FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Mocz, P
Vogelsberger, M
Hernquist, L
AF Mocz, Philip
Vogelsberger, Mark
Hernquist, Lars
TI A constrained transport scheme for MHD on unstructured static and moving
meshes
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE MHD; methods: numerical
ID MAGNETIC-FIELDS; ACCRETION DISKS; PARTICLE MAGNETOHYDRODYNAMICS; IDEAL
MAGNETOHYDRODYNAMICS; INTERSTELLAR GAS; DYNAMICAL STATE; BLACK-HOLES;
SIMULATIONS; TURBULENCE; EQUATIONS
AB Magnetic fields play an important role in many astrophysical systems and a detailed understanding of their impact on the gas dynamics requires robust numerical simulations. Here we present a new method to evolve the ideal magnetohydrodynamic (MHD) equations on unstructured static and moving meshes that preserves the magnetic field divergence-free constraint to machine precision. The method overcomes the major problems of using a cleaning scheme on the magnetic fields instead, which is non-conservative, not fully Galilean invariant, does not eliminate divergence errors completely, and may produce incorrect jumps across shocks. Our new method is a generalization of the constrained transport (CT) algorithm used to enforce the del . B = 0 condition on fixed Cartesian grids. Preserving del. B = 0 at the discretized level is necessary to maintain the orthogonality between the Lorentz force and B. The possibility of performing CT on a moving mesh provides several advantages over static mesh methods due to the quasi-Lagrangian nature of the former (i.e. the mesh generating points move with the flow), such as making the simulation automatically adaptive and significantly reducing advection errors. Our method preserves magnetic fields and fluid quantities in pure advection exactly.
C1 [Mocz, Philip; Hernquist, Lars] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Vogelsberger, Mark] MIT, Kavli Inst Astrophys & Space Res, Dept Phys, Cambridge, MA 02139 USA.
RP Mocz, P (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM pmocz@cfa.harvard.edu
OI Mocz, Philip/0000-0001-6631-2566
FU National Science Foundation [DGE-1144152]; NASA [NNX12AC67G]; NSF
[AST-1312095]
FX This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under grant no. DGE-1144152. LH
acknowledges support from NASA grant NNX12AC67G and NSF award
AST-1312095. PM would like to thank Paul Duffell for insightful
discussions on the manuscript.
NR 29
TC 13
Z9 13
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 21
PY 2014
VL 442
IS 1
BP 43
EP 55
DI 10.1093/mnras/stu865
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RW
UT WOS:000338765400005
ER
PT J
AU Torrelles, JM
Curiel, S
Estalella, R
Anglada, G
Gomez, JF
Canto, J
Patel, NA
Trinidad, MA
Girart, JM
Carrasco-Gonzalez, C
Rodriguez, LF
AF Torrelles, J. M.
Curiel, S.
Estalella, R.
Anglada, G.
Gomez, J. F.
Canto, J.
Patel, N. A.
Trinidad, M. A.
Girart, J. M.
Carrasco-Gonzalez, C.
Rodriguez, L. F.
TI A very young, compact bipolar H2O maser outflow in the intermediate-mass
star-forming LkH alpha 234 region
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE masers; stars: formation; ISM: individual objects: LkH alpha 234; ISM:
jets and outflows
ID LARGE PROPER MOTIONS; STELLAR OBJECTS; PROTOPLANETARY DISKS; CONTINUUM
EMISSION; PROTOSTAR CEPHEUS; RADIO-CONTINUUM; MAIN-SEQUENCE; WATER
MASERS; AFGL 2591; HH 80-81
AB We report multi-epoch Very Long Baseline Interferometry (VLBI) H2O maser observations towards the compact cluster of young stellar objects (YSOs) close to the Herbig Be star LkH alpha 234. This cluster includes LkH alpha 234 and at least nine more YSOs that are formed within projected distances of similar to 10 arcsec (similar to 9000 au). We detect H2O maser emission towards four of these YSOs. In particular, our VLBI observations (including proper motion measurements) reveal a remarkable very compact (similar to 0.2 arcsec = similar to 180 au), bipolar H2O maser outflow emerging from the embedded YSO Very Large Array (VLA) 2. We estimate a kinematic age of similar to 40 yr for this bipolar outflow, with expanding velocities of similar to 20 km s(-1) and momentum rate. MwVw similar or equal to 10(-4)-10(-3) M-circle dot yr(-1) km s(-1) x (Omega/4 pi), powered by a YSO of a few solar masses. We propose that the outflow is produced by recurrent episodic jet ejections associated with the formation of this YSO. Short-lived episodic ejection events have previously been found towards high-mass YSOs. We show now that this behaviour is also present in intermediatemass YSOs. These short-lived episodic ejections are probably related to episodic increases in the accretion rate, as observed in low-mass YSOs. We predict the presence of an accretion disc associated with VLA 2. If detected, this would represent one of the few known examples of intermediate-mass stars with a disc-YSO-jet system at scales of a few hundred astronomical units.
C1 [Torrelles, J. M.] Inst Ciencies Espai CSIC IEEC, E-08028 Barcelona, Spain.
[Torrelles, J. M.] Inst Ciencies Cosmos UB IEEC, E-08028 Barcelona, Spain.
[Curiel, S.; Canto, J.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico.
[Estalella, R.] Univ Barcelona, Dept Astron & Meteorol, E-08028 Barcelona, Spain.
[Estalella, R.] Univ Barcelona, Inst Ciencies Cosmos IEEC UB, E-08028 Barcelona, Spain.
[Anglada, G.; Gomez, J. F.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain.
[Patel, N. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Trinidad, M. A.] Univ Guanajuato, Dept Astron, Guanajuato 36000, Mexico.
[Girart, J. M.] Inst Ciencies Espai CSIC IEEC, E-08193 Bellaterra, Spain.
[Carrasco-Gonzalez, C.; Rodriguez, L. F.] Ctr Radioastron & Astrofis UNAM, Morelia 58089, Michoacan, Mexico.
RP Torrelles, JM (reprint author), Inst Ciencies Espai CSIC IEEC, Marti & Franques 1, E-08028 Barcelona, Spain.
EM torrelles@ieec.cat
RI Girart, Josep/O-1638-2014; Gomez, Jose Francisco/D-8392-2016;
OI Girart, Josep/0000-0002-3829-5591; Gomez, Jose
Francisco/0000-0002-7065-542X; Torrelles, Jose Maria/0000-0002-6896-6085
FU MICINN (Spain) [AYA2011-30228-C03]; FEDER funds; CONACyT [61547, 82543];
DGAPA; UNAM; CONACyT (Mexico); CSIC (Spain); AGAUR (Catalonia)
[2009SGR1172]
FX We are very grateful to Eri Kato for providing us the near- and
mid-infrared images shown in this paper (Fig. 1). We thank the referee,
Kevin Marvel, for his valuable comments and suggestions on the
manuscript. GA, RE, JFG, JMG, and JMT acknowledge the support from
MICINN (Spain) AYA2011-30228-C03 grant (co-funded with FEDER funds). JC
acknowledges support from CONACyT grant 61547. SC acknowledges the
support of DGAPA, UNAM, CONACyT (Mexico), and CSIC (Spain). CC-G and LFR
acknowledge the support of DGAPA, UNAM, and CONACyT (Mexico). MAT
acknowledges the support from CONACyT grant 82543. JMG, RE, and JMT
acknowledge the support from AGAUR (Catalonia) 2009SGR1172 grant. The
ICC (UB) is a CSIC-Associated Unit through the ICE (CSIC).
NR 63
TC 5
Z9 5
U1 1
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 21
PY 2014
VL 442
IS 1
BP 148
EP 159
DI 10.1093/mnras/stu847
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RW
UT WOS:000338765400014
ER
PT J
AU Faran, T
Poznanski, D
Filippenko, AV
Chornock, R
Foley, RJ
Ganeshalingam, M
Leonard, DC
Li, W
Modjaz, M
Nakar, E
Serduke, FJD
Silverman, JM
AF Faran, T.
Poznanski, D.
Filippenko, A. V.
Chornock, R.
Foley, R. J.
Ganeshalingam, M.
Leonard, D. C.
Li, W.
Modjaz, M.
Nakar, E.
Serduke, F. J. D.
Silverman, J. M.
TI Photometric and spectroscopic properties of Type II-P supernovae
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE supernovae: general
ID EXPANDING PHOTOSPHERE METHOD; EXTRAGALACTIC DISTANCE SCALE; STANDARDIZED
CANDLE METHOD; CORE-COLLAPSE SUPERNOVAE; TO-GAS RATIO; LIGHT-CURVES;
PLATEAU SUPERNOVAE; IA SUPERNOVAE; SN 2005CS; DUST EXTINCTION
AB We study a sample of 23 Type II plateau supernovae (SNe II-P), all observed with the same set of instruments. Analysis of their photometric evolution confirms that their typical plateau duration is 100 d with little scatter, showing a tendency to get shorter for more energetic SNe. We examine the claimed correlation between the luminosity and the rise time from explosion to plateau. We analyse their spectra, measuring typical ejecta velocities, and confirm that they follow a well-behaved power-law decline. We find indications of high-velocity material in the spectra of six of our SNe. We test different dust-extinction correction methods by asking the following - does the uniformity of the sample increase after the application of a given method? A reasonably behaved underlying distribution should become tighter after correction. No method we tested made a significant improvement.
C1 [Faran, T.; Poznanski, D.; Nakar, E.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Filippenko, A. V.; Ganeshalingam, M.; Li, W.; Serduke, F. J. D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Chornock, R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Foley, R. J.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Foley, R. J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Ganeshalingam, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Leonard, D. C.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA.
[Modjaz, M.] NYU, CCPP, New York, NY 10003 USA.
[Silverman, J. M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
RP Faran, T (reprint author), Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
EM tamar104@gmail.com
FU W. M. Keck Foundation; NASA; Alon fellowship for outstanding young
researchers; Raymond and Beverly Sackler Chair for young scientists; NSF
grants [AST-1009571, AST-1210311]; NSF Astronomy and Astrophysics
Postdoctoral Fellowship [AST-1302771]; Christopher R. Redlich Fund;
Richard and Rhoda Goldman Fund; TABASGO Foundation; NSF [AST-0908886,
AST-1211916]
FX We thank D. Maoz I. Arcavi, and the referee for helpful comments on this
manuscript. A. Barth, A. Coil, E. Gates, B. Swift, and D. Wong
participated in the many observations that made this work possible, and
we thank them for it. Some of the data presented herein were obtained at
the W. M. Keck Observatory, which is operated as a scientific
partnership among the California Institute of Technology, the University
of California, and the National Aeronautics and Space Administration; it
was made possible by the generous financial support of the W. M. Keck
Foundation. We wish to recognize and acknowledge the very significant
cultural role and reverence that the summit of Mauna Kea has always had
within the indigenous Hawaiian community. We are most fortunate to have
the opportunity to conduct observations from this mountain. The Kast
spectrograph on the Shane 3 m reflector at Lick Observatory resulted
from a generous donation made by Bill and Marina Kast. We also thank the
dedicated staffs of the Lick and Keck Observatories for their
assistance. This research made use of the Weizmann interactive supernova
data repository (www.weizmann.ac.il/astrophysics/wiserep), as well as
the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under
contract with NASA.; KAIT (at Lick Observatory) and its ongoing
operation were made possible by donations from Sun Microsystems, Inc.,
the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory,
the NSF, the University of California, the Sylvia & Jim Katzman
Foundation, and the TABASGO Foundation. DP acknowledges support from the
Alon fellowship for outstanding young researchers, and the Raymond and
Beverly Sackler Chair for young scientists. DCL acknowledges support
from NSF grants AST-1009571 and AST-1210311. JMS is supported by an NSF
Astronomy and Astrophysics Postdoctoral Fellowship under award
AST-1302771. AVF's group at UC Berkeley has received generous financial
assistance from the Christopher R. Redlich Fund, the Richard and Rhoda
Goldman Fund, the TABASGO Foundation, and the NSF (most recently through
grants AST-0908886 and AST-1211916).
NR 85
TC 31
Z9 31
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 21
PY 2014
VL 442
IS 1
BP 844
EP 861
DI 10.1093/mnras/stu955
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RW
UT WOS:000338765400070
ER
PT J
AU Bochanski, JJ
Willman, B
Caldwell, N
Sanderson, R
West, AA
Strader, J
Brown, W
AF Bochanski, John J.
