of the interactions between earthquakes and volcanoes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ebmeier, Susanna K.; Biggs, Juliet] Univ Bristol, Sch Earth Sci, COMET, Queens Rd, Bristol BS8 4JG, Avon, England. [Ebmeier, Susanna K.; Elliott, John R.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Elliott, John R.] Univ Oxford, Dept Earth Sci, COMET, South Pk Rd, Oxford OX1 3AN, England. [Nocquet, Jean-Mathieu] Univ Nice Sophia Antipolis, Observ Cote Azur, CNRS, Geoazur,IRD, 250 Rue A Einstein, F-06560 Valbonne, France. [Mothes, Patricia; Jarrin, Paul; Yepez, Marco; Aguaiza, Santiago] Escuela Politec Nacl, Inst Geofis, E11-253,Aptdo 2759, Quito 2759, Ecuador. [Lundgren, Paul] Jet Prop Lab, M-S 300-233,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Samsonov, Sergey V.] Nat Resources Canada, Canada Ctr Mapping & Earth Observat, 560 Rochester St, Ottawa, ON K1A 0E4, Canada. RP Ebmeier, SK (reprint author), Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. EM s.k.ebmeier@leeds.ac.uk; j.elliott@leeds.ac.uk; nocquet@geoazur.unice.fr; Juliet.biggs@bristol.ac.uk; pmothes@igepn.edu.ec; pjarrin@igepn.edu.ec; myepez@igepn.edu.ec; saguaiza@igepn.edu.ec; Paul.R.Lundgren@jpl.nasa.gov; sergey.samsonov@canada.ca OI Biggs, Juliet/0000-0002-4855-039X; Ebmeier, Susanna/0000-0002-5454-2652; Samsonov, Sergey/0000-0002-6798-4847 FU European Space Agency Living Planet Fellowship (IMRICA); STREVA (NERC) [NE/J020052/1]; Centre for the Observations and Modelling of Earthquakes, Volcanoes and Tectonics (COMET); EWF (NERC) [NE/J02001X/1_1]; LICS [NE/K011006/1]; IRD-France; SENPLADES Project FX We thank all of the staff at the Instituto Geofisico in Quito Ecuador who have worked on monitoring the unrest at Chiles-Cerro Negro, including instrument deployment and maintenance, data processing and field observations. SKE is funded by a European Space Agency Living Planet Fellowship (IMRICA). SKE and JB were supported by STREVA (NERC grant number: NE/J020052/1) and SKE, JRE and JB also by the Centre for the Observations and Modelling of Earthquakes, Volcanoes and Tectonics (COMET). JRE was funded by EWF (NERC grant number: NE/J02001X/1_1) and LICS (NE/K011006/1). JMN is supported by the IRD-France in the framework of the International Joint Laboratory Earthquakes and Volcanoes in the Northern Andes. The IGEPN expresses thanks to UNAVCO for support in GPS instrumentation and to the SENPLADES Project for providing funding for instrumentation and logistical support. The Committee for Earth Observation Satellite Volcano Pilot project provided CosmoSkymed (ASI) and TerraSAR-X (DLR) imagery. RADARSAT-2 data were provided by the Canadian Space Agency. We thank Mario Ruiz, Rebecca Salvage, Stephen Hernandez and Rowena Lohman for very helpful conversations. This work forms part of the CEOS Volcano Pilot for Disaster Risk Reduction. NR 60 TC 1 Z9 1 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD SEP 15 PY 2016 VL 450 BP 283 EP 291 DI 10.1016/j.epsl.2016.06.046 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DT5PR UT WOS:000381535600027 ER PT J AU Kwok, R Cunningham, GF Hoffmann, J Markus, T AF Kwok, R. Cunningham, G. F. Hoffmann, J. Markus, T. TI Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE ICESat-2; MABEL; Sea ice; Polar oceans; Freeboard; Lidars ID EXPERIMENTAL LIDAR MABEL; SEA-ICE; LASER ALTIMETRY; THICKNESS; SHEET AB The ICESat-2 mission will provide routine estimates of sea ice freeboard from profiles of surface heights acquired by its photon-counting lidar: the Advanced Topographic Laser Altimeter System (ATLAS). In this paper, we describe and test procedures devised to separate returns of ice from open water a crucial step in the estimation of local sea levels for freeboard calculations. The two data sets used in these tests, one each from winter and summer, were acquired by a Multiple Altimeter Beam Experimental Lidar (MABEL) implemented to support prelaunch development of retrieval approaches. Our approach first identifies likely open water returns using surface photon and background count rates as proxy indicators of apparent surface reflectance. Since these measured rates are noisy estimates of expected reflectance, relative surface heights are used to refine the selection of the candidate sea surface samples. Results show that winter freeboard distributions are consistent with expected regional variability, and the nearly identical repeat-track freeboard distributions during summer show retrieval consistency. From coincident lidar coverage, variability of sea level samples identified in the MABEL and Airborne Topographic Mapper (ATM) lidar profiles are 1.6 cm and 2.6 cm, with the overall difference between the distributions at 0.00 +/- 0.15 m. This demonstrates the viability of the algorithms. The parameters used in these procedures will serve as a baseline and as a guide for understanding algorithm reliability. It is expected that they will be adjusted post-launch to reflect the on-orbit performance of ATLAS. (C) 2016 Elsevier Inc. All rights reserved. C1 [Kwok, R.; Cunningham, G. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hoffmann, J.; Markus, T.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. RP Kwok, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ron.kwok@jpl.nasa.gov OI Kwok, Ronald/0000-0003-4051-5896 FU National Aeronautics and Space Administration FX RK and GFC carried out this work at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 17 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2016 VL 183 BP 13 EP 25 DI 10.1016/j.rse.2016.05.011 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DU6SR UT WOS:000382345400002 ER PT J AU Latini, D Del Frate, F Jones, CE AF Latini, Daniele Del Frate, Fabio Jones, Cathleen E. TI Multi-frequency and polarimetric quantitative analysis of the Gulf of Mexico oil spill event comparing different SAR systems SO REMOTE SENSING OF ENVIRONMENT LA English DT Article ID SYNTHETIC-APERTURE RADAR; CRUDE OILS; SURFACE; IMAGES; WATER; DECOMPOSITION; BACKSCATTER; FEATURES; REMOVAL; FIELDS AB Synthetic aperture radar (SAR) images were acquired over the Deepwater Horizon spill's main slick with a number of different instruments during response to the catastrophic accident in 2010. These included instruments operating in different microwave frequency bands (L-C-X band), and, for TerraSAR-X and COSMO-SkyMed, more than one acquisition system operating in the X-band. In this work, for the first time the diverse SAR data acquired over the Deepwater Horizon spill have been compared and quantitatively analyzed with the goal of determining the different capabilities of the last generation SAR systems in the analysis of this important test case. Using the nearest acquisitions in time over the same areas, backscattering coefficients and polarimetric features, when available, have been evaluated. The derived information and comparison of sensors is discussed, in particular taking into consideration the Noise Equivalent Sigma Zero (NESZ) value characterizing each instrument. Although, as expected, an increase of the damping ratio values is noted at higher frequencies, the best slick discrimination capability has been obtained with the L-band UAVSAR sensor, characterized by a more effective NESZ value, while the satellite SAR sensors are shown to have in some cases significant noise contamination to polarimetric parameters. Anomalous behavior at X-band measurements has been also registered and discussed. Through the analysis of all the available data an evaluation of the impact of low noise SAR for oil characterization in the considered context is provided. (C) 2016 Elsevier Inc. All rights reserved. C1 [Latini, Daniele; Del Frate, Fabio] Univ Roma Tor Vergata, Earth Observat Lab, Rome, Italy. [Jones, Cathleen E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Latini, D (reprint author), Univ Roma Tor Vergata, Earth Observat Lab, Rome, Italy. EM latini@disp.uniroma2.it FU SOAR-EU [16659]; SOAR-ASI Project [5227]; National Aeronautics and Space Administration FX Part of this research has been carried out within the framework of SOAR-EU Project n. 16659 and SOAR-ASI Project n. 5227. COSMO-SkyMed data are provided by the Italian Space Agency: COSMO-SkyMed Product- (c) ASI- Agenzia Spaziale Italiana- (2010). All Rights Reserved. Radarsat-2 data are provided by Canadian Space Agency: RADARSAT-2 Data and Products (c) MacDonald, Dettwiler and Associates Ltd. (2010) - All Rights Reserved. RADARSAT is an official trademark of the Canadian Space Agency. TerraSAR-X data used in this investigation have been provided by DLR through the AO Proposal OCE_1559. The Envisat/ASAR data have been provided by the European Space Agency (Cat-1 AO project 1483). UAVSAR data are pre-processed by the UAVSAR team at JPL and archived for open distribution at the Alaska Satellite Facility. This research was conducted in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 45 TC 2 Z9 2 U1 7 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2016 VL 183 BP 26 EP 42 DI 10.1016/j.rse.2016.05.014 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DU6SR UT WOS:000382345400003 ER PT J AU Zhang, Y Xiao, XM Jin, C Dong, JW Zhou, S Wagle, P Joiner, J Guanter, L Zhang, YG Zhang, GL Qin, YW Wang, J Moore, B AF Zhang, Yao Xiao, Xiangming Jin, Cui Dong, Jinwei Zhou, Sha Wagle, Pradeep Joiner, Joanna Guanter, Luis Zhang, Yongguang Zhang, Geli Qin, Yuanwei Wang, Jie Moore, Berrien, III TI Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Vegetation Photosynthesis Model (VPM); Light use efficiency; Remote sensing; SIF; MODIS; Carbon cycle; GPP product ID TERRESTRIAL CARBON-CYCLE; PHOTOSYNTHETICALLY ACTIVE RADIATION; ATMOSPHERE CO2 EXCHANGE; NET ECOSYSTEM EXCHANGE; INTERANNUAL VARIABILITY; DIOXIDE EXCHANGE; UNITED-STATES; CLIMATE VARIABILITY; SEASONAL-VARIATION; DECIDUOUS FOREST AB Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital fora better understanding of the spatial-temporal patterns of the global carbon cycle. In this study, we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS images at 8-day temporal and 500 m spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP(VPM)) agrees well with the flux tower derived GPP (GPP(EC)) at 39 AmeriFlux sites (155 site-years). The GPP(VPM) in 2010 is spatially aggregated to 0.5 by 0.5 grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP(VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP(VPM) and SIF shows strong linear relationships (R-2 > 0.95) and small variations in regression slopes (4.60-5.55 g C m(-2) day(-1)/mW m(-2) nm(-1) sr(-1)). The total annual GPP(VPM) in NA in 2010 is approximately 13.53 Pg C year(-1), which accounts for similar to 11.0% of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 Pg C year(-1)) Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models. (C) 2016 Elsevier Inc. All rights reserved. C1 [Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Wagle, Pradeep; Zhang, Geli; Qin, Yuanwei; Wang, Jie] Univ Oklahoma, Dept Microbiol & Plant Biol, Ctr Spatial Anal, Norman, OK 73019 USA. [Xiao, Xiangming] Fudan Univ, Inst Biodiveis Sci, Shanghai 200433, Peoples R China. [Zhou, Sha] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing, Peoples R China. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Guanter, Luis] German Res Ctr Geosci GFZ, Helmholtz Ctr Potsdam, Telegrafenberg A17, D-14473 Potsdam, Germany. [Zhang, Yongguang] Nanjing Univ, Int Inst Earth Syst Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China. [Moore, Berrien, III] Univ Oklahoma, Coll Atmospher & Geog Sci, Norman, OK 73019 USA. RP Xiao, XM (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Ctr Spatial Anal, Norman, OK 73019 USA. EM xiangming.xiao@ou.edu RI Dong, Jinwei/C-4949-2009 OI Dong, Jinwei/0000-0001-5687-803X FU USDA National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI) [2013-69002]; Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change [IIA-1301789]; National Science Foundation EPSCoR; U.S. Department of Energy's Office of Science; Department of Energy [DE-SC0006708]; Ameriflux Core Site award; USDA FS EFETAC [03-CA-11330147-073, 04 CA-11330147-238]; US DOE Ameriflux program; USDA-ARS; National Science Foundation [OPP 0421588/ARC-1204263]; DOE [DE-FC02-06ER64159] FX We acknowledge M. Reichstein for providing the MPI-BGC dataset, and the Numerical Terradynamic Simulation Group at the University of Montana for providing the improved MOD17 GPP dataset. We thank the TRENDY modelers for contributing model output: B. Poulter (LPJ), A. Ahlstrom (LPJ-GUESS), N. Viovy (ORCHIDEE), and N. Zeng (VEGAS). This study is supported in part by a research grant (Project No. 2013-69002) through the USDA National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI), Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change, and a research grant (IIA-1301789) from the National Science Foundation EPSCoR. Flux data were obtained from the AmeriFlux database (http://ameriflux.ornl.gov/). Funding for AmeriFlux data resources is provided by the U.S. Department of Energy's Office of Science. US-UMB site is supported by the Department of Energy [Award No. DE-SC0006708] and by an Ameriflux Core Site award; US-NC1 site is supported by USDA FS EFETAC cooperative agreements [03-CA-11330147-073] and [04 CA-11330147-238]; US-Rol and US-Ro3 data courtesy of TJ Griffis and JM Baker, funding provided by US DOE Ameriflux program and USDA-ARS; US-IVO site is supported by National Science Foundation [Award No. OPP 0421588/ARC-1204263] and DOE grant [DE-FC02-06ER64159]. We thank Ms. Sarah Xiao at Yale University for the English editing of the manuscript. NR 118 TC 6 Z9 6 U1 41 U2 42 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2016 VL 183 BP 154 EP 169 DI 10.1016/j.rse.2016.05.015 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DU6SR UT WOS:000382345400013 ER PT J AU Parkinson, CL DiGirolamo, NE AF Parkinson, Claire L. DiGirolamo, Nicolo E. TI New visualizations highlight new information on the contrasting Arctic and Antarctic sea-ice trends since the late 1970s SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Sea ice; Arctic sea ice; Antarctic sea ice; Global sea ice; Climate trends; Sea-ice record lows and highs; Satellite remote sensing ID VARIABILITY; THICKNESS; COVERAGE AB Month-by-month ranking of 37 years (1979-2015) of satellite-derived sea-ice extents in the Arctic and Antarctic reveals interesting new details in the overall trends toward decreasing sea-ice coverage in the Arctic and increasing sea-ice coverage in the Antarctic. The Arctic decreases are so definitive that there has not been a monthly record high in Arctic sea-ice extents in any month since 1986, a time period during which there have been 75 monthly record lows. The Antarctic, with the opposite but weaker trend toward increased ice extents, experienced monthly record lows in 5 months of 1986, then 6 later monthly record lows scattered through the dataset, with the last two occurring in 2006, versus 45 record highs since 1986. However, in the last three years of the 1979-2015 dataset, the downward trends in Arctic sea-ice extents eased up, with no new record lows in any month of 2013 or 2014 and only one record low in 2015, while the upward trends in Antarctic ice extents notably strengthened, with new record high ice extents in 4 months (August-November) of 2013, in 6 months (April-September) of 2014, and in 3 months (January, April, and May) of 2015. Globally, there have been only 3 monthly record highs since 1986 (only one since 1988), whereas there have been 43 record lows, although the last record lows (in the 1979-2015 dataset) occurred in 2012. Published by Elsevier Inc. C1 [Parkinson, Claire L.; DiGirolamo, Nicolo E.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Code 615, Greenbelt, MD 20771 USA. [DiGirolamo, Nicolo E.] SSAI, Lanham, MD USA. RP Parkinson, CL (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Code 615, Greenbelt, MD 20771 USA. EM Claire.L.Parkinson@nasa.gov FU NASA Earth Science Division, through the NASA Cryosphere Program; Earth Observing System Project Science Office FX We greatly appreciate the helpful reviews of two anonymous reviewers and the funding provided for this work by the NASA Earth Science Division, through the NASA Cryosphere Program and the Earth Observing System Project Science Office. NR 41 TC 2 Z9 2 U1 18 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2016 VL 183 BP 198 EP 204 DI 10.1016/j.rse.2016.05.020 PG 7 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DU6SR UT WOS:000382345400016 ER PT J AU Brandt, M Hiernaux, P Rasmussen, K Mbow, C Kergoat, L Tagesson, T Ibrahim, YZ Wele, A Tucker, CJ Fensholt, R AF Brandt, Martin Hiernaux, Pierre Rasmussen, Kjeld Mbow, Cheikh Kergoat, Laurent Tagesson, Torbern Ibrahim, Yahaya Z. Wele, Abdoulaye Tucker, Compton J. Fensholt, Rasmus TI Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Sahel; Woody cover; Deforestation; Human population density; Carbon stocks; MCD43 ID NORTHERN BURKINA-FASO; FOREST-COVER CHANGE; TIME-SERIES; WEST-AFRICA; NDVI TRENDS; TREE COVER; SENEGAL; BIOMASS; CLIMATE; SURFACE AB Woody plants play a major role for the resilience of drylands and in peoples' livelihoods. However, due to their scattered distribution, quantifying and monitoring woody cover over space and time is challenging. We develop a phenology driven model and train/validate MODIS (MCD43A4, 500 m) derived metrics with 178 ground observations from Niger, Senegal and Mali to estimate woody cover trends from 2000 to 2014 over the entire Sahel. The annual woody cover estimation at 500 m scale is fairly accurate with an RMSE of 4.3 (woody cover %) and r(2) = 0.74. Over the 15 year period we observed an average increase of 1.7 (+/- 5.0) woody cover (%) with large spatial differences: No clear change can be observed in densely populated areas (0.2 +/- 4.2), whereas a positive change is seen in sparsely populated areas (2.1 +/- 5.2). Woody cover is generally stable in cropland areas (0.9 +/- 4.6), reflecting the protective management of parkland trees by the farmers. Positive changes are observed in savannas (2.5 +/- 5.4) and woodland areas (3.9 +/- 7.3). The major pattern of woody cover change reveals strong increases in the sparsely populated Sahel zones of eastern Senegal, western Mali and central Chad, but a decreasing trend is observed in the densely populated western parts of Senegal, northern Nigeria, Sudan and southwestern Niger. This decrease is often local and limited to woodlands, being an indication of ongoing expansion of cultivated areas and selective logging. We show that an overall positive trend is found in areas of low anthropogenic pressure demonstrating the potential of these ecosystems to provide services such as carbon storage, if not over-utilized. Taken together, our results provide an unprecedented synthesis of woody cover dynamics in the Sahel, and point to land use and human population density as important drivers, however only partially and locally offsetting a general post-drought increase. (C) 2016 Elsevier Inc. All rights reserved. C1 [Brandt, Martin; Rasmussen, Kjeld; Tagesson, Torbern; Fensholt, Rasmus] Univ Copenhagen, Dept Geosci & Nat Resource Management, DK-1350 Copenhagen, Denmark. [Hiernaux, Pierre; Kergoat, Laurent] UPS, Observ Midi Pyrenees, CNRS, GET,IRD,CNES,UMR 5563, 14 Ave Edouard Belin, F-31400 Toulouse, France. [Mbow, Cheikh] ICRAF World Agroforestly Ctr, Sci Domain 6, Nairobi 00100, Kenya. [Ibrahim, Yahaya Z.] Univ Leicester, Dept Geog, Ctr Landscape & Climate Res, Leicester LE1 7RH, Leics, England. [Ibrahim, Yahaya Z.] Umaru Musa Yaradua Univ, Katsina PMB 2218, Katsina, Nigeria. [Wele, Abdoulaye] Ctr Suivi Ecol, BP 15532, Dakar, Senegal. [Tucker, Compton J.] NASA, Goddard Space Flight Ctr, Mail Code 610-9, Greenbelt, MD 20771 USA. RP Brandt, M (reprint author), Ostervoldgade 10, DK-1350 Copenhagen, Denmark. EM martin.brandt@mailbox.org; pierre.hiernaux@wanadoo.fr; c.mbow@cgiar.org; yzii1@leicester.ac.uk; wele@cse.sn; compton.j.tucker@nasa.gov RI Brandt, Martin/E-4598-2015 OI Brandt, Martin/0000-0001-9531-1239 FU European Union's Horizon research and innovation programme under the Marie Sklodowska-Curie grant [656564] FX The project is funded the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No [656564]. High spatial resolution satellite images were provided within the NextView license agreement. The authors thank everyone involved in collecting the ground data in Senegal, Mali, and Niger, especially the Centre de Suivi Ecologique (CSE) and the Observatory AMMA-CATCH. Finally we would like to thank the anonymous reviewers for detailed and constructive comments. NR 57 TC 4 Z9 4 U1 20 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2016 VL 183 BP 215 EP 225 DI 10.1016/j.rse.2016.05.027 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DU6SR UT WOS:000382345400018 ER PT J AU Rodriguez-Veiga, P Saatchi, S Tansey, K Balzter, H AF Rodriguez-Veiga, Pedro Saatchi, Sassan Tansey, Kevin Balzter, Heiko TI Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Forest biomass; Uncertainty; Forest probability; MODIS; ALOS PALSAR; SRTM; Carbon; MaxEnt; REDD ID LAND-COVER DATA; PALSAR L-BAND; TROPICAL FOREST; CARBON STOCKS; ALOS PALSAR; BOREAL FOREST; ABOVEGROUND BIOMASS; SAR IMAGERY; BACKSCATTER; MAPS AB Existing forest biomass stock maps show discrepancies with in-situ observations in Mexico. Ground data from the National Forest and Soil Inventory of Mexico (INFyS) were used to calibrate a maximum entropy (MaxEnt) algorithm to generate forest biomass (AGB), its associated uncertainty, and forest probability maps. The input predictor layers for the MaxEnt algorithm were extracted from the moderate resolution imaging spectrometer (MODIS) vegetation index (VI) products, ALOS PALSAR L-band dual-polarization backscatter coefficient images, and the Shuttle Radar Topography Mission (SRTM) digital elevation model. A Jackknife analysis of the model accuracy indicated that the ALOS PALSAR layers have the highest relative contribution (50.9%) to the estimation of AGB, followed by MODIS-VI (32.9%) and SRTM (16.2%). The forest cover mask derived from the forest probability map showed higher accuracy (kappa = 0.83) than alternative masks derived from ALOS PALSAR (kappa = 0.72-0.78) or MODIS vegetation continuous fields (VCF) with a 10% tree cover threshold (kappa = 0.66). The use of different forest cover masks yielded differences of about 30 million ha in forest cover extent and 0.45 Gt C in total carbon stocks. The AGB map showed a root mean square error (RMSE) of 173 t C ha(-1) and R-2 = 0.31 when validated at the 250 m pixel scale with inventory plots. The error and accuracy at municipality and state levels were RMSE = +/- 4.4 t C ha(-1), R-2 = 0.75 and RMSE = +/- 2.1 t C ha(-1), R-2 = 0.94 respectively. We estimate the total carbon stored in the aboveground live biomass of forests of Mexico to be 1.69 Gt C +/- 1% (mean carbon density of 21.8 t C ha(-1)), which agrees with the total carbon estimated by FAO for the FRA 2010 (1.68 Gt C). The new map, derived directly from the biomass estimates of the national inventory, proved to have similar accuracy as existing forest biomass maps of Mexico, but is more representative of the shape of the probability distribution function of AGB in the national forest inventory data. Our results suggest that the use of a non-parametric maximum entropy model trained with forest inventory plots, even at the sub-pixel size, can provide accurate spatial maps for national or regional REDD+ applications and MRV systems. (C) 2016 The Authors. Published by Elsevier Inc. C1 [Rodriguez-Veiga, Pedro; Tansey, Kevin; Balzter, Heiko] Univ Leicester, Ctr Landscape & Climate Res, Dept Geog, Univ Rd, Leicester, Leics, England. [Rodriguez-Veiga, Pedro; Balzter, Heiko] Univ Leicester, NCEO, Univ Rd, Leicester, Leics, England. [Saatchi, Sassan] NASA, Jet Prop Lab, 4800 Oak Groove Dr, Pasadena, CA USA. RP Rodriguez-Veiga, P (reprint author), Univ Leicester, Ctr Landscape & Climate Res, Dept Geog, Univ Rd, Leicester, Leics, England.; Rodriguez-Veiga, P (reprint author), Univ Leicester, NCEO, Univ Rd, Leicester, Leics, England. EM pedro.rodriguez@le.ac.uk; saatchi@jpl.nasa.gov; kjt7@le.ac.uk; hb91@le.ac.uk FU European Commission; Marie Curie Programme, Initial Training Networks [PITN-GA-2010-264509]; NERC National Centre for Earth Observation (NCEO); Royal Society Wolfson Research Merit Award [2011/R3] FX The authors would like to thank the following people and organizations for providing the data: JAXA (ALOS PALSAR), NASA, GLCF, USGS, and CIAT (MODIS and SRTM), Alessandro Baccini (TCM-2), Oliver Cartus (MRF), INEGI (LUV dataset), and Carlos Edgar Zermeno Benitez and CONAFOR (INFyS dataset). We would also like to thank Andrea Hurtado de Mendoza Rosales (University of Leicester) for providing contacts in Mexico and assistance with the INFyS dataset. The authors would like to also thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. This work was supported by Copernicus Initial Operations - Network for Earth Observation Research Training (GIONET). GIONET was funded by the European Commission, Marie Curie Programme, Initial Training Networks, Grant Agreement number PITN-GA-2010-264509. P. Rodriguez-Veiga and H. Balzter were supported by the NERC National Centre for Earth Observation (NCEO). H. Balzter was also supported by the Royal Society Wolfson Research Merit Award, 2011/R3. NR 81 TC 2 Z9 2 U1 23 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2016 VL 183 BP 265 EP 281 DI 10.1016/j.rse.2016.06.004 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DU6SR UT WOS:000382345400022 ER PT J AU Moussavi, MS Abdalati, W Pope, A Scambos, T Tedesco, M MacFerrin, M Grigsby, S AF Moussavi, Mahsa S. Abdalati, Waleed Pope, Allen Scambos, Ted Tedesco, Marco MacFerrin, Michael Grigsby, Shane TI Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Greenland Ice Sheet hydrology; Supraglacial water depth; Spectrally-based depth-retrieval models; WorldView-2 satellite; High-resolution digital elevation model (DEM) ID SEASONAL EVOLUTION; DRAINAGE; STREAMS; MELTWATER AB Supraglacial meltwater lakes on the western Greenland Ice Sheet (GrIS) are critical components of its surface hydrology and surface mass balance, and they also affect its ice dynamics. Estimates of lake volume, however, are limited by the availability of in situ measurements of water depth, which in turn also limits the assessment of remotely sensed lake depths. Given the logistical difficulty of collecting physical bathymetric measurements, methods relying upon in situ data are generally restricted to small areas and thus their application to largescale studies is difficult to validate. Here, we produce and validate spaceborne estimates of supraglacial lake volumes across a relatively large area (1250 km(2)) of west Greenland's ablation region using data acquired by the WorldView-2 (WV-2) sensor, making use of both its stereo-imaging capability and its meter-scale resolution. We employ spectrally-derived depth retrieval models, which are either based on absolute reflectance (single channel model) or a ratio of spectral reflectances in two bands (dual-channel model). These models are calibrated by using WV-2 multispectral imagery acquired early in the melt season and depth measurements from a high resolution WV-2 DEM over the same lake basins when devoid of water. The calibrated models are then validated with different lakes in the area, for which we determined depths. Lake depth estimates based on measurements recorded in WV-2's blue (450-510 nm), green (510-580 nm), and red (630-690 nm) bands and dual-channel modes (blue/green, blue/red, and green/red band combinations) had near-zero bias, an average root-mean squared deviation of 0.4 m (relative to post-drainage DEM5), and an average volumetric error of <1%. The approach outlined in this study- image-based calibration of depth-retrieval models - significantly