Willman, Beth
Caldwell, Nelson
Sanderson, Robyn
West, Andrew A.
Strader, Jay
Brown, Warren
TI THE MOST DISTANT STARS IN THE MILKY WAY
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE Galaxy: halo; Galaxy: stellar content; Galaxy: structure; stars:
late-type
ID COOL CARBON STARS; DIGITAL SKY SURVEY; SAGITTARIUS DWARF GALAXY;
GALACTIC ESCAPE SPEED; STELLAR HALO; ROTATION CURVE; RAVE SURVEY; 2MASS;
MASS; DISPERSION
AB We report on the discovery of the most distant Milky Way (MW) stars known to date: ULAS J001535.72+015549.6 and ULAS J074417.48+253233.0. These stars were selected as M giant candidates based on their infrared and optical colors and lack of proper motions. We spectroscopically confirmed them as outer halo giants using the MMT/Red Channel spectrograph. Both stars have large estimated distances, with ULAS J001535.72+015549.6 at 274 +/- 74 kpc and ULAS J074417.48+253233.0 at 238 +/- 64 kpc, making them the first MW stars discovered beyond 200 kpc. ULAS J001535.72+015549.6 and ULAS J074417.48+253233.0 are both moving away from the Galactic center at 52 +/- 10 km s(-1) and 24 +/- 10 km s(-1), respectively. Using their distances and kinematics, we considered possible origins such as: tidal stripping from a dwarf galaxy, ejection from the MW's disk, or membership in an undetected dwarf galaxy. These M giants, along with two inner halo giants that were also confirmed during this campaign, are the first to map largely unexplored regions of our Galaxy's outer halo.
C1 [Bochanski, John J.; Willman, Beth] Haverford Coll, Haverford, PA 19041 USA.
[Caldwell, Nelson; Brown, Warren] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Sanderson, Robyn] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands.
[West, Andrew A.] Boston Univ, Dept Astron, Boston, MA 02215 USA.
[Strader, Jay] Michigan State Univ, Michigan State Astron Grp, E Lansing, MI 48824 USA.
RP Bochanski, JJ (reprint author), Haverford Coll, 370 Lancaster Ave, Haverford, PA 19041 USA.
EM jbochans@haverford.edu
OI Sanderson, Robyn/0000-0003-3939-3297
FU NSF [AST-1151462, PHYS-1066293, AST-1109273, AST-1255568]; RCSA's
Cottrell Scholarship
FX J.J.B. and B.W. thank the NSF for support under grants NSF AST-1151462
and PHYS-1066293. A.A.W acknowledges NSF grants AST-1109273,
AST-1255568, and the RCSA's Cottrell Scholarship. We thank Jonathan
Hargis, Alis Deason, Wyn Evans, Vasily Belokurov and Kathyrn Johnston
for helpful conversations.
NR 51
TC 5
Z9 5
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 20
PY 2014
VL 790
IS 1
AR L5
DI 10.1088/2041-8205/790/1/L5
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AM5ED
UT WOS:000339878100005
ER
PT J
AU Lalitha, S
Poppenhaeger, K
Singh, KP
Czesla, S
Schmitt, JHMM
AF Lalitha, S.
Poppenhaeger, K.
Singh, K. P.
Czesla, S.
Schmitt, J. H. M. M.
TI X-RAY EMISSION FROM THE SUPER-EARTH HOST GJ 1214
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE planetary systems; stars: activity; stars: coronae; stars: individual
(GJ 1214); stars: late-type; stars: low-mass
ID HOT JUPITERS; ESCAPING ATMOSPHERE; HD 189733B; EVOLUTION; EVAPORATION;
SYSTEM; STARS; PARAMETERS; RADIATION; COMPANION
AB Stellar activity can produce large amounts of high-energy radiation, which is absorbed by the planetary atmosphere leading to irradiation-driven mass loss. We present the detection and an investigation of high-energy emission in a transiting super-Earth host system, GJ 1214, based on XMM-Newton observations. We derive an X-ray luminosity of L-X = 7.4 x10(25) erg s(-1) and a corresponding activity level of log(L-X/L-bol) similar to-5.3. Further, we determine a coronal temperature of about similar to 3.5 MK, which is typical for coronal emission of moderately active low-mass stars. We estimate that GJ 1214 b evaporates at a rate of 1.3x10(10) g s(-1) and has lost a total of approximate to 2-5.6M(circle plus).
C1 [Lalitha, S.; Singh, K. P.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Poppenhaeger, K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Czesla, S.; Schmitt, J. H. M. M.] Univ Hamburg, D-21029 Hamburg, Germany.
RP Lalitha, S (reprint author), Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India.
OI Poppenhaeger, Katja/0000-0003-1231-2194
NR 40
TC 6
Z9 7
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 20
PY 2014
VL 790
IS 1
AR L11
DI 10.1088/2041-8205/790/1/L11
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AM5ED
UT WOS:000339878100011
ER
PT J
AU Sur, S
Pan, LB
Scannapieco, E
AF Sur, Sharanya
Pan, Liubin
Scannapieco, Evan
TI ALIGNMENT OF THE SCALAR GRADIENT IN EVOLVING MAGNETIC FIELDS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE ISM: abundances; magnetic fields; magnetohydrodynamics (MHD); turbulence
ID STAGGERED MESH SCHEME; TURBULENT DYNAMO; MAGNETOHYDRODYNAMIC TURBULENCE;
HOMOGENEOUS TURBULENCE; INTERGALACTIC METALS; SIMULATIONS; VORTICITY;
STRAIN; GAS
AB We conduct simulations of turbulent mixing in the presence of a magnetic field, grown by the small-scale dynamo. We show that the scalar gradient field, del C, which must be large for diffusion to operate, is strongly biased perpendicular to the magnetic field, B. This is true both early on, when the magnetic field is negligible, and at late times, when the field is strong enough to back react on the flow. This occurs because del C increases within the plane of a compressive motion, but B increases perpendicular to it. At late times, the magnetic field resists compression, making it harder for scalar gradients to grow and likely slowing mixing.
C1 [Sur, Sharanya; Scannapieco, Evan] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Pan, Liubin] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Sur, S (reprint author), Arizona State Univ, Sch Earth & Space Explorat, POB 876004, Tempe, AZ 85287 USA.
EM sharanya.sur@asu.edu; lpan@cfa.harvard.edu; evan.scannapieco@asu.edu
FU National Science Foundation [AST11-03608]; NASA [NNX09AD106];
Harvard-Smithsonian Center for Astrophysics; Advanced Computing Center
at Arizona State University; Texas Advanced Computing Center (TACC) at
The University of Texas at Austin; Extreme Science and Engineering
Discovery Environment (XSEDE) [TG-AST130021]; DOE
FX S. S. and E. S. were supported by the National Science Foundation under
grant AST11-03608 and NASA theory grant NNX09AD106. postdoctoral
fellowship at Harvard-Smithsonian Center for Astrophysics. The authors
would also like to acknowledge the Advanced Computing Center at Arizona
State University (URL: http://a2c2.asu.edu/), the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin (URL:
http://www.tacc.utexas.edu), and the Extreme Science and Engineering
Discovery Environment (XSEDE) for providing HPC resources via grant
TG-AST130021 that have contributed to the results reported within this
Letter. The FLASH code is developed in part by the DOE-supported
Alliances Center for Astrophysical Thermonuclear Flashes (ASC) at the
University of Chicago.
NR 30
TC 2
Z9 2
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 20
PY 2014
VL 790
IS 1
AR L9
DI 10.1088/2041-8205/790/1/L9
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AM5ED
UT WOS:000339878100009
ER
PT J
AU Ballard, S
Chaplin, WJ
Charbonneau, D
Desert, JM
Fressin, F
Zeng, L
Werner, MW
Davies, GR
Aguirre, VS
Basu, S
Christensen-Dalsgaard, J
Metcalfe, TS
Stello, D
Bedding, TR
Campante, TL
Handberg, R
Karoff, C
Elsworth, Y
Gilliland, RL
Hekker, S
Huber, D
Kawaler, SD
Kjeldsen, H
Lund, MN
Lundkvist, M
AF Ballard, Sarah
Chaplin, William J.
Charbonneau, David
Desert, Jean-Michel
Fressin, Francois
Zeng, Li
Werner, Michael W.
Davies, Guy R.
Aguirre, Victor Silva
Basu, Sarbani
Christensen-Dalsgaard, Jorgen
Metcalfe, Travis S.
Stello, Dennis
Bedding, Timothy R.
Campante, Tiago L.
Handberg, Rasmus
Karoff, Christoffer
Elsworth, Yvonne
Gilliland, Ronald L.
Hekker, Saskia
Huber, Daniel
Kawaler, Steven D.
Kjeldsen, Hans
Lund, Mikkel N.
Lundkvist, Mia
TI KEPLER-93b: A TERRESTRIAL WORLD MEASURED TO WITHIN 120 km, AND A TEST
CASE FOR A NEW SPITZER OBSERVING MODE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE eclipses; methods: observational; planetary systems; stars: individual
(KOI 69, KIC 3544595)
ID TRANSIT TIMING VARIATIONS; STELLAR EVOLUTION CODE; FINE GUIDANCE SENSOR;
CIRCLE-PLUS PLANET; EARTH-SIZED PLANET; SOLAR-TYPE STARS; SUN-LIKE STAR;
EXTRASOLAR PLANET; SPACE-TELESCOPE; HABITABLE ZONE
AB We present the characterization of the Kepler-93 exoplanetary system, based on three years of photometry gathered by the Kepler spacecraft. The duration and cadence of the Kepler observations, in tandem with the brightness of the star, enable unusually precise constraints on both the planet and its host. We conduct an asteroseismic analysis of the Kepler photometry and conclude that the star has an average density of 1.652 +/- 0.006 g cm(-3). Its mass of 0.911 +/- 0.033M(circle dot) renders it one of the lowest-mass subjects of asteroseismic study. An analysis of the transit signature produced by the planet Kepler-93b, which appears with a period of 4.72673978 +/- 9.7 x 10(-7) days, returns a consistent but less precise measurement of the stellar density, 1.72(-0.28)(+0.02) g cm(-3). The agreement of these two values lends credence to the planetary interpretation of the transit signal. The achromatic transit depth, as compared between Kepler and the Spitzer Space Telescope, supports the same conclusion. We observed seven transits of Kepler-93b with Spitzer, three of which we conducted in a new observing mode. The pointing strategy we employed to gather this subset of observations halved our uncertainty on the transit radius ratio R-P/R-star. We find, after folding together the stellar radius measurement of 0.919 +/- 0.011R(circle dot) with the transit depth, a best-fit value for the planetary radius of 1.481 +/- 0.019 R-circle plus. The uncertainty of 120 km on our measurement of the planet's size currently renders it one of the most precisely measured planetary radii outside of the solar system. Together with the radius, the planetary mass of 3.8 +/- 1.5 M-circle plus. corresponds to a rocky density of 6.3 +/- 2.6 g cm(-3). After applying a prior on the plausible maximum densities of similarly sized worlds between 1 and 1.5 R-circle plus, we find that Kepler-93b possesses an average density within this group.
C1 [Ballard, Sarah] Univ Washington, Seattle, WA 98195 USA.
[Chaplin, William J.; Davies, Guy R.; Campante, Tiago L.; Handberg, Rasmus; Elsworth, Yvonne; Hekker, Saskia] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
[Chaplin, William J.; Davies, Guy R.; Aguirre, Victor Silva; Christensen-Dalsgaard, Jorgen; Metcalfe, Travis S.; Campante, Tiago L.; Handberg, Rasmus; Karoff, Christoffer; Elsworth, Yvonne; Kjeldsen, Hans; Lund, Mikkel N.; Lundkvist, Mia] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark.
[Charbonneau, David; Fressin, Francois; Zeng, Li] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Desert, Jean-Michel] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Werner, Michael W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Basu, Sarbani] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Metcalfe, Travis S.] Space Sci Inst, Boulder, CO 80301 USA.
[Stello, Dennis; Bedding, Timothy R.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia.
[Gilliland, Ronald L.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.
[Hekker, Saskia] Max Planck Inst Stromungsforsch, D-37077 Gottingen, Germany.
[Hekker, Saskia] Univ Amsterdam, Astron Inst, NL-1012 WX Amsterdam, Netherlands.