improves spaceborne supraglacial bathymetry retrievals, which are completely independent from in situ measurements. (C) 2016 Elsevier Inc. All rights reserved. C1 [Moussavi, Mahsa S.; Abdalati, Waleed; Pope, Allen; Scambos, Ted; MacFerrin, Michael; Grigsby, Shane] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Moussavi, Mahsa S.; MacFerrin, Michael; Grigsby, Shane] Univ Colorado, ESOC, Boulder, CO 80309 USA. [Moussavi, Mahsa S.; Pope, Allen; Scambos, Ted] Univ Colorado, NSIDC, Boulder, CO 80309 USA. [Tedesco, Marco] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Tedesco, Marco] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Moussavi, MS (reprint author), Univ Colorado, CIRES, Boulder, CO 80309 USA. OI Grigsby, Shane/0000-0003-4904-7785; Pope, Allen/0000-0001-9699-7500 FU National Aeronautics and Space Administration (NASA) [NNX10AR76G]; U.S. National Science Foundation (NSF) [ANT-1043681]; U.S. Geological Survey [G12PC00066] FX This work was supported by the National Aeronautics and Space Administration (NASA) [grant number NNX10AR76G]. The Polar Geospatial Center at the University of Minnesota, supported by the U.S. National Science Foundation (NSF) [grant ANT-1043681], provided the WorldView imagery. A. Pope and T. Scambos were supported by U.S. Geological Survey contract G12PC00066. We thank Dr. Carl J. Legleiter from the University of Wyoming for his support and helpful comments. NR 46 TC 1 Z9 1 U1 16 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2016 VL 183 BP 294 EP 303 DI 10.1016/j.rse.2016.05.024 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DU6SR UT WOS:000382345400024 ER PT J AU Ferraz, A Saatchi, S Mallet, C Meyer, V AF Ferraz, Antonio Saatchi, Sassan Mallet, Clement Meyer, Victoria TI Lidar detection of individual tree size in tropical forests SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Airborne lidar; 3D tropical forest structure modeling; Mean shift algorithm segmentation; Individual tree detection; Tropical tree crown clustering; Crown area; Crown volume; Carbon estimation; Aboveground biomass ID AIRBORNE LIDAR; ABOVEGROUND BIOMASS; ECOSYSTEM STRUCTURE; CARBON STOCKS; AMAZON FOREST; DISTRIBUTIONS; ALLOMETRY; DISTURBANCES; PREDICTIONS; TECHNOLOGY AB Characterization of tropical forest trees has been limited to field-based techniques focused on measurement of diameter of the cylindrical part of the bole, with large uncertainty in measuring large trees with irregular shapes, and other size attributes such as total tree height and the crown size. Here, we introduce a methodology to decompose lidar point cloud data into 3D clusters corresponding to individual tree crowns (ITC) that enables the estimation of many biophysical variables of tropical forests such as tree height, crown area, crown volume, and tree number density. The ITC-based approach was tested using airborne high-resolution lidar data collected over the 50-ha Center for Tropical Forest Science (CTFS) plot in the Barro Colorado Island, Panama. The lack of tree height and crown size measurements in the field prohibits the direct validation of the ITC metrics. We assess the reliability of our method by comparing the aboveground biomass (AGB) estimated using ground and lidar individual tree measurements at multiple spatial scales, namely 1 ha, 2.25 ha, 4 ha, and 6.25 ha. We examined four different lidar-derived AGB models, with three based on individual tree height, crown volume, and crown area, and one with mean top canopy height (TCH) calculated at the plot level using the lidar canopy height model. Results show that the predictive power of all models based on ITC size and TCH increases with decreasing spatial resolution from 16.9% at 1 ha for the worst model to 5.0% at 6.25 ha for the best model. The TCH-based model performed slightly better than ITC-based models except at higher spatial scales (similar to 4 ha) and when errors due to edge effects associated with tree crowns were reduced. Unlike the TCH models that change regionally depending on forest type and structure allometry, the ITC-based models are derived as a function of individual tree allometry and can be extended globally to all tropical forests. The method for lidar detection of individual crown size overcome some limitations of ground-based inventories such as 1) it is able to access crowns of large trees and 2) it enables the assessment of directional changes in tree density, canopy architecture and forest dynamics over large and inaccessible areas to support robust tropical ecological studies. (C) 2016 Elsevier Inc. All rights reserved. C1 [Ferraz, Antonio] CALTECH, Jet Prop Lab, NASA Postdoctoral Program, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Saatchi, Sassan; Meyer, Victoria] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mallet, Clement] Univ Paris Est, Inst Natl Informat Geog & Forestiere IGN, LaSTIG, MATIS, F-94160 St Mande, France. [Meyer, Victoria] Univ Toulouse 3, CNRS, UMR 5174, Lab Evolut & Divers Biol, Toulouse, France. RP Ferraz, A (reprint author), CALTECH, Jet Prop Lab, NASA Postdoctoral Program, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Antonio.A.Ferraz@jpl.nasa.gov RI Ferraz, Antonio/D-9662-2017; OI Ferraz, Antonio/0000-0002-5328-5471; Mallet, Clement/0000-0002-2675-165X FU NASA [NNH15CO488]; Oak Ridge Associated Universities FX Antonio Ferraz's research was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administrated by Oak Ridge Associated Universities under contract with NASA (grant number NNH15CO488). NR 53 TC 5 Z9 5 U1 47 U2 48 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2016 VL 183 BP 318 EP 333 DI 10.1016/j.rse.2016.05.028 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA DU6SR UT WOS:000382345400026 ER PT J AU Checlair, J Mckay, CP Imanaka, H AF Checlair, Jade McKay, Christopher P. Imanaka, Hiroshi TI Titan-like exoplanets: Variations in geometric albedo and effective transit height with haze production rate SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Titan; Exoplanet transit; Haze; Geometric albedo; Transit height; Atmosphere limb ID GIANT PLANET TRANSITS; OPTICAL-PROPERTIES; TRANSMISSION SPECTROSCOPY; ORGANIC-CHEMISTRY; GRAZING-INCIDENCE; PART II; ATMOSPHERE; AEROSOLS; SPECTRA; EARTH AB Extensive studies characterizing Titan present an opportunity to study the atmospheric properties of Titan-like exoplanets. Using an existing model of Titan's atmospheric haze, we computed geometric albedo spectra and effective transit height spectra for six values of the haze production rate (zero haze to twice present) over a wide range of wavelengths (0.2-2 mu m). In the geometric albedo spectra, the slope in the UV visible changes from blue to red when varying the haze production rate values from zero to twice the current Titan value. This spectral feature is the most effective way to characterize the haze production rates. Methane absorption bands in the visible-NIR compete with the absorbing haze, being more prominent for smaller haze production rates. The effective transit heights probe a region of the atmosphere where the haze and gas are optically thin and that is thus not effectively probed by the geometric albedo. The effective transit height decreases smoothly with increasing wavelength, from 376 km to 123 km at 0.2 and 2 mu m, respectively. When decreasing the haze production rate, the methane absorption bands become more prominent, and the effective transit height decreases with a steeper slope with increasing wavelength. The slope of the geometric albedo in the UV visible increases smoothly with increasing haze production rate, while the slope of the effective transit height spectra is not sensitive to the haze production rate other than showing a sharp rise when the haze production rate increases from zero. We conclude that geometric albedo spectra provide the most sensitive indicator of the haze production rate and the background Rayleigh gas. Our results suggest that important and complementary information can be obtained from the geometric albedo and motivates improvements in the technology for direct imaging of nearby exoplanets. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Checlair, Jade; McKay, Christopher P.; Imanaka, Hiroshi] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Checlair, Jade] Univ Toronto, Dept Phys, Toronto, ON M5S 1A1, Canada. [Imanaka, Hiroshi] SETI Inst, Mountain View, CA USA. RP Checlair, J (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM jade.checlair@gmail.com; chris.mckay@nasa.gov; himanaka@seti.org FU NASA Exoplanets Research Program; NASA's Nexus for Exoplanet Systems Science (NExSS) program FX We thank our two reviewers for their comments, which greatly improved the clarity of the paper. Support from NASA Exoplanets Research Program and NASA's Nexus for Exoplanet Systems Science (NExSS) program is acknowledged. NR 51 TC 0 Z9 0 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP 15 PY 2016 VL 129 BP 1 EP 12 DI 10.1016/j.pss.2016.03.012 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2PV UT WOS:000381323800001 ER PT J AU Lipatov, AS Sibeck, DG AF Lipatov, A. S. Sibeck, D. G. TI Global effects of transmitted shock wave propagation through the Earth's inner magnetosphere: First results from 3-D hybrid kinetic modeling SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Solar wind; Magnetosphere; Plasmasphere; Radiation belts; Ring current; Interplanetary shocks ID GEOMAGNETIC SUDDEN COMMENCEMENT; PARALLEL BOW SHOCK; 3D HYBRID; THEMIS OBSERVATIONS; SOLAR-WIND; NUMERICAL-SIMULATION; ION-ACCELERATION; RADIATION BELTS; PICKUP IONS; PLASMA AB We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave-particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plas-masphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lipatov, A. S.] GPHI UMBC NASA GSFC, Code 673, Greenbelt, MD 20771 USA. [Lipatov, A. S.] Moscow Inst Phys & Technol, Fac Problems Phys & Power Engn, Moscow, Russia. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA. RP Lipatov, AS (reprint author), GPHI UMBC NASA GSFC, Code 673, Greenbelt, MD 20771 USA. EM Alexander.Lipatov-1@nasa.gov; David.G.Sibeck@nasa.gov FU NASA; NCCS (Discover, Goddard) [SMD-15-5719]; NAS (Pleiades, Ames) [SMD-15-5719] FX This work was supported in part by the NASA mission "Van Allen Storm Probes". Computational resources were provided for the High-End Computational Project SMD-15-5719, "Shock waves interaction with plasmasphere and radiation belts. hybrid fluid kinetic modeling' by the NCCS (Discover, Goddard) and the NAS (Pleiades, Ames). NR 64 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP 15 PY 2016 VL 129 BP 13 EP 23 DI 10.1016/j.pss.2016.05.010 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2PV UT WOS:000381323800002 ER PT J AU Bauer, S Hussmann, H Oberst, J Dirkx, D Mao, D Neumann, GA Mazarico, E Torrence, MH McGarry, JF Smith, DE Zuber, MT AF Bauer, S. Hussmann, H. Oberst, J. Dirkx, D. Mao, D. Neumann, G. A. Mazarico, E. Torrence, M. H. McGarry, J. F. Smith, D. E. Zuber, M. T. TI Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data SO PLANETARY AND SPACE SCIENCE LA English DT Article DE One-way laser ranging; Orbit determination; LRO AB We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. Moreover the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02, November 2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to, investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12 h (approximate to 6 successive LRO orbits) prevented the successful estimation of arcs with lengths shorter or longer than 2 or 7 days with our given modeling. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Bauer, S.; Hussmann, H.; Oberst, J.] German Aerosp Ctr DLR, Berlin, Germany. [Oberst, J.] TU Berlin, Berlin, Germany. [Oberst, J.] Moscow State Univ Geodesy & Cartog, Moscow, Russia. [Dirkx, D.] Delft Univ Technol, Delft, Netherlands. [Dirkx, D.] Joint Inst VLBI ERIC, Dwingeloo, Netherlands. [Mao, D.] Sigma Space Corp, Lanham, MD USA. [Neumann, G. A.; Mazarico, E.; McGarry, J. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Torrence, M. H.] Stinger Ghaffarian Technol Inc, Greenbelt, MD USA. [Smith, D. E.; Zuber, M. T.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Bauer, S (reprint author), German Aerosp Ctr DLR, Berlin, Germany. EM sven.bauer@dlr.de RI Neumann, Gregory/I-5591-2013 OI Neumann, Gregory/0000-0003-0644-9944 FU ESPaCE project, EC FP7 Grant Agreement [263466]; Russian Science Foundation [14-22-00197] FX S. Bauer, H. Hussmann, and D. Dirkx were supported by the ESPaCE project, EC FP7 Grant Agreement 263466. Major parts of this work were carried out while the first author very much enjoyed a research visit at NASA Goddard Space Flight Center (GSFC). J.O. was hosted by MIIGAiK and supported by the Russian Science Foundation, project #14-22-00197. We thank two anonymous reviewers for their very constructive comments. NR 39 TC 1 Z9 1 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP 15 PY 2016 VL 129 BP 32 EP 46 DI 10.1016/j.pss.2016.06.005 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2PV UT WOS:000381323800004 ER PT J AU Millan, M Szopa, C Buch, A Coll, P Glavin, DP Freissinet, C Navarro-Gonzalez, R Francois, P Coscia, D Bonnet, JY Teinturier, S Cabane, M Mahaffy, PR AF Millan, M. Szopa, C. Buch, A. Coll, P. Glavin, D. P. Freissinet, C. Navarro-Gonzalez, R. Francois, P. Coscia, D. Bonnet, J. Y. Teinturier, S. Cabane, M. Mahaffy, P. R. TI In situ analysis of martian regolith with the SAM experiment during the first mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Mars Science Laboratory Mission; Sample Analysis at Mars; Gas chromatography mass spectrometry; Organic molecules; Laboratory calibration; Chlorinated hydrocarbons ID AMINO-ACIDS; RADIATION CONDITIONS; MASS-SPECTROMETRY; CARBOXYLIC-ACIDS; GALE CRATER; SURFACE; SEARCH; MATTER; LIFE; PERCHLORATE AB The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Millan, M.; Szopa, C.; Coscia, D.; Bonnet, J. Y.; Cabane, M.] Univ Paris 06, LATMOS IPSL, UVSQ Univ Paris Saclay, CNRS, 11 Blvd Alembert, F-78280 Guyancourt, France. [Szopa, C.] Inst Univ France, Paris, France. [Buch, A.] Cent Supelec, Lab Genie Proc & Mat, EA 4038, F-92295 Chatenay Malabry, France. [Coll, P.] Univ Paris Est, UMR CNRS 7583, Lab Interuniv Syst Atmospher, 61 Ave Gen Gaulle, F-94010 Creteil, France. [Coll, P.] Univ Paris Diderot, 61 Ave Gen Gaulle, F-94010 Creteil, France. [Freissinet, C.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Glavin, D. P.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Freissinet, C.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Teinturier, S.] Goddard Earth Sci Technol & Res GESTAR Univ Space, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Navarro-Gonzalez, R.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad Univ, Mexico City, DF, Mexico. [Francois, P.] Univ Poitiers, UMR CNRS 7285, Inst Chim Milieux & Mat Poitiers, Equipe Eau Geochim Sante, 4 Rue Michel Brunet,TSA 51106, F-86076 Poitiers 9, France. RP Millan, M (reprint author), Univ Paris 06, LATMOS IPSL, UVSQ Univ Paris Saclay, CNRS, 11 Blvd Alembert, F-78280 Guyancourt, France. EM maeva.millan@latmos.ipsl.fr RI Glavin, Daniel/D-6194-2012; Gonzalez, Rafael/D-1748-2009 OI Glavin, Daniel/0000-0001-7779-7765; FU French national space agency; Centre National d'Etudes Spatiales (CNES) (SAM-GC grant) FX The authors acknowledge the financial support of the French national space agency, the Centre National d'Etudes Spatiales (CNES) (SAM-GC grant). The work could not have been realized without the contribution of the SAM and MSL science, engineer and operational teams. NR 45 TC 0 Z9 0 U1 30 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP 15 PY 2016 VL 129 BP 88 EP 102 DI 10.1016/j.pss.2016.06.007 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2PV UT WOS:000381323800008 ER PT J AU Roatsch, T Kersten, E Matz, KD Preusker, F Scholten, F Jaumann, R Raymond, CA Russell, CT AF Roatsch, Th. Kersten, E. Matz, K. -D. Preusker, F. Scholten, F. Jaumann, R. Raymond, C. A. Russell, C. T. TI High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Dawn; Ceres; Dwarf planets; Planetary mapping ID IN-FLIGHT CALIBRATION; VESTA AB The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.d1r.deiatlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/). (C) 2016 Elsevier Ltd. All rights reserved. C1 [Roatsch, Th.; Kersten, E.; Matz, K. -D.; Preusker, F.; Scholten, F.; Jaumann, R.] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Raymond, C. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys, Los Angeles, CA USA. RP Roatsch, T (reprint author), German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. EM Thomas.Roatsch@dlr.de NR 10 TC 2 Z9 2 U1 7 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP 15 PY 2016 VL 129 BP 103 EP 107 DI 10.1016/j.pss.2016.05.011 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2PV UT WOS:000381323800009 ER PT J AU Romero-Wolf, A Schroeder, DM Ries, P Bills, BG Naudet, C Scott, BR Treuhaft, R Vance, S AF Romero-Wolf, Andrew Schroeder, Dustin M. Ries, Paul Bills, Bruce G. Naudet, Charles Scott, Bryan R. Treuhaft, Robert Vance, Steve TI Prospects of passive radio detection of a subsurface ocean on Europa with a lander SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Jupiter; Europa; Ices; Radar observations ID ICE SHELL; CONSTRAINTS; THICKNESS; STATE AB We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a Lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km). Published by Elsevier Ltd. C1 [Romero-Wolf, Andrew; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91101 USA. [Schroeder, Dustin M.] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA. RP Romero-Wolf, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91101 USA. EM Andrew.Romero-Wolf@jpl.nasa.gov FU California Institute of Technology FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. NR 16 TC 0 Z9 0 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP 15 PY 2016 VL 129 BP 118 EP 121 DI 10.1016/j.pss.2016.06.010 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DT2PV UT WOS:000381323800011 ER PT J AU Aponte, JC McLain, HL Dworkin, JP Elsila, JE AF Aponte, Jose C. McLain, Hannah L. Dworkin, Jason P. Elsila, Jamie E. TI Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Meteoritic amines; Aliphatic amines; Carbonaceous chondrites; Antarctic meteorites; Astrochemistry; Astrobiology ID COMPOUND-SPECIFIC CARBON; MURCHISON METEORITE; ENANTIOMERIC EXCESSES; MONOCARBOXYLIC ACIDS; PARENT BODY; EXTRATERRESTRIAL NUCLEOBASES; ISOTOPE FRACTIONATION; PREBIOTIC CHEMISTRY; AQUEOUS ALTERATION; ORGANIC-MATTER AB Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. We have investigated the molecular distribution, compound-specific delta C-13 isotopic ratios and enantiomeric compositions of aliphatic monoamines present in the hot acid-water extracts of the carbonaceous chondrites LAP 02342 (CR2), GRA 95229 (CR2), LON 94101 (CM2), LEW 90500 (CM2), and ALH 83100 (CM1/2). Analyses of the concentration of monoamines in these meteorites revealed: (a) the CR2 chondrites studied here contain higher concentrations of monoamines relative to the analyzed CM2 chondrites; (b) the concentration of monoamines decreases with increasing carbon number; and (c) isopropylamine is the most abundant monoamine in these CR2 chondrites, while methylamine is the most abundant amine species in these CM2 and CM1/2 chondrites. The delta C-13 values of monoamines in CR2 chondrite do not correlate with the number of carbon atoms; however, in CM2 and CM1/2 chondrites, the C-13 enrichment decreases with increasing monoamine carbon number. The delta C-13 values of methylamine in CR2 chondrites ranged from -1 to +10 parts per thousand, while in CM2 and CM1/2 chondrites the delta C-13 values of methylamine ranged from +41 to +59 parts per thousand. We also observed racemic compositions of sec-butylamine, 3-methyl-2-butylamine, and sec-pentylamine in the studied carbonaceous chondrites. Additionally, we compared the abundance and delta C-13 isotopic composition of monoamines to those of their structurally related amino acids. We found that monoamines are less abundant than amino acids in CR2 chondrites, with the opposite being true in CM2 and CM1/2 chondrites. We used these collective data to evaluate different primordial synthetic pathways for monoamines in carbonaceous chondrites and to understand the potential common origins these molecules may share with meteoritic amino acids. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Aponte, Jose C.; McLain, Hannah L.; Dworkin, Jason P.; Elsila, Jamie E.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Code 691, Greenbelt, MD 20771 USA. [Aponte, Jose C.; McLain, Hannah L.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. RP Aponte, JC (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Code 691, Greenbelt, MD 20771 USA.; Aponte, JC (reprint author), Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. EM jose.c.aponte@nasa.gov RI Dworkin, Jason/C-9417-2012 OI Dworkin, Jason/0000-0002-3961-8997 NR 76 TC 0 Z9 0 U1 9 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2016 VL 189 BP 296 EP 311 DI 10.1016/j.gca.2016.06.018 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DS4LR UT WOS:000380753100018 ER PT J AU Mazaheri, A Ricchiuto, M Nishikawa, H AF Mazaheri, Alireza Ricchiuto, Mario Nishikawa, Hiroaki TI A first-order hyperbolic system approach for dispersion SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE High order; Hyperbolic; Korteweg-de Vries (KdV); Solitary waves; Dispersive shocks ID DISCONTINUOUS GALERKIN METHOD; DE-VRIES EQUATION; SHOCK-WAVES; SOLITARY WAVES; DIFFUSION; KORTEWEG; ADVECTION; SCHEMES; GRIDS C1 [Mazaheri, Alireza] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Ricchiuto, Mario] INRIA Bordeaux Sud Ouest, F-33405 Talence, France. [Ricchiuto, Mario] Inst Math Bordeaux, F-33405 Talence, France. [Nishikawa, Hiroaki] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Mazaheri, A (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM alireza.mazaheri@nasa.gov OI Nishikawa, Hiroaki/0000-0003-4472-5313; Mazaheri, Alireza/0000-0003-1128-6705 FU U.S. Army Research Office [W911NF-12-1-0154]; Center Chief Technology Office of NASA Langley Research Center through the Center Innovation Fund (CIF) FX The first and last authors would like to thank the Center Chief Technology Office of NASA Langley Research Center for support through the Center Innovation Fund (CIF). The last author was also partially supported by the U.S. Army Research Office under the Contract/Grant number W911NF-12-1-0154. The authors are also thankful of the constructive comments received by the anonymous reviewers. NR 29 TC 1 Z9 1 U1 4 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 15 PY 2016 VL 321 BP 593 EP 605 DI 10.1016/j.jcp.2016.06.001 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DS4KR UT WOS:000380750500028 ER PT J AU Mazaheri, A Nishikawa, H AF Mazaheri, Alireza Nishikawa, Hiroaki TI Efficient high-order discontinuous Galerkin schemes with first-order hyperbolic advection-diffusion system approach SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE High-order; Discontinuous Galerkin (DG); DG with hyperbolic first-order system (DG-H); Advection-diffusion; WENO; Interior Penalty (IP) ID FINITE-VOLUME SCHEMES; RESIDUAL-DISTRIBUTION SCHEMES; NAVIER-STOKES EQUATIONS; ELLIPTIC PROBLEMS; CONSERVATION-LAWS; INTERIOR PENALTY; UNSTRUCTURED MESHES; ELEMENT-METHOD; TRIANGULAR MESHES; WENO LIMITERS AB We propose arbitrary high-order discontinuous Galerkin (DG) schemes that are designed based on a first-order hyperbolic advection-diffusion formulation of the target governing equations. We present, in details, the efficient construction of the proposed high-order schemes (called DG-H), and show that these schemes have the same number of global degrees-of-freedom as comparable conventional high-order DG schemes, produce the same or higher order of accuracy solutions and solution gradients, are exact for exact polynomial functions, and do not need a second-derivative diffusion operator. We demonstrate that the constructed high-order schemes give excellent quality solution and solution gradients on irregular triangular elements. We also construct a Weighted Essentially Non-Oscillatory (WENO) limiter for the proposed DG-H schemes and apply it to discontinuous problems. We also make some accuracy comparisons with conventional DG and interior penalty schemes. A relative qualitative cost analysis is also reported, which indicates that the high-order schemes produce orders of magnitude more accurate results than the low-order schemes for a given CPU time. Furthermore, we show that the proposed DG-H schemes are nearly as efficient as the DG and Interior-Penalty (IP) schemes as these schemes produce results that are relatively at the same error level for approximately a similar CPU time. Published by Elsevier Inc. C1 [Mazaheri, Alireza] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Nishikawa, Hiroaki] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Mazaheri, A (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM alireza.mazaheri@nasa.gov; hiro@nianet.org OI Nishikawa, Hiroaki/0000-0003-4472-5313; Mazaheri, Alireza/0000-0003-1128-6705 FU Center Chief Technology Office of NASA Langley Research Center through the Center Innovation Fund (CIF) project FX This work is supported internally by the Center Chief Technology Office of NASA Langley Research Center through the Center Innovation Fund (CIF) project. The first author would like to thank Prof. Chi-Wang Shu (Brown University) for helpful discussions, and Dr. Xinghui Zhong (University of Utah) for providing the exact solution to the Buckley-Leverett test problem. We are also grateful to the anonymous reviewers for their constructive comments and help in improving the quality of this manuscript. NR 75 TC 0 Z9 0 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 15 PY 2016 VL 321 BP 729 EP 754 DI 10.1016/j.jcp.2016.06.006 PG 26 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DS4KR UT WOS:000380750500034 ER PT J AU Scheeres, DJ Hesar, SG Tardivel, S Hirabayashi, M Farnocchia, D McMahon, JW Chesley, SR Barnouin, O Binzel, RP Bottke, WF Daly, MG Emery, JP Hergenrother, CW Lauretta, DS Marshall, JR Michel, P Nolan, MC Walsh, KJ AF Scheeres, D. J. Hesar, S. G. Tardivel, S. Hirabayashi, M. Farnocchia, D. McMahon, J. W. Chesley, S. R. Barnouin, O. Binzel, R. P. Bottke, W. F. Daly, M. G. Emery, J. P. Hergenrother, C. W. Lauretta, D. S. Marshall, J. R. Michel, P. Nolan, M. C. Walsh, K. J. TI The geophysical environment of Bennu SO ICARUS LA English DT Article DE Asteroid Bennu; Geophysics ID ASTEROID 101955 BENNU; RUBBLE-PILE ASTEROIDS; SURFACE GRAVITY FIELDS; 25143 ITOKAWA; ROTATIONAL BREAKUP; INTERNAL STRUCTURE; BINARY ASTEROIDS; SOLAR-SYSTEM; SMALL BODIES; MAIN BELT AB An analysis of the surface and interior state of Asteroid (101955) Bennu, the target asteroid of the OSIRIS-REx sample return mission, is given using models based on Earth-based observations of this body. These observations have enabled models of its shape, spin state, mass and surface properties to be developed. Based on these data the range of surface and interior states possible for this body are evaluated, assuming a uniform mass distribution. These products include the geopotential, surface slopes, near-surface dynamical environment, interior stress states and other quantities of interest. In addition, competing theories for its current shape are reviewed along with the relevant planned OSIRIS-REx measurements. (C) 2016 Elsevier Inc. All rights reserved. C1 [Scheeres, D. J.; Hesar, S. G.; McMahon, J. W.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Tardivel, S.; Farnocchia, D.; Chesley, S. R.] Purdue Univ, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA. [Hirabayashi, M.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Barnouin, O.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Binzel, R. P.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bottke, W. F.; Walsh, K. J.] SW Res Inst, Boulder, CO 80302 USA. [Daly, M. G.] York Univ, 4700 Keele St, Toronto, ON M3J 1P3, Canada. [Emery, J. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Hergenrother, C. W.; Lauretta, D. S.; Nolan, M. C.] Univ Arizona, Tucson, AZ 85721 USA. [Marshall, J. R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Michel, P.] Observ Cote Azur, Blvd Observ, F-06300 Nice, France. RP Scheeres, DJ (reprint author), Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. EM scheeres@colorado.edu RI Barnouin, Olivier/I-7475-2015 OI Barnouin, Olivier/0000-0002-3578-7750 FU NASA [NNM10AA11C]; Canadian Space Agency; French space agency CNES FX The research and writing of this paper was supported by NASA contract NNM10AA11C (D.S. Lauretta, PI) and related subcontracts from the University of Arizona. D. Farnocchia and S.R. Chesley conducted this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. S. Tardivel acknowledges support by an appointment to the NASA Postdoctoral Program (NPP) at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. P. Michel acknowledges support by the French space agency CNES. M.G. Daly acknowledges support from the Canadian Space Agency. NR 86 TC 0 Z9 0 U1 7 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD SEP 15 PY 2016 VL 276 BP 116 EP 140 DI 10.1016/j.icarus.2016.04.013 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO8GJ UT WOS:000378020900009 ER PT J AU Sromovsky, LA Baines, KH Fry, PM Momary, TW AF Sromovsky, L. A. Baines, K. H. Fry, P. M. Momary, T. W. TI Cloud clearing in the wake of Saturn's Great Storm of 2010-2011 and suggested new constraints on Saturn's He/H-2 ratio SO ICARUS LA English DT Article DE Saturn; Saturn, Atmosphere; Atmospheres, Composition; Atmospheres, Dynamics ID INFRARED-ABSORPTION SPECTRA; MU-M; HELIUM ABUNDANCE; MAPPING SPECTROMETER; VOYAGER MEASUREMENTS; 2.2-CM WAVELENGTH; THERMAL EMISSION; CASSINI VIMS; ATMOSPHERE; JUPITER AB Saturn's Great Storm of 2010-2011 produced a planet-encircling wake that slowly transitioned from a region that was mainly dark at 5 mu m in February 2011 to a region that was almost entirely bright and remarkably uniform by December of 2012. The uniformity and high emission levels suggested that the entire wake region had been cleared not only of the ammonia clouds that the storm had generated and exposed, but also of any other aerosols that might provide significant blocking of the thermal emission from Saturn's deeper and warmer atmospheric layers. Our analysis of VIMS wake spectra from December 2012 provides no evidence of ammonia ice absorption, but shows that at least one significant cloud layer remained behind: a non-absorbing layer of 3-4 optical depths (at 2 mu m) extending from 150 to similar to 400 mbar. A second layer of absorbing and scattering particles, with less than 1 optical depth and located near 1 bar, is also suggested, but its existence as a model requirement depends on what value of the H-e/H-2 ratio is assumed. The observations can be fit well with just a single (upper) cloud layer for a H-e/H-2 ratio approximate to 0.064 in combination with a PH3 deep volume mixing ratio of 5 ppm. At lower H-e/H-2 ratios, the observed spectra can be modeled without particles in this region. At higher ratios, in order to fit the brightest wake spectrum, models must include either significant cloud opacity in this region, or significantly increased absorption by PH3, NH3, and AsH3. As the exceptional horizontal uniformity in the late wake is most easily understood as a complete removal of a deep cloud layer, and after considering independent constraints on trace gas mixing ratios, we conclude that the existence of this remarkable wake uniformity is most consistent with a H-e/H-2 mixing ratio of 0.055(-0.015)(+0.010), which is on the low side of the 0.038-0.135 range of previous estimates. (C) 2016 Elsevier Inc. All rights reserved. C1 [Sromovsky, L. A.; Baines, K. H.; Fry, P. M.] Univ Wisconsin, Ctr Space Sci & Engn, 1225 W Dayton St, Madison, WI 53706 USA. [Momary, T. W.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Sromovsky, LA (reprint author), Univ Wisconsin, Ctr Space Sci & Engn, 1225 W Dayton St, Madison, WI 53706 USA. EM larry.sromovsky@ssec.wisc.edu FU NASA through its Cassini Data Analysis and Participating Scientists (CDAPS) Program [NNX15AL10G] FX Support for this work was provided by NASA through its Cassini Data Analysis and Participating Scientists (CDAPS) Program under Grant NNX15AL10G. We thank Don Banfield and an anonymous reviewer for their attention to detail and for providing many useful suggestions that improved the manuscript. NR 52 TC 0 Z9 0 U1 8 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD SEP 15 PY 2016 VL 276 BP 141 EP 162 DI 10.1016/j.icarus.2016.04.031 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DO8GJ UT WOS:000378020900010 ER PT J AU Phipps, ML Lillo, AM Shou, YL Schmidt, EN Paavola, CD Naranjo, L Bemdich, S Swanson, BI Bradbury, ARM Martinez, JS AF Phipps, M. Lisa Lillo, Antoinetta M. Shou, Yulin Schmidt, Emily N. Paavola, Chad D. Naranjo, Leslie Bemdich, Sara Swanson, Basil I. Bradbury, Andrew R. M. Martinez, Jennifer S. TI Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands SO PLOS ONE LA English DT Article ID YEAST SURFACE DISPLAY; GENERAL STRATEGY; CAPSULAR ANTIGEN; LIBRARIES; ANTIBODY; PROTEINS; VECTORS; DOMAINS; SITES AB Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naive libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1) ensure efficient display; 2) maximize the ability to select high affinity ligands; and 3) minimize the effect of the display context on binding. The "helper cell" packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report on the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands. C1 [Phipps, M. Lisa; Martinez, Jennifer S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Lillo, Antoinetta M.; Shou, Yulin; Schmidt, Emily N.; Naranjo, Leslie; Bemdich, Sara; Swanson, Basil I.; Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Paavola, Chad D.] NASA, Space Biosci Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Martinez, Jennifer S.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. RP Martinez, JS (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.; Martinez, JS (reprint author), Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. EM jenm@lanl.gov OI Bradbury, Andrew/0000-0002-5567-8172 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.; This work was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 25 TC 0 Z9 0 U1 3 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 14 PY 2016 VL 11 IS 9 AR e0160940 DI 10.1371/journal.pone.0160940 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DW5JO UT WOS:000383680600002 PM 27626637 ER PT J AU Kim, CK Kim, E Lee, MK Park, JY Seol, ML Bae, H Bang, T Jeon, SB Jun, S Park, SHK Choi, KC Choi, YK AF Kim, Choong-Ki Kim, Eungtaek Lee, Myung Keun Park, Jun-Young Seol, Myeong-Lok Bae, Hagyoul Bang, Tewook Jeon, Seung-Bae Jun, Sungwoo Park, Sang-hee K. Choi, Kyung Cheol Choi, Yang-Kyu TI Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs) SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE electrothermal annealing (ETA); Joule heat; amorphous-oxide-semiconductor (AOS); In-Ga-Zn-O (IGZO); thin-film transistor (TFT) ID DENSITY-OF-STATES; STABILITY; EXTRACTION AB An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (g(m)), 158% for the linear current (I-linear) and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized. C1 [Kim, Choong-Ki; Kim, Eungtaek; Lee, Myung Keun; Park, Jun-Young; Bae, Hagyoul; Bang, Tewook; Jeon, Seung-Bae; Choi, Kyung Cheol; Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea. [Seol, Myeong-Lok] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Jun, Sungwoo] Korea Univ, Coll Engn, Seoul 136713, South Korea. [Park, Sang-hee K.] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea. RP Choi, YK (reprint author), Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea. EM ykchoi@ee.kaist.ac.kr RI CHOI, Kyung Cheol/C-1641-2011; Ko Park, Sang-Hee/E-7988-2014; OI Seol, Myeong-Lok/0000-0001-5724-2244 FU Open Innovation Lab Project from National Nanofab Center (NNFC); IT R&D program of MSIP/IITP [R-20150224-000291]; IDEC (EDA Tool, MPW) FX This research was supported by the Open Innovation Lab Project from National Nanofab Center (NNFC) and the IT R&D program of MSIP/IITP. [R-20150224-000291, Development on Semiconductor based Smart Antenna for future mobile communications]. This work was also supported by the IDEC (EDA Tool, MPW). NR 38 TC 1 Z9 1 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD SEP 14 PY 2016 VL 8 IS 36 BP 23820 EP 23826 DI 10.1021/acsami.6b06377 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DW1OH UT WOS:000383412000042 PM 27552134 ER PT J AU Pineda, EJ Bednarcyk, BA Arnold, SM AF Pineda, Evan J. Bednarcyk, Brett A. Arnold, Steven M. TI Validated progressive damage analysis of simple polymer matrix composite laminates exhibiting matrix microdamage: Comparing macromechanics and micromechanics SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Multiscale modeling; Damage mechanics; Matrix cracking; Polymer matrix composites (PMCs); Non-linear behavior ID FIBER-REINFORCED COMPOSITES; FAILURE AB The generalized method of cells micromechanics theory, employing the multi-axial mixed-mode continuum damage mechanics model for the matrix of the composite, is used to predict the evolution of matrix microdamage in un-notched (simple), unidirectional and laminated polymer matrix composites. Matrix microdamage is considered to be the evolution of subscale phenomena (including micro-crack, micro-fissure, micro-void, and shear band growth) that are responsible for all non-linearity in the composite up to the onset of more severe damage mechanisms, such transverse cracking, fiber breakage or delamination. Micromechanics is used to explicitly resolve the constituents of the composite at the microscale (fiber-matrix scale). The micromechanics model is validated against experimental data for numerous different laminate stacking sequences and a previously validated macroscale (e.g, lamina scale), thermodynamically-based, work potential theory (Schapery theory). The inputs used in the continuum damage model, which was incorporated in the micromechanics theory, were calibrated against the same three experimental stress-strain curves utilized to calculate the inputs for the macroscale model. The agreeable predictions, obtained with the micromechanics model, establishes that both the macro- and micro-models are suitable for progressive damage analysis of laminated composites, considering only matrix microdamage. Moreover, the validated micromechanics theory is utilized to study the effect of fiber volume fraction on the matrix microdamage evolution in the various lay-ups. This demonstrates a key capability of the micromechanics approach that is lacking in the macro mechanics method due to the macroscale assumption that the laminae are monolithic, anisotropic materials. Published by Elsevier Ltd. C1 [Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.] NASA, Glenn Res Ctr, 21000 Brookpk Rd,MS 49-7, Cleveland, OH 44135 USA. RP Pineda, EJ (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd,MS 49-7, Cleveland, OH 44135 USA. EM evan.j.pineda@nasa.gov FU NASA FX This work was funded by NASA's Advanced Composites Project and Transformational Tools and Technologies Project. NR 29 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 EI 1879-1050 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD SEP 14 PY 2016 VL 133 BP 184 EP 191 DI 10.1016/j.compscitech.2016.07.018 PG 8 WC Materials Science, Composites SC Materials Science GA DV5YF UT WOS:000383005900021 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Bejger, M Bell, AS Berger, BK Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Boer, M Bogaert, G Bogan, C Bohe, A Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Broida, JE Brooks, AF Brown, DA Brown, DD Brown, NM Brunett, S Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cabero, M Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Cheeseboro, BD Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dasgupta, A Costa, CFDS Dattilo, V Dave, I Davier, M Davies, GS Daw, EJ Day, R De, S Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Devine, RC Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Girolamo, T Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Fenyvesi, E Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gaur, G Gehrels, N Gemme, G Geng, P Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Grado, A Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Henry, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hofman, D Holt, K Holz, DE Hopkins, P Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Huttner, SH Huynh-Dinh, T Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jian, L Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kapadia, SJ Karki, S Karvinen, KS Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalili, FY Khan, I Khan, Z Khazanov, EA Kijbunchoo, N Kim, CW Kim, CL Kim, J Kim, K Kim, N Kim, W Kim, YM Kimbrell, SJ King, EJ King, PJ Kissel, JS Klein, B Kleybolte, L Klimenko, S Koehlenbeck, SM Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krolak, A Krueger, C Kuehn, G Kumar, P Kumar, R Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Laxen, M Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Lewis, JB Li, TGF Libson, A Littenberg, TB Lockerbie, NA Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Lynch, R Ma, Y Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Zertuche, LM Magee, RM Majorana, E Maksimovic, I Malvezzi, V Man, N Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McRae, T McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mercer, RA Merilh, EL Merzougui, M Meshkov, S Messenger, C Messick, C Metzdorff, R Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, AL Miller, A Miller, BB Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Nedkova, K Nelemans, G Nelson, TJN Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Perri, LM Phelps, M Piccinni, OJ Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poe, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Qiu, S Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rajan, C Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Rizzo, M Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Sakellariadou, M Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Saulson, PR Sauter, OES Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Setyawati, Y Shaddock, DA Shaffer, T Shahriar, MS Shaltev, M Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Siellez, K Siemens, X Sieniawska, M Sigg, D Silva, AD Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sunil, S Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Toland, K Tomlinson, C Tonelli, M Tornasi, Z Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, DV Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Woehler, J Worden, J Wright, JL Wu, DS Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J Boyle, M Campanelli, M Chu, T Clark, M Fauchon-Jones, E Fong, H Healy, J Hemberger, D Hinder, I Husa, S Kalaghati, C Khan, S Kidder, LE Kinsey, M Laguna, P London, LT Lousto, CO Lovelace, G Ossokine, S Pannarale, F Pfeiffer, HP Scheel, M Shoemaker, DM Szilagyi, B Teukolsky, S Vinuales, AV Zlochower, Y AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Bejger, M. Bell, A. S. Berger, B. K. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Broida, J. E. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Brunett, S. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cabero, M. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Cheeseboro, B. D. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dasgupta, A. Costa, C. F. Da Silva Dattilo, V. Dave, I. Davier, M. Davies, G. S. Daw, E. J. Day, R. De, S. DeBra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Devine, R. C. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Girolamo, T. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Fenyvesi, E. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gaur, G. Gehrels, N. Gemme, G. Geng, P. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Abhirup Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Grado, A. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Henry, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hofman, D. Holt, K. Holz, D. E. Hopkins, P. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Huttner, S. H. Huynh-Dinh, T. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jian, L. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kapadia, S. J. Karki, S. Karvinen, K. S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalili, F. Y. Khan, I. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, Chi-Woong Kim, Chunglee Kim, J. Kim, K. Kim, N. Kim, W. Kim, Y. -M. Kimbrell, S. J. King, E. J. King, P. J. Kissel, J. S. Klein, B. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kumar, R. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Laxen, M. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Lewis, J. B. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Lynch, R. Ma, Y. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Zertuche, L. Magana Magee, R. M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McRae, T. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mercer, R. A. Merilh, E. L. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Metzdorff, R. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. L. Miller, A. Miller, B. B. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Nedkova, K. Nelemans, G. Nelson, T. J. N. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Perri, L. M. Phelps, M. Piccinni, O. J. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poe, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Qiu, S. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rajan, C. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Rizzo, M. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Sakellariadou, M. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Saulson, P. R. Sauter, O. E. S. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Setyawati, Y. Shaddock, D. A. Shaffer, T. Shahriar, M. S. Shaltev, M. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Siellez, K. Siemens, X. Sieniawska, M. Sigg, D. Silva, A. D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sunil, S. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Toland, K. Tomlinson, C. Tonelli, M. Tornasi, Z. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. V. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Woehler, J. Worden, J. Wright, J. L. Wu, D. S. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. Boyle, M. Campanelli, M. Chu, T. Clark, M. Fauchon-Jones, E. Fong, H. Healy, J. Hemberger, D. Hinder, I. Husa, S. Kalaghati, C. Khan, S. Kidder, L. E. Kinsey, M. Laguna, P. London, L. T. Lousto, C. O. Lovelace, G. Ossokine, S. Pannarale, F. Pfeiffer, H. P. Scheel, M. Shoemaker, D. M. Szilagyi, B. Teukolsky, S. Vinuales, A. Vano Zlochower, Y. CA LIGO Sci Collaboration Virgo Colla TI Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-WAVES; INITIAL DATA; RELATIVITY; EVOLUTION; MERGER; FORMS; LIGO/VIRGO; STARS AB We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations-including sources with two independent, precessing spins - we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass M-z epsilon [64 M-circle dot - 82 M-circle dot], mass ratio 1/q = m(2)/m(1) epsilon [0.6; 1], and effective aligned spin chi(eff) epsilon [-0.3, 0.2] where chi(eff) = (S-1/m(1)+S-2/m(2)). (L) over cap /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and chi(eff) are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a(1,2) up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with M-f,M-z in the range 64.0 M-circle dot - 73.5 M-circle dot and the final black hole's dimensionless spin parameter is consistent with a(f) = 0.62-0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to Abbott et al. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Maros, E.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sanchez, E. J.; Schale, P.; Schmidt, P.; Singer, A.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Abernathy, M. R.; Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Di Girolamo, T.; Garufi, F.; Grado, A.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Costa, C. F. Da Silva; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Klimenko, S.; Miller, A. L.; Mitselmakher, G.; Mueller, G.; Mytidis, A.; Reitze, D. H.; Tanner, D. B.; Voss, D. V.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Laxen, M.; Lormand, M.; McCormick, S.; Mullavey, A.; Nelson, T. J. N.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Cabero, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Grote, H.; Hanke, M. M.; Heurs, M.; Hu, Y. M.; Indik, N.; Kapadia, S. J.; Karvinen, K. S.; Koehlenbeck, S. M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Meadors, G. D.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prijatelj, M.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.; Woehler, J.; Wu, D. S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Martynov, D. V.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zucker, M. E.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, 12227-010 Sao Jose Campos, Sao Paulo, Brazil. [Aiello, L.; Coccia, E.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Inter Univ, Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Abhirup; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Poe, M.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Bisht, A.; Danzmann, K.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Singh, A.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; McRae, T.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Read, J.; Smith, J. R.; Lovelace, G.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Robinet, F.] Univ Paris 11, LAL, Univ Paris Saclay, CNRS,IN2P3, F-91405 Orsay, France. [Arun, K. G.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Pace, S.; Di Palma, I.; Frasca, S.; Leaci, P.; Majorana, E.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Palomba, C.; Piccinni, O. J.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.; Hinder, I.; Ossokine, S.; Pfeiffer, H. P.] Max Planck Inst Gravitat phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, APC, Observ Paris, CNRS,IN2P3,CEA,Irfu, Sorbonne Paris Cite, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Hoak, D.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; De, S.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Zertuche, L. Magana; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Toland, K.; Tornasi, Z.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Goetz, E.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; McCarthy, R.; Mendell, G.; Merilh, E. L.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] Wigner RCP, RMKI, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.; Sieniawska, M.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.; Rajan, C.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Jian, L.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote Azur, Artemis, CNRS, Observ Cote Azur, CS 34229, Nice 4, France. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.; Wang, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.; Metzdorff, R.] UPMC, Coll France, ENS PSL Res Univ, Lab Kastler Brossel,Sorbonne Univ,CNRS, F-75005 Paris, France. [Broida, J. E.; Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Jani, K.; Kimbrell, S. J.; Siellez, K.; Clark, M.; Kinsey, M.; Laguna, P.; Shoemaker, D. M.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Siellez, K.; Clark, M.; Kinsey, M.; Laguna, P.; Shoemaker, D. M.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] IN2P3, CNRS, LMA, F-69622 Villeurbanne, France. [Cagnoli, G.] Univ Lyon 1, F-69622 Villeurbanne, France. [Calloni, E.; De laurentis, M.; De Rosa, R.; Di Girolamo, T.; Garufi, F.; Milano, L.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.] Univ Tokyo, RESCEU, Tokyo 1130033, Japan. [Cao, J.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Penn State Univ, University Pk, PA 16802 USA. [Charlton, P.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Cheeseboro, B. D.; Devine, R. C.; McWilliams, S. T.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] West Virginia Univ, Morgantown, WV 26506 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.; Hemberger, D.; Scheel, M.; Szilagyi, B.] Univ Chicago, Chicago, IL 60637 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, Chi-Woong; Kim, Chunglee] CALTECH, CaRT, Pasadena, CA 91125 USA. [Colla, A.; Conte, A.; Di Pace, S.; Di Palma, I.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Piccinni, O. J.; Rapagnani, P.; Ricci, F.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Collette, C. G.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Cominsky, L.] Univ Brussels, B-1050 Brussels, Belgium. [Coughlin, S. B.; Kalogera, V.; Klein, B.; Miller, A.; Miller, B. B.; Pankow, C.; Perri, L. M.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Northwestern Univ, CIERA, Evanston, IL 60208 USA. [Darman, N. S.; Melatos, A.; Sun, L.] Univ Minnesota, Minneapolis, MN 55455 USA. [Dasgupta, A.; Gaur, G.; Gupta, M. K.; Khan, Z.; Kumar, R.; Srivastava, A. K.; Sunil, S.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Diaz, M. C.; Geng, P.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tiwari, S.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Everett, R.; Hanna, C.; Meacher, D.; Messick, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Fays, M.; Hopkins, P.; Kalaghatgi, C. V.; Muir, A. W.; Ohme, F.; Predoi, V.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.; Fauchon-Jones, E.; Kalaghati, C.; Khan, S.; London, L. T.; Pannarale, F.; Vinuales, A. Vano] Montclair State Coll, Montclair, NJ 07043 USA. [Favata, M.; Moore, B. C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Fenyvesi, E.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ Lendulet, Astrophys Res Grp, H-1117 Budapest, Hungary. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Gandhinagar Ahmedabad 382424, Gujarat, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Grado, A.] INAF, Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Gustafson, R.; Neunzert, A.; Riles, K.; Sauter, O. E. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Henry, J.; Lange, J.; O'Shaughnessy, R.; Rizzo, M.; Whelan, J. T.; Zhang, Y.; Campanelli, M.; Healy, J.; Lousto, C. O.; Zlochower, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Huerta, E. A.] Univ Illinois, NCSA, Urbana, IL 61801 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.; Husa, S.] Univ Illes Balears, IEEC IAC3, E-07122 Palma de Mallorca, Spain. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Kehl, M. S.; Kumar, P.; Chu, T.; Fong, H.; Pfeiffer, H. P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Kim, W.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Qiu, S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Li, T. G. F.] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Loriette, V.; Maksimovic, I.] ESPCI, CNRS, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Pedurand, R.] Univ Lyon, F-69361 Lyon, France. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Sakellariadou, M.] Univ London, Kings Coll London, London WC2R 2LS, England. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Boyle, M.; Kidder, L. E.; Teukolsky, S.