[Huber, Daniel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Huber, Daniel] SETI Inst, Mountain View, CA 94043 USA.
[Kawaler, Steven D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Ballard, S (reprint author), Univ Washington, Seattle, WA 98195 USA.
EM sarahba@uw.edu
OI Zeng, Li/0000-0003-1957-6635; Davies, Guy/0000-0002-4290-7351; Metcalfe,
Travis/0000-0003-4034-0416; Karoff, Christoffer/0000-0003-2009-7965;
Bedding, Tim/0000-0001-5222-4661; Basu, Sarbani/0000-0002-6163-3472;
Lund, Mikkel Norup/0000-0001-9214-5642; Lundkvist, Mia
Sloth/0000-0002-8661-2571; Handberg, Rasmus/0000-0001-8725-4502
FU NASA through the Sagan Fellowship Program; NASA; NASA's Science Mission
Directorate; Kepler Participatory Science [NNX12AC77G, NNX09AB53G]; John
Templeton Foundation; UK Science and Technology Facilities Council
(STFC); NSF [AST-1105930]; NASA [NNX13AE70G, NNX13AE91G, NNX14AB92G];
Danish National Research Foundation [DNRF106]; ASTERISK project
(ASTERoseismic Investigations with SONG and Kepler) - European Research
Council [267864]; Netherlands Organisation for Scientific Research
(NWO); European Research Council under the European Community's Seventh
Framework Programme/ERC [338251]; Australian Research Council;
International Space Science Institute (ISSI)
FX This work was performed in part under contract with the California
Institute of Technology (Caltech) funded by NASA through the Sagan
Fellowship Program. It was conducted with observations made with the
Spitzer Space Telescope, which is operated by the Jet Propulsion
Laboratory, California Institute of Technology under a contract with
NASA. Support for this work was provided by NASA through an award issued
by JPL/Caltech. We thank the Spitzer team at the Infrared Processing and
Analysis Center in Pasadena, California, and in particular Nancy
Silbermann for scheduling the Spitzer observations of this program. This
work is also based on observations made with Kepler, which was
competitively selected as the tenth Discovery mission. Funding for this
mission is provided by NASA's Science Mission Directorate. The authors
would like to thank the many people who generously gave so much their
time to make this Mission a success. This research has made use of the
NASA Exoplanet Archive, which is operated by the California Institute of
Technology, under contract with the National Aeronautics and Space
Administration under the Exoplanet Exploration Program. S. Ballard
thanks Geoffrey Marcy for helpful discussions about the RV signature of
Kepler-93. We acknowledge support through Kepler Participatory Science
Awards NNX12AC77G and NNX09AB53G, awarded to D.C. This publication was
made possible in part through the support of a grant from the John
Templeton Foundation. The opinions expressed in this publication are
those of the authors and do not necessarily reflect the views of the
John Templeton Foundation. W.J.C., T.L.C., G.R.D., Y.E. and A.M.
acknowledge the support of the UK Science and Technology Facilities
Council (STFC). S. Basu acknowledges support from NSF grant AST-1105930
and NASA grant NNX13AE70G. Funding for the StellarAstrophysics Centre is
provided by The Danish National Research Foundation (grant agreement No.
DNRF106). The research is supported by the ASTERISK project
(ASTERoseismic Investigations with SONG and Kepler) funded by the
European Research Council (grant agreement No. 267864). S.H.
acknowledges financial support from the Netherlands Organisation for
Scientific Research (NWO). The research leading to these results has
received funding from the European Research Council under the European
Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant
agreement No. 338251 (StellarAges). T.S.M. acknowledges NASA grant
NNX13AE91G. D.S. is supported by the Australian Research Council. D.H.
acknowledges support by an appointment to the NASA Postdoctoral Program
at Ames Research Center administered by Oak Ridge Associated
Universities, and NASA grant NNX14AB92G issued through the Kepler
Participating Scientist Program. Computational time on Kraken at the
National Institute of Computational Sciences was provided through NSF
TeraGrid allocation TG-AST090107. We are also grateful for support from
the International Space Science Institute (ISSI).
NR 108
TC 20
Z9 20
U1 0
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 12
DI 10.1088/0004-637X/790/1/12
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800012
ER
PT J
AU Civano, F
Fabbiano, G
Pellegrini, S
Kim, DW
Paggi, A
Feder, R
Elvis, M
AF Civano, F.
Fabbiano, G.
Pellegrini, S.
Kim, D. -W.
Paggi, A.
Feder, R.
Elvis, M.
TI EARLY-TYPE GALAXIES IN THE CHANDRA COSMOS SURVEY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: evolution; galaxies: formation; surveys; X-rays: galaxies
ID ACTIVE GALACTIC NUCLEI; X-RAY BINARIES; DEEP FIELD-SOUTH; ELLIPTIC
GALAXIES; HOT GAS; XMM-COSMOS; LUMINOSITY FUNCTION; STELLAR MASS;
HOST-GALAXY; EVOLUTION
AB We study a sample of 69 X-ray detected early-type galaxies (ETGs), selected from the Chandra COSMOS survey, to explore the relation between the X-ray luminosity of hot gaseous halos (L-X,L- (gas)) and the integrated stellar luminosity (L-K) of the galaxies, in a range of redshift extending out to z = 1.5. In the local universe, a tight, steep relationship has been established between these two quantities (L-X,L- gas similar to L-K(4.5)), suggesting the presence of largely virialized halos in X-ray luminous systems. We use well-established relations from the study of local universe ETGs, together with the expected evolution of the X-ray emission, to subtract the contribution of low-mass X-ray binary populations from the X-ray luminosity of our sample. Our selection minimizes the presence of active galactic nuclei (AGNs), yielding a sample representative of normal passive COSMOS ETGs; therefore, the resulting luminosity should be representative of gaseous halos, although we cannot exclude other sources such as obscured AGNs or enhanced X-ray emission connected with embedded star formation in the higher-z galaxies. We find that most of the galaxies with estimated L-X < 10(42) erg s(-1) and z < 0.55 follow the L-X,L- gas - L-K relation of local universe ETGs. For these galaxies, the gravitational mass can be estimated with a certain degree of confidence from the local virial relation. However, the more luminous (10(42) erg s(-1) < L-X < 10(43.5) erg s(-1)) and distant galaxies present significantly larger scatter; these galaxies also tend to have younger stellar ages. The divergence from the local L-X,L- gas - L-K relation in these galaxies implies significantly enhanced X-ray emission up to a factor of 100 larger than predicted from the local relation. We discuss the implications of this result for the presence of hidden AGNs, and the evolution of hot halos, in nuclear and star formation feedback.
C1 [Civano, F.] Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Civano, F.; Fabbiano, G.; Kim, D. -W.; Paggi, A.; Elvis, M.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
[Civano, F.] Dartmouth Coll, Wilder Lab, Dept Phys & Astron, Hanover, NH 03855 USA.
[Pellegrini, S.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy.
[Feder, R.] Great Neck South High Sch, Great Neck, NY 11020 USA.
RP Civano, F (reprint author), Yale Ctr Astron & Astrophys, 260 Whitney Ave, New Haven, CT 06520 USA.
RI Paggi, Alessandro/C-1219-2017
OI Paggi, Alessandro/0000-0002-5646-2410
FU NASA [11-ADAP11-0218, GO1-12125A, NAS8-03060]; MIUR [2010LY5N2T]
FX The authors thank L. Pozzetti for providing the K-band luminosities as a
function of time for the Bruzual & Charlot (2003) stellar population
models. F.C. acknowledges financial support by the NASA contract
11-ADAP11-0218, S.P. from MIUR grant PRIN 2010-2011, prot. 2010LY5N2T,
and A. P. by the NASA grant GO1-12125A. This work was partially
supported by NASA contract NAS8-03060 (CXC).
NR 68
TC 12
Z9 12
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 16
DI 10.1088/0004-637X/790/1/16
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800016
ER
PT J
AU Cohen, O
Drake, JJ
Glocer, A
Garraffo, C
Poppenhaeger, K
Bell, JM
Ridley, AJ
Gombosi, TI
AF Cohen, O.
Drake, J. J.
Glocer, A.
Garraffo, C.
Poppenhaeger, K.
Bell, J. M.
Ridley, A. J.
Gombosi, T. I.
TI MAGNETOSPHERIC STRUCTURE AND ATMOSPHERIC JOULE HEATING OF HABITABLE
PLANETS ORBITING M-DWARF STARS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE magnetohydrodynamics ( MHD); planets and satellites: atmospheres;
planets and satellites: magnetic fields; planets and satellites:
terrestrial planets
ID MAIN-SEQUENCE STARS; RESISTIVE MHD SIMULATIONS; EARTH-LIKE EXOPLANETS;
EJECTION CME ACTIVITY; MASS-LOSS RATES; X-RAY-EMISSION; HOT JUPITERS;
OHMIC DISSIPATION; MAGNETIC-FIELD; HD 209458B
AB We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set ofmagnetohydrodynamic models. The stellarwind solution is used to drive amodel for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub-to super-Alfv ' enic along the planetary orbit. As a result, themagnetospheric structure changes dramatically with a bow shock forming in the super-Alfv ' enic sectors, while no bow shock forms in the sub-Alfv ' enic sectors. The planets reside most of the time in the sub-Alfv ' enic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.
C1 [Cohen, O.; Drake, J. J.; Garraffo, C.; Poppenhaeger, K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Glocer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bell, J. M.] Natl Inst Aerosp, Ctr Planetary Atmospheres & Flight Sci, Hampton, VA 23666 USA.
[Ridley, A. J.; Gombosi, T. I.] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA.
RP Cohen, O (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
RI Glocer, Alex/C-9512-2012; Gombosi, Tamas/G-4238-2011; Ridley,
Aaron/F-3943-2011;
OI Glocer, Alex/0000-0001-9843-9094; Gombosi, Tamas/0000-0001-9360-4951;
Ridley, Aaron/0000-0001-6933-8534; Poppenhaeger,
Katja/0000-0003-1231-2194; Cohen, Ofer/0000-0003-3721-0215
FU NASA ESS; NASA ESTO-CT; NSF KDI; DoDMURI; NASA HEC Pleiades system
[SMD-13-4076]; NASA [NAS8-03060]
FX We thank an unknown referee for comments and suggestions. The work
presented here was funded by the Smithsonian Institution Consortium for
Unlocking the Mysteries of the Universe grant " Lessons from Mars: Are
Habitable Atmospheres on Planets around M Dwarfs Viable?," and by the
Smithsonian Institute Competitive Grants Program for Science (CGPS)
grant " Can Exoplanets Around Red Dwarfs Maintain Habitable
Atmospheres?." Simulation results were obtained using the Space Weather
Modeling Framework, developed by the Center for Space Environment
Modeling, at the University of Michigan with funding support from NASA
ESS, NASA ESTO-CT, NSF KDI, and DoDMURI. The simulations were performed
on the NASA HEC Pleiades system under award SMD-13-4076. J. J. D. was
supported by NASA contract NAS8-03060 to the Chandra X-ray Center during
the course of this research and thanks the Director, H. Tananbaum, for
continuing support and encouragement.
NR 86
TC 24
Z9 24
U1 0
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 57
DI 10.1088/0004-637X/790/1/57
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800057
ER
PT J
AU Favre, C
Jorgensen, JK
Field, D
Brinch, C
Bisschop, SE
Bourke, TL
Hogerheijde, MR
Frieswijk, WWF
AF Favre, Cecile
Jorgensen, Jes K.
Field, David
Brinch, Christian
Bisschop, Suzanne E.
Bourke, Tyler L.
Hogerheijde, Michiel R.
Frieswijk, Wilfred W. F.
TI DYNAMICAL STRUCTURE OF THE INNER 100 AU OF THE DEEPLY EMBEDDED PROTOSTAR
IRAS 16293-2422
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE circumstellar matter; ISM: individual objects (IRAS 16293-2422); radio
lines: ISM; stars: formation
ID SUBMILLIMETER-WAVE SPECTRUM; MOLECULAR CLOUD CORES; YOUNG STELLAR
OBJECTS; STAR-FORMING REGIONS; SOLAR-TYPE PROTOSTAR; LOW-MASS
PROTOSTARS; L1551 IRS 5; MILLIMETER-WAVE; CIRCUMSTELLAR DISKS;
VIBRATIONAL-STATES
AB A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly formed stars, for example, to identify the presence of rotation and infall. IRAS 16293-2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (0 ''.46 x 0 ''.29, i.e., similar to 55 x 35 AU) images of compact emission from the (CO)-O-17 (3-2) and (CS)-S-34 (7-6) transitions at 337 GHz (0.89 mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of (CO)-O-17 (3-2) and (CS)-S-34 (7-6) both show a velocity gradient oriented along a northeast-southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS 16293A. Our combined eSMA and SMA observations show that the velocity field on the 50-400AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293-2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.