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Ciani, Giacomo/G-1036-2011; Sigg, Daniel/I-4308-2015; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Garufi, Fabio/K-3263-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Marchesoni, Fabio/A-1920-2008; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; prodi, giovanni/B-4398-2010; Leonardi, Matteo/G-9694-2015; Ferrante, Isidoro/F-1017-2012; Cesarini, Elisabetta/C-4507-2017; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Gemme, Gianluca/C-7233-2008; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Costa, Cesar/G-7588-2012; Rocchi, Alessio/O-9499-2015; Losurdo, Giovanni/K-1241-2014; Strigin, Sergey/I-8337-2012; Iyer, Bala R./E-2894-2012; Sorrentino, Fiodor/M-6662-2016; Travasso, Flavio/J-9595-2016; Tiwari, Shubhanshu/R-8546-2016; Strain, Kenneth/D-5236-2011 OI Berry, Christopher/0000-0003-3870-7215; Piccinni, Ornella Juliana/0000-0001-5478-3950; Nelemans, Gijs/0000-0002-0752-2974; Murphy, David/0000-0002-8538-815X; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Gammaitoni, Luca/0000-0002-4972-7062; Ciani, Giacomo/0000-0003-4258-9338; Sigg, Daniel/0000-0003-4606-6526; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi, Fabio/0000-0003-1391-6168; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Granata, Massimo/0000-0003-3275-1186; Marchesoni, Fabio/0000-0001-9240-6793; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; prodi, giovanni/0000-0001-5256-915X; Ferrante, Isidoro/0000-0002-0083-7228; Cesarini, Elisabetta/0000-0001-9127-3167; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Gemme, Gianluca/0000-0002-1127-7406; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Rocchi, Alessio/0000-0002-1382-9016; Losurdo, Giovanni/0000-0003-0452-746X; Iyer, Bala R./0000-0002-4141-5179; Sorrentino, Fiodor/0000-0002-9605-9829; Travasso, Flavio/0000-0002-4653-6156; Tiwari, Shubhanshu/0000-0003-1611-6625; Strain, Kenneth/0000-0002-2066-5355 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Australian Research Council; Netherlands Organisation for Scientific Research; EGO consortium; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio; Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Brazilian Ministry of Science, Technology, and Innovation; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; NSF; STFC; MPS; INFN; CNRS; National Science Foundation; Research Corporation for Science Advancement; Sherman Fairchild Foundation; Blue Waters; Industry Canada FX The authors gratefully acknowledge helpful feedback from an anonymous referee. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Brazilian Ministry of Science, Technology, and Innovation, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. The SXS Collaboration also gratefully acknowledges Compute Canada, the Research Corporation, and California State University Fullerton for computational resources, as well as the support of the National Science Foundation, the Research Corporation for Science Advancement, and the Sherman Fairchild Foundation. The RIT team gratefully acknowledges the NSF for financial support, as well as Blue Waters and XSEDE for computational resources. This paper has been assigned the document number LIGO-P1500263. NR 141 TC 6 Z9 6 U1 49 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 14 PY 2016 VL 94 IS 6 AR 064035 DI 10.1103/PhysRevD.94.064035 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DV7YK UT WOS:000383154300002 ER PT J AU Xu, XY Riley, WJ Koven, CD Billesbach, DP Chang, RYW Commane, R Euskirchen, ES Hartery, S Harazono, Y Iwata, H McDonald, KC Miller, CE Oechel, WC Poulter, B Raz-Yaseef, N Sweeney, C Torn, M Wofsy, SC Zhang, Z Zona, D AF Xu, Xiyan Riley, William J. Koven, Charles D. Billesbach, Dave P. Chang, Rachel Y. -W. Commane, Roisin Euskirchen, Eugenie S. Hartery, Sean Harazono, Yoshinobu Iwata, Hiroki McDonald, Kyle C. Miller, Charles E. Oechel, Walter C. Poulter, Benjamin Raz-Yaseef, Naama Sweeney, Colm Torn, Margaret Wofsy, Steven C. Zhang, Zhen Zona, Donatella TI A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands SO BIOGEOSCIENCES LA English DT Article ID EDDY COVARIANCE TECHNIQUE; ARCTIC TUNDRA; ATMOSPHERIC METHANE; BIOGEOCHEMISTRY MODEL; TUSSOCK TUNDRA; HIGH-LATITUDES; ROOT-GROWTH; TEMPERATURE; FLUXES; ALASKA AB Wetlands are the largest global natural methane (CH4) source, and emissions between 50 and 70 degrees N latitude contribute 10-30% to this source. Predictive capability of land models for northern wetland CH4 emissions is still low due to limited site measurements, strong spatial and temporal variability in emissions, and complex hydrological and biogeochemical dynamics. To explore this issue, we compare wetland CH4 emission predictions from the Community Land Model 4.5 (CLM4.5-BGC) with siteto regional-scale observations. A comparison of the CH4 fluxes with eddy flux data highlighted needed changes to the model's estimate of aerenchyma area, which we implemented and tested. The model modification substantially reduced biases in CH4 emissions when compared with CarbonTracker CH4 predictions. CLM4.5 CH4 emission predictions agree well with growing season (May-September) CarbonTracker Alaskan regional-level CH4 predictions and sitelevel observations. However, CLM4.5 underestimated CH4 emissions in the cold season (October-April). The monthly atmospheric CH4 mole fraction enhancements due to wetland emissions are also assessed using the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model coupled with daily emissions from CLM4.5 and compared with aircraft CH4 mole fraction measurements from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) campaign. Both the tower and aircraft analyses confirm the underestimate of cold-season CH4 emissions by CLM4.5. The greatest uncertainties in predicting the seasonal CH4 cycle are from the wetland extent, cold-season CH4 production and CH4 transport processes. We recommend more cold-season experimental studies in high-latitude systems, which could improve the understanding and parameterization of ecosystem structure and function during this period. Predicted CH4 emissions remain uncertain, but we show here that benchmarking against observations across spatial scales can inform model structural and parameter improvements. C1 [Xu, Xiyan; Riley, William J.; Koven, Charles D.; Raz-Yaseef, Naama; Torn, Margaret] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Billesbach, Dave P.] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE USA. [Chang, Rachel Y. -W.; Commane, Roisin; Wofsy, Steven C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Chang, Rachel Y. -W.; Hartery, Sean] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. [Euskirchen, Eugenie S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA. [Harazono, Yoshinobu; Iwata, Hiroki] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA. [Harazono, Yoshinobu] Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Sakai, Osaka, Japan. [Iwata, Hiroki] Shinshu Univ, Dept Environm Sci, Fac Sci, Matsumoto, Nagano, Japan. [McDonald, Kyle C.] CUNY Environm Crossrd Initiat, Dept Earth & Atmospher Sci, New York, NY USA. [McDonald, Kyle C.] CUNY, City Coll New York, NOAA CREST Inst, New York, NY USA. [McDonald, Kyle C.; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Oechel, Walter C.; Zona, Donatella] San Diego State Univ, Dept Biol, Global Change Res Grp, San Diego, CA 92182 USA. [Oechel, Walter C.] Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England. [Poulter, Benjamin; Zhang, Zhen] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Sweeney, Colm] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80304 USA. [Sweeney, Colm] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA. [Torn, Margaret] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Zhang, Zhen] Swiss Fed Res Inst WSL, CH-8059 Birmensdorf, Switzerland. [Zona, Donatella] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. RP Xu, XY (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM xxu@lbl.gov RI Xu, Xiyan/D-2854-2015; Riley, William/D-3345-2015; Raz Yaseef, Naama/D-3385-2015; Koven, Charles/N-8888-2014; Torn, Margaret/D-2305-2015; Zona, Donatella/G-4039-2010; Iwata, Hiroki/B-7679-2008 OI Xu, Xiyan/0000-0003-2732-1325; Riley, William/0000-0002-4615-2304; Raz Yaseef, Naama/0000-0002-7405-1607; Koven, Charles/0000-0002-3367-0065; FU US Department of Energy, BER under RGCM program; NGEE-Arctic project [DE-AC02-05CH11231]; Division of Polar Programs of the National Science Foundation (NSF) [1204263]; National Aeronautics and Space Administration; Department of Energy (DOE) [DE-SC005160]; NSF Division of Polar Programs FX Funding for this study was provided by the US Department of Energy, BER, under the RGCM program and NGEE-Arctic project under contract no. DE-AC02-05CH11231. We thank the CARVE flight group for their efforts on CARVE science flights. CarbonTracker CH4 results provided by NOAA ESRL, Boulder, Colorado, USA, from the website at http://www.esrl.noaa.gov. The eddy covariance tower data used in this study were supported by the Division of Polar Programs of the National Science Foundation (NSF; Award 1204263); Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), an Earth Ventures (EV-1) investigation, under contract with the National Aeronautics and Space Administration; and Department of Energy (DOE) Grant DE-SC005160. Logistical support was funded by the NSF Division of Polar Programs. NR 62 TC 1 Z9 1 U1 32 U2 32 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PD SEP 13 PY 2016 VL 13 IS 17 BP 5043 EP 5056 DI 10.5194/bg-13-5043-2016 PG 14 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DW9GJ UT WOS:000383964200001 ER PT J AU Cunnane, D Kawamura, JH Acharya, N Wolak, MA Xi, XX Karasik, BS AF Cunnane, Daniel Kawamura, Jonathan H. Acharya, Narendra Wolak, Matthaus A. Xi, X. X. Karasik, Boris S. TI Low-noise THz MgB2 Josephson mixer SO APPLIED PHYSICS LETTERS LA English DT Article ID JUNCTIONS; SUBMILLIMETER AB The potential applications for high frequency operation of the Josephson effect in MgB2 include THz mixers, direct detectors, and digital circuits. Here we report on MgB2 weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional sigma-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The IcRn product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz. Published by AIP Publishing. C1 [Cunnane, Daniel; Kawamura, Jonathan H.; Karasik, Boris S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Acharya, Narendra; Wolak, Matthaus A.; Xi, X. X.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. RP Cunnane, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM p.cunnane@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA APRA; JPL FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work at Temple University was funded by a NASA APRA task through a contract with JPL. NR 20 TC 1 Z9 1 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 12 PY 2016 VL 109 IS 11 AR 112602 DI 10.1063/1.4962634 PG 5 WC Physics, Applied SC Physics GA DX5DP UT WOS:000384400300029 ER PT J AU Rozo, E Rykoff, ES Abate, A Bonnett, C Crocce, M Davis, C Hoyle, B Leistedt, B Peiris, HV Wechsler, RH Abbott, T Abdalla, FB Banerji, M Bauer, AH Benoit-Levy, A Bernstein, GM Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Carollo, D Kind, MC Carretero, J Castander, FJ Childress, MJ Cunha, CE D'Andrea, CB Davis, T Depoy, DL Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Evrard, AE Neto, AF Flaugher, B Fosalba, P Frieman, J Gaztanaga, E Gerdes, DW Glazebrook, K Gruen, D Gruendl, RA Honscheid, K James, DJ Jarvis, M Kim, AG Kuehn, K Kuropatkin, N Lahav, O Lidman, C Lima, M Maia, MAG March, M Martini, P Melchior, P Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B O'Neill, CR Ogando, R Plazas, AA Romer, AK Roodman, A Sako, M Sanchez, E Santiago, B Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Thaler, J Thomas, D Uddin, S Vikram, V Walker, AR Wester, W Zhang, Y da Costa, LN AF Rozo, E. Rykoff, E. S. Abate, A. Bonnett, C. Crocce, M. Davis, C. Hoyle, B. Leistedt, B. Peiris, H. V. Wechsler, R. H. Abbott, T. Abdalla, F. B. Banerji, M. Bauer, A. H. Benoit-Levy, A. Bernstein, G. M. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Rosell, A. Carnero Carollo, D. Kind, M. Carrasco Carretero, J. Castander, F. J. Childress, M. J. Cunha, C. E. D'Andrea, C. B. Davis, T. Depoy, D. L. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Flaugher, B. Fosalba, P. Frieman, J. Gaztanaga, E. Gerdes, D. W. Glazebrook, K. Gruen, D. Gruendl, R. A. Honscheid, K. James, D. J. Jarvis, M. Kim, A. G. Kuehn, K. Kuropatkin, N. Lahav, O. Lidman, C. Lima, M. Maia, M. A. G. March, M. Martini, P. Melchior, P. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. O'Neill, C. R. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sako, M. Sanchez, E. Santiago, B. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Thaler, J. Thomas, D. Uddin, S. Vikram, V. Walker, A. R. Wester, W. Zhang, Y. da Costa, L. N. TI redMaGiC: selecting luminous red galaxies from the DES Science Verification data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; techniques: photometric; galaxies: general ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; DATA RELEASE; SDSS-III; PHOTOMETRIC REDSHIFTS; NEURAL-NETWORKS; DEEP SURVEY; 1ST DATA; ULTRAVIOLET; CALIBRATION AB We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z is an element of [0.2, 0.8]. Our fiducial sample has a comoving space density of 10(-3) (h(-1) Mpc)(-3), and a median photo-z bias (z(spec) - z(photo)) and scatter (sigma(z)/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5 sigma outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level. C1 [Rozo, E.; Abate, A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Rykoff, E. S.; Davis, C.; Wechsler, R. H.; Burke, D. L.; Cunha, C. E.; Davis, T.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bonnett, C.; Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Crocce, M.; Bauer, A. H.; Carretero, J.; Castander, F. J.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Davis, C.; Davis, T.; Lidman, C.; Uddin, S.] ARC Ctr Excellence All Sky Astrophys CAASTRO, 44 Rosehill St, Redfern, NSW 2016, Australia. [Davis, C.; Davis, T.; O'Neill, C. R.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Hoyle, B.; Dietrich, J. P.; Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Leistedt, B.; Peiris, H. V.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Banerji, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Bernstein, G. M.; Eifler, T. F.; Jarvis, M.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Kuropatkin, N.; Nord, B.; Soares-Santos, M.; Sobreira, F.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Rosell, A. Carnero; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.; da Costa, L. N.] Lab Interinst e Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Rosell, A. Carnero; Maia, M. A. G.; Ogando, R.; da Costa, L. N.] Obser Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carollo, D.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Childress, M. J.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Depoy, D. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Depoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Glazebrook, K.; Uddin, S.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Honscheid, K.; Martini, P.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kim, A. G.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Kuehn, K.; Lidman, C.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Technol CIE, Complutense 40, Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Rozo, E (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. EM erozo@email.arizona.edu; erykoff@slac.stanford.edu RI Ogando, Ricardo/A-1747-2010; Davis, Tamara/A-4280-2008; Gaztanaga, Enrique/L-4894-2014; Lima, Marcos/E-8378-2010; OI Ogando, Ricardo/0000-0003-2120-1154; Davis, Tamara/0000-0002-4213-8783; Gaztanaga, Enrique/0000-0001-9632-0815; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU US Department of Energy [DE-AC02-76SF00515]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478]; Australian Astronomical Observatory [A/2013B/012]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; National Aeronautics and Space Administration FX This work was supported in part by the US Department of Energy contract to SLAC no. DE-AC02-76SF00515.; Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.; The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.; This work is based in part on observations taken at the Australian Astronomical Observatory under programme A/2013B/012.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 56 TC 7 Z9 7 U1 5 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2016 VL 461 IS 2 BP 1431 EP 1450 DI 10.1093/mnras/stw1281 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PP UT WOS:000383273600022 ER PT J AU Georgakarakos, N Dobbs-Dixon, I Way, MJ AF Georgakarakos, Nikolaos Dobbs-Dixon, Ian Way, Michael J. TI Long-term evolution of planetary systems with a terrestrial planet and a giant planet SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE celestial mechanics; planets and satellites: dynamical evolution and stability ID HIERARCHICAL TRIPLE-SYSTEMS; INITIALLY CIRCULAR ORBITS; ECCENTRICITY GENERATION; SECULAR EVOLUTION; STAR SYSTEMS; HABITABILITY; STABILITY; COPLANAR AB We study the long-term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders, and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion, and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the time-scales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems. C1 [Georgakarakos, Nikolaos; Dobbs-Dixon, Ian] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates. [Way, Michael J.] NASA, Goddard Inst Space Studies, New York, NY 10027 USA. [Way, Michael J.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. RP Georgakarakos, N (reprint author), New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates. EM ng53@nyu.edu OI Way, Michael/0000-0003-3728-0475 FU NASA's Science Mission Directorate; National Aeronautics and Space Administration FX We would like to thank the anonymous referee for his/her useful comments that helped us improve the manuscript. We would also like to thank the High Performance Computing Resources team at New York University Abu Dhabi and especially Jorge Naranjo for helping us with our numerical simulations. M.J.W.: The results reported herein benefitted from participation in NASA's Nexus for Exoplanet System Science research coordination network sponsored by NASA's Science Mission Directorate.; This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. NR 29 TC 3 Z9 3 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2016 VL 461 IS 2 BP 1512 EP 1528 DI 10.1093/mnras/stw1378 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PP UT WOS:000383273600027 ER PT J AU Parker, ML Komossa, S Kollatschny, W Walton, DJ Schartel, N Santos-Lleo, M Harrison, FA Fabian, AC Zetzl, M Grupe, D Rodriguez-Pascual, PM Vasudevan, RV AF Parker, M. L. Komossa, S. Kollatschny, W. Walton, D. J. Schartel, N. Santos-Lleo, M. Harrison, F. A. Fabian, A. C. Zetzl, M. Grupe, D. Rodriguez-Pascual, P. M. Vasudevan, R. V. TI The detection and X-ray view of the changing look AGN HE 1136-2304 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; galaxies: active; galaxies: Seyfert ID ACTIVE GALACTIC NUCLEI; PHOTON IMAGING CAMERA; BROAD-LINE EMISSION; XMM-NEWTON; BLACK-HOLE; LOW-STATE; ABSORPTION-LINES; SHELL ABSORPTION; ACCRETION DISKS; NEARBY GALAXIES AB We report the detection of high-amplitude X-ray flaring of the AGN HE 1136-2304, which is accompanied by a strong increase in the flux of the broad Balmer lines, changing its Seyfert type from almost type 2 in 1993 down to 1.5 in 2014. HE 1136-2304 was detected by the XMM-Newton slew survey at > 10 times the flux it had in the ROSAT all-sky survey, and confirmed with Swift follow-up after increasing in X-ray flux by a factor of similar to 30. Optical spectroscopy with SALT shows that the AGN has changed from a Seyfert 1.95 to a Seyfert 1.5 galaxy, with greatly increased broad line emission and an increase in blue continuum AGN flux by a factor of > 4. The X-ray spectra from XMM-Newton and NuSTAR reveal moderate intrinsic absorption and a high energy cutoff at similar to 100 keV. We consider several different physical scenarios for a flare, such as changes in obscuring material, tidal disruption events, and an increase in the accretion rate. We find that the most likely cause of the increased flux is an increase in the accretion rate, although it could also be due to a change in obscuration. C1 [Parker, M. L.; Fabian, A. C.; Vasudevan, R. V.] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Komossa, S.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Kollatschny, W.; Zetzl, M.] Univ Gottingen, Inst Astrophys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. [Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Walton, D. J.; Harrison, F. A.] CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Schartel, N.; Santos-Lleo, M.; Rodriguez-Pascual, P. M.] ESAC, ESA, XMM Newton SOC, Camino Bajo Castillo S-N, E-28692 Villanueva Canada Madrid, Spain. [Grupe, D.] Morehead State Univ, Dept Earth & Space Sci, 235 Martindale Dr, Morehead, KY 40351 USA. RP Parker, ML (reprint author), Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM mlparker@ast.cam.ac.uk FU Science and Technology Facilities Council (STFC); DFG [Ko 857/32-2]; ESA Member States; NASA; National Aeronautics and Space Administration FX We thank the anonymous referee for their detailed and constructive feedback. We thank Lutz Wisotzki for making available the optical spectrum of HE1136-2304 taken in 1993, and we thank Vassilis Karamanavis for a careful reading of the manuscript. MLP acknowledges financial support from the Science and Technology Facilities Council (STFC). This paper is based on observations taken with the SALT telescope. This work has been supported by DFG grant Ko 857/32-2. Based on observations with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). We would also like to thank Neil Gehrels for approving the Swift ToO requests, and the Swift science operation team for performing the observations. NR 84 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2016 VL 461 IS 2 BP 1927 EP 1936 DI 10.1093/mnras/stw1449 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PP UT WOS:000383273600058 ER PT J AU Kahle, D Aslam, S Herrero, FA Waczynski, A AF Kahle, Duncan Aslam, Shahid Herrero, Federico A. Waczynski, Augustyn TI A discrete component low-noise preamplifier readout for a linear (1 x 16) SiC photodiode array SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE 4H-SiC photodiode; Schottky; (1 x 16) array; Low-noise readout; Quantum efficiency; NEP ID EXTREME-ULTRAVIOLET; AREA AB A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1 x 16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power. Published by Elsevier B.V. C1 [Kahle, Duncan; Herrero, Federico A.; Waczynski, Augustyn] NASA, Goddard Space Flight Ctr, Detector Syst Branch, Greenbelt, MD 20771 USA. [Aslam, Shahid] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. RP Aslam, S (reprint author), NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. EM shahid.aslam-1@nasa.gov FU NASA, Goddard Space Flight Center, Planetary Systems Laboratory; NOAA GOES-R Project Office FX The authors wish to thank NASA, Goddard Space Flight Center, Planetary Systems Laboratory and the NOAA GOES-R Project Office for research and development funds to carry out this work. NR 11 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2016 VL 830 BP 480 EP 483 DI 10.1016/j.nima.2016.06.021 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DT5NQ UT WOS:000381530300062 ER PT J AU Christiansen, JL Clarke, BD Burke, CJ Jenkins, JM Bryson, ST Coughlin, JL Mullally, F Thompson, SE Twicken, JD Batalha, NM Haas, MR Catanzarite, J Campbell, JR Uddin, AKMK Zamudio, K Smith, JC Henze, CE AF Christiansen, Jessie L. Clarke, Bruce D. Burke, Christopher J. Jenkins, Jon M. Bryson, Stephen T. Coughlin, Jeffrey L. Mullally, Fergal Thompson, Susan E. Twicken, Joseph D. Batalha, Natalie M. Haas, Michael R. Catanzarite, Joseph Campbell, Jennifer R. Uddin, A. K. M. Kamal Zamudio, Khadeejah Smith, Jeffrey C. Henze, Christopher E. TI MEASURING TRANSIT SIGNAL RECOVERY IN THE KEPLER PIPELINE. III. COMPLETENESS OF THE Q1-Q17 DR24 PLANET CANDIDATE CATALOG WITH IMPORTANT CAVEATS FOR OCCURRENCE RATE CALCULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE data analysis; techniques: photometric ID SYSTEMATIC-ERROR CORRECTION; MISSION DATA; FALSE POSITIVES; QUARTERS; IDENTIFICATION; EXOPLANET; SAMPLE AB With each new version of the Kepler pipeline and resulting planet candidate catalog,. an updated measurement of the underlying planet population can only be recovered with a. corresponding measurement of the Kepler pipeline detection efficiency. Here. we present measurements of the sensitivity of the pipeline (version 9.2) used to generate the Q1-Q17 DR24 planet candidate catalog. We measure this by injecting simulated transiting planets into the pixel-level data of 159,013 targets across the entire Kepler focal plane, and examining the recovery rate. Unlike previous versions of the Kepler pipeline, we find a strong period dependence in the measured detection efficiency, with longer (>40 day) periods having a significantly lower detectability than shorter periods, introduced in part by an incorrectly implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be cast as a simple one-dimensional function of the signal strength of the candidate planet signal, as was possible for previous versions of the pipeline. We report on the implications for occurrence rate calculations based on the Q1-Q17 DR24 planet candidate catalog, and offer important caveats and recommendations for performing such calculations. As before, we make available the entire table of injected planet parameters and whether they were recovered by the pipeline, enabling readers to derive the pipeline detection sensitivity in the planet and/or stellar parameter space of their choice. C1 [Christiansen, Jessie L.] CALTECH, NASA, Exoplanet Sci Inst, M-S 100-22,770 S Wilson Ave, Pasadena, CA 91106 USA. [Clarke, Bruce D.; Burke, Christopher J.; Coughlin, Jeffrey L.; Mullally, Fergal; Thompson, Susan E.; Twicken, Joseph D.; Catanzarite, Joseph; Smith, Jeffrey C.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Jenkins, Jon M.; Bryson, Stephen T.; Batalha, Natalie M.; Haas, Michael R.; Henze, Christopher E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Campbell, Jennifer R.; Uddin, A. K. M. Kamal; Zamudio, Khadeejah] NASA, Ames Res Ctr, Wyle Labs, Moffett Field, CA 94035 USA. RP Christiansen, JL (reprint author), CALTECH, NASA, Exoplanet Sci Inst, M-S 100-22,770 S Wilson Ave, Pasadena, CA 91106 USA. EM jessie.christiansen@caltech.edu FU NASA's Science Mission Directorate; NASA [GRNASM99G000001] FX Funding for the Kepler Discovery Mission is provided by NASA's Science Mission Directorate. The authors acknowledge the efforts of the Kepler Mission team for obtaining the calibrated pixels, light curves, and data validation diagnostics data used in this publication. These data products were generated by the Kepler Mission science pipeline through the efforts of the Kepler Science Operations Center and Science Office. The Kepler Mission is lead by the project office at NASA Ames Research Center. Ball Aerospace built the Kepler photometer and spacecraft,. which is operated by the mission operations center at LASP. These data products are archived at the Mikulski Archive for Space Telescopes and the NASA Exoplanet Archive. J.L.C. is supported by NASA under award No. GRNASM99G000001. NR 33 TC 4 Z9 4 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2016 VL 828 IS 2 AR 99 DI 10.3847/0004-637X/828/2/99 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX2XU UT WOS:000384237800005 ER PT J AU Fuentes, ML Klimchuk, JA AF Lopez Fuentes, Marcelo Klimchuk, James A. TI A NANOFLARE-BASED CELLULAR AUTOMATON MODEL AND THE OBSERVED PROPERTIES OF THE CORONAL PLASMA SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: magnetic fields; Sun: X-rays; gamma rays ID ACTIVE-REGION CORE; EMISSION MEASURE DISTRIBUTIONS; X-RAY; LOOPS OBSERVATIONS; TIME-DEPENDENCE; DYNAMICS; HINODE; TRACE; TELESCOPE; EXPLANATION AB We use the cellular automaton model described in Lopez Fuentes & Klimchuk to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode/XRT and SDO/AIA instruments. The comparison is based on the statistical properties of synthetic and observed loop light. curves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasma in AR coronal loops. The typical intensity fluctuations have amplitudes of 10%-15% both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) between 2.7 and 4.3, in agreement with published observational values. C1 [Lopez Fuentes, Marcelo] CONICET UBA, Inst Astron & Fis Espacio, CC 67, Suc 28, RA-1428 Buenos Aires, DF, Argentina. [Klimchuk, James A.] NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. [Lopez Fuentes, Marcelo] Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, DF, Argentina. RP Fuentes, ML (reprint author), CONICET UBA, Inst Astron & Fis Espacio, CC 67, Suc 28, RA-1428 Buenos Aires, DF, Argentina.; Fuentes, ML (reprint author), Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, DF, Argentina. EM lopezf@iafe.uba.ar OI Lopez Fuentes, Marcelo/0000-0001-8830-4022 FU NASA Supporting Research and Guest Investigator programs; ANPCyT [PICT 2012-0973]; UBACyT [20020130100321]; CONICET [PIP 2012-01-403] FX The authors thank the anonymous referee for fruitful comments and suggestions. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). The AIA data used here are courtesy of SDO (NASA) and the AIA consortium. J.A.K.'s work was funded by the NASA Supporting Research and Guest Investigator programs. M.L.F. acknowledges financial support from the Argentinean grants PICT 2012-0973 (ANPCyT), UBACyT 20020130100321, and PIP 2012-01-403 (CONICET). NR 46 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2016 VL 828 IS 2 AR 86 DI 10.3847/0004-637X/828/2/86 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX0SP UT WOS:000384075600005 ER PT J AU Viall, NM Klimchuk, JA AF Viall, Nicholeen M. Klimchuk, James A. TI SIGNATURES OF STEADY HEATING IN TIME LAG ANALYSIS OF CORONAL EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: transition region; Sun: UV radiation ID ACTIVE-REGION; LOOPS AB Among the multitude of methods used to investigate coronal heating, the time lag method of Viall & Klimchuk is becoming increasingly prevalent as an analysis technique that is complementary to those that are traditionally used. The time lag method cross correlates light curves at a given spatial location obtained in spectral bands that sample different temperature plasmas. It has been used most extensively with data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We have previously applied the time lag method to entire active regions and surrounding the quiet Sun and created maps of the results. We find that the majority of time lags are consistent with the cooling of coronal plasma that has been impulsively heated. Additionally, a significant fraction of the map area has a time lag of zero. This does not indicate a lack of variability. Rather, strong variability must be present, and it must occur in phase between the different channels. We have previously shown that these zero time lags are consistent with the transition region response to coronal nanoflares, although other explanations are possible. A common misconception is that the zero time lag indicates steady emission resulting from steady heating. Using simulated and observed light curves, we demonstrate here that highly correlated light curves at zero time lag are not compatible with equilibrium solutions. Such light curves can only be created by evolution. C1 [Viall, Nicholeen M.; Klimchuk, James A.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20706 USA. RP Viall, NM (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20706 USA. OI Viall, Nicholeen/0000-0003-1692-1704 FU NASA GI grant FX This research was supported by a NASA GI grant. NR 18 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2016 VL 828 IS 2 AR 76 DI 10.3847/0004-637X/828/2/76 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX0XE UT WOS:000384089000003 ER PT J AU DeForest, CE Matthaeus, WH Viall, NM Cranmer, SR AF DeForest, C. E. Matthaeus, W. H. Viall, N. M. Cranmer, S. R. TI FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; Sun: corona; Sun: fundamental parameters; techniques: image processing ID MEAN MAGNETIC-FIELD; MAGNETOHYDRODYNAMIC TURBULENCE; HELIOSPHERIC-IMAGERS; DENSITY STRUCTURES; MASS EJECTIONS; POLAR PLUMES; 1 AU; EVOLUTION; WAVES; SUN AB Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures. to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10 degrees from the Sun. in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4 degrees to 24 degrees from the center of the Sun and spanning this transition in the. large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona. and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the. onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind. C1 [DeForest, C. E.] Southwest Res Inst, 1050 Walnut St, Boulder, CO 80302 USA. [Matthaeus, W. H.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Viall, N. M.] NASA, Goddard Space Flight Ctr, Mail Code 671, Greenbelt, MD 20771 USA. [Cranmer, S. R.] Univ Colorado, Duane E226, Boulder, CO 80305 USA. RP DeForest, CE (reprint author), Southwest Res Inst, 1050 Walnut St, Boulder, CO 80302 USA. OI Viall, Nicholeen/0000-0003-1692-1704 FU NASA's Living With a Star Targeted Research & Technology program [NNX15AB72G]; Solar Probe Plus IScircle dotIS project, NSF SHINE grant [AGS-1156094]; NASA LWS grant [NNX15AB88G]; Heliospheric GCR grant [NNX14AI63G]; NASA's Heliophysics Guest Investigator program; NSF SHINE grant [AGS-1540094]; NASA HSR grants [NNX15AW33G, NNX16AG87G]; Department of Astrophysical and Planetary Sciences at the University of Colorado, Boulder FX CED is supported by grant NNX15AB72G from NASA's Living With a Star Targeted Research & Technology program. WHM is supported by the Solar Probe Plus IS circle dot IS project, NSF SHINE grant AGS-1156094, the NASA LWS grant NNX15AB88G, and the Heliospheric GCR grant NNX14AI63G. NMV is supported by NASA's Heliophysics Guest Investigator program. SRC is supported by NSF SHINE grant AGS-1540094, NASA HSR grants NNX15AW33G and NNX16AG87G, and start-up funds from the Department of Astrophysical and Planetary Sciences at the University of Colorado, Boulder. The work was improved by informative discussions with, and acerbic commentary from, T. A. Howard. The authors gratefully acknowledge the STEREO team for making their data available to the public and the Solar Probe Science Working Group for making it clear that this article was necessary. The analysis relied heavily on the freeware Perl Data Language (http://pdl.perl.org). NR 71 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2016 VL 828 IS 2 AR 66 DI 10.3847/0004-637X/828/2/66 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW9SC UT WOS:000384001900001 ER PT J AU Ly, C Malkan, MA Rigby, JR Nagao, T AF Ly, Chun Malkan, Matthew A. Rigby, Jane R. Nagao, Tohru TI THE METAL ABUNDANCES ACROSS COSMIC TIME (MACT) SURVEY. II. EVOLUTION OF THE MASS-METALLICITY RELATION OVER 8 BILLION YEARS, USING [O III] lambda 4363 angstrom BASED METALLICITIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: abundances; galaxies: distances and redshift; galaxies: evolution; galaxies: ISM; galaxies: photometry; galaxies: star formation ID STAR-FORMING GALAXIES; EMISSION-LINE GALAXIES; SIMILAR-TO 2; DIGITAL SKY SURVEY; HIGH-REDSHIFT GALAXIES; NEAR-INFRARED SPECTROSCOPY; ACTIVE GALACTIC NUCLEI; HUBBLE-SPACE-TELESCOPE; SUBARU DEEP FIELD; NEWH-ALPHA SURVEY AB We present the first results from MMT and Keck spectroscopy for a large sample of 0.1 <= z <= 1 emission-line galaxies selected from our narrowband imaging in the Subaru Deep Field. We measured the weak [O III] lambda 4363 emission line for 164 galaxies (66 with at least 3 sigma detections, and 98 with significant upper limits). The strength of this line is set by the electron temperature for the ionized gas. Because the gas temperature is regulated by the metal content, the gas-phase oxygen abundance is inversely correlated with [O III] lambda 4363 line strength. Our temperature-based metallicity study is the first to span approximate to 8 Gyr of cosmic time and approximate to 3 dex in stellar mass for low-mass galaxies, log(M-star/M-circle dot) approximate to 6.0-9.0. Using extensive multi-wavelength photometry, we measure the evolution of the stellar mass-gas metallicity relation and its dependence on dust-corrected star formation rate ( SFR). The latter is obtained from high signal-to-noise Balmer emission-line measurements. Our mass-metallicity relation is consistent with Andrews & Martini at z <= 0.3, and evolves toward lower abundances at a given stellar mas log (O/H) alpha(1+z)(-2.32-0.26+0.52) We find that galaxies with lower metallicities have higher SFRs at a given stellar mass and redshift, although the scatter is large (approximate to 0.3 dex) and the trend is weaker than seen in local studies. We also compare our mass-metallicity relation against predictions from high-resolution galaxy formation simulations, and find good agreement with models that adopt energy- and momentum-driven stellar feedback. We identified 16 extremely metal-poor galaxies with abundances of less than a tenth of solar; our most metal-poor galaxy at z approximate to 0.84 is similar to I Zw 18. C1 [Ly, Chun; Rigby, Jane R.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Malkan, Matthew A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Nagao, Tohru] Ehime Univ, Res Ctr Space & Cosm Evolut, Matsuyama, Ehime 7908577, Japan. RP Ly, C (reprint author), NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM astro.chun@gmail.com OI Ly, Chun/0000-0002-4245-2318 FU W.M. Keck Foundation; NOAO, through the NSF Telescope System Instrumentation Program (TSIP); NASA; appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center; Universities Space Research Association; NASA Astrophysics Data Analysis Program grant [NNH14ZDA001N]; JSPS KAKENHI Grant [25707010]; Astronomy Australia Limited; Swinburne University of Technology; Australian Government; CURIE supercomputer at CEA/France as part of PRACE project [RA0844]; SuperMUC computer at the Leibniz Computing Centre, Germany [pr85je] FX We thank the anonymous referee for comments that improved the paper. The DEIMOS data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration (NASA). The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Hectospec observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona. A subset of MMT telescope time was granted by NOAO, through the NSF-funded Telescope System Instrumentation Program (TSIP). We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission. This research is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities and Universities Space Research Association through contracts with NASA. CL is supported by NASA Astrophysics Data Analysis Program grant NNH14ZDA001N. TN is supported by JSPS KAKENHI Grant Number 25707010. We thank Mithi de los Reyes for discussions that improve the paper. We thank Darren Croton, Romeel Dave, Violeta Gonzalez-Perez, Bruno Henriques, Yu Lu, Xiangcheng Ma, Joop Schaye, Rachel Somerville, and Paul Torrey for providing their theoretical data sets for comparison purposes and for discussions that improved the paper. We thank Alice Shapley for providing the MOSDEF data set for comparison purposes. This paper utilizes the services of the Theoretical Astrophysical Observatory, which is part of the All- Sky Virtual Observatory (ASVO) and is funded and supported by Astronomy Australia Limited, Swinburne University of Technology, and the Australian Government. The latter is provided though the Commonwealth's Education Investment Fund and National Collaborative Research Infrastructure Strategy, particularly the National eResearch Collaboration Tools and Resources (NeCTAR) Project. We acknowledge the Virgo Consortium for making their simulation data available. The EAGLE simulations were performed using the DiRAC-2 facility at Durham, managed by the ICC, and the PRACE facility Curie based in France at TGCC, CEA, Bruyeres-le-Chatel. The Illustris simulation was run on the CURIE supercomputer at CEA/France as part of PRACE project RA0844, and the SuperMUC computer at the Leibniz Computing Centre, Germany, as part of project pr85je. Further simulations were run on the Harvard Odyssey and CfA/ITC clusters, the Ranger and Stampede supercomputers at the Texas Advanced Computing Center through XSEDE, and the Kraken supercomputer at Oak Ridge National Laboratory through XSEDE. NR 115 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2016 VL 828 IS 2 AR 67 DI 10.3847/0004-637X/828/2/67 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW9SC UT WOS:000384001900002 ER PT J AU Porter, SB Spencer, JR Benecchi, S Verbiscer, AJ Zangari, AM Weaver, HA Lauer, TR Parker, AH Buie, MW Cheng, AF Young, LA Olkin, CB Ennico, K Stern, SA AF Porter, Simon B. Spencer, John R. Benecchi, Susan Verbiscer, Anne J. Zangari, Amanda M. Weaver, H. A. Lauer, Tod R. Parker, Alex H. Buie, Marc W. Cheng, Andrew F. Young, Leslie A. Olkin, Cathy B. Ennico, Kimberly Stern, S. Alan CA New Horizons Sci Team TI THE FIRST HIGH-PHASE OBSERVATIONS OF A KBO: NEW HORIZONS IMAGING OF (15810) 1994 JR(1) FROM THE KUIPER BELT SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Kuiper belt: general; Kuiper belt objects: individual (15810); space vehicles ID SOLAR-SYSTEM; OBJECTS; PHOEBE; PLUTO AB NASA's New Horizons spacecraft observed (15810) 1994 JR(1,) a 3: 2 resonant Kuiper belt object (KBO), using the LOng Range Reconnaissance Imager (LORRI) on 2015 November 2 from a distance of 1.85 au and again on 2016 April 7 from a distance of 0.71 au. These were the first close observations of any KBO other than Pluto. Combining ground-based and Hubble Space Telescope (HST) observations at small phase angles and the LORRI observations at higher phase angles, we produced the first disk-integrated solar phase curve of a typical KBO from alpha - 0 degrees.6-58 degrees. Observations at these geometries, attainable only from a spacecraft in the outer solar system, constrain surface properties such as macroscopic roughness and the single particle phase function. 1994 JR(1) has a rough surface with a 37 degrees +/- 5 degrees mean topographic slope angle and has a relatively rapid rotation period of 5.47 degrees +/- 0.33 degrees hr. 1994 JR1 is currently 2.7 au from Pluto; our astrometric points enable high-precision orbit determination and integrations that show that it comes this close to Pluto every 2.4 million years (10(4) heliocentric orbits), causing Pluto to perturb 1994 JR(1). During the November spacecraft observation, the KBO was simultaneously observed using HST in two colors, confirming its very red spectral slope. These observations have laid the groundwork for numerous potential future distant KBO observations in the New Horizons-Kuiper belt extended mission. C1 [Porter, Simon B.; Spencer, John R.; Zangari, Amanda M.; Parker, Alex H.; Buie, Marc W.; Young, Leslie A.; Olkin, Cathy B.; Stern, S. Alan] Southwest Res Inst, Boulder, CO 80302 USA. [Benecchi, Susan] Planetary Sci Inst, Tucson, AZ USA. [Verbiscer, Anne J.] Univ Virginia, Charlottesville, VA USA. [Weaver, H. A.; Cheng, Andrew F.] Johns Hopkins Appl Phys Lab, Laurel, MD USA. [Lauer, Tod R.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Ennico, Kimberly] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Porter, SB (reprint author), Southwest Res Inst, Boulder, CO 80302 USA. EM porter@boulder.swri.edu FU NASA's New Horizons Project; NASA/ESA Hubble Space Telescope [14092]; NASA through a grant from the Space Telescope Science Institute; NASA [NAS 5-26555] FX Special thanks to David Tholen for recovering JR1 after a 13 year gap, enabling all the observations in this Letter, and to Paul Helfenstein for the use of photometric modeling software. This work was supported by NASA's New Horizons Project. This work uses observations made with the NASA/ESA Hubble Space Telescope, and associated with program #14092. Support for this program was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 26 TC 0 Z9 0 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2016 VL 828 IS 2 AR L15 DI 10.3847/2041-8205/828/2/L15 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW9NB UT WOS:000383985800001 ER PT J AU Weijerman, M Link, JS Fulton, EA Olsen, E Townsend, H Gaichas, S Hansend, C Skern-Mauritzen, M Kaplan, IC Gamble, R Fay, G Savina, M Ainsworth, C van Putten, I Gorton, R Brainard, R Larsen, K Hutton, T AF Weijerman, M. Link, J. S. Fulton, E. A. Olsen, E. Townsend, H. Gaichas, S. Hansend, C. Skern-Mauritzen, M. Kaplan, I. C. Gamble, R. Fay, G. Savina, M. Ainsworth, C. van Putten, I. Gorton, R. Brainard, R. Larsen, K. Hutton, T. TI Atlantis Ecosystem Model Summit: Report from a workshop SO ECOLOGICAL MODELLING LA English DT Article DE Ecosystem-based models; Atlantis Summit; Management; Strategy evaluation; Meeting report ID MARINE ECOSYSTEMS; CLIMATE-CHANGE; MANAGEMENT; FISHERIES; POLICY AB Ecosystem models can be used to understand the cumulative impacts of human pressures and environmental drivers on ecosystem structure and dynamics. Predictive modeling can show how management can influence those dynamics and structures and the ecosystem services these systems provide. Many nations and intergovernmental organizations are advocating for ecosystem-based management, often with a specific emphasis to evaluate various future management strategies. Atlantis is an end-to-end ecosystem model that is well suited for this task and has so far been developed for more than 30 diverse marine ecosystems worldwide. To provide a better understanding of the current modeling work, elicit wider interest, and foster collaboration within the Atlantis community, the first international Atlantis Summit was convened in December 2015. The main outcomes from this workshop included a clearer framework and infrastructure for model development and collaboration; the opportunity to perform common scenarios with a range of Atlantis models to analyze ecosystem responses to environmental and management-based perturbations; and the use of Atlantis as a test case for exploring the performance of single species, multispecies, and trophic food web models at an international level. (C) 2016 Elsevier B.V. All rights reserved. C1 [Weijerman, M.] Joint Inst Marine & Atmospher Res, 1000 Pope Rd,MSB 312, Honolulu, HI 96822 USA. [Link, J. S.] NOAA, Natl Marine Fisheries Serv, 166 Water St, Woods Hole, MA 02543 USA. [Fulton, E. A.; van Putten, I.; Gorton, R.] CSIRO Oceans & Atmosphere, GPO Box 1538, Hobart, Tas 7001, Australia. [Olsen, E.; Hansend, C.; Skern-Mauritzen, M.] Inst Marine Res, PB 1870 Nordnes, N-5817 Bergen, Norway. [Townsend, H.] NOAA, Chesapeake Bay Off, Natl Marine Fisheries Serv, 410 Severn Ave,Ste 207-A, Annapolis, MD 21403 USA. [Gaichas, S.; Gamble, R.] NOAA, Northeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, 166 Water St, Woods Hole, MA 02543 USA. [Kaplan, I. C.] NOAA, Conservat Biol Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Seattle, WA 98112 USA. [Fay, G.] Univ Massachusetts Dartmouth, Sch Marine Sci & Technol, Dept Fisheries Oceanog, 200 Mill Rd, Fairhaven, MA 02719 USA. [Savina, M.] IFREMER, Channel & North Sea Fisheries Res Unit, 150 Quai Gambetta,BP 699, F-62321 Boulogne Sur Mer, France. [Ainsworth, C.] Univ S Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA. [Brainard, R.] NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd,Bldg 176,Mail Room 2247, Honolulu, HI 96818 USA. [Larsen, K.] NOAA, Off Sci & Technol, Natl Marine Fisheries Serv, 1315 East West Hwy, Silver Spring, MD 20910 USA. [Hutton, T.] CSIRO Oceans & Atmosphere, QBP, 306 Carmody Rd, St Lucia, Qld 4067, Australia. RP Weijerman, M (reprint author), Joint Inst Marine & Atmospher Res, 1000 Pope Rd,MSB 312, Honolulu, HI 96822 USA. EM mariska.weijerman@noaa.gov RI Fulton, Elizabeth/A-2871-2008; Hutton, Trevor/E-3066-2017; OI Fulton, Elizabeth/0000-0002-5904-7917; Hutton, Trevor/0000-0002-8747-6196; Weijerman, Mariska/0000-0001-5990-7385 FU NOAA Fisheries; CSIRO; IMR; Norwegian Research Council FX Funding for the workshop came fromNOAA Fisheries, CSIRO, IMR and the Norwegian Research Council. NR 19 TC 0 Z9 0 U1 9 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD SEP 10 PY 2016 VL 335 BP 35 EP 38 DI 10.1016/j.ecolmodel.2016.05.007 PG 4 WC Ecology SC Environmental Sciences & Ecology GA DQ3MF UT WOS:000379105700004 ER PT J AU Bashir, M Ahmed, M Weinmaier, T Ciobanu, D Ivanova, N Pieber, TR Vaishampayan, PA AF Bashir, Mina Ahmed, Mahjabeen Weinmaier, Thomas Ciobanu, Doina Ivanova, Natalia Pieber, Thomas R. Vaishampayan, Parag A. TI Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE cleanroom; pathogens; indoor environments; microbiome; spacecraft; virulence factors; Acinetobacter; functional metagenomics ID MORAXELLA-ACINETOBACTER CELLS; COMMENSAL ESCHERICHIA-COLI; ANTIMICROBIAL RESISTANCE; GENOME AMPLIFICATION; INDOOR ENVIRONMENT; NO ESKAPE; GENES; SPORES; INACTIVATION; BAUMANNII AB Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella pneurnophila, and their corresponding virulence factors were present in all cleanroom samples. This is the first functional metagenomics study describing presence of pathogens and their corresponding virulence factors in cleanroom environments. The results of this study should be considered for microbial monitoring of enclosed environments such as schools, homes, hospitals and more isolated habitation such the International Space Station and future manned missions to Mars. C1 [Bashir, Mina; Ahmed, Mahjabeen; Vaishampayan, Parag A.] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91125 USA. [Bashir, Mina; Pieber, Thomas R.] Med Univ Graz, Div Endocrinol & Diabetol, Graz, Austria. [Ahmed, Mahjabeen] Calif State Polytech Univ Pomona, Dept Biol Sci, Pomona, CA 91768 USA. [Weinmaier, Thomas] Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Computat Syst Biol, Vienna, Austria. [Ciobanu, Doina; Ivanova, Natalia] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. RP Vaishampayan, PA (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91125 USA. EM vaishamp@jpl.nasa.gov OI Ivanova, Natalia/0000-0002-5802-9485 FU Planetary Protection Research program, ROSES [NNH11ZDA001N]; EWE Austrian Science Fund [W1241]; Medical University of Graz through the PhD Program Molecular Fundamentals of Inflammation (DK-MOLIN); Bank Austria Visiting Scientist Program of the Medical University of Graz FX Part of the research described in this study was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was funded by Planetary Protection Research program in NNH11ZDA001N, ROSES 2011 awarded to PV and NI. The authors are grateful to Drs. Catharine Conley and Ying Lin for valuable discussion and input. We would like to thank Dr. Kasthuri Venkateswaran (JPL) for making archived DNA available. MB is thankful for the financial support of the EWE Austrian Science Fund (W1241) and the Medical University of Graz through the PhD Program Molecular Fundamentals of Inflammation (DK-MOLIN), as well as the Bank Austria Visiting Scientist Program of the Medical University of Graz. NR 59 TC 0 Z9 0 U1 15 U2 16 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD SEP 9 PY 2016 VL 7 AR 1321 DI 10.3389/fmicb.2016.01321 PG 12 WC Microbiology SC Microbiology GA DV3KJ UT WOS:000382820300001 PM 27667984 ER PT J AU Farrugia, TJ Goldman, KJ Tribuzio, C Seitz, AC AF Farrugia, Thomas J. Goldman, Kenneth J. Tribuzio, Cindy Seitz, Andrew C. TI First use of satellite tags to examine movement and habitat use of big skates Beringraja binoculata in the Gulf of Alaska SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Satellite telemetry; PAT; Depth utilization; Temperature tolerance; Fisheries management; Connectivity ID HALIBUT HIPPOGLOSSUS-STENOLEPIS; PRINCE-WILLIAM-SOUND; RAJA-BINOCULATA; BRITISH-COLUMBIA; ARCHIVAL TAGS; TEMPERATURE; DEPTH; RHINA; GEOLOCATION; DIVERSITY AB Big skate Beringraja binoculata is the most frequently landed skate in the Gulf of Alaska portion of the Northeast Pacific Ocean, with recent stock assessment surveys showing relatively healthy skate stocks and continued interest from the commercial fishing industry to increase skate landings. Considered a data-poor species, there is a need for additional ecological information on big skates, including movement patterns and habitat use. We deployed pop-up satellite archival transmitting (PSAT) tags on 8 big skates in the Gulf of Alaska and set the tags to release 1 yr after deployment. The minimum distance traveled by big skates varied between 6 and 205 km, with 1 individual traveling at least 2100 km based on light geolocation data. Three individuals showed evidence of having made long-range movement and crossed at least 1 management boundary, and 3 remained relatively close to their tagging locations. Two tags did not report. The PSAT tags also extended the maximum documented depth of big skates to over 500 m and confirmed that they are thermally tolerant, occupying waters between 2 and 18 degrees C. Because the total catch of big skate is divided into multiple areas and limited movement between areas is assumed, information from this study will aid in the development of appropriate spatial management plans for this species. C1 [Farrugia, Thomas J.; Seitz, Andrew C.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, 905 N Koyukuk Dr, Fairbanks, AK 99775 USA. [Goldman, Kenneth J.] Alaska Dept Fish & Game, 3298 Douglas Pl, Homer, AK 99603 USA. [Tribuzio, Cindy] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. RP Farrugia, TJ (reprint author), Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, 905 N Koyukuk Dr, Fairbanks, AK 99775 USA. EM tjfarrugia@alaska.edu FU National Science Foundation Marine Ecosystem Sustainability in the Arctic and Subarctic (MESAS) Integrated Graduate Education and Research Traineeship (IGERT) program [DGE0801720]; Rasmuson Fisheries Research Center, Rasmuson Foundation FX The authors thank the Alaska Department of Fish. and Game, specifically Mike Byerly and the crew of the RV 'Solstice', and the National Marine Fisheries Service, specifically Chris Lunsford and the crews of the FV 'Alaskan Leader' and FV 'Ocean Prowler', for their assistance in capturing and tagging big skates. We are also grateful to Gordon Kruse and Keith Criddle for their guidance and reviews and to 2 anonymous reviewers, whose comments improved the manuscript greatly. Funding for this project was received from the National Science Foundation Marine Ecosystem Sustainability in the Arctic and Subarctic (MESAS) Integrated Graduate Education and Research Traineeship (IGERT) program (award no. DGE0801720) and the Rasmuson Fisheries Research Center, Rasmuson Foundation, through an award to UAF. The Alaska Department of Fish and Game and the National Marine Fisheries Service provided in-kind support for the fieldwork portion of this project. NR 45 TC 2 Z9 2 U1 3 U2 3 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PD SEP 8 PY 2016 VL 556 BP 209 EP 221 DI 10.3354/meps11842 PG 13 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA DX3AF UT WOS:000384244300015 ER PT J AU Horne, JB Bradbury, IR Paterson, IG Hardie, D Hutchings, J Laurel, BJ Snelgrove, PVR Morris, CJ Gregory, RS Bentzen, P AF Horne, John B. Bradbury, Ian R. Paterson, Ian G. Hardie, David Hutchings, Jeffrey Laurel, Benjamin J. Snelgrove, Paul V. R. Morris, Corey J. Gregory, Robert S. Bentzen, Paul TI Complex post-larval dispersal processes in Atlantic cod revealed by age-based genetics and relatedness analysis SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Gadidae; Kinship; Newfoundland; Marine dispersal; Fisheries; Northwest Atlantic ID MARINE POPULATION CONNECTIVITY; GADUS-MORHUA STOCKS; NORTH-SEA; PAIRWISE RELATEDNESS; NATURAL-POPULATIONS; CONSERVATION PROGRAMS; MICROSATELLITE DATA; GENOMIC DIVERGENCE; MIGRATORY BEHAVIOR; MOLECULAR MARKERS AB Population connectivity among adult marine organisms is often attributed to dispersal during the egg/larval stage. However, post-larval dispersal may also influence connectivity, particularly when juvenile nursery habitats are separated from adult spawning habitats. Here we used age-based population genetics and kinship analysis to explore changes in population connectivity across life-history stages in Atlantic cod Gadus morhua. We genotyped 364 adult cod from the northwest Atlantic and 671 age-0 juveniles from 18 sites around eastern Newfoundland, with 72 and 15 microsatellite loci, respectively. Adult cod genotypes exhibited more population structure than was detected in juveniles across similar spatial scales. Both age classes had similar allelic diversities, but juveniles exhibited less genetic linkage and fewer departures from Hardy-Weinberg expectations than adults at the same loci. We detected significant kinship relationships in adult cod only within sampling locations, but 1 putative pair of juvenile kin was separated by >500 km. Collections of adults also displayed higher group relatedness compared to juveniles. Genetic differences between age classes are likely due to a combination of non-random mortality and non-random sorting of admixed juveniles into different adult habitats. Many studies overlook post-larval dispersal as a factor of marine population connectivity, but pre-adult relocation may be demographically and adaptively significant, in cod and other species. C1 [Horne, John B.; Paterson, Ian G.; Hutchings, Jeffrey; Bentzen, Paul] Dalhousie Univ, Dept Biol, Marine Gene Probe Lab, 1355 Oxford St, Halifax, NS B3H 4R2, Canada. [Bradbury, Ian R.; Morris, Corey J.; Gregory, Robert S.] Dept Fisheries & Oceans Canada, 80 E White Hills Rd, St John, NF A1C 5X1, Canada. [Hardie, David] Dept Fisheries & Oceans Canada, Dartmouth, NS B2Y 4T3, Canada. [Hutchings, Jeffrey] Univ Oslo, Dept Biosci, Ctr Ecol & Evolutionary Synth, N-0316 Oslo, Norway. [Laurel, Benjamin J.] NOAA, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,Hatfield Marine Sci Ct, Newport, OR 97365 USA. [Snelgrove, Paul V. R.] Mem Univ Newfoundland, Dept Ocean Sci, St John, NF A1C 5S7, Canada. [Snelgrove, Paul V. R.] Mem Univ Newfoundland, Dept Biol, St John, NF A1C 5S7, Canada. RP Horne, JB (reprint author), Dalhousie Univ, Dept Biol, Marine Gene Probe Lab, 1355 Oxford St, Halifax, NS B3H 4R2, Canada. EM john.horne@gmail.com OI Horne, John/0000-0002-7585-6108 FU Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Projects Grant; NSERC Discovery Grant; Fisheries & Oceans Canada (DFO) Species at Risk; NOAA National Marine Fisheries Service Grant FX The research was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Projects Grant led by P.V.R.S., NSERC Discovery Grant to P.B., Fisheries & Oceans Canada (DFO) Species at Risk funding led by R.S.G., and NOAA National Marine Fisheries Service Grant for a workshop to B.J.L. Assistance with field collections was variously provided on Georges Bank by Patrick O'Reilly, and on the Island of New-foundland by Mervin Langdon and Margaret Warren. The manuscript was reviewed and improved by comments of 2 anonymous reviewers. NR 75 TC 0 Z9 0 U1 9 U2 9 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PD SEP 8 PY 2016 VL 556 BP 237 EP 250 DI 10.3354/meps11819 PG 14 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA DX3AF UT WOS:000384244300017 ER PT J AU Hurst, DF Read, WG Vomel, H Selkirk, HB Rosenlof, KH Davis, SM Hall, EG Jordan, AF Oltmans, SJ AF Hurst, Dale F. Read, William G. Vomel, Holger Selkirk, Henry B. Rosenlof, Karen H. Davis, Sean M. Hall, Emrys G. Jordan, Allen F. Oltmans, Samuel J. TI Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID DATA RECORDS; BOULDER; UNCERTAINTIES; VARIABILITY; WASHINGTON; INCREASE; TRENDS; DC AB Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0 degrees-N); Hilo, Hawaii (19.7 degrees-N); and Lauder, New Zealand (45.0 degrees-S) - from August 2004 through December 2012 not only demonstrated agreement better than 1-% between 68 and 26-hPa but also exposed statistically significant biases of 2 to 10-% at 83 and 100-hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2 degrees-N), and San Jos,, Costa Rica (10.0 degrees-N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year(-1) (0.6 to 1.5-% year(-1)) from similar to 2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (similar to 1-% year(-1)) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements. C1 [Hurst, Dale F.; Davis, Sean M.; Hall, Emrys G.; Jordan, Allen F.; Oltmans, Samuel J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.; Oltmans, Samuel J.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Read, William G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Vomel, Holger] Natl Ctr Atmospher Res, Earth Observing Lab, POB 3000, Boulder, CO 80307 USA. [Selkirk, Henry B.] NASA, Lab Atmospher Chem & Dynam, Goddard Space Flight Ctr, Greenbelt, MD USA. [Selkirk, Henry B.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Rosenlof, Karen H.; Davis, Sean M.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. RP Hurst, DF (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.; Hurst, DF (reprint author), NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA. EM dale.hurst@noaa.gov RI Rosenlof, Karen/B-5652-2008; Davis, Sean/C-9570-2011; Manager, CSD Publications/B-2789-2015 OI Rosenlof, Karen/0000-0002-0903-8270; Davis, Sean/0000-0001-9276-6158; FU NOAA's Climate Program Office; US Global Climate Observing System Program; NASA's Upper Atmosphere Research Program; NOAA FX The NOAA frost point hygrometer network is supported in part by NOAA's Climate Program Office, the US Global Climate Observing System Program and NASA's Upper Atmosphere Research Program. The FPH soundings used in this study were carefully conducted at Hilo by David Nardini and Darryl Kuniyuki, and at Lauder by Hamish Chisholm, Alan Thomas, Wills Dobson and Richard Querel. Karen Rosenlof and Sean Davis's participation in this study was supported by NOAA resources targeted for water vapor research in the upper troposphere. NR 24 TC 1 Z9 1 U1 2 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD SEP 8 PY 2016 VL 9 IS 9 BP 4447 EP 4457 DI 10.5194/amt-9-4447-2016 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DW9VC UT WOS:000384009800001 ER PT J AU Schlegel, NJ Wiese, DN Larour, EY Watkins, MM Box, JE Fettweis, X van den Broeke, MR AF Schlegel, Nicole-Jeanne Wiese, David N. Larour, Eric Y. Watkins, Michael M. Box, Jason E. Fettweis, Xavier van den Broeke, Michiel R. TI Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012) SO CRYOSPHERE LA English DT Article ID SEA-LEVEL RISE; REGIONAL CLIMATE MODELS; NORTHEAST GREENLAND; OUTLET GLACIERS; MULTIMODEL PROJECTIONS; GRAVITY OBSERVATIONS; BOUNDARY-CONDITIONS; ANTARCTICA; FLOW; SENSITIVITY AB Quantifying the Greenland Ice Sheet's future contribution to sea level rise is a challenging task that requires accurate estimates of ice sheet sensitivity to climate change. Forward ice sheet models are promising tools for estimating future ice sheet behavior, yet confidence is low because evaluation of historical simulations is challenging due to the scarcity of continental-wide data for model evaluation. Recent advancements in processing of Gravity Recovery and Climate Experiment (GRACE) data using Bayesianc-onstrained mass concentration ("mascon") functions have led to improvements in spatial resolution and noise reduction of monthly global gravity fields. Specifically, the Jet Propulsion Laboratory's JPL RL05M GRACE mascon solution (GRACE_JPL) offers an opportunity for the assessment of model-based estimates of ice sheet mass balance (MB) at similar to 300 km spatial scales. Here, we quantify the differences between Greenland monthly observed MB (GRACE_JPL) and that estimated by state-of-the-art, high-resolution models, with respect to GRACE_JPL and model uncertainties. To simulate the years 2003-2012, we force the Ice Sheet System Model (ISSM) with anomalies from three different surface mass balance (SMB) products derived from regional climate models. Resulting MB is compared against GRACE_JPL within individual mascons. Overall, we find agreement in the northeast and southwest where MB is assumed to be primarily controlled by SMB. In the interior, we find a discrepancy in trend, which we presume to be related to millennial-scale dynamic thickening not considered by our model. In the northwest, seasonal amplitudes agree, but modeled mass trends are muted relative to GRACE_JPL. Here, discrepancies are likely controlled by temporal variability in ice discharge and other related processes not represented by our model simulations, i.e., hydrological processes and ice-ocean interaction. In the southeast, GRACE_JPL exhibits larger seasonal amplitude than predicted by the models while simultaneously having more pronounced trends; thus, discrepancies are likely controlled by a combination of missing processes and errors in both the SMB products and ISSM. At the margins, we find evidence of consistent intra-annual variations in regional MB that deviate distinctively from the SMB annual cycle. Ultimately, these monthly-scale variations, likely associated with hydrology or ice-ocean interaction, contribute to steeper negative mass trends observed by GRACE_JPL. Thus, models should consider such processes at relatively high (monthly-to-seasonal) temporal resolutions to achieve accurate estimates of Greenland MB. C1 [Schlegel, Nicole-Jeanne] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Schlegel, Nicole-Jeanne; Wiese, David N.; Larour, Eric Y.; Watkins, Michael M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Box, Jason E.] Geol Survey Denmark & Greenland GEUS, Oster Voldgade 10, DK-1350 Copenhagen, Denmark. [Fettweis, Xavier] Univ Liege, Dept Geog, B-4000 Liege, Belgium. [van den Broeke, Michiel R.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, Utrecht, Netherlands. RP Schlegel, NJ (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA.; Schlegel, NJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM nicole-jeanne.schlegel@jpl.nasa.gov RI Van den Broeke, Michiel/F-7867-2011 OI Van den Broeke, Michiel/0000-0003-4662-7565 FU Geocenter Denmark; NSF [ANT-0424589]; NASA [NNX10AT68G] FX This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Program. The contribution from J. E. Box was supported by Geocenter Denmark. The authors would like to acknowledge the data provided by the National Snow and Ice Data Center DAAC, University of Colorado, Boulder, CO, Operation IceBridge, as well as CReSIS data generated from NSF grant ANT-0424589 and NASA grant NNX10AT68G (Gogineni, 2012). This work was made possible through model development of the ISSM team, including invaluable guidance in model setup by Helene Seroussi and incorporation of the most recent BedMachine bedmap of Greenland provided by Mathieu Morlighem. The authors would also like to thank Alex Gardner for his invaluable contribution, including discussion and advice pertaining to the periphery; GRACE_JPL team members, in particular Carmen Boening and Isabella Velicogna, for their support and advice with respect to interpretation of the GRACE solution; and Beata Csatho for sharing results of altimetrically derived trends over the Greenland Ice Sheet. Finally, the authors would like to extend gratitude towards four anonymous referees for their helpful comments and discussions pertaining to this paper. NR 119 TC 1 Z9 1 U1 22 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PD SEP 7 PY 2016 VL 10 IS 5 BP 1965 EP 1989 DI 10.5194/tc-10-1965-2016 PG 25 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA DW9JY UT WOS:000383975900001 ER PT J AU Cetinic, I Poulton, N Slade, WH AF Cetinic, Ivona Poulton, Nicole Slade, Wayne H. TI Characterizing the phytoplankton soup: pump and plumbing effects on the particle assemblage in underway optical seawater systems SO OPTICS EXPRESS LA English DT Article ID BEAM ATTENUATION; OPEN-OCEAN; ENVIRONMENTS; PLANKTON; BACKSCATTERING; AGGREGATION; CARBON AB Many optical and biogeochemical data sets, crucial for algorithm development and satellite data validation, are collected using underway seawater systems over the course of research cruises. Phytoplankton and particle size distribution (PSD) in the ocean is a key measurement, required in oceanographic research and ocean optics. Using a data set collected in the North Atlantic, spanning different oceanic water types, we outline the differences observed in concurrent samples collected from two different flow-through systems: a permanently plumbed science seawater supply with an impeller pump, and an independent system with shorter, clean tubing runs and a diaphragm pump. We observed an average of 40% decrease in phytoplankton counts, and significant changes to the PSD in 10-45 mu m range, when comparing impeller and diaphragm pump systems. Change in PSD seems to be more dependent on the type of the phytoplankton, than the size, with photosynthetic ciliates displaying the largest decreases in cell counts (78%). Comparison of chlorophyll concentrations across the two systems demonstrated lower sensitivity to sampling system type. Observed changes in several measured biogeochemical parameters (associated with phytoplankton size distribution) using the two sampling systems, should be used as a guide towards building best practices when it comes to the deployment of flow-through systems in the field for examining optics and biogeochemistry. Using optical models, we evaluated potential impact of the observed change in measured phytoplankton size spectra onto scattering measurements, resulting in significant differences between modeled optical properties across systems (similar to 40%). Researchers should be aware of the methods used with previously collected data sets, and take into consideration the potentially significant and highly variable ecosystem-dependent biases in designing field studies in the future. (C) 2016 Optical Society of America C1 [Cetinic, Ivona] Univ Space Res Assoc, GESTAR, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA. [Cetinic, Ivona] NASA Goddard Space Flight Ctr, Code 616, Greenbelt, MD 20771 USA. [Poulton, Nicole] Bigelow Lab Ocean Sci, 60 Bigelow Dr, East Boothbay, ME 04544 USA. [Slade, Wayne H.] Sequoia Sci Inc, 2700 Richards Rd,Suite 107, Bellevue, WA 98005 USA. RP Cetinic, I (reprint author), Univ Space Res Assoc, GESTAR, 7178 Columbia Gateway Dr, Columbia, MD 21046 USA.; Cetinic, I (reprint author), NASA Goddard Space Flight Ctr, Code 616, Greenbelt, MD 20771 USA. EM ivona.cetinic@nasa.gov FU National Aeronautics and Space Administration (NASA) [NNX13AC42G] FX National Aeronautics and Space Administration (NASA) (NNX13AC42G). NR 33 TC 0 Z9 0 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 5 PY 2016 VL 24 IS 18 BP 20703 EP 20715 DI 10.1364/OE.24.020703 PG 13 WC Optics SC Optics GA DZ8AT UT WOS:000386091300077 PM 27607674 ER PT J AU Soibel, A Ting, DZ Hill, CJ Fisher, AM Hoglund, L Keo, SA Gunapala, SD AF Soibel, Alexander Ting, David Z. Hill, Cory J. Fisher, Anita M. Hoglund, Linda Keo, Sam. A. Gunapala, Sarath D. TI Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength SO APPLIED PHYSICS LETTERS LA English DT Article AB We extended the cut-off wavelength lambda(c) of bulk InAsSb nBn detectors to lambda(c) = 4.6 mu m at T = 200 K by incorporating series of single InSb monolayer into InAsSb absorber. Detectors with 2 mu m thick absorber showed a temperature independent quantum efficiency QE(m) approximate to 0.45 for back-side illumination without antireflection coating. The dark current density was j(d) = 5 x 10(-6) A/cm(2) at T = 150 K, and increased to j(d) = 2 x 10(-3) A/cm(2) at T = 200 K. At temperatures of T = 150 K and below, the demonstrated photodetectors operate in the background limited performance mode, with detectivity D*(lambda) = 3-6 x 10(11) cm Hz(0.5)/W for the background temperature of 300 K, and f/2 field of view. Published by AIP Publishing. C1 [Soibel, Alexander; Ting, David Z.; Hill, Cory J.; Fisher, Anita M.; Hoglund, Linda; Keo, Sam. A.; Gunapala, Sarath D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91030 USA. RP Soibel, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91030 USA. FU National Aeronautics and Space Administration FX The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 22 TC 0 Z9 0 U1 21 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 5 PY 2016 VL 109 IS 10 BP 214 EP 217 AR 103505 DI 10.1063/1.4962271 PG 4 WC Physics, Applied SC Physics GA DX5EP UT WOS:000384402900045 ER PT J AU Lee, JN Cahalan, RF Wu, DL AF Lee, Jae N. Cahalan, Robert F. Wu, Dong L. TI Solar rotational modulations of spectral irradiance and correlations with the variability of total solar irradiance SO JOURNAL OF SPACE WEATHER AND SPACE CLIMATE LA English DT Article DE Solar rotational modulation; Total solar irradiance; Spectral solar irradiance; SORCE; SATIRE-S ID II SOLSTICE-II; EMPIRICAL MODE DECOMPOSITION; ULTRAVIOLET IRRADIANCE; INSTRUMENT DESIGN; RADIATIVE OUTPUT; UV IRRADIANCE; SATIRE MODEL; MONITOR TIM; CYCLE; CLIMATE AB Aims: We characterize the solar rotational modulations of spectral solar irradiance (SSI) and compare them with the corresponding changes of total solar irradiance (TSI). Solar rotational modulations of TSI and SSI at wavelengths between 120 and 1600 nm are identified over one hundred Carrington rotational cycles during 2003-2013. Methods: The SORCE (Solar Radiation and Climate Experiment) and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SEE (Solar EUV Experiment) measured and SATIRE-S modeled solar irradiances are analyzed using the EEMD (Ensemble Empirical Mode Decomposition) method to determine the phase and amplitude of 27-day solar rotational variation in TSI and SSI. Results: The mode decomposition clearly identifies 27-day solar rotational variations in SSI between 120 and 1600 nm, and there is a robust wavelength dependence in the phase of the rotational mode relative to that of TSI. The rotational modes of visible (VIS) and near infrared (NIR) are in phase with the mode of TSI, but the phase of the rotational mode of ultraviolet (UV) exhibits differences from that of TSI. While it is questionable that the VIS to NIR portion of the solar spectrum has yet been observed with sufficient accuracy and precision to determine the 11-year solar cycle variations, the temporal variations over one hundred cycles of 27-day solar rotation, independent of the two solar cycles in which they are embedded, show distinct solar rotational modulations at each wavelength. C1 [Lee, Jae N.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Lee, Jae N.; Cahalan, Robert F.; Wu, Dong L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Lee, JN (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA.; Lee, JN (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM jae.n.lee@nasa.gov FU NASA living with a Star Targeted Research and Technology Program [NNH10ZDA001 N-LWSTRT] FX This work is supported by the NASA living with a Star Targeted Research and Technology Program (NNH10ZDA001 N-LWSTRT). We wish to thank Natalie Krivova, Yvonne Unruh, and two reviewers for many useful comments which helped to improve the manuscript and our analysis. We also thank the SORCE, TIMED, and SATIRE teams for providing their data and analysis support. The editor thanks Tom Woods and an anonymous referee for their assistance in evaluating this paper. NR 74 TC 0 Z9 0 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2115-7251 J9 J SPACE WEATHER SPAC JI J. Space Weather Space Clim. PD SEP 5 PY 2016 VL 6 AR A33 DI 10.1051/swsc/2016028 PG 13 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DV9UY UT WOS:000383288900001 ER PT J AU McGraw, M Kolla, P Yao, B Cook, R Quiao, Q Wu, J Smirnova, A AF McGraw, M. Kolla, P. Yao, B. Cook, R. Quiao, Q. Wu, J. Smirnova, A. TI One-step solid-state in-situ thermal polymerization of silicon-PEDOT nanocomposites for the application in lithium-ion battery anodes SO POLYMER LA English DT Article DE In-situ thermal polymerization; PEDOT polymer; Lithium-ion battery anode; Silicon Particles; One-step Synthesis ID ELECTROCHEMICAL PERFORMANCE; CARBON NANOTUBES; NANOWIRES; INSERTION; ELECTRODE; GROWTH AB The current study presents a one-step solid-state in-situ thermal polymerization approach to prepare silicon nanoparticles-polyethylenedioxythiophene (SiNPs-PEDOT) nanocomposites. The structure-related electrochemical performance of the in-situ polymerized 2,5-dibromo-3,4-ethylenedioxythiophene(DBEDOT) with SiNPs has been studied for the first time in application to silicon-based lithium-ion battery anodes. Thermal polymerization applied to a solution containing DBEDOT in acetonitrile with suspended silicon nanoparticles resulted in an in-situ formed SiNPs-PEDOT nanocomposite. The structure, morphology, and the corresponding electrochemical performance of the in-situ SiNPs-PEDOT nanocomposites was studied in comparison to a pure PEDOT as well as to the ex-situ polymerized SiNPs-PEDOT nanocomposites using XRD, FTIR, TGA, SEM, TEM, cyclic voltammetry, impedance spectroscopy, and constant current charge-discharge cycles. The XRD, FTIR, and TGA analysis reveal that the in-situ polymerization of monomer is not impeded by the presence of the silicon nanoparticles. The SEMand TEM studies reveal a uniform dispersion of SiNPs within in-situ polymerized PEDOT matrix compared to ex-situ formed SiNPs-PEDOT nanocomposite. In the lithium-ion battery anode, the in-situ polymerized SiNPs-PEDOT nanocomposite demonstrates the enhanced lithiation-delithiation kinetics, conductivity, and rate capability in comparison to the ex-situ SiNPs-PEDOT nanocomposite. (C) 2016 Elsevier Ltd. All rights reserved. C1 [McGraw, M.; Kolla, P.; Smirnova, A.] South Dakota Sch Mines & Technol, Chem & Appl Biol Sci, Rapid City, SD USA. [Cook, R.] Zyvex Technol, Rapid City, SD USA. [Yao, B.] South Dakota Sch Mines & Technol, Mat Engn & Sci, Rapid City, SD USA. [Quiao, Q.] South Dakota State Univ, Dept Elect Engn & Comp Sci, Brookings, SD 57007 USA. [Wu, J.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Smirnova, A (reprint author), South Dakota Sch Mines & Technol, Chem & Appl Biol Sci, Rapid City, SD USA. EM Alevtina.Smirnova@sdsmt.edu FU National Aeronautics and Space Administration (NASA) EPSCoR program [NNX14AN22A] FX The authors gratefully acknowledge the financial support from National Aeronautics and Space Administration (NASA) EPSCoR program (Grant No.: NNX14AN22A). NR 24 TC 0 Z9 0 U1 20 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD SEP 2 PY 2016 VL 99 BP 488 EP 495 DI 10.1016/j.polymer.2016.05.044 PG 8 WC Polymer Science SC Polymer Science GA DW8DW UT WOS:000383885000053 ER PT J AU Wu, CC Liou, K Lepping, RP Hutting, L Plunkett, S Howard, RA Socker, D AF Wu, Chin-Chun Liou, Kan Lepping, Ronald P. Hutting, Lynn Plunkett, Simon Howard, Russ A. Socker, Dennis TI The first super geomagnetic storm of solar cycle 24: "The St. Patrick's day event (17 March 2015)" SO EARTH PLANETS AND SPACE LA English DT Article ID MAGNETIC CLOUDS; INTERPLANETARY SHOCKS; WIND; PARAMETERS; SIMULATION; INTENSITY; ERRORS; AU AB The first super geomagnetic storm (Dst < -200 nT) of solar cycle 24 occurred on "St. Patrick's day" (17 March 2015). Notably, it was a two-step storm. The source of the storm can be traced back to the solar event on 15 March 2015. At similar to 2:10 UT on that day, SOHO/LASCO C3 recorded a partial halo coronal mass ejection (CME), which was associated with a C9.1/1F flare (S22W25) and a series of type II/IV radio bursts. The initial propagation speed of this CME is estimated to be similar to 668 km/s. An interplanetary (IP) shock, likely driven by a magnetic cloud (MC), arrived at the Wind spacecraft at 03:59 UT on 17 March and caused a sudden storm commencement. The storm intensified during the Earth's crossing of the ICME/shock sheath and then recovered slightly after the interplanetary magnetic field (IMF) turned northward. The IMF started turning southward again due to a large MC field itself, which caused the second storm intensification, reaching a minimum value (Dst = -223 nT). It is found that the first step is caused by a southward IMF component in the sheath (between the upstream shock and the front of the MC), whereas the second step is associated with the passage of the MC. The CME that erupted on 15 March is the sole solar source of the MC. We also discuss the CME/storm event with detailed data from observations (Wind and SOHO) and our algorithm for predicting the intensity of a geomagnetic storm (Dst(min)) from known IP parameter values. We found that choosing the correct Dst(min) estimating formula for predicting the intensity of MC-associated geomagnetic storms is crucial for space weather predictions. C1 [Wu, Chin-Chun; Hutting, Lynn; Plunkett, Simon; Howard, Russ A.; Socker, Dennis] Naval Res Lab, Washington, DC 20375 USA. [Liou, Kan] Appl Phys Lab, Laurel, MD 20723 USA. [Lepping, Ronald P.] NASA, GSFC, Greenbelt, MD USA. RP Wu, CC (reprint author), Naval Res Lab, Washington, DC 20375 USA. EM chin-chun.wu@nrl.navy.mil; kan.liou@jhuapl.edu; Ronald.p.lepping@gmail.com; Lynn.hutting@nrl.navy.mil; Simon.plunkett@nrl.navy.mil; Russ.howard@nrl.navy.mil; Dennis.Socker@nrl.navy.mil RI Liou, Kan/C-2089-2016 OI Liou, Kan/0000-0001-5277-7688 FU NASA [NNX14AF83G, S-136361-Y] FX We thank the Wind PI team and National Space Science Data Center at Goddard Space Flight Center for management and providing Wind plasma and magnetic field solar wind data. This study was supported partially by the Chief of Naval Research (CCW, SP, DS, LH). K.L. was supported by NASA grant NNX14AF83G to the Johns Hopkins University Applied Physics Laboratory. We acknowledge the support of NASA contract S-136361-Y for the STEREO/SEC-CHI effort. CCW has participated in the ISEST working group on the campaign events. CCW would like to thank VarSITI and ISEST for partial travel support. NR 39 TC 1 Z9 1 U1 20 U2 20 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1880-5981 J9 EARTH PLANETS SPACE JI Earth Planets Space PD SEP 2 PY 2016 VL 68 DI 10.1186/s40623-016-0525-y PG 12 WC Geosciences, Multidisciplinary SC Geology GA DV3WJ UT WOS:000382855100001 ER PT J AU Russell, CT Raymond, CA Ammannito, E Buczkowski, DL De Sanctis, MC Hiesinger, H Jaumann, R Konopliv, AS McSween, HY Nathues, A Park, RS Pieters, CM Prettyman, TH McCord, TB McFadden, LA Mottola, S Zuber, MT Joy, SP Polanskey, C Rayman, MD Castillo-Rogez, JC Chi, PJ Combe, JP Ermakov, A Fu, RR Hoffmann, M Jia, YD King, SD Lawrence, DJ Li, JY Marchi, S Preusker, F Roatsch, T Ruesch, O Schenk, P Villarreal, MN Yamashita, N AF Russell, C. T. Raymond, C. A. Ammannito, E. Buczkowski, D. L. De Sanctis, M. C. Hiesinger, H. Jaumann, R. Konopliv, A. S. McSween, H. Y. Nathues, A. Park, R. S. Pieters, C. M. Prettyman, T. H. McCord, T. B. McFadden, L. A. Mottola, S. Zuber, M. T. Joy, S. P. Polanskey, C. Rayman, M. D. Castillo-Rogez, J. C. Chi, P. J. Combe, J. P. Ermakov, A. Fu, R. R. Hoffmann, M. Jia, Y. D. King, S. D. Lawrence, D. J. Li, J. -Y. Marchi, S. Preusker, F. Roatsch, T. Ruesch, O. Schenk, P. Villarreal, M. N. Yamashita, N. TI Dawn arrives at Ceres: Exploration of a small, volatile-rich world SO SCIENCE LA English DT Article ID EVOLUTION; IMAGES; POLE AB On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres' surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres' dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologic features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts. C1 [Russell, C. T.; Ammannito, E.; Joy, S. P.; Chi, P. J.; Jia, Y. D.; Villarreal, M. N.] Univ Calif Los Angeles, Earth Planetary & Space Sci, 603 Charles Young Dr, Los Angeles, CA 90095 USA. [Raymond, C. A.; Konopliv, A. S.; Park, R. S.; Polanskey, C.; Rayman, M. D.; Castillo-Rogez, J. C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Buczkowski, D. L.; Lawrence, D. J.