C1 [Favre, Cecile; Field, David] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark.
[Favre, Cecile] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Jorgensen, Jes K.; Brinch, Christian; Bisschop, Suzanne E.] Univ Copenhagen, Niels Bohr Inst, Ctr Star & Planet Format, DK-2100 Copenhagen O, Denmark.
[Jorgensen, Jes K.; Brinch, Christian; Bisschop, Suzanne E.] Univ Copenhagen, Nat Hist Museum Denmark, DK-1350 Copenhagen K, Denmark.
[Bourke, Tyler L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bourke, Tyler L.] SKA Org, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England.
[Hogerheijde, Michiel R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Frieswijk, Wilfred W. F.] Netherlands Inst Radio Astron, NL-7990 AA Dwingeloo, Netherlands.
RP Favre, C (reprint author), Univ Aarhus, Dept Phys & Astron, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.
EM cfavre@umich.edu
RI Brinch, Christian/G-5157-2015;
OI Brinch, Christian/0000-0002-5074-7183; Hogerheijde,
Michiel/0000-0001-5217-537X
FU Smithsonian Institution; Instrument Center for Danish Astrophysics
(IDA); Lundbeck foundation; Danish National Research Foundation;
Canadian Space Agency; Netherlands Organisation for Scientific Research,
NWO [614.061.416]; Academia Sinica
FX We thank the entire SMA and eSMA staff who produced such excellent
instruments. The development of the eSMA has been facilitated by grant
614.061.416 from the Netherlands Organisation for Scientific Research,
NWO. The Submillimeter Array is a joint project between the Smithsonian
Astrophysical Observatory and the Academia Sinica Institute of Astronomy
and Astrophysics and is funded by the Smithsonian Institution and the
Academia Sinica. We are grateful to Sandrine Bottinelli who was the
original proposer of the presented eSMA observations. C.F. thanks Edwin
Bergin for enlightening discussions. C.F. also acknowledges the
financial support provided by The Instrument Center for Danish
Astrophysics (IDA). The research of J.K.J. was supported by a Junior
Group Leader Fellowship from the Lundbeck foundation. Research at the
Centre for Star and Planet Formation is funded by the Danish National
Research Foundation. This research used the facilities of the Canadian
Astronomy Data Centre operated by the National Research Council of
Canada with the support of the Canadian Space Agency.
NR 81
TC 6
Z9 6
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 55
DI 10.1088/0004-637X/790/1/55
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800055
ER
PT J
AU Gou, LJ
McClintock, JE
Remillard, RA
Steiner, JF
Reid, MJ
Orosz, JA
Narayan, R
Hanke, M
Garcia, J
AF Gou, Lijun
McClintock, Jeffrey E.
Remillard, Ronald A.
Steiner, James F.
Reid, Mark J.
Orosz, Jerome A.
Narayan, Ramesh
Hanke, Manfred
Garcia, Javier
TI CONFIRMATION VIA THE CONTINUUM-FITTING METHOD THAT THE SPIN OF THE BLACK
HOLE IN CYGNUS X-1 IS EXTREME
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE black hole physics; X-rays: binaries; X-rays: individual (Cygnus X-1)
ID RAY REFLECTION SPECTRA; LMC X-1; INTERSTELLAR-MEDIUM; MASS-DISTRIBUTION;
PLUNGING REGION; ACCRETION DISK; BINARY; STATE; SUZAKU; GALAXY
AB In Gou et al., we reported that the black hole primary in the X-ray binary Cygnus X-1 is a near-extreme Kerr black hole with a spin parameter a(*) > 0.95 (3 sigma). We confirm this result while setting a new and more stringent limit: a(*) > 0.983 at the 3 sigma (99.7%) confidence level. The earlier work, which was based on an analysis of all three useful spectra that were then available, was possibly biased by the presence in these spectra of a relatively strong Compton power-law component: the fraction of the thermal seed photons scattered into the power law was f(s) = 23%-31%, while the upper limit for reliable application of the continuum-fitting method is f(s) less than or similar to 25%. We have subsequently obtained six additional spectra of Cygnus X-1 suitable for the measurement of spin. Five of these spectra are of high quality with f(s) in the range 10%-19%, a regime where the continuum-fitting method has been shown to deliver reliable results. Individually, the six spectra give lower limits on the spin parameter that range from a(*) > 0.95 to a(*) > 0.98, allowing us to conservatively conclude that the spin of the black hole is a(*) > 0.983 (3 sigma).
C1 [Gou, Lijun] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
[Gou, Lijun; McClintock, Jeffrey E.; Steiner, James F.; Reid, Mark J.; Narayan, Ramesh; Garcia, Javier] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Remillard, Ronald A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Orosz, Jerome A.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA.
[Hanke, Manfred] Univ Erlangen Nurnberg, Remeis Observ, D-96049 Bamberg, Germany.
[Hanke, Manfred] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany.
RP Gou, LJ (reprint author), Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
RI XRAY, SUZAKU/A-1808-2009;
OI Narayan, Ramesh/0000-0002-1919-2730; Remillard,
Ronald/0000-0003-4815-0481
FU NSFC [Y211541001, 11333005]; NAOC [Y234031001]; Strategic Priority
Research Program "The Emergence of Cosmological Structures" of the
Chinese Academy of Sciences [XDB09000000]; NASA [NNX11AD08G]; NASA
Hubble Fellowship [HST-HF-51315.01]; Bundesministerium fur Wirtschaft
und Technologie [DLR 50 OR 0701]
FX We thank an anonymous referee for many constructive comments and
criticisms, particularly those concerning pileup. We are grateful for
allocations of Chandra, RXTE, and Swift observing time granted by
Director H. Tananbaum and Project Scientists T. Strohmayer and N.
Gehrels, respectively. For help in planning the Chandra observations, we
thank M. Nowak and N. Schulz. We also thank M. Nowak, J. Wilms, and
Bin-Bin Zhang for discussions on X-ray data analysis, R. Smith for
calling the effects of dust scattering to our attention, and S. Yamada
for reducing the Suzaku data, and J. G. Xiang for reducing the Chandra
TE data. This research has made use of data obtained from the High
Energy Astrophysics Science Archive Research Center (HEASARC) at
NASA/Goddard Space Flight Center. For technical support in using the
Odyssey cluster, L.J.G. thanks the Harvard FAS Sciences Division
Research Computing Group. L.J.G. acknowledges the support of NSFC grant
(Y211541001, 11333005) and NAOC grant (Y234031001), and is also
supported by the Strategic Priority Research Program "The Emergence of
Cosmological Structures" of the Chinese Academy of Sciences, grant No.
XDB09000000, J.E.M. acknowledges support from NASA grant NNX11AD08G,
J.F.S. has been supported by NASA Hubble Fellowship grant
HST-HF-51315.01, and M.H. acknowledges funding from the
Bundesministerium fur Wirtschaft und Technologie under grant No. DLR 50
OR 0701.
NR 63
TC 34
Z9 34
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 29
DI 10.1088/0004-637X/790/1/29
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800029
ER
PT J
AU Haas, M
Leipski, C
Barthel, P
Wilkes, BJ
Vegetti, S
Bussmann, RS
Willner, SP
Westhues, C
Ashby, MLN
Chini, R
Clements, DL
Fassnacht, CD
Horesh, A
Klaas, U
Koopmans, LVE
Kuraszkiewicz, J
Lagattuta, DJ
Meisenheimer, K
Stern, D
Wylezalek, D
AF Haas, Martin
Leipski, Christian
Barthel, Peter
Wilkes, Belinda J.
Vegetti, Simona
Bussmann, R. Shane
Willner, S. P.
Westhues, Christian
Ashby, Matthew L. N.
Chini, Rolf
Clements, David L.
Fassnacht, Christopher D.
Horesh, Assaf
Klaas, Ulrich
Koopmans, Leon V. E.
Kuraszkiewicz, Joanna
Lagattuta, David J.
Meisenheimer, Klaus
Stern, Daniel
Wylezalek, Dominika
TI 3C 220.3: A RADIO GALAXY LENSING A SUBMILLIMETER GALAXY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dark matter; galaxies: individual (3C 220.3); gravitational lensing:
strong; radio continuum: galaxies; submillimeter: galaxies
ID SPITZER-SPACE-TELESCOPE; COLD DARK-MATTER; GRAVITATIONAL-LENS; ARRAY
CAMERA; MISSION; MASS; SPECTROMETER; PERFORMANCE; POPULATION; B2045+265
AB Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of similar to 1 ''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1 ''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1 ''.02) and B (0 ''.61) are about 0.4 +/- 0.3 and 0.55 +/- 0.3. The mass to i-band light ratios of A and B, M/L-i similar to 8 +/- 4 M-circle dot L-circle dot(-1), appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f (250 mu m) = 440 mJy owing to a magnification factor mu similar to 10. The SMG spectrum shows luminous, narrow Civ lambda 1549 angstrom emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.
C1 [Haas, Martin; Westhues, Christian; Chini, Rolf] Ruhr Univ Bochum, Inst Astron, Bochum, Germany.
[Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Barthel, Peter; Koopmans, Leon V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands.
[Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Vegetti, Simona] Max Planck Inst Astrophys, D-85748 Garching, Germany.
[Chini, Rolf] Univ Catolica Norte, Antofagasta, Chile.
[Clements, David L.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Fassnacht, Christopher D.] Univ Calif Davis, Davis, CA 95616 USA.
[Horesh, Assaf] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Lagattuta, David J.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia.
[Lagattuta, David J.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Redfern, NSW 2016, Australia.
[Stern, Daniel; Wylezalek, Dominika] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Wylezalek, Dominika] European So Observ, Garching, Germany.
RP Haas, M (reprint author), Ruhr Univ Bochum, Inst Astron, Postfach 102148, Bochum, Germany.
EM haas@astro.rub.de
RI Horesh, Assaf/O-9873-2016
OI Horesh, Assaf/0000-0002-5936-1156
NR 50
TC 3
Z9 3
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 46
DI 10.1088/0004-637X/790/1/46
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800046
ER
PT J
AU Kaminski, E
Frank, A
Carroll, J
Myers, P
AF Kaminski, Erica
Frank, Adam
Carroll, Jonathan
Myers, Phil
TI ON THE ROLE OF AMBIENT ENVIRONMENTS IN THE COLLAPSE OF BONNOR-EBERT
SPHERES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gravitation; hydrodynamics; ISM: clouds; evolution; methods: numerical;
stars: formation
ID GRAVITATIONAL COLLAPSE; ISOTHERMAL SPHERES; GAS CLOUDS; DYNAMICS;
IMPLEMENTATION; EXTINCTION; ASTROBEAR; CORES; STAR; AMR
AB We consider the interaction between a marginally stable Bonnor-Ebert (BE) sphere and the surrounding ambient medium. In particular, we explore how the infall from an evolving ambient medium can trigger the collapse of the sphere using three-dimensional adaptive mesh refinement simulations. We find the resulting collapse dynamics to vary considerably with ambient density. In the highest ambient density cases, infalling material drives a strong compression wave into the cloud. It is the propagation of this wave through the cloud interior that triggers the subsequent collapse. For lower ambient densities, we find the main trigger of collapse to be a quasistatic adjustment of the BE sphere to gravitational settling of the ambient gas. In all cases, we find that the classic "outside-in" collapse mode for super-critical BE spheres is recovered before a protostar (i.e., sink particle) forms. Our work supports scenarios in which BE dynamics naturally begins with either a compression wave or infall dominated phase, and only later assumes the usual outside-in collapse behavior.
C1 [Kaminski, Erica; Frank, Adam; Carroll, Jonathan] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA.
[Myers, Phil] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Kaminski, E (reprint author), Univ Rochester, Dept Phys & Astron, 206 Bausch & Lomb Hall,POB 270171, Rochester, NY 14627 USA.