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [De Sanctis, M. C.] Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy. [Hiesinger, H.] Inst Planetol, D-48149 Munster, Germany. [Jaumann, R.; Mottola, S.; Preusker, F.; Roatsch, T.] Deutsch Zentrum Luft & Raumfahrt, Inst Planetary Res, D-12489 Berlin, Germany. [McSween, H. Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Nathues, A.; Hoffmann, M.] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. [Pieters, C. M.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Prettyman, T. H.; Li, J. -Y.; Yamashita, N.] Planetary Sci Inst, Tucson, AZ 85719 USA. [McCord, T. B.; Combe, J. P.] Bear Fight Inst, Winthrop, WA 98862 USA. [McFadden, L. A.; Ruesch, O.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zuber, M. T.; Ermakov, A.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Fu, R. R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10968 USA. [King, S. D.] Virginia Tech, Geosci, Blacksburg, VA 24061 USA. [Marchi, S.] Southwest Res Inst, Boulder, CO 80302 USA. [Schenk, P.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. RP Russell, CT (reprint author), Univ Calif Los Angeles, Earth Planetary & Space Sci, 603 Charles Young Dr, Los Angeles, CA 90095 USA. EM ctrussell@igpp.ucla.edu RI King, Scott/B-1220-2008; OI King, Scott/0000-0002-9564-5164; Ermakov, Anton/0000-0002-7020-7061 FU Lamont-Doherty Earth Observatory Post-Doctoral Fellowship; NASA; Jet Propulsion Laboratory, California Institute of Technology (JPL); [NNM05AA86C] FX We thank the Dawn team for the development, cruise, orbital insertion, and operations of the Dawn spacecraft at Ceres. C.T.R. is supported by the Discovery Program through contract NNM05AA86C to the University of California, Los Angeles. R.R.F. thanks the Lamont-Doherty Earth Observatory Post-Doctoral Fellowship for support. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Dawn's Gamma Ray and Neutron Detector is operated by the Planetary Science Institute under contract with the Jet Propulsion Laboratory, California Institute of Technology (JPL). Dawn data are archived with the NASA Planetary Data System. Framing camera data may be obtained at http://sbn.psi.edu/pds/resource/dwncfc2.html. Spectral data from Visible and Infrared Mapping Spectrometer may be obtained at http://sbn.psi.edu/pds/resource/dwncvir.html. GRaND data may be obtained at http://sbn.psi.edu/pds/resource/dwncgrd.html. NR 28 TC 12 Z9 12 U1 15 U2 15 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 2 PY 2016 VL 353 IS 6303 BP 1008 EP 1010 DI 10.1126/science.aaf4219 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU9SU UT WOS:000382558900033 PM 27701107 ER PT J AU Ammannito, E DeSanctis, MC Ciarniello, M Frigeri, A Carrozzo, FG Combe, JP Ehlmann, BL Marchi, S McSween, HY Raponi, A Toplis, MJ Tosi, F Castillo-Rogez, JC Capaccioni, F Capria, MT Fonte, S Giardino, M Jaumann, R Longobardo, A Joy, SP Magni, G McCord, TB McFadden, LA Palomba, E Pieters, CM Polanskey, CA Rayman, MD Raymond, CA Schenk, PM Zambon, F Russell, CT AF Ammannito, E. DeSanctis, M. C. Ciarniello, M. Frigeri, A. Carrozzo, F. G. Combe, J. -Ph. Ehlmann, B. L. Marchi, S. McSween, H. Y. Raponi, A. Toplis, M. J. Tosi, F. Castillo-Rogez, J. C. Capaccioni, F. Capria, M. T. Fonte, S. Giardino, M. Jaumann, R. Longobardo, A. Joy, S. P. Magni, G. McCord, T. B. McFadden, L. A. Palomba, E. Pieters, C. M. Polanskey, C. A. Rayman, M. D. Raymond, C. A. Schenk, P. M. Zambon, F. Russell, C. T. TI Distribution of phyllosilicates on the surface of Ceres SO SCIENCE LA English DT Article ID ASTEROID SPECTROSCOPIC SURVEY; EMISSION-SPECTROSCOPY; CLAY-MINERALS; DAWN MISSION; PHASE-II; WATER; SMECTITES; AMMONIUM; SPECTRA AB The dwarf planet Ceres is known to host phyllosilicate minerals at its surface, but their distribution and origin have not previously been determined. We used the spectrometer onboard the Dawn spacecraft to map their spatial distribution on the basis of diagnostic absorption features in the visible and near-infrared spectral range (0.25 to 5.0 micrometers). We found that magnesium-and ammonium-bearing minerals are ubiquitous across the surface. Variations in the strength of the absorption features are spatially correlated and indicate considerable variability in the relative abundance of the phyllosilicates, although their composition is fairly uniform. These data, along with the distinctive spectral properties of Ceres relative to other asteroids and carbonaceous meteorites, indicate that the phyllosilicates were formed endogenously by a globally widespread and extensive alteration process. C1 [Ammannito, E.; Joy, S. P.; Russell, C. T.] Univ Calif Los Angeles, Earth Planetary & Space Sci, 603 Charles Young Dr, Los Angeles, CA 90095 USA. [DeSanctis, M. C.; Ciarniello, M.; Frigeri, A.; Carrozzo, F. G.; Raponi, A.; Tosi, F.; Capaccioni, F.; Capria, M. T.; Fonte, S.; Giardino, M.; Longobardo, A.; Magni, G.; Palomba, E.; Zambon, F.] Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy. [Combe, J. -Ph.; McCord, T. B.] Bear Fight Inst, Winthrop, WA 98862 USA. [Ehlmann, B. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, B. L.; Castillo-Rogez, J. C.; Polanskey, C. A.; Rayman, M. D.; Raymond, C. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Marchi, S.] Southwest Res Inst, Boulder, CO 80302 USA. [McSween, H. Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Toplis, M. J.] Univ Toulouse, UMR 5277, Inst Rech Astrophys & Planetol, F-31400 Toulouse, France. [Jaumann, R.] Deutsch Zentrum Luft & Raumfahrt, Inst Planetary Res, D-12489 Berlin, Germany. [McFadden, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pieters, C. M.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Schenk, P. M.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. RP Ammannito, E (reprint author), Univ Calif Los Angeles, Earth Planetary & Space Sci, 603 Charles Young Dr, Los Angeles, CA 90095 USA. EM eleonora.ammannito@igpp.ucla.edu OI Palomba, Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434; Zambon, Francesca/0000-0002-4190-6592 FU Italian Space Agency (ASI); NASA; Deutsches Zentrum fur Luft- und Raumfahrt; ASI FX We thank the Italian Space Agency (ASI), NASA, and the Deutsches Zentrum fur Luft- und Raumfahrt for supporting this work. The VIR instrument was funded and coordinated by the ASI and built by Selex ES, with the scientific leadership of the Institute for Space Astrophysics and Planetology, Italian National Institute for Astrophysics, Italy, and it is operated by the Institute for Space Astrophysics and Planetology, Rome, Italy. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, USA, under contract to NASA. Dawn data are archived in NASA's Planetary Data System; VIR spectral data may be obtained at http://sbn.psi.edu/pds/resource/dwncvir.html. NR 28 TC 11 Z9 11 U1 19 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 2 PY 2016 VL 353 IS 6303 AR aaf4279 DI 10.1126/science.aaf4279 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU9SU UT WOS:000382558900031 ER PT J AU Buczkowski, DL Schmidt, BE Williams, DA Mest, SC Scully, JEC Ermakov, AI Preusker, F Schenk, P Otto, KA Hiesinger, H O'Brien, D Marchi, S Sizemore, H Hughson, K Chilton, H Bland, M Byrne, S Schorghofer, N Platz, T Jaumann, R Roatsch, T Sykes, MV Nathues, A De Sanctis, MC Raymond, CA Russell, CT AF Buczkowski, D. L. Schmidt, B. E. Williams, D. A. Mest, S. C. Scully, J. E. C. Ermakov, A. I. Preusker, F. Schenk, P. Otto, K. A. Hiesinger, H. O'Brien, D. Marchi, S. Sizemore, H. Hughson, K. Chilton, H. Bland, M. Byrne, S. Schorghofer, N. Platz, T. Jaumann, R. Roatsch, T. Sykes, M. V. Nathues, A. De Sanctis, M. C. Raymond, C. A. Russell, C. T. TI The geomorphology of Ceres SO SCIENCE LA English DT Article ID FLOOR-FRACTURED CRATERS; POLYGONAL IMPACT CRATERS; SALT TECTONICS; ROCK GLACIERS; CENTRAL PIT; MARS; GANYMEDE; GEOLOGY; ORIGIN; SHAPE AB Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust. C1 [Buczkowski, D. L.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Schmidt, B. E.; Chilton, H.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Williams, D. A.] Arizona State Univ, Tempe, AZ 85287 USA. [Mest, S. C.; O'Brien, D.; Sizemore, H.; Sykes, M. V.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Scully, J. E. C.; Raymond, C. A.] NASA, Jet Prop Lab, La Canada Flintridge, CA 91011 USA. [Ermakov, A. I.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Preusker, F.; Otto, K. A.; Jaumann, R.; Roatsch, T.] German Aerosp Ctr DLR, D-12489 Berlin, Germany. [Schenk, P.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Hiesinger, H.] Univ Munster, D-48149 Munster, Germany. [Marchi, S.] Southwest Res Inst, Boulder, CO 80302 USA. [Hughson, K.; Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Bland, M.] US Geol Survey, Flagstaff, AZ 86001 USA. [Byrne, S.] Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Schorghofer, N.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Platz, T.; Nathues, A.] Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. [De Sanctis, M. C.] Ist Astrofis & Planetol Spaziale INAF, I-00133 Rome, Italy. RP Buczkowski, DL (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM debra.buczkowski@jhuapl.edu RI Platz, Thomas/F-7539-2013; OI Platz, Thomas/0000-0002-1253-2034; Chilton, Heather/0000-0002-3238-5895; Ermakov, Anton/0000-0002-7020-7061 FU NASA FX We thank the Dawn Operations team, the Flight team, and the Instrument teams for all their work. M.B. and N.S. thank NASA's Dawn at Ceres Guest Investigator Program for support. Dawn data are archived with the NASA Planetary Data System. (http://pds-smallbodies.astro.umd.edu/data_sb/missions/dawn/index.shtml) . D.L.B. wrote the manuscript and coordinated coauthor contributions; performed the analysis of linear structures, Occator structures, and FFCs; and participated in the geologic mapping. B.E.S. led the Ground Ice Working group and the analysis of lobate flows. D.A.W., S.C.M., and J.E.C.S. participated in the Survey global geologic map. A.I.E. evaluated the Ceres hypsogram, and F.P. worked on the Ceres topography. P.S., K.A.O., H.H., D.O., S.M., and T.P. all contributed to the evaluation of Ceres craters. P.S. led the study of Occator's central dome and its similarity to central domes on other icy bodies. H.S. mapped the global extent of domes, and K.H. mapped the global extent of lobate flows. H.C., S.B., M.B., H.S., and T.P. participated in the evaluation of potential ice-cored features. R.J., T.R., M.V.S., A.N., M.C.D.S., and C.A.R. provided useful comments and suggestions during manuscript preparation. C.T.R. is the mission principal investigator and guided the research. NR 48 TC 7 Z9 7 U1 23 U2 23 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 2 PY 2016 VL 353 IS 6303 AR aaf4332 DI 10.1126/science.aaf4332 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU9SU UT WOS:000382558900029 ER PT J AU Combe, JP McCord, TB Tosi, F Ammannito, E Carrozzo, FG De Sanctis, MC Raponi, A Byrne, S Landis, ME Hughson, KHG Raymond, CA Russell, CT AF Combe, Jean-Philippe McCord, Thomas B. Tosi, Federico Ammannito, Eleonora Carrozzo, Filippo Giacomo De Sanctis, Maria Cristina Raponi, Andrea Byrne, Shane Landis, Margaret E. Hughson, Kynan H. G. Raymond, Carol A. Russell, Christopher T. TI Detection of local H2O exposed at the surface of Ceres SO SCIENCE LA English DT Article ID INFRARED SPECTRAL REFLECTANCE; ASTEROID 1 CERES; DAWN MISSION; MAPPING SPECTROMETER; WATER REGIME; VESTA; ICE; TEMPERATURE; MINERALS; EUROPA AB The surface of dwarf planet Ceres contains hydroxyl-rich materials. Theories predict a water ice-rich mantle, and water vapor emissions have been observed, yet no water (H2O) has been previously identified. The Visible and InfraRed (VIR) mapping spectrometer onboard the Dawn spacecraft has now detected water absorption features within a low-illumination, highly reflective zone in Oxo, a 10-kilometer, geologically fresh crater, on five occasions over a period of 1 month. Candidate materials are H2O ice and mineral hydrates. Exposed H2O icewould become optically undetectable within tens of years under current Ceres temperatures; consequently, only a relatively recent exposure or formation of H2O would explain Dawn's findings. Somemineral hydrates are stable on geological time scales, but their formation would imply extended contact with ice or liquid H2O. C1 [Combe, Jean-Philippe; McCord, Thomas B.] Bear Fight Inst, 22 Fiddlers Rd,POB 667, Winthrop, WA 98862 USA. [Tosi, Federico; Ammannito, Eleonora; Carrozzo, Filippo Giacomo; De Sanctis, Maria Cristina; Raponi, Andrea] Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, Rome, Italy. [Ammannito, Eleonora; Hughson, Kynan H. G.; Russell, Christopher T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Raymond, Carol A.] Jet Prop Lab, Pasadena, CA USA. [Byrne, Shane; Landis, Margaret E.] Lunar & Planetary Lab, Tucson, AZ USA. RP Combe, JP (reprint author), Bear Fight Inst, 22 Fiddlers Rd,POB 667, Winthrop, WA 98862 USA. EM jean-philippe_combe@bearfightinstitute.com FU NASA from the University of California, Los Angeles [2090-S-MB516]; ASI (Italian Space Agency); INAF (Istituto Nazionale di Astrofisica); Dawn Guest Investigator Program [NNX15AI29G] FX Support for this research was provided under the NASA Dawn mission through subcontract 2090-S-MB516 from the University of California, Los Angeles. The VIR instrument and VIR team are funded by ASI (Italian Space Agency) and INAF (Istituto Nazionale di Astrofisica). The involvement of S.B. and M.E.L. was made possible by award NNX15AI29G of the Dawn Guest Investigator Program. Dawn data for Ceres are archived in NASA's Planetary Data System Small Bodies Node (http://sbn.pds.nasa.gov/data_sb/target_asteroids.shtml#1_Ceres). We thank J. Castillo-Rogez, B. Ehlmann, H. Y. McSween, C. M. Pieters, P. Schenk, S. Schroder, and S. Uy for valuable discussions and critical reading of the manuscript. NR 45 TC 8 Z9 8 U1 13 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 2 PY 2016 VL 353 IS 6303 AR aaf3010 DI 10.1126/science.aaf3010 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU9SU UT WOS:000382558900032 ER PT J AU Hiesinger, H Marchi, S Schmedemann, N Schenk, P Pasckert, JH Neesemann, A O'Brien, DP Kneissl, T Ermakov, AI Fu, RR Bland, MT Nathues, A Platz, T Williams, DA Jaumann, R Castillo-Rogez, JC Ruesch, O Schmidt, B Park, RS Preusker, F Buczkowski, DL Russell, CT Raymond, CA AF Hiesinger, H. Marchi, S. Schmedemann, N. Schenk, P. Pasckert, J. H. Neesemann, A. O'Brien, D. P. Kneissl, T. Ermakov, A. I. Fu, R. R. Bland, M. T. Nathues, A. Platz, T. Williams, D. A. Jaumann, R. Castillo-Rogez, J. C. Ruesch, O. Schmidt, B. Park, R. S. Preusker, F. Buczkowski, D. L. Russell, C. T. Raymond, C. A. TI Cratering on Ceres: Implications for its crust and evolution SO SCIENCE LA English DT Article ID ASTEROID BELT; SOLAR-SYSTEM; PRIMORDIAL EXCITATION; COLLISIONAL HISTORY; SURFACE-COMPOSITION; 4 VESTA; IMPACT; MORPHOLOGY; DIFFERENTIATION; RELAXATION AB Thermochemical models have predicted that Ceres, is to some extent, differentiated and should have an icy crust with few or no impact craters. We present observations by the Dawn spacecraft that reveal a heavily cratered surface, a heterogeneous crater distribution, and an apparent absence of large craters. The morphology of some impact craters is consistent with ice in the subsurface, which might have favored relaxation, yet large unrelaxed craters are also present. Numerous craters exhibit polygonal shapes, terraces, flowlike features, slumping, smooth deposits, and bright spots. Crater morphology and simple-to-complex crater transition diameters indicate that the crust of Ceres is neither purely icy nor rocky. By dating a smooth region associated with the Kerwan crater, we determined absolute model ages (AMAs) of 550 million and 720 million years, depending on the applied chronology model. C1 [Hiesinger, H.; Pasckert, J. H.] Univ Munster, Inst Planetol, Munster, Germany. [Marchi, S.] Southwest Res Inst, Boulder, CO 80302 USA. [Schmedemann, N.; Neesemann, A.; Kneissl, T.; Jaumann, R.] Free Univ Berlin, Inst Geol Sci, Berlin, Germany. [Schenk, P.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [O'Brien, D. P.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Ermakov, A. I.; Fu, R. R.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bland, M. T.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Nathues, A.; Platz, T.] Max Planck Inst Solar Syst Res, Gottingen, Germany. [Williams, D. A.] Arizona State Univ, Tempe, AZ 85281 USA. [Jaumann, R.; Preusker, F.] German Aerosp Ctr DLR, Berlin, Germany. [Castillo-Rogez, J. C.; Park, R. S.; Raymond, C. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Ruesch, O.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schmidt, B.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Buczkowski, D. L.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Hiesinger, H (reprint author), Univ Munster, Inst Planetol, Munster, Germany. EM hiesinger@uni-muenster.de RI Platz, Thomas/F-7539-2013; OI Platz, Thomas/0000-0002-1253-2034; Ermakov, Anton/0000-0002-7020-7061 FU NASA; DLR Space Administration on behalf of the German Federal Ministry for Economic Affairs and Energy [50 OW 1502]; [NNM05AA86C] FX We thank the Dawn team for the development, cruise, orbital insertion, and operations of the Dawn spacecraft at Ceres. C.T.R. is supported by the Discovery Program through contract NNM05AA86C to the University of California, Los Angeles. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. J.H.P. and H.H. are supported by the DLR Space Administration on behalf of the German Federal Ministry for Economic Affairs and Energy, grant 50 OW 1502 (DAWN). M.T.B. was supported by NASA's Dawn at Ceres Guest Investigator Program. Dawn data are archived with the NASA Planetary Data System. FC data may be obtained at http://sbn.psi.edu/pds/resource/dwncfc2.html. VIR spectral data may be obtained at http://sbn.psi.edu/pds/resource/dwncvir.html. GRaND data may be obtained at http://sbn.psi.edu/pds/resource/dwncgrd.html. The Ceres crater catalog described in the text and measurements of the transition diameter from simple to complex craters are available in the supplementary materials. As chair of the Dawn chronology working group, H.H. coordinated the contributions and prepared the manuscript. S.M. provided input on the distribution of craters and the PFs and CFs. N.S., A.Ne., T.K., and D.P.O. also provided input for the PFs and CFs. P.S. and T.P. made contributions to the simple-to-complex transition. J.H.P. performed CSFD measurements and helped with preparing the manuscript. A.Na. provided the description of color properties. A.I.E., R.R.F., R.S.P., F.P., J.C.C.-R., M.T.B., and C.A.R. contributed their expertise in geophysical modeling. D.A.W., R.J., B.S., D.L.B., and O.R. helped with manuscript preparation and provided useful comments and suggestions. C.T.R. is the Dawn principal investigator and guided the research. NR 69 TC 8 Z9 8 U1 18 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 2 PY 2016 VL 353 IS 6303 AR aaf4759 DI 10.1126/science.aaf4759 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU9SU UT WOS:000382558900028 ER PT J AU Ruesch, O Platz, T Schenk, P McFadden, LA Castillo-Rogez, JC Quick, LC Byrne, S Preusker, F O'Brien, DP Schmedemann, N Williams, DA Li, JY Bland, MT Hiesinger, H Kneissl, T Neesemann, A Schaefer, M Pasckert, JH Schmidt, BE Buczkowski, DL Sykes, MV Nathues, A Roatsch, T Hoffmann, M Raymond, CA Russell, CT AF Ruesch, O. Platz, T. Schenk, P. McFadden, L. A. Castillo-Rogez, J. C. Quick, L. C. Byrne, S. Preusker, F. O'Brien, D. P. Schmedemann, N. Williams, D. A. Li, J. -Y. Bland, M. T. Hiesinger, H. Kneissl, T. Neesemann, A. Schaefer, M. Pasckert, J. H. Schmidt, B. E. Buczkowski, D. L. Sykes, M. V. Nathues, A. Roatsch, T. Hoffmann, M. Raymond, C. A. Russell, C. T. TI Cryovolcanism on Ceres SO SCIENCE LA English DT Article ID ICY SATELLITES; MARS-EXPRESS; DOME GROWTH; VOLCANISM; MODELS; SYSTEM; VISCOSITY; SURFACES; ORIGIN; LAVAS AB Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery, using Dawn Framing Camera images, of a landform on dwarf planet Ceres that we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres' evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres' long-term internal evolution. C1 [Ruesch, O.] NASA, Goddard Space Flight Ctr, USRA, Greenbelt, MD USA. [Platz, T.; Schaefer, M.; Nathues, A.; Hoffmann, M.] Max Planck Inst Solar Syst Res, Gottingen, Germany. [Schenk, P.] Lunar & Planetary Sci Inst, Houston, TX USA. [McFadden, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Castillo-Rogez, J. C.; Raymond, C. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Quick, L. C.; O'Brien, D. P.; Li, J. -Y.; Sykes, M. V.] Planetary Sci Inst, Tucson, AZ USA. [Byrne, S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Preusker, F.; Roatsch, T.] German Aerosp Ctr DLR, Berlin, Germany. [Schmedemann, N.; Kneissl, T.; Neesemann, A.] Free Univ Berlin, Inst Geosci, Berlin, Germany. [Williams, D. A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Bland, M. T.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Hiesinger, H.; Pasckert, J. H.] Univ Munster, Inst Planetol, Munster, Germany. [Schmidt, B. E.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Buczkowski, D. L.] Johns Hopkins Appl Phys Lab, Laurel, MD USA. [Russell, C. T.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. RP Ruesch, O (reprint author), NASA, Goddard Space Flight Ctr, USRA, Greenbelt, MD USA. EM ottaviano.ruesch@nasa.gov RI Platz, Thomas/F-7539-2013 OI Platz, Thomas/0000-0002-1253-2034 FU Max Planck Society; DLR; NASA/Jet Propulsion Laboratory; NASA; NASA [NNH15AZ85I] FX The Framing Camera system on the spacecraft was developed and built under the leadership of the Max Planck Institute for Solar System Research in Gottingen, Germany, in collaboration with the DLR Institute of Planetary Research in Berlin and the Institute of Computer and Communication Network Engineering in Braunschweig. The Framing Camera project is funded by the Max Planck Society, DLR, and NASA/Jet Propulsion Laboratory. The Dawn spacecraft Operations and Flight teams made the observations possible and are acknowledged for their efforts. O.R. is supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Space Flight Center administered by Universities Space Research Association through a contract with NASA. N.S., A.Ne., and J.H.P. acknowledge partial support by DLR. M.T.B. acknowledges support by the NASA Dawn at Ceres Guest Investigator Program Award NNH15AZ85I. We acknowledge the careful and highly beneficial reviews by anonymous referees. Dawn Framing Camera data are archived with the NASA Planetary Data System at http://sbn.psi.edu/pds/resource/dwncfc2.html. O.R. conceived the study, performed the geologic and modeling analyses, and wrote the manuscript. T.P., L.C.Q., D.P.O., S.B., and M.T.B. contributed to the geologic or modeling analyses. J.-Y.L., M.S., A.Na., T.R., M.H., and T.P. contributed with FC data products, and P.S. and F.P. contributed with digital terrain models. N.S., D.P.O., H.H., T.K., A.Ne., and J.H.P. provided absolute model ages. L.A.M., J.C.C.-R., D.A.W., B.E.S., D.L.B., and M.V.S. contributed to the interpretation of the data and its clear communication. C.A.R. and C.T.R. lead the Dawn mission. All authors contributed to the discussion of the results. NR 52 TC 8 Z9 8 U1 11 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 2 PY 2016 VL 353 IS 6303 AR aaf4286 DI 10.1126/science.aaf4286 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU9SU UT WOS:000382558900030 ER PT J AU Grayver, AV Schnepf, NR Kuvshinov, AV Sabaka, TJ Manoj, C Olsen, N AF Grayver, Alexander V. Schnepf, Neesha R. Kuvshinov, Alexey V. Sabaka, Terence J. Manoj, Chandrasekharan Olsen, Nils TI Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary SO SCIENCE ADVANCES LA English DT Article ID UPPER-MANTLE; ELECTROMAGNETIC INDUCTION; ELECTRICAL-CONDUCTIVITY; FIELDS; EARTH; CIRCULATION; OLIVINE; PLATES; MODEL; WATER AB The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a similar to 2-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere. C1 [Grayver, Alexander V.; Kuvshinov, Alexey V.] Swiss Fed Inst Technol, Inst Geophys, Sonneggstr 5, Zurich, Switzerland. [Schnepf, Neesha R.] Univ Colorado, Cooperat Inst Res Environm Sci, Dept Geol Sci, Boulder, CO 80305 USA. [Sabaka, Terence J.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD USA. [Manoj, Chandrasekharan] Univ Colorado, NOAA, Ctr Environm Informat CIRES, Boulder, CO 80305 USA. [Olsen, Nils] DTU Space, Lyngby, Denmark. RP Grayver, AV (reprint author), Swiss Fed Inst Technol, Inst Geophys, Sonneggstr 5, Zurich, Switzerland. EM agrayver@erdw.ethz.ch FU European Space Agency STSE Swarm + Innovation Program (European Space Research and Technology Centre) [4000113885/15/NL/MP] FX This work is supported by the European Space Agency STSE (Support To Science Element) Swarm + Innovation Program (European Space Research and Technology Centre contract no. 4000113885/15/NL/MP). NR 37 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD SEP PY 2016 VL 2 IS 9 AR e1600798 DI 10.1126/sciadv.1600798 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EP1QJ UT WOS:000397159100005 ER PT J AU Parsons-Wingerter, PA Vyas, RJ Raghunandan, S Vu, AC Zanello, SB Ploutz-Snyder, R Taibbi, G Vizzeri, G AF Parsons-Wingerter, Patricia A. Vyas, Ruchi J. Raghunandan, Sneha Vu, Amanda C. Zanello, Susana B. Ploutz-Snyder, Rob Taibbi, Giovanni Vizzeri, Gianmarco TI Analysis by NASA's VESGEN Software of Vascular Branching in the Human Retina with a Ground-Based Microgravity Analog SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Meeting Abstract CT Annual Meeting of the Association-for-Research-in-Vision-and-Ophthalmology (ARVO) CY MAY 01-05, 2016 CL Seattle, WA SP Assoc Res Vis & Ophthalmol C1 [Parsons-Wingerter, Patricia A.; Vyas, Ruchi J.; Raghunandan, Sneha] NASA Ames Res Ctr, Space Life Sci Res Branch, Moffett Field, CA USA. [Vu, Amanda C.] Univ Calif Berkeley, NASA SLSTP Summer Internship Program, Berkeley, CA 94720 USA. [Zanello, Susana B.; Ploutz-Snyder, Rob] Univ Space Res Assoc, NASA Johnson Space Ctr, Houston, TX USA. [Taibbi, Giovanni; Vizzeri, Gianmarco] Univ Texas Med Branch Galveston, Dept Ophthalmol & Visual Sci, Galveston, TX USA. FU NASA NRA; NASA Human Research SLSTP Programs FX NASA NRA to P Parsons; NASA Human Research & SLSTP Programs NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 EI 1552-5783 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD SEP PY 2016 VL 57 IS 12 MA 1671 PG 3 WC Ophthalmology SC Ophthalmology GA EK8LA UT WOS:000394174004065 ER PT J AU Jacquinet-Husson, N Armante, R Scott, NA Chedin, A Crepeau, L Boutammine, C Bouhdaoui, A Crevoisier, C Capelle, V Boonne, C Poulet-Crovisier, N Barbe, A Benner, DC Boudon, V Brown, LR Buldyreva, J Campargue, A Coudert, LH Devi, VM Down, MJ Drouin, BJ Fayt, A Fittschen, C Flaud, JM Gamache, RR Harrison, JJ Hill, C Hodnebrog, O Hu, SM Jacquemart, D Jolly, A Jimenez, E Lavrentieva, NN Liu, AW Lodi, L Lyulin, OM Massie, ST Mikhailenko, S Muller, HSP Naumenko, OV Nikitin, A Nielsen, CJ Orphal, J Perevalov, VI Perrin, A Polovtseva, E Predoi-Cross, A Rotger, M Ruth, AA Yu, SS Sung, K Tashkun, SA Tennyson, J Tyuterev, VIG Auwera, JV Voronin, BA Makie, A AF Jacquinet-Husson, N. Armante, R. Scott, N. A. Chedin, A. Crepeau, L. Boutammine, C. Bouhdaoui, A. Crevoisier, C. Capelle, V. Boonne, C. Poulet-Crovisier, N. Barbe, A. Benner, D. Chris Boudon, V. Brown, L. R. Buldyreva, J. Campargue, A. Coudert, L. H. Devi, V. M. Down, M. J. Drouin, B. J. Fayt, A. Fittschen, C. Flaud, J. -M. Gamache, R. R. Harrison, J. J. Hill, C. Hodnebrog, O. Hu, S. -M. Jacquemart, D. Jolly, A. Jimenez, E. Lavrentieva, N. N. Liu, A. -W. Lodi, L. Lyulin, O. M. Massie, S. T. Mikhailenko, S. Mueller, H. S. P. Naumenko, O. V. Nikitin, A. Nielsen, C. J. Orphal, J. Perevalov, V. I. Perrin, A. Polovtseva, E. Predoi-Cross, A. Rotger, M. Ruth, A. A. Yu, S. S. Sung, K. Tashkun, S. A. Tennyson, J. Tyuterev, V. I. G. Auwera, J. Vander Voronin, B. A. Makie, A. TI The 2015 edition of the GEISA spectroscopic database SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Molecular spectroscopic database; Line parameters; Cross sections; Aerosols; Earth and planetary radiative transfer ID ABSORPTION CROSS-SECTIONS; MU-M REGION; CW-CAVITY RING; EMPIRICAL LINE LIST; SELF-BROADENING COEFFICIENTS; COMPLEX REFRACTIVE-INDEXES; GLOBAL WARMING POTENTIALS; ENRICHED CARBON-DIOXIDE; M TRANSPARENCY WINDOW; ROTATIONAL-VIBRATIONAL SPECTRA AB The GEISA database (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) has been developed and maintained by the ARA/ABC(t) group at LMD since 1974. GEISA is constantly evolving, taking into account the best available spectroscopic data. This paper presents the 2015 release of GEISA (GEISA-2015), which updates the last edition of 2011 and celebrates the 40th anniversary of the database. Significant updates and additions have been implemented in the three following independent databases of GEISA. The "line parameters database" contains 52 molecular species (118 isotopologues) and transitions in the spectral range from 10(-6) to 35,877.031 cm(-1), representing 5,067,351 entries, against 3,794,297 in GEISA-2011. Among the previously existing molecules, 20 molecular species have been updated. A new molecule (SO3) has been added. HDO, isotopologue of H2O, is now identified as an independent molecular species. Seven new isotopologues have been added to the GEISA-2015 database. The "cross section sub-database" has been enriched by the addition of 43 new molecular species in its infrared part, 4 molecules (ethane, propane, acetone, acetonitrile) are also updated; they represent 3% of the update. A new section is added, in the near-infrared spectral region, involving 7 molecular species: CH3CN, CH3I, CH3O2, H2CO, HO2, HONO, NH3. The "microphysical and optical properties of atmospheric aerosols sub-database" has been updated for the first time since 2003. It contains more than 40 species originating from NCAR and 20 from the ARIA archive of Oxford University. As for the previous versions, this new release of GEISA and associated management software facilities are implemented and freely accessible on the AERIS/ESPRI atmospheric chemistry data center website. (C) 2016 Elsevier Inc. All rights reserved. C1 [Jacquinet-Husson, N.] Univ Paris 06, CNRS, IPSL, Lab Meteorol Dynam,Sorbonne Univ, F-75252 Paris, France. [Armante, R.; Scott, N. A.; Chedin, A.; Crepeau, L.; Boutammine, C.; Bouhdaoui, A.; Crevoisier, C.; Capelle, V.] Univ Paris Saclay, Ecole Polytech, CNRS, Lab Meteorol Dynam,IPSL, F-91128 Palaiseau, France. [Boonne, C.; Poulet-Crovisier, N.] Univ Paris 06, Inst Pierre Simon Laplace, F-75252 Paris, France. [Barbe, A.; Rotger, M.; Tyuterev, V. I. G.] Univ Reims, Grp Spectrometrie Mol & Atmospher, F-51062 Reims, France. [Benner, D. Chris; Devi, V. M.