EM erica@pas.rochester.edu; pmyers@cfa.harvard.edu
OI Fogerty, Erica/0000-0003-1242-3898
FU Space Telescope Science Institute [HST-AR-12128, HST-AR-12832];
Department of Energy [DE-SC0001063, R17081]; National Science Foundation
for the Extreme Science and Engineering Discovery Environment (XSEDE)
[OCI-1053575, AST-1109285]; Horton Fellowship
FX We are grateful for the support provided by the Space Telescope Science
Institute through grants HST-AR-12128 and HST-AR-12832, the Department
of Energy through grant numbers DE-SC0001063 and R17081, the National
Science Foundation for the Extreme Science and Engineering Discovery
Environment (XSEDE) through grant number OCI-1053575 and for grant
number AST-1109285. We would also like to thank the University of
Rochester's Laboratory for Laser Energetics for funds received by the
Horton Fellowship and the University's Center for Integrated Research
Computing for providing the supercomputer resources that supported this
work.
NR 27
TC 6
Z9 6
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 70
DI 10.1088/0004-637X/790/1/70
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800070
ER
PT J
AU Lemonias, JJ
Schiminovich, D
Catinella, B
Heckman, TM
Moran, SM
AF Lemonias, Jenna J.
Schiminovich, David
Catinella, Barbara
Heckman, Timothy M.
Moran, Sean M.
TI RESOLVED H I IMAGING OF A POPULATION OF MASSIVE H I-RICH GALAXIES WITH
SUPPRESSED STAR FORMATION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: evolution; galaxies: formation
ID ACTIVE GALACTIC NUCLEI; ARECIBO SDSS SURVEY; FAST ALPHA SURVEY; FRACTION
SCALING RELATIONS; SINS/ZC-SINF SURVEY; IRAM LEGACY SURVEY; MOLECULAR
GAS; NEUTRAL HYDROGEN; FORMATION EFFICIENCY; ATLAS(3D) PROJECT
AB Despite the existence of well-defined relationships between cold gas and star formation, there is evidence that some galaxies contain large amounts of H I that do not form stars efficiently. By systematically assessing the link between HI and star formation within a sample of galaxies with extremely high H I masses (log M-HI/M-circle dot > 10), we uncover a population of galaxies with an unexpected combination of high HI masses and low specific star formation rates that exists primarily at stellar masses greater than log M*/M-circle dot similar to 10.5. We obtained H I maps of 20 galaxies in this population to understand the distribution of the HI and the physical conditions in the galaxies that could be suppressing star formation in the presence of large quantities of H I. We find that all of the galaxies we observed have low H I surface densities in the range in which inefficient star formation is common. The low H I surface densities are likely the main cause of the low specific star formation rates, but there is also some evidence that active galactic nuclei or bulges contribute to the suppression of star formation. The sample's agreement with the global star formation law highlights its usefulness as a tool for understanding galaxies that do not always follow expected relationships.
C1 [Lemonias, Jenna J.; Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA.
[Catinella, Barbara] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia.
[Heckman, Timothy M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Moran, Sean M.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
RP Lemonias, JJ (reprint author), Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA.
EM jenna@astro.columbia.edu
OI Catinella, Barbara/0000-0002-7625-562X
FU Australian Research Council Future Fellowship Future Fellowship
[FT120100660]; NASA Space Grant; National Science Foundation
[AST-1100968]; Alfred P. Sloan Foundation; U.S. Department of Energy;
National Aeronautics and Space Administration; Japanese Monbukagakusho;
Max Planck Society; Higher Education Funding Council for England;
Participating Institutions; [HST-GO-12603.02-A]
FX We thank Ximena Fernandez and Jacqueline van Gorkom for sharing their
expertise and Ted Wyder for providing the GLSB data. We also thank the
anonymous referee for useful comments. J.L. was partially supported by
HST-GO-12603.02-A and a NASA Space Grant. B.C. is the recipient of an
Australian Research Council Future Fellowship (FT120100660).; The
Arecibo Observatory is operated by SRI International under a cooperative
agreement with the National Science Foundation (AST-1100968), and in
alliance with Ana G. Mendez-Universidad Metropolitana, and the
Universities Space Research Association.; Funding for the SDSS and
SDSS-II has been provided by the Alfred P. Sloan Foundation, the
Participating Institutions, the National Science Foundation, the U.S.
Department of Energy, the National Aeronautics and Space Administration,
the Japanese Monbukagakusho, the Max Planck Society, and the Higher
Education Funding Council for England. The SDSS Web site is
http://www.sdss.org/.
NR 68
TC 4
Z9 4
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 27
DI 10.1088/0004-637X/790/1/27
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800027
ER
PT J
AU Li, GJ
Batygin, K
AF Li, Gongjie
Batygin, Konstantin
TI ON THE SPIN-AXIS DYNAMICS OF A MOONLESS EARTH
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE planetary systems; planets and satellites: dynamical evolution and
stability
ID LONG-TERM EVOLUTION; SUN-LIKE STAR; HABITABLE-ZONE; SOLAR-SYSTEM;
OBLIQUITY VARIATIONS; CHAOTIC OBLIQUITY; CLIMATE CHANGES; MARS; PLANETS;
DIFFUSION
AB The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.
C1 [Li, Gongjie; Batygin, Konstantin] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA.
RP Li, GJ (reprint author), Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA.
EM gli@cfa.harvard.edu
NR 34
TC 8
Z9 8
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 69
DI 10.1088/0004-637X/790/1/69
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800069
ER
PT J
AU Margutti, R
Parrent, J
Kamble, A
Soderberg, AM
Foley, RJ
Milisavljevic, D
Drout, MR
Kirshner, R
AF Margutti, R.
Parrent, J.
Kamble, A.
Soderberg, A. M.
Foley, R. J.
Milisavljevic, D.
Drout, M. R.
Kirshner, R.
TI NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS
ENVIRONMENT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE supernovae: individual (SN 2014J)
ID ACCRETING WHITE-DWARF; LIGHT CURVES; SURFACE DETONATIONS; DEGENERATE
CHANNEL; SYMBIOTIC CHANNEL; SUPERNOVA 2011FE; RECURRENT NOVAE; UPPER
LIMITS; RS OPHIUCHI; MODELS
AB Deep X-ray observations of the post-explosion environment around the very nearby Type Ia SN 2014J (d(L) = 3.5Mpc) reveal no X-ray emission down to a luminosity L-x < 7 x 1036 erg s(-1) (0.3-10 keV) at delta t similar to 20 days after the explosion. We interpret this limit in the context of inverse Compton emission from upscattered optical photons by the supernova shock and constrain the pre-explosion mass-loss rate of the stellar progenitor system to be M < 10(-9) M-circle dot yr(-1) (for wind velocity upsilon(w) = 100 km s(-1)). Alternatively, the SN shock might be expanding into a uniform medium with density n(CSM) < 3 cm (3). These results rule out single-degenerate (SD) systems with steady mass loss until the terminal explosion and constrain the fraction of transferred material lost at the outer Lagrangian point to be <= 1%. The allowed progenitors are (1) white dwarf-white dwarf progenitors, (2) SD systems with unstable hydrogen burning experiencing recurrent nova eruptions with recurrence time t < 300 yr, and (3) stars where the mass loss ceases before the explosion.
C1 [Margutti, R.; Parrent, J.; Kamble, A.; Soderberg, A. M.; Milisavljevic, D.; Drout, M. R.; Kirshner, R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Foley, R. J.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Foley, R. J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
RP Margutti, R (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
OI Margutti, Raffaella/0000-0003-4768-7586
FU David and Lucile Packard Foundation Fellowship for Science and
Engineering; National Science Foundation [AST12-11196]
FX We thank the referee for useful comments and a timely report. We thank
H. Tananbaum and the entire Chandra team for making the X-ray
observations possible. R. M. thanks Lorenzo Sironi, Cristiano Guidorzi,
and James Guillochon for many instructive discussions and Georgios
Dimitriadis for clarifications about his nova ejection simulations.
Support for this work was provided by the David and Lucile Packard
Foundation Fellowship for Science and Engineering awarded to A.M.S. R.K.
acknowledges support from the National Science Foundation through grant
AST12-11196.
NR 99
TC 33
Z9 33
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 52
DI 10.1088/0004-637X/790/1/52
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800052
ER
PT J
AU Nesvorny, D
Kipping, D
Terrell, D
Feroz, F
AF Nesvorny, David
Kipping, David
Terrell, Dirk
Feroz, Farhan
TI PHOTO-DYNAMICAL ANALYSIS OF THREE KEPLER OBJECTS OF INTEREST WITH
SIGNIFICANT TRANSIT TIMING VARIATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE planets and satellites: detection; planets and satellites: dynamical
evolution and stability; planets and satellites: individual (KOI-227,
KOI-319, KOI-884)
ID 1ST 16 MONTHS; II. ANALYSIS; PLANETS; CANDIDATES; EXOMOONS; HUNT;
EFFICIENT; SYSTEMS; SEARCH; III.
AB KOI-227, KOI-319 and KOI-884 are identified here as (at least) two planet systems. For KOI-319 and KOI-884, the observed Transit Timing Variations (TTVs) of the inner transiting planet are used to detect an outer non-transiting planet. The outer planet in KOI-884 is similar or equal to 2.6 Jupiter masses and has the orbital period just narrow of the 3:1 resonance with the inner planet (orbital period ratio 2.93). The distribution of parameters inferred from KOI-319.01's TTVs is bimodal with either a similar or equal to 1.6 Neptune-mass (M-N) planet wide of the 5:3 resonance (period 80.1 days) or a similar or equal to 1 Saturn-mass planet wide of the 7:3 resonance (period 109.2 days). The radial velocity measurements can be used in this case to determine which of these parameter modes is correct. KOI-227.01's TTVs with large similar or equal to 10 hr amplitude can be obtained for planetary-mass companions in various major resonances. Based on the Bayesian evidence, the current TTV data favor the outer 2:1 resonance with a companion mass similar or equal to 1.5 M-N, but this solution implies a very large density of KOI-227.01. The inner and outer 3:2 resonance solutions with sub-Neptune-mass companions are physically more plausible, but will need to be verified.
C1 [Nesvorny, David; Terrell, Dirk] Southwest Res Inst, Dept Space Studies, Boulder, CO 80302 USA.
[Kipping, David] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Feroz, Farhan] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
RP Nesvorny, D (reprint author), Southwest Res Inst, Dept Space Studies, Boulder, CO 80302 USA.
FU NASA Sagan fellowship
FX We thank the Kepler Science Team, especially the DAWG, for making the
data used here available. D.M.K. is supported by the NASA Sagan
fellowship.
NR 38
TC 5
Z9 5
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 31
DI 10.1088/0004-637X/790/1/31
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800031
ER
PT J
AU Rigby, JR
Bayliss, MB
Gladders, MD
Sharon, K
Wuyts, E
Dahle, H
AF Rigby, J. R.
Bayliss, M. B.
Gladders, M. D.
Sharon, K.
Wuyts, E.
Dahle, H.
TI ON THE LACK OF CORRELATION BETWEEN Mg II 2796, 2803 angstrom AND Ly
alpha EMISSION IN LENSED STAR-FORMING GALAXIES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: star formation; gravitational lensing: strong; ISM: jets and
outflows; techniques: spectroscopic
ID RCSGA 032727-132609; SPECTROSCOPY; OUTFLOWS; ABSORPTION; SPECTRA;
BRIGHT; Z=1.7
AB We examine the Mg II 2796, 2803, Ly alpha, and nebular line emission in five bright star-forming galaxies at 1.66 < z < 1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lya emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100-200 km s(-1). When present, Ly alpha is even more redshifted. The reddest components of Mg II and Ly alpha emission have tails to 500-600 km s(-1), implying a strong outflow. The lack of correlation in the Mg II and Ly alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.
C1 [Rigby, J. R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Bayliss, M. B.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Bayliss, M. B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Gladders, M. D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Gladders, M. D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Sharon, K.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Wuyts, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Dahle, H.] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway.
RP Rigby, JR (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
RI Rigby, Jane/D-4588-2012
OI Rigby, Jane/0000-0002-7627-6551
FU Carnegie Observatories, U. Michigan; Carnegie Observatories, U. Chicago;
Harvard-Smithsonian Center for Astrophysics
FX This paper includes data gathered with the 6.5 m Magellan Telescopes
located at Las Campanas Observatory, Chile. Magellan time for this
project was granted by the Carnegie Observatories, U. Michigan, U.
Chicago, and the Harvard-Smithsonian Center for Astrophysics.
NR 22
TC 3
Z9 3
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 44
DI 10.1088/0004-637X/790/1/44
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800044
ER
PT J
AU Spalding, C
Batygin, K
AF Spalding, Christopher
Batygin, Konstantin
TI EARLY EXCITATION OF SPIN-ORBIT MISALIGNMENTS IN CLOSE-IN PLANETARY
SYSTEMS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE planetary systems; planets and satellites: general; stars: magnetic
field
ID T-TAURI STARS; MAGNETOCENTRIFUGALLY DRIVEN FLOWS; ACCRETING MAGNETIC
PROTOSTARS; HOT JUPITERS; EXOPLANETARY SYSTEMS; PROTOPLANETARY DISKS;
STELLAR ROTATION; GIANT PLANETS; YOUNG STARS; MASS STARS
AB Continued observational characterization of transiting planets that reside in close proximity to their host stars has shown that a substantial fraction of such objects possess orbits that are inclined with respect to the spin axes of their stars. Mounting evidence for the wide-spread nature of this phenomenon has challenged the conventional notion that large-scale orbital transport occurs during the early epochs of planet formation and is accomplished via planet-disk interactions. However, recent work has shown that the excitation of spin-orbit misalignment between protoplanetary nebulae and their host stars can naturally arise from gravitational perturbations in multi-stellar systems as well as magnetic disk-star coupling. In this work, we examine these processes in tandem. We begin with a thorough exploration of the gravitationally facilitated acquisition of spin-orbit misalignment and analytically show that the entire possible range of misalignments can be trivially reproduced. Moreover, we demonstrate that the observable spin-orbit misalignment only depends on the primordial disk-binary orbit inclination. Subsequently, we augment our treatment by accounting for magnetic torques and show that more exotic dynamical evolution is possible, provided favorable conditions for magnetic tilting. Cumulatively, our results suggest that observed spin-orbit misalignments are fully consistent with disk-driven migration as a dominant mechanism for the origin of close-in planets.
C1 [Spalding, Christopher; Batygin, Konstantin] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Batygin, Konstantin] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA.
RP Spalding, C (reprint author), CALTECH, Dept Geol & Planetary Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA.
EM cspaldin@caltech.edu
FU ITC Prize Postdoctoral Fellowship at the Institute for Theory and
Computation, Harvard-Smithsonian Center for Astrophysics; CONOCO
Graduate Fellowship in Geology at the California Institute of Technology
FX We thank the anonymous referee for a careful review of the paper which
led to an enhanced manuscript. During the review of this paper, we have
become aware that Lai (2014) arrived at similar results simultaneously
and independently. K.B. acknowledges the generous support from the ITC
Prize Postdoctoral Fellowship at the Institute for Theory and
Computation, Harvard-Smithsonian Center for Astrophysics. C.S.
acknowledges the generous support from the CONOCO Graduate Fellowship in
Geology at the California Institute of Technology.
NR 92
TC 18
Z9 18
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 42
DI 10.1088/0004-637X/790/1/42
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800042
ER
PT J
AU Yee, JC
Han, C
Gould, A
Skowron, J
Bond, IA
Udalski, A
Hundertmark, M
Monard, LAG
Porritt, I
Nelson, P
Bozza, V
Albrow, MD
Choi, JY
Christie, GW
Depoy, DL
Gaudi, BS
Hwang, KH
Jung, YK
Lee, CU
McCormick, J
Natusch, T
Ngan, H
Park, H
Pogge, RW
Shin, IG
Tan, TG
Abe, F
Bennett, DP
Botzler, CS
Freeman, M
Fukui, A
Fukunaga, D
Itow, Y
Koshimoto, N
Larsen, P
Ling, CH
Masuda, K
Matsubara, Y
Muraki, Y
Namba, S
Ohnishi, K
Philpott, L
Rattenbury, NJ
Saito, T
Sullivan, DJ
Sumi, T
Sweatman, WL
Suzuki, D
Tristram, PJ
Tsurumi, N
Wada, K
Yamai, N
Yock, PCM
Yonehara, A
Szymanski, MK
Ulaczyk, K
Kozlowski, S
Poleski, R
Wyrzykowski, L
Kubiak, M
Pietrukowicz, P
Pietrzynski, G
Soszynski, I
Bramich, DM
Browne, P
Jaimes, RF
Horne, K
Ipatov, S
Kains, N
Snodgrass, C
Steele, IA
Street, R
Tsapras, Y
AF Yee, J. C.
Han, C.
Gould, A.
Skowron, J.
Bond, I. A.
Udalski, A.
Hundertmark, M.
Monard, L. A. G.
Porritt, I.
Nelson, P.
Bozza, V.
Albrow, M. D.
Choi, J. -Y.
Christie, G. W.
Depoy, D. L.
Gaudi, B. S.
Hwang, K. -H.
Jung, Y. K.
Lee, C. -U.
McCormick, J.
Natusch, T.
Ngan, H.
Park, H.
Pogge, R. W.
Shin, I. -G.
Tan, T. -G.
Abe, F.
Bennett, D. P.
Botzler, C. S.
Freeman, M.
Fukui, A.
Fukunaga, D.
Itow, Y.
Koshimoto, N.
Larsen, P.
Ling, C. H.
Masuda, K.
Matsubara, Y.
Muraki, Y.
Namba, S.
Ohnishi, K.
Philpott, L.
Rattenbury, N. J.
Saito, To.
Sullivan, D. J.
Sumi, T.
Sweatman, W. L.
Suzuki, D.
Tristram, P. J.
Tsurumi, N.
Wada, K.
Yamai, N.
Yock, P. C. M.
Yonehara, A.
Szymanski, M. K.
Ulaczyk, K.
Kozlowski, S.
Poleski, R.
Wyrzykowski, L.
Kubiak, M.
Pietrukowicz, P.
Pietrzynski, G.
Soszynski, I.
Bramich, D. M.
Browne, P.
Jaimes, R. Figuera
Horne, K.
Ipatov, S.
Kains, N.
Snodgrass, C.
Steele, I. A.
Street, R.
Tsapras, Y.
CA Tan, TG
MOA Collaboration
OGLE Collaboration
ROBONET Collaboration
TI MOA-2013-BLG-220Lb: MASSIVE PLANETARY COMPANION TO GALACTIC-DISK HOST
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gravitational lensing: micro; planetary systems
ID JUPITER/SATURN ANALOG; MICROLENSING EVENTS; MOA-2011-BLG-293LB;
PHOTOMETRY; SYSTEM; DWARF
AB We report the discovery of MOA-2013-BLG-220Lb, which has a super-Jupiter mass ratio q = 3.01 +/- 0.02 x 10(-3) relative to its host. The proper motion, mu = 12.5 +/- 1 mas yr(-1), is one of the highest for microlensing planets yet discovered, implying that it will be possible to separately resolve the host within similar to 7 yr. Two separate lines of evidence imply that the planet and host are in the Galactic disk. The planet could have been detected and characterized purely with follow-up data, which has important implications for microlensing surveys, both current and into the Large Synoptic Survey Telescope (LSST) era.
C1 [Yee, J. C.; Gould, A.; Gaudi, B. S.; Pogge, R. W.; Poleski, R.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Yee, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Han, C.; Choi, J. -Y.; Hwang, K. -H.; Jung, Y. K.; Park, H.; Shin, I. -G.] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea.
[Skowron, J.; Udalski, A.; Szymanski, M. K.; Ulaczyk, K.; Kozlowski, S.; Poleski, R.; Wyrzykowski, L.; Kubiak, M.; Pietrukowicz, P.; Pietrzynski, G.; Soszynski, I.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
[Bond, I. A.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, North Shore Mail Ctr, Auckland, New Zealand.
[Hundertmark, M.; Browne, P.; Jaimes, R. Figuera; Horne, K.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland.
[Monard, L. A. G.] Klein Karoo Observ, Ctr Backyard Astrophys, Calitzdorp, South Africa.
[Porritt, I.] Turitea Observ, Palmerston North, New Zealand.
[Nelson, P.] Ellinbank Observ, Ellinbank, Vic, Australia.
[Bozza, V.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, SA, Italy.
[Bozza, V.] Inst Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand.
[Christie, G. W.; Natusch, T.] Auckland Observ, Auckland, New Zealand.
[Depoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Lee, C. -U.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
[McCormick, J.] Farm Cove Observ, Ctr Backyard Astrophys, Auckland, New Zealand.
[Natusch, T.] AUT Univ, Inst Radio Astron & Space Res, Auckland, New Zealand.
[Tan, T. -G.] Perth Exoplanet Survey Telescope, Perth, WA, Australia.
[Abe, F.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Botzler, C. S.; Freeman, M.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1001, New Zealand.
[Fukui, A.] Natl Inst Nat Sci, Natl Astron Observ Japan, Okayama Astrophys Observ, Kamogatacho, Okayama 7190232, Japan.
[Koshimoto, N.; Namba, S.; Suzuki, D.; Wada, K.] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan.
[Larsen, P.; Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan.
[Philpott, L.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan.
[Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand.
[Tristram, P. J.] Mt John Univ Observ, Lake Tekapo 8770, New Zealand.
[Yamai, N.; Yonehara, A.] Kyoto Sangyo Univ, Fac Sci, Dept Phys, Kyoto 6038555, Japan.
[Pietrzynski, G.] Univ Concepcion, Dept Astron, Concepcion, Chile.
[Bramich, D. M.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar.
[Jaimes, R. Figuera; Kains, N.] European So Observ, D-85748 Garching, Germany.
[Ipatov, S.] Qatar Fdn, Doha, Qatar.
[Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany.
[Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England.
[Street, R.; Tsapras, Y.] La Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA.
[Tsapras, Y.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England.
RP Yee, JC (reprint author), Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA.
RI Skowron, Jan/M-5186-2014; Hundertmark, Markus/C-6190-2015; Kozlowski,
Szymon/G-4799-2013; Ipatov, Sergei/O-2302-2014;
OI Skowron, Jan/0000-0002-2335-1730; Hundertmark,
Markus/0000-0003-0961-5231; Kozlowski, Szymon/0000-0003-4084-880X;
Ipatov, Sergei/0000-0002-1413-9180; Tan, Thiam-Guan/0000-0001-5603-6895;
Snodgrass, Colin/0000-0001-9328-2905
FU Ohio State University; California Institute of Technology (Caltech) -
NASA through the Sagan Fellowship Program; Creative Research Initiative
Program of the National Research Foundation of Korea [2009-0081561]; NSF
[AST 1103471]; NASA [NNX12AB99G]; European Research Council under the
European Community's Seventh Framework Programme/ERC [246678]; NPRP
[X-019-1-006]; [JSPS23340044]; [JSPS24253004]
FX Work by J. C. Yee is supported in part by a Distinguished University
Fellowship from The Ohio State University and in part under contract
with the California Institute of Technology (Caltech) funded by NASA
through the Sagan Fellowship Program. Work by CH was supported by the
Creative Research Initiative Program (2009-0081561) of the National
Research Foundation of Korea. Work by A.G. and B.S.G. was supported by
NSF grant AST 1103471. Work by A.G., B.S.G., and R.W.P. was supported by
NASA grant NNX12AB99G. T.S. acknowledges the support from the grant
JSPS23340044 and JSPS24253004. The OGLE project has received funding
from the European Research Council under the European Community's
Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no.
246678 to AU. This publication was made possible by NPRP grant
X-019-1-006 from the Qatar National Research Fund (a member of Qatar
Foundation).
NR 26
TC 6
Z9 6
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 14
DI 10.1088/0004-637X/790/1/14
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800014
ER
PT J
AU Zellem, RT
Lewis, NK
Knutson, HA
Griffith, CA
Showman, AP
Fortney, JJ
Cowan, NB
Agol, E
Burrows, A
Charbonneau, D
Deming, D
Laughlin, G
Langton, J
AF Zellem, Robert T.
Lewis, Nikole K.
Knutson, Heather A.
Griffith, Caitlin A.
Showman, Adam P.
Fortney, Jonathan J.
Cowan, Nicolas B.