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Boudon, V.] Univ Bourgogne Franche Comte, CNRS, UMR 6303, Lab Interdisciplinaire Carnot Bourgogne, 9 Ave Alain Savory,BP 47 870, F-21078 Dijon, France. [Brown, L. R.; Drouin, B. J.; Yu, S. S.; Sung, K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Buldyreva, J.] Univ Fed Bourgogne Franche Comte, CNRS, UMR 6213, Inst UTINAM, 16 Route Gray, F-25030 Besancon, France. [Campargue, A.] Univ Grenoble Alpes, LIPhy, F-38000 Grenoble, France. [Campargue, A.] CNRS, LIPhy, F-38000 Grenoble, France. [Coudert, L. H.] Univ Paris Sud & Paris Saclay, CNRS, ISMO, F-91405 Orsay, France. [Flaud, J. -M.; Jolly, A.; Perrin, A.] CNRS, F-94010 Creteil, France. [Flaud, J. -M.; Jolly, A.; Perrin, A.] Univ Paris EST, F-94010 Creteil, France. [Flaud, J. -M.; Jolly, A.; Perrin, A.] Univ Paris 07, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Down, M. J.; Hill, C.; Lodi, L.; Tennyson, J.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Fayt, A.] Catholic Univ Louvain, Chemin Cyclotron 2,Boite L7-01-07, B-1348 Louvain La Neuve, Belgium. [Fittschen, C.] Univ Lille, CNRS, UMR 8522, PC2A,Physicochim Proc Combust & Atmosphere, F-59000 Lille, France. [Gamache, R. R.] Univ Massachusetts Lowell, Dept Environm Earth & Atmospher Sci, Lowell, MA 01854 USA. [Harrison, J. J.] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. [Harrison, J. J.] Univ Leicester, Natl Ctr Earth Observat, Univ Rd, Leicester LE1 7RH, Leics, England. [Hodnebrog, O.] CICERO, POB 1129 Blindern, NO-0318 Oslo, Norway. [Hu, S. -M.; Liu, A. -W.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China. [Jacquemart, D.] Univ Paris 06, Sorbonne Univ, CNRS, UMR 8233,MONARIS, 4 Pl Jussieu, F-75005 Paris, France. [Jimenez, E.] Univ Castilla La Mancha, Fac Chem Sci & Technol, Dept Phys Chem, ES-13071 Ciudad Real, Spain. [Lavrentieva, N. N.; Lyulin, O. M.; Mikhailenko, S.; Naumenko, O. V.; Nikitin, A.; Perevalov, V. I.; Polovtseva, E.; Tashkun, S. A.; Voronin, B. A.] Russian Acad Sci, VE Zuev Inst Atmospher Opt, SB, Acad Zuev Sq, Tomsk 634055, Russia. [Massie, S. T.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Mikhailenko, S.] Tomsk Polytech Univ, Dept Math Phys, 30 Lenin Av, Tomsk 634050, Russia. [Mueller, H. S. P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Nielsen, C. J.] Univ Oslo, Dept Chem, NO-0315 Blindern, Norway. [Orphal, J.] KIT, Inst Meteorol & Climate Res IMK, D-76021 Karlsruhe, Germany. [Predoi-Cross, A.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. [Ruth, A. A.] Univ Coll Cork, Dept Phys, Cork, Ireland. [Ruth, A. A.] Univ Coll Cork, Environm Res Inst, Cork, Ireland. [Auwera, J. Vander] Univ Libre Bruxelles, Serv Chim Quant & Photophys, CP 160-09,50 Ave FD Roosevelt, B-1050 Brussels, Belgium. [Makie, A.] 15012 24th Ave SE, Mill Creek, WA 98012 USA. RP Jacquinet-Husson, N (reprint author), Univ Paris 06, CNRS, IPSL, Lab Meteorol Dynam,Sorbonne Univ, F-75252 Paris, France. EM nicole.jacquinet@lmd.polytechnique.fr RI Fittschen, Christa/G-6410-2010; Tennyson, Jonathan/I-2222-2012; Yu, Shanshan/D-8733-2016; Nikitin, Andrei/K-2624-2013; Hu, Shuiming/C-4287-2008; Tashkun, Sergey/E-8682-2014; Sung, Keeyoon/I-6533-2015; OI Fittschen, Christa/0000-0003-0932-432X; Tennyson, Jonathan/0000-0002-4994-5238; Nikitin, Andrei/0000-0002-4280-4096; Hu, Shuiming/0000-0002-1565-8468; Tyuterev, Vladimir/0000-0002-2181-1158 FU CNES; CNRS/INSU; National Science Foundation [AGS-1156862]; CNRS (France); RFBR (Russia) in the frame of the International Associated Laboratory SAMIA; Science Foundation Ireland [14/TIDA/2415]; European Union's Horizon 2020 research and innovation program [654169]; Fond de la Recherche Scientifique de Belgique (FRS-FNRS); Natural Sciences and Engineering Research Council of Canada; Russian Fund for Basic Research [16-52-16016 NCNIL_a]; [CGL2013-43227-R]; [PEII-2014-043-P] FX This study is supported by CNES and CNRS/INSU with associated encouragements of EUMETSAT.r We thank the AERIS data infrastructure for providing access to the data used in this study.r Pr. R.R. Gamache is pleased to acknowledge support of this research by the National Science Foundation through Grant No. AGS-1156862.r The work of Reims, Tomsk and Grenoble groups on ozone and a part of the methane studies were jointly supported by CNRS (France) and RFBR (Russia) in the frame of the International Associated Laboratory SAMIA. The latter one was performed in the frame of the Labex OSUG@2020 (ANR10 LABX56).r The CH4 work of Dr. A. Campargue is jointly supported by CNRS (France) and RFBR (Russia) in the frame of the International Associated Laboratory SAMIA. This work was performed in the frame of the Labex OSUG@2020 (ANR10 LABX56).r The near infrared measurements from Physics Department and Environmental Research Institute, University College Cork, were supported by Science Foundation Ireland (contract 14/TIDA/2415). The financial support, through the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation program under grant agreement no. 654169 is also gratefully acknowledged.r E. Jimenez thanks the national and regional Spanish projects GASSOL (CGL2013-43227-R) and FOTOCINE (PEII-2014-043-P) for supporting her work.r Dr. Andre Fayt thanks the supercomputing facilities of the Universite Catholique de Louvain (CISM/UCL) for the provided computational resources, as well as the Consortium des Equipements de Calcul Intensif en Federation Wallonie Bruxelles (CECI) funded by the Fond de la Recherche Scientifique de Belgique (FRS-FNRS), for his C2N2 and C4H2 contributions.r The research carried out by Dr. A. Predoi-Cross at University of Lethbridge has been funded by the Natural Sciences and Engineering Research Council of Canada through the Discovery and CREATE grant programs.r Dr. N. Lavrentieva is pleased to acknowledge the support of the Russian Fund for Basic Research (grant 16-52-16016 NCNIL_a) in this research. NR 363 TC 9 Z9 9 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD SEP PY 2016 VL 327 SI SI BP 31 EP 72 DI 10.1016/j.jms.2016.06.007 PG 42 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA DV8WY UT WOS:000383218600003 ER PT J AU Behera, P Vaishampayan, P Singh, NK Mishra, SR Raina, V Suar, M Pattnaik, AK Rastogi, G AF Behera, Pratiksha Vaishampayan, Parag Singh, Nitin K. Mishra, Samir R. Raina, Vishakha Suar, Mrutyunjay Pattnaik, Ajit K. Rastogi, Gurdeep TI The draft genome sequence of Mangrovibacter sp. strain MP23, an endophyte isolated from the roots of Phragmites karka SO GENOMICS DATA LA English DT Article; Data Paper DE Mangrovibacter sp.; Phragmites karka; Draft genome; Chilika; Endophyte AB Till date, only one draft genome has been reported within the genus Mangrovibacter. Here, we report the second draft genome shotgun sequence of a Mangrovibacter sp. strain MP23 that was isolated from the roots of Phargmites karka (P. karka), an invasive weed growing in the Chilika Lagoon, Odisha, India. Strain MP23 is a facultative anaerobic, nitrogen-fixing endophytic bacteria that grows optimally at 37 degrees C, 7.0 pH, and 1% NaCl concentration. The draft genome sequence of strain MP23 contains 4,947,475 bp with an estimated G + C content of 49.9% and total 4392 protein coding genes. The genome sequence has provided information on putative genes that code for proteins involved in oxidative stress, uptake of nutrients, and nitrogen fixation that might offer niche specific ecological fitness and explain the invasive success of P. karka in Chilika Lagoon. The draft genome sequence and annotation have been deposited at DDBJ/EMBL/GenBank under the accession number LYRP00000000. (C) 2016 Published by Elsevier Inc. C1 [Behera, Pratiksha; Pattnaik, Ajit K.; Rastogi, Gurdeep] Wetland Res & Training Ctr, Chilika Dev Author, Balugaon 752030, Odisha, India. [Vaishampayan, Parag; Singh, Nitin K.] NASA, Biotechnol & Planetary Protect Grp, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. [Mishra, Samir R.; Raina, Vishakha; Suar, Mrutyunjay] KIIT Univ, Sch Biotechnol, Bhubaneswar 751024, Odisha, India. RP Rastogi, G (reprint author), Wetland Res & Training Ctr, Chilika Dev Author, Balugaon 752030, Odisha, India. EM rastogigurdeep@gmail.com FU World Bank through the Integrated Coastal Zone Management Project (ICZMP) of Odisha [4765-IN] FX The authors would like to acknowledge the funding support (CREDIT NO.-4765-IN) received from the World Bank through the Integrated Coastal Zone Management Project (ICZMP) of Odisha. NR 7 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-5960 J9 GENOM DATA JI Genom. Data PD SEP PY 2016 VL 9 BP 128 EP 129 DI 10.1016/j.gdata.2016.07.007 PG 2 WC Genetics & Heredity SC Genetics & Heredity GA EM4YC UT WOS:000395318100009 PM 27508122 ER PT J AU Duan, Y Miller, RC Moldovan, L Beli, E Salazar, T Hazra, S Chalam, KV Raghunandan, S Vyas, RJ Parsons-Wingerter, PA Grant, MB AF Duan, Yaqian Miller, Rehae C. Moldovan, Leni Beli, Eleni Salazar, Tatiana Hazra, Sugata Chalam, K. V. Raghunandan, Sneha Vyas, Ruchi J. Parsons-Wingerter, Patricia A. Grant, Maria B. TI Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34(+) CACs in Diabetic Retinopathy SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Meeting Abstract CT Annual Meeting of the Association-for-Research-in-Vision-and-Ophthalmology (ARVO) CY MAY 01-05, 2016 CL Seattle, WA SP Assoc Res Vis & Ophthalmol C1 [Duan, Yaqian; Miller, Rehae C.; Moldovan, Leni; Beli, Eleni; Salazar, Tatiana; Grant, Maria B.] IUPUI, Ophthalmol, Indianapolis, IN USA. [Duan, Yaqian] IUPUI, Integrat & Cellular Physiol, Indianapolis, IN USA. [Hazra, Sugata] Univ Utah, Internal Med, Salt Lake City, UT USA. [Chalam, K. V.] Univ Florida, Ophthalmol, Jacksonville, FL USA. [Raghunandan, Sneha; Vyas, Ruchi J.; Parsons-Wingerter, Patricia A.] NASA, Ames Res Ctr, Space Life Sci Res Branch, Moffett Field, CA 94035 USA. FU NIH [R01EY0126001, R01EY007739, R01HL110170, R01DK090730]; Research to Prevent Blindness FX Support NIH grants: R01EY0126001, R01EY007739, R01HL110170, R01DK090730. Research to Prevent Blindness Unrestricted grant awarded to the Department of Ophthalmology at IUPUI. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 EI 1552-5783 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD SEP PY 2016 VL 57 IS 12 MA 2721 PG 3 WC Ophthalmology SC Ophthalmology GA EK8YI UT WOS:000394210201093 ER PT J AU Otto, C AF Otto, Christian TI Fluid shifts in microgravity: The visual impairment and intracranial pressure syndrome in US astronauts SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Meeting Abstract CT Annual Meeting of the Association-for-Research-in-Vision-and-Ophthalmology (ARVO) CY MAY 01-05, 2016 CL Seattle, WA SP Assoc Res Vis & Ophthalmol C1 [Otto, Christian] Univ Space Res Assoc, Div Space Life Sci, Houston, TX USA. [Otto, Christian] NASA, Johnson Space Ctr, Human Res Program, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 EI 1552-5783 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD SEP PY 2016 VL 57 IS 12 PG 2 WC Ophthalmology SC Ophthalmology GA EK8YM UT WOS:000394210605020 ER PT J AU Radhakrishnan, K Raghunandan, S Vyas, RJ Vu, AC Bryant, D Duan, YQ Knecht, BE Chalam, KV Grant, MB Parsons-Wingerter, PA AF Radhakrishnan, Krishnan Raghunandan, Sneha Vyas, Ruchi J. Vu, Amanda C. Bryant, Douglas Duan, Yaqian Knecht, Brenda E. Chalam, K. V. Grant, Maria B. Parsons-Wingerter, Patricia A. TI Association between Increased Vascular Density and Loss of Protective RAS in Early-Stage NPDR SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Meeting Abstract CT Annual Meeting of the Association-for-Research-in-Vision-and-Ophthalmology (ARVO) CY MAY 01-05, 2016 CL Seattle, WA SP Assoc Res Vis & Ophthalmol C1 [Radhakrishnan, Krishnan] US Dept Vet Affairs, Clin Epidemiol Res Ctr, CT Healthcare Syst, West Haven, CT USA. [Radhakrishnan, Krishnan] Univ Kentucky, Coll Med, Dept Internal Med, Lexington, KY USA. [Raghunandan, Sneha; Vyas, Ruchi J.; Parsons-Wingerter, Patricia A.] NASA, Space Life Sci Res Branch, Ames Res Ctr, Moffett Field, CA USA. [Vu, Amanda C.] Univ Berkeley, Dept Biomed Engn, NASA SLSTP Summer Internship Program, Berkeley, CA USA. [Bryant, Douglas; Duan, Yaqian; Knecht, Brenda E.; Grant, Maria B.] Indiana Univ, Eugene & Marilyn Glick Eye Inst, Dept Ophthalmol, Indianapolis, IN 46204 USA. [Chalam, K. V.] Univ Florida, Dept Ophthalmol, Jacksonville, FL USA. [Grant, Maria B.] Indiana Univ Sch Med, Dept Integrat & Cellular Physiol, Indianapolis, IN 46202 USA. FU NHLBI [R01HL110170]; NASA Human Research Program FX NHLBI R01HL110170 to M Grant and P Parsons. NASA Human Research Program to P Parsons. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 EI 1552-5783 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD SEP PY 2016 VL 57 IS 12 MA 5035 PG 3 WC Ophthalmology SC Ophthalmology GA EK8YI UT WOS:000394210205302 ER PT J AU Thomson, J Fan, YL Stammerjohn, S Stopa, J Rogers, WE Girard-Ardhuin, F Ardhuin, F Shen, H Perrie, W Shen, H Ackley, S Babanin, A Liu, QX Guest, P Maksym, T Wadhams, P Fairall, C Persson, O Doble, M Graber, H Lund, B Squire, V Gemmrich, J Lehner, S Holt, B Meylan, M Brozena, J Bidlot, JR AF Thomson, Jim Fan, Yalin Stammerjohn, Sharon Stopa, Justin Rogers, W. Erick Girard-Ardhuin, Fanny Ardhuin, Fabrice Shen, Hayley Perrie, Will Shen, Hui Ackley, Steve Babanin, Alex Liu, Qingxiang Guest, Peter Maksym, Ted Wadhams, Peter Fairall, Chris Persson, Ola Doble, Martin Graber, Hans Lund, Bjoern Squire, Vernon Gemmrich, Johannes Lehner, Susanne Holt, Benjamin Meylan, Mike Brozena, John Bidlot, Jean-Raymond TI Emerging trends in the sea state of the Beaufort and Chukchi seas SO OCEAN MODELLING LA English DT Article DE Sea ice; Arctic Ocean; Ocean surface waves ID ARCTIC-OCEAN; ICE; WAVES; STORM; SCATTEROMETER; CALIBRATION; REANALYSIS; CYCLONE; HEIGHT; IMPACT AB The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Thomson, Jim] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. [Fan, Yalin; Rogers, W. Erick] Naval Res Lab, Div Oceanog, Stennis Space Ctr, MS USA. [Stammerjohn, Sharon] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Stopa, Justin; Girard-Ardhuin, Fanny; Ardhuin, Fabrice] Univ Brest, CNRS, IFREMER, IRD,LOPS,IUEM, F-29280 Brest, France. [Shen, Hayley] Clarkson Univ, Dept Civil & Environm Engn, Potsdam, NY USA. [Perrie, Will; Shen, Hui] Fisheries & Oceans Canada, Dartmouth, NS, Canada. [Perrie, Will; Shen, Hui] Bedford Inst Oceanog, Dartmouth, NS, Canada. [Ackley, Steve] UTSA, Snow & Ice Geophys Lab, San Antonio, TX USA. [Babanin, Alex] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic, Australia. [Babanin, Alex; Liu, Qingxiang] Swinburne Univ Technol, Fac Sci Engn & Technol, Melbourne, Vic, Australia. [Liu, Qingxiang] Ocean Univ China, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Phys Oceanog Lab, Qingdao, Peoples R China. [Guest, Peter] Naval Postgrad Sch, Dept Meteorol, Monterey, CA USA. [Maksym, Ted] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Wadhams, Peter] Univ Cambridge, Cambridge, England. [Fairall, Chris; Persson, Ola] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Fairall, Chris; Persson, Ola] NOAA, Div Phys Sci, Boulder, CO USA. [Doble, Martin] Polar Sci Ltd, Buckingham, England. [Graber, Hans] Univ Miami, Ctr Southeastern Trop Adv Remote Sensing, Coral Gables, FL 33124 USA. [Lund, Bjoern] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Coral Gables, FL 33124 USA. [Squire, Vernon] Univ Otago, Dept Math & Stat, Dunedin, New Zealand. [Gemmrich, Johannes] Univ Victoria, Victoria, BC, Canada. [Lehner, Susanne] German Aerosp Ctr DLR, Cologne, Germany. [Holt, Benjamin] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Meylan, Mike] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. [Brozena, John] Naval Res Lab, Marine Geosci Div, Code 7420, Washington, DC 20375 USA. [Bidlot, Jean-Raymond] European Ctr Medium Range Weather Forecasts, Redding, England. RP Thomson, J (reprint author), Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. EM jthomson@apl.uw.edu RI Girard-Ardhuin, Fanny/L-4153-2015 OI Girard-Ardhuin, Fanny/0000-0001-7819-7665 FU Office of Naval Research "Arctic and Global Prediction" [322]; [N000141310435]; [N000141310278]; [N000141310290]; [N0001413IP20046]; [N000141310280]; [N000141612376]; [N000141310288]; [N0001413WX20830]; [N0001413IP20050]; [N000141310303]; [N000141310446]; [N00014-15-1-2611]; [N0001413WX20825]; [N000141310294]; [N000141310279]; [N000141310434]; [N000141310284]; [N000141310289] FX This work relies heavily on publicly available datasets, including those from the US National Snow and Ice Data Center, the Canadian Space Agency, and the European Centre for Medium-range Weather Forecasts. This work was supported by the Office of Naval Research, Code 322, "Arctic and Global Prediction", directed by Drs. Martin Jeffries and Scott Harper. (Grant numbers and Principal Investigators are: Ackley, N000141310435; Babanin, N000141310278; Doble, N000141310290; Fairall, N0001413IP20046; Gemmrich, N000141310280; Girard-Ardhuin and Ardhuin, N000141612376; Graber, N000141310288; Guest, N0001413WX20830; Holt, N0001413IP20050; Lehner, N000141310303; Maksym, N000141310446; Perrie, N00014-15-1-2611; Rogers, N0001413WX20825; Shen, N000141310294; Squire, N000141310279; Stammerjohn, N000141310434; Thomson, N000141310284; Wadhams, N000141310289.) NR 52 TC 4 Z9 4 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PD SEP PY 2016 VL 105 BP 1 EP 12 DI 10.1016/j.ocemod.2016.02.009 PG 12 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA EA6XG UT WOS:000386771800001 ER PT J AU Knox, BP Blachowicz, A Palmer, JM Romsdahl, J Huttenlocher, A Wang, CCC Keller, NP Venkateswaran, K AF Knox, Benjamin P. Blachowicz, Adriana Palmer, Jonathan M. Romsdahl, Jillian Huttenlocher, Anna Wang, Clay C. C. Keller, Nancy P. Venkateswaran, Kasthuri TI Characterization of Aspergillus fumigatus Isolates from Air and Surfaces of the International Space Station SO MSPHERE LA English DT Article DE Aspergillus fumigatus; International Space Station; SNP analysis; secondary metabolites; virulence ID VIRULENCE; FUNGI; PATHWAY; ASTRONAUTS; BOARD; GENE; MIR; IDENTIFICATION; ENVIRONMENT; COMMUNITIES AB One mission of the Microbial Observatory Experiments on the International Space Station (ISS) is to examine the traits and diversity of fungal isolates to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in a closed habitat. Here, we report an initial characterization of two isolates, ISSFT-021 and IF1SW-F4, of Aspergillus fumigatus collected from the ISS and a comparison to the experimentally established clinical isolates Af293 and CEA10. Whole-genome sequencing of ISSFT-021 and IF1SW-F4 showed 54,960 and 52,129 single nucleotide polymorphisms, respectively, compared to Af293, which is consistent with observed genetic heterogeneity among sequenced A. fumigatus isolates from diverse clinical and environmental sources. Assessment of in vitro growth characteristics, secondary metabolite production, and susceptibility to chemical stresses revealed no outstanding differences between ISS and clinical strains that would suggest special adaptation to life aboard the ISS. Virulence assessment in a neutrophil-deficient larval zebrafish model of invasive aspergillosis revealed that both ISSFT-021 and IF1SW-F4 were significantly more lethal than Af293 and CEA10. Taken together, these genomic, in vitro, and in vivo analyses of two A. fumigatus strains isolated from the ISS provide a benchmark for future investigations of these strains and for continuing research on specific microbial isolates from manned space environments. IMPORTANCE As durations of manned space missions increase, it is imperative to understand the long-term consequence of microbial exposure on human health in a closed human habitat. To date, studies aimed at bacterial and fungal contamination of space vessels have highlighted species compositions biased toward hardy, persistent organisms capable of withstanding harsh conditions. In the current study, we assessed traits of two independent Aspergillus fumigatus strains isolated from the International Space Station. Ubiquitously found in terrestrial soil and atmospheric environments, A. fumigatus is a significant opportunistic fungal threat to human health, particularly among the immunocompromised. Using two well-known clinical isolates of A. fumigatus as comparators, we found that both ISS isolates exhibited normal in vitro growth and chemical stress tolerance yet caused higher lethality in a vertebrate model of invasive disease. These findings substantiate the need for additional studies of physical traits and biological activities of microbes adapted to microgravity and other extreme extraterrestrial conditions. C1 [Knox, Benjamin P.] Univ Wisconsin, Microbiol Doctoral Training Program, Madison, WI USA. [Knox, Benjamin P.; Huttenlocher, Anna; Keller, Nancy P.] Univ Wisconsin, Dept Med Microbiol & Immunol, Madison, WI 53706 USA. [Blachowicz, Adriana; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91125 USA. [Blachowicz, Adriana; Romsdahl, Jillian; Wang, Clay C. C.] Univ Southern Calif, Sch Pharm, Dept Pharmacol & Pharmaceut Sci, Los Angeles, CA USA. [Palmer, Jonathan M.] US Forest Serv, Ctr Forest Mycol Res, Northern Res Stn, Madison, WI USA. [Huttenlocher, Anna] Univ Wisconsin, Dept Pediat, Madison, WI USA. [Wang, Clay C. C.] Univ Southern Calif, Dept Chem, Dornsife Coll Letters Arts & Sci, Los Angeles, CA USA. [Keller, Nancy P.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. EM kasthuri.j.venkateswaran@jpl.nasa.gov OI Palmer, Jonathan/0000-0003-0929-3658 FU National Science Foundation (NSF) [1136903]; National Aeronautics and Space Administration (NASA) [19-12829-26] FX This work, including the efforts of Anna Huttenlocher, Clay C. C. Wang, and Nancy P. Keller, was funded by National Science Foundation (NSF) (1136903). This work, including the efforts of Kasthuri Venkateswaran, was funded by National Aeronautics and Space Administration (NASA) (19-12829-26). NR 66 TC 1 Z9 1 U1 2 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2379-5042 J9 MSPHERE JI mSphere PD SEP-OCT PY 2016 VL 1 IS 5 AR e00227-16 DI 10.1128/mSphere.00227-16 PG 15 WC Microbiology SC Microbiology GA EI6EC UT WOS:000392586800011 ER PT J AU Schnase, JL Lee, TJ Mattmann, CA Lynnes, CS Cinquini, L Ramirez, PM Hart, AF Williams, DN Waliser, D Rinsland, P Webster, WP Duffy, DQ Mcinerney, MA Tamkin, GS Potter, GL Carrier, L AF Schnase, John L. Lee, Tsengdar J. Mattmann, Chris A. Lynnes, Christopher S. Cinquini, Luca Ramirez, Paul M. Hart, Andre F. Williams, Dean N. Waliser, Duane Rinsland, Pamela Webster, W. Philip Duffy, Daniel Q. Mcinerney, Mark A. Tamkin, Glenn S. Potter, Gerald L. Carrier, Laura TI Big Data Challenges in Climate Science Improving the next-generation cyberinfrastructure SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE LA English DT Article ID SYSTEM C1 [Schnase, John L.] Angelo State Univ, San Angelo, TX 76909 USA. [Schnase, John L.] Univ Texas Austin, Austin, TX 78712 USA. [Schnase, John L.] Baylor Coll Med, Houston, TX 77030 USA. [Schnase, John L.] Texas A&M Univ, College Stn, TX USA. [Lee, Tsengdar J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Mattmann, Chris A.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Waliser, Duane] NASA, Jet Prop Lab, Pasadena, CA USA. [Lynnes, Christopher S.; Duffy, Daniel Q.; Mcinerney, Mark A.; Tamkin, Glenn S.; Potter, Gerald L.; Carrier, Laura] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Williams, Dean N.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Rinsland, Pamela] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Schnase, JL (reprint author), Angelo State Univ, San Angelo, TX 76909 USA.; Schnase, JL (reprint author), Univ Texas Austin, Austin, TX 78712 USA.; Schnase, JL (reprint author), Baylor Coll Med, Houston, TX 77030 USA.; Schnase, JL (reprint author), Texas A&M Univ, College Stn, TX USA. EM john.l.schnase@nasa.gov; tsengdar.j.lee@nasa.gov; chris.a.mattmann@jpl.nasa.gov; christopher.s.lynnes@nasa.gov; luca.cinauini@jpl.nasa.gov; paul.m.ramirez@jpl.nasa.gov; andrew.f.hart@jpl.nasa.gov; williams13@llnl.gov; duane.waliser@jpl.nasa.gov; pamela.l.rinsland@nasa.gov; phil.webster@nasa.gov; daniel.q.duffy@nasa.gov; mark.mcincerney@nasa.gov; glenn.s.tamkin@nasa.gov; gerald.l.potter.@nasa.gov; laura.carriere@nasa.gov FU NASA Computational Modeling Algorithms and Cyberinfrastructure program FX This work has been funded by the NASA Computational Modeling Algorithms and Cyberinfrastructure program through grants to the authors' collaborating institutions. NR 23 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6831 J9 IEEE GEOSC REM SEN M JI IEEE Geosci. Remote Sens. Mag. PD SEP PY 2016 VL 4 IS 3 SI SI BP 10 EP 22 DI 10.1109/MGRS.2015.2514192 PG 13 WC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology GA EF0HY UT WOS:000390007700004 ER EF