Agol, Eric
Burrows, Adam
Charbonneau, David
Deming, Drake
Laughlin, Gregory
Langton, Jonathan
TI THE 4.5 mu m FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE atmospheric effects; methods: numerical; planets and satellites:
general; planets and satellites: individual (HD 209458b); techniques:
photometric
ID TIDALLY LOCKED EXOPLANETS; SPITZER-SPACE-TELESCOPE; TRANSIT LIGHT-CURVE;
ATMOSPHERIC CIRCULATION; EXTRASOLAR PLANET; SECONDARY ECLIPSE; WARM
SPITZER; DISEQUILIBRIUM CARBON; HEAT REDISTRIBUTION; THERMAL INVERSIONS
AB The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. HD209458b is predicted to be in synchronous rotation about its host star with a hot spot that is shifted eastward of the substellar point by superrotating equatorial winds. Here we present the first full-orbit observations of HD 209458b, in which its 4.5 mu m emission was recorded with Spitzer/IRAC. Our study revises the previous 4.5 m measurement of HD 209458b's secondary eclipse emission downward by similar to 35% to 0.1391%(+0.0072%)(-0.0069%), changing our interpretation of the properties of its dayside atmosphere. We find that the hot spot on the planet's dayside is shifted eastward of the substellar point by 40 degrees.9 +/- 6 degrees.0, in agreement with circulation models predicting equatorial superrotation. HD 209458b's dayside (T-bright = 1499 +/- 15 K) and nightside (T-bright = 972 +/- 44 K) emission indicate a day-to-night brightness temperature contrast smaller than that observed for more highly irradiated exoplanets, suggesting that the day-to-night temperature contrast may be partially a function of the incident stellar radiation. The observed phase curve shape deviates modestly from global circulation model predictions potentially due to disequilibrium chemistry or deficiencies in the current hot CH4 line lists used in these models. Observations of the phase curve at additional wavelengths are needed in order to determine the possible presence and spatial extent of a dayside temperature inversion, as well as to improve our overall understanding of this planet's atmospheric circulation.
C1 [Zellem, Robert T.; Griffith, Caitlin A.; Showman, Adam P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Lewis, Nikole K.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
[Knutson, Heather A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Fortney, Jonathan J.; Laughlin, Gregory] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Cowan, Nicolas B.] Northwestern Univ, Inst Technol, Dept Earth & Planetary Sci, Evanston, IL 60208 USA.
[Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Charbonneau, David] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Deming, Drake] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Langton, Jonathan] Principia Coll, Dept Phys, Elsah, IL 62028 USA.
RP Zellem, RT (reprint author), Univ Arizona, Lunar & Planetary Lab, 1629 East Univ Blvd, Tucson, AZ 85721 USA.
EM rzellem@lpl.arizona.edu
OI Zellem, Robert/0000-0001-7547-0398
FU NASA Planetary Atmospheres Program; NASA through the Sagan Fellowship
Program
FX R.Z. and C.A.G. are supported by the NASA Planetary Atmospheres
Program.; N.K.L. performed this work in part under contract with the
California Institute of Technology (Caltech) funded by NASA through the
Sagan Fellowship Program executed by the NASA Exoplanet Science
Institute.
NR 91
TC 42
Z9 42
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 20
PY 2014
VL 790
IS 1
AR 53
DI 10.1088/0004-637X/790/1/53
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL0SK
UT WOS:000338836800053
ER
PT J
AU Ogburn, MB
Roberts, PM
Richie, KD
Johnson, EG
Hines, AH
AF Ogburn, Matthew B.
Roberts, Paige M.
Richie, Kimberly D.
Johnson, Eric G.
Hines, Anson H.
TI Temporal and spatial variation in sperm stores in mature female blue
crabs Callinectes sapidus and potential effects on brood production in
Chesapeake Bay
SO MARINE ECOLOGY PROGRESS SERIES
LA English
DT Article
DE Sperm limitation; Fisheries management; Sex ratio; Callinectes sapidus;
Chesapeake Bay
ID CHIONOECETES-OPILIO BRACHYURA; MALE MATING HISTORY; OF-SAINT-LAWRENCE;
POPULATION-DYNAMICS; SPAWNING STOCK; NORTH-CAROLINA; SEMINAL FLUID; MALE
SIZE; RATHBUN; COMPETITION
AB Fisheries that selectively harvest males have the potential to diminish the reproductive success of females due to reductions in the transfer of sperm and seminal fluid during mating. The purposes of this study were to investigate variation in sperm and seminal fluid quantities obtained during mating in mature female blue crabs Callinectes sapidus in Chesapeake Bay, USA, and to model potential effects of sperm reduction on lifetime brood production. We explored variation in sperm and seminal fluid quantity with respect to (1) season, (2) location, (3) operational sex ratio (OSR), (4) relative time since mating, and (5) fertilization, and used this information to model brood production. Mature female blue crabs were obtained from targeted or long-term collection efforts. Crabs were characterized by carapace condition, presence of a sperm plug (hardened seminal fluid), and presence of egg masses or egg remnants. They were dissected and processed to determine the quantity of stored sperm and spermathecae weight. Sperm quantity, but not spermathecae weight, of recently mated females varied seasonally and spatially, and was positively correlated with OSR. Females received as many as 3 x 10(9) sperm during mating, which declined to an average of 8 x 10(7) sperm before fertilization of the first brood. Both model simulations and estimates of sperm used for fertilization derived from sperm counts of females with and without evidence of spawning indicated that a reduction in lifetime brood production (sperm limitation) is likely in individual female blue crabs if they survive to a second spawning season.
C1 [Ogburn, Matthew B.; Roberts, Paige M.; Richie, Kimberly D.; Johnson, Eric G.; Hines, Anson H.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
[Johnson, Eric G.] Univ N Florida, Dept Biol, Jacksonville, FL 32224 USA.
RP Ogburn, MB (reprint author), Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21037 USA.
EM ogburnm@si.edu
OI Ogburn, Matthew/0000-0001-5417-555X
FU NOAA's Chesapeake Bay Office Award [NA11 NMF4570230]; Smithsonian
Institution Environmental Studies Program; SERC; Tennenbaum Marine
Observatories; Smithsonian Women's Committee; NSF [OCE-9711843,
OCE-97155]; Maryland Sea Grant Program; Phillips Seafood, Inc.; Disney
Wildlife Conservation Fund
FX We thank R. Aguilar, M. Goodison, M. Kramer and many watermen,
technicians, and undergraduate interns who have helped with field
collections and sample processing since 1996. The manuscript is
significantly improved thanks to thoughtful comments from 4 anonymous
reviewers. Support for our long-term study of reproductive biology and
sperm limitation in blue crabs has been provided by NOAA's Chesapeake
Bay Office Award #NA11 NMF4570230, the Smithsonian Institution
Environmental Studies Program, the SERC Fellowship Program, Tennenbaum
Marine Observatories, the Smithsonian Women's Committee, NSF Awards
OCE-9711843 and OCE-97155, the Maryland Sea Grant Program, Phillips
Seafood, Inc., and the Disney Wildlife Conservation Fund.
NR 53
TC 4
Z9 4
U1 2
U2 14
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 0171-8630
EI 1616-1599
J9 MAR ECOL PROG SER
JI Mar. Ecol.-Prog. Ser.
PD JUL 17
PY 2014
VL 507
BP 249
EP 262
DI 10.3354/meps10869
PG 14
WC Ecology; Marine & Freshwater Biology; Oceanography
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Oceanography
GA AO0EO
UT WOS:000340982100019
ER
PT J
AU Foret, G
Eremenko, M
Cuesta, J
Sellitto, P
Barre, J
Gaubert, B
Coman, A
Dufour, G
Liu, X
Joly, M
Doche, C
Beekmann, M
AF Foret, G.
Eremenko, M.
Cuesta, J.
Sellitto, P.
Barre, J.
Gaubert, B.
Coman, A.
Dufour, G.
Liu, X.
Joly, M.
Doche, C.
Beekmann, M.
TI Ozone pollution: What can we see from space? A case study
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID LOWERMOST TROPOSPHERIC OZONE; BOUNDARY-LAYER VENTILATION; GASEOUS DRY
DEPOSITION; ATMOSPHERIC COMPOSITION; MONITORING INSTRUMENT; TRANSPORT
MODEL; NEXT-GENERATION; DATA ASSIMILATION; CHEMISTRY; SATELLITE
AB Due to its impact on environment, tropospheric ozone received particular attention since several decades. Ground-based networks associated with regional chemical transport models are used to monitor and forecast surface ozone concentrations, but coverage, representativeness, and accuracy issues remain important. Recent satellite observations have demonstrated the capacity to probe tropospheric ozone, but there has been no explicit attempt to quantify their ability to measure ozone pollution near ground. We propose here to assess the ability of ozone sounders to detect a photochemical ozone pollution event that is supposed to be a favorable situation for satellite detection. We have chosen ozone pollution event over Europe associated with a warm conveyor belt that efficiently transports photochemically produced ozone upward. Ozone satellite products from Global Ozone Monitoring Experiment-2, Infrared Atmospheric Sounding Interferometer (IASI), and Ozone Monitoring Instrument are analyzed here for their capacity to capture such an event. Also, in situ observations and regional chemical-transport models show increasing ozone concentrations in the continental and Mediterranean boundary layer and further transport to central Europe and Scandinavia associated with upward transport. Satellite observations do not detect high ozone concentrations within the boundary layer due the weak sensitivity near the surface. Nevertheless, we have shown that the IR sounder IASI was able to detect, qualitatively and quantitatively, the ozone plume transported upward by the warm conveyor belt, suggesting that a quantification of upward transport of ozone pollution could be possible using current satellite observations. This should encourage us to further explore approaches more sensitive to surface ozone (such as the multispectral approach) and to prepare the next generation of still more sensitive spaceborne instruments.
C1 [Foret, G.; Eremenko, M.; Cuesta, J.; Sellitto, P.; Gaubert, B.; Coman, A.; Dufour, G.; Beekmann, M.] Univ Paris Diderot, Lab Interuniv Syst Atmospher, UMR7583, IPSL,CNRS,Univ Paris Est Creteil, Creteil, France.
[Sellitto, P.] Ecole Normale Super, CNRS, Meteorol Dynam Lab, UMR8539,IPSL, Paris, France.
[Barre, J.] Natl Ctr Atmospher Res, ACD, NESL, Boulder, CO 80307 USA.
[Barre, J.; Joly, M.] CNRM GAME UMR 3589 CNRS Meteo France, Toulouse, France.
[Liu, X.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Doche, C.] Meteo France DIRSO DEC FDF, Merignac, France.
RP Foret, G (reprint author), Univ Paris Diderot, Lab Interuniv Syst Atmospher, UMR7583, IPSL,CNRS,Univ Paris Est Creteil, Creteil, France.
EM foret@lisa.u-pec.fr
RI Liu, Xiong/P-7186-2014
OI Liu, Xiong/0000-0003-2939-574X
FU European Community's Seventh Framework Programme [SPA.2011.1.5-02,
283576]; project "IASI-TOSCA" (Terre, Ocean, Surfaces continentals,
Atmosphere) - CNES
FX The research leading to these results has received funding from the
European Community's Seventh Framework Programme (FP7 THEME
[SPA.2011.1.5-02]) under grant agreement n.283576, i.e., the MACC-II
project. This study was supported by the project "IASI-TOSCA" (Terre,
Ocean, Surfaces continentals, Atmosphere) financed by CNES. This work
was granted access to the HPC resources of CCRT under the allocation
2013-6695 made by GENCI (Grand Equipement National de Calcul Intensif).
IASI has been developed and built under the responsibility of the Centre
National d'Etudes Spatiales (CNES, France). It is flown aboard the MetOp
satellites as part of the EUMETSAT Polar System. We acknowledge the
support by the data centers ETHER (http://www.pole-ether.fr/) and NOAA
CLASS (http://www.class.ncdc.noaa.gov) for providing respectively L1
IASI and GOME-2 data sets, which are originally supplied by EUMETSAT
through the Eumetcast system distribution (http://www.eumetsat.int). The
Dutch-Finnish OMI instrument is part of the NASA EOS Aura satellite
payload. The OMI Project is managed by NIVR and KNMI in the Netherlands.
We acknowledge the OMI International Science Team for providing
satellite data used in this study. X. Liu is funded by NASA and the
Smithsonian Institution. This work is also part of the ADOMOCA-II
project funded by the French LEFE program (CHAT/ASSIM). The authors
gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the
provision of the HYSPLIT transport and dispersion model and/or READY
website (http://www.ready.noaa.gov) used in this publication. RMIB,
MeteoSwiss, DWD-MOL, PIMWM, AEMET & KNMI. World Ozone and Ultraviolet
Radiation Data Centre (WOUDC) [Data]. Retrieved in 2013, from
http://www.woudc.org. The authors acknowledge the strong support of the
European Commission, Airbus, and airlines-Lufthansa, Air France,
Austrian, and former Sabenato-the MOZAIC program.
NR 85
TC 4
Z9 4
U1 2
U2 41
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUL 16
PY 2014
VL 119
IS 13
AR 2013JD021340
DI 10.1002/2013JD021340
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AN2IK
UT WOS:000340408000041
ER
PT J
AU Carter, JL
Brezinski, DK
Kollar, AD
Dutro, JT
AF Carter, John L.
Brezinski, David K.
Kollar, Albert D.
Dutro, J. Thomas, Jr.
TI BRACHIOPODA TAXONOMY AND BIOSTRATIGRAPHY OF THE REDWALL LIMESTONE (LOWER
MISSISSIPPIAN) OF ARIZONA
SO ANNALS OF CARNEGIE MUSEUM
LA English
DT Article
DE Biostratigraphy; brachiopods; Mississippian; Redwall Limestone
ID GENERA; EAST
AB Forty-six species, assignable to 36 brachiopod genera, are recognized, described, and illustrated from the Lower Mississippian Redwall Limestone of northern Arizona. Seven new species are recognized, four of which are named. Named species are: Spinocarinifera (Seminucella) costatula, new species; Magnumbonella ampla, new species; Setigerites gutschicki, new species; and Spirifer redwallensis, new species. The remaining three newly recognized species remain in open nomenclature because study material was too poorly preserved to justify naming. The majority of brachiopod species studied were recovered from the Thunder Springs and Mooney Falls members near the middle of the formation. The basal Whitmore Wash Member and uppermost Horseshoe Mesa Member contain only sparse and poorly preserved brachiopod material. The spotty stratigraphic distribution of collections, which were recovered from largely geographically disparate locations, resulted in the creation of a stratigraphic range chart that exhibits no recognizable segregation into any potential brachiopod zones.
Many of the Redwall Limestone's brachiopod species are known from contemporaneous formations elsewhere in the Cordillera or central United States. Biostratigraphically key species such as Marginatia fernglenensis (Weller, 1909), Marginatia burlingtonensis (Hall, 1858), Stegacanthia bowsheri Muir-Wood and Cooper, 1960, Fernglenia vernonensis (Swallow, 1860), Voiseyella novamexicana (Miller, 1881), and Punctospirifer subtexta (White, 1862), indicate that much of the Thunder Springs and Mooney Falls members is correlative with latest Kinderhookian (late Tournaisian) through latest Osagean (early Vis an) formations of the American Midcontinent. These correlations indicate that the Redwall Limestone is temporally equivalent to the Fern Glen-Burlington formations of the central United States. These correlations are consistent with other Redwall forms that are biostratigraphially useful, such as foraminifers.
C1 [Carter, John L.] Carnegie Museum Nat Hist, Sect Invertebrate Paleontol, Mt Pleasant, SC 29466 USA.
[Brezinski, David K.] Maryland Geol Survey, Carnegie Museum Nat Hist, Sect Invertebrate Paleontol, Baltimore, MD 21218 USA.
[Kollar, Albert D.] Carnegie Museum Nat Hist, Sect Invertebrate Paleontol, Pittsburgh, PA 15213 USA.
[Dutro, J. Thomas, Jr.] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20013 USA.
RP Carter, JL (reprint author), Carnegie Museum Nat Hist, Sect Invertebrate Paleontol, 171 Blalock St, Mt Pleasant, SC 29466 USA.
EM rccats13@comcast.net; david.brezinski@maryland.gov;
kollara@carnegiemnh.org
FU Carnegie Museum of Natural History Graham Netting Field Fund
FX We would like to thank Colleen Hyde of the Grand Canyon National Park
for access to park collections. John Pojeta of the U. S. National Museum
provided help in locating the Grand Canyon National Park collections
housed in the USNM. Carnegie Museum of Natural History Graham Netting
Field Fund provided for several earlier collecting trips. Special thanks
are owed Carla A. Kertis who provided careful and exhausting editing of
the manuscript at every level. Norman Samways conducted biometric
studies. We would also like to thank an anonymous reviewer for their
helpful suggestions.
NR 142
TC 0
Z9 0
U1 1
U2 2
PU CARNEGIE MUSEUM NATURAL HISTORY
PI PITTSBURGH
PA 4400 FORBES AVE, PITTSBURGH, PA 15213 USA
SN 0097-4463
EI 1943-6300
J9 ANN CARNEGIE MUS
JI Ann. Carnegie Mus.
PD JUL 15
PY 2014
VL 82
IS 3
BP 257
EP 289
PG 33
WC Paleontology; Zoology
SC Paleontology; Zoology
GA AN5JB
UT WOS:000340625600005
ER
PT J
AU Gremillion, KJ
Barton, L
Piperno, DR
AF Gremillion, Kristen J.
Barton, Loukas
Piperno, Dolores R.
TI Reply to Smith: On distinguishing between models, hypotheses, and
theoretical frameworks
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
C1 [Gremillion, Kristen J.] Ohio State Univ, Dept Anthropol, Columbus, OH 43210 USA.
[Barton, Loukas] Univ Pittsburgh, Dept Anthropol, Pittsburgh, PA 15260 USA.
[Piperno, Dolores R.] Smithsonian Natl Museum Nat Hist, Dept Anthropol, Washington, DC 20013 USA.
[Piperno, Dolores R.] Smithsonian Trop Res Inst, Panama City, Panama.
RP Gremillion, KJ (reprint author), Ohio State Univ, Dept Anthropol, Columbus, OH 43210 USA.
EM gremillion.1@osu.edu
NR 5
TC 1
Z9 1
U1 0
U2 9
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 15
PY 2014
VL 111
IS 28
BP E2830
EP E2830
DI 10.1073/pnas.1408909111
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AL2WG
UT WOS:000338985700004
PM 25157385
ER
PT J
AU Gremillion, KJ
Barton, L
Piperno, DR
AF Gremillion, Kristen J.
Barton, Loukas
Piperno, Dolores R.
TI Reply to Zeder: Maintaining a diverse scientific toolkit is not an act
of faith
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
ID ORIGINS
C1 [Gremillion, Kristen J.] Ohio State Univ, Dept Anthropol, Columbus, OH 43210 USA.
[Barton, Loukas] Univ Pittsburgh, Dept Anthropol, Pittsburgh, PA 15260 USA.
[Piperno, Dolores R.] Smithsonian Natl Museum Nat Hist, Dept Anthropol, Washington, DC 20013 USA.
[Piperno, Dolores R.] Smithsonian Trop Res Inst, Panama City, Panama.
RP Gremillion, KJ (reprint author), Ohio State Univ, Dept Anthropol, Columbus, OH 43210 USA.
EM gremillion.1@osu.edu
NR 4
TC 1
Z9 1
U1 0
U2 7
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 15
PY 2014
VL 111
IS 28
BP E2828
EP E2828
DI 10.1073/pnas.1409072111
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AL2WG
UT WOS:000338985700002
PM 25157384
ER
PT J
AU Smith, BD
AF Smith, Bruce D.
TI Failure of optimal foraging theory to appeal to researchers working on
the origins of agriculture worldwide
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
C1 Smithsonian Inst, Natl Museum Nat Hist, Dept Anthropol, Program Human Ecol & Archaeobiol, Washington, DC 20013 USA.
RP Smith, BD (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Anthropol, Program Human Ecol & Archaeobiol, Washington, DC 20013 USA.
EM smithb@si.edu
NR 5
TC 4
Z9 4
U1 1
U2 21
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 15
PY 2014
VL 111
IS 28
BP E2829
EP E2829
DI 10.1073/pnas.1408208111
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AL2WG
UT WOS:000338985700003
PM 24979801
ER
PT J
AU Zeder, MA
AF Zeder, Melinda A.
TI Alternative to faith-based science
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
C1 Smithsonian Inst, Natl Museum Nat Hist, Program Human Ecol & Archaeobiol, Washington, DC 20013 USA.
RP Zeder, MA (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Program Human Ecol & Archaeobiol, Washington, DC 20013 USA.
EM zederm@si.edu
NR 5
TC 5
Z9 5
U1 1
U2 7
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 15
PY 2014
VL 111
IS 28
BP E2827
EP E2827
DI 10.1073/pnas.1408209111
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AL2WG
UT WOS:000338985700001
PM 24946802
ER
PT J
AU Muller, A
Schippers, S
Phaneuf, RA
Scully, SWJ
Aguilar, A
Cisneros, C
Gharaibeh, MF
Schlachter, AS
McLaughlin, BM
AF Mueller, A.
Schippers, S.
Phaneuf, R. A.
Scully, S. W. J.
Aguilar, A.
Cisneros, C.
Gharaibeh, M. F.
Schlachter, A. S.
McLaughlin, B. M.
TI K-shell photoionization of Be-like boron (B+) ions: experiment and
theory
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
DE K-shell; photoionization; boron
ID PHOTOABSORPTION CROSS-SECTIONS; ELECTRON-IMPACT IONIZATION;
DOUBLY-EXCITED RESONANCES; RESOLUTION AUGER-SPECTRA; SINGLE GAS
COLLISIONS; R-MATRIX THEORY; ATOMIC IONS; IONIZED BORON; SPECTROSCOPY;
FLUORESCENCE
AB Absolute cross sections for the K-shell photoionization of Be-like boron ions were measured with the ion-photon merged-beams technique at the Advanced Light Source synchrotron radiation facility. High-resolution spectroscopy with E/Delta E up to 8800 (Delta E similar to 22 meV) covered the energy ranges 193.7-194.7 eV and 209-215 eV. Lifetimes of the strongest resonances are determined with relative uncertainties down to approximately 4% for the broadest resonance. The measured resonance strengths are consistent with 60% 1s(2)2s(2) S-1 ground-state and 40% 1s(2)2s2p P-3(o) metastable-state ions in the primary ion beam and confirmed by comparison with independent absolute photo-recombination heavy-ion storage-ring measurements with B2+ ions using the principle of detailed balance. Experimental determination of the line width for the 1s2s(2)2p P-1(o) resonance gives a value of 47 +/- 2 meV and compares favourably to a theoretical estimate of 47 meV from the R-matrix with pseudo-states (RMPS) method. The measured line widths of the 1s2s2p(2) P-3, D-3 resonances are 10.0 +/- 2 meV and 32 +/- 3 meV, respectively, compared to RMPS theoretical estimates of 9 meV and 34 meV.
C1 [Mueller, A.; Schippers, S.] Univ Giessen, Inst Atom & Mol Phys, D-35390 Giessen, Germany.
[Phaneuf, R. A.; Scully, S. W. J.; Aguilar, A.; Gharaibeh, M. F.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Aguilar, A.; Schlachter, A. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Cisneros, C.] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62131, Morelos, Mexico.
[McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland.
[McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA.
RP Muller, A (reprint author), Univ Giessen, Inst Atom & Mol Phys, D-35390 Giessen, Germany.
EM Alfred.Mueller@iamp.physik.uni-giessen.de; b.mclaughlin@qub.ac.uk
RI Muller, Alfred/A-3548-2009; Schippers, Stefan/A-7786-2008
OI Muller, Alfred/0000-0002-0030-6929; Schippers,
Stefan/0000-0002-6166-7138
FU Deutsche Forschungsgemeinschaft [Mu 1068/10]; NATO [976362]; US
Department of Energy (DOE) [DE-AC03-76SF-00098, DE-FG02-03ER15424];
PAPIT-UNAM, Mexico [IN107912-IN102613]; US National Science Foundation;
Queen's University Belfast; National Science Foundation [OCI-1053575];
Office of Science, Office of Basic Energy Sciences, of the US Department
of Energy [DE-AC02-05CH11231]
FX We acknowledge support by Deutsche Forschungsgemeinschaft under project
number Mu 1068/10 and through NATO Collaborative Linkage grant 976362 as
well as by the US Department of Energy (DOE) under contract
DE-AC03-76SF-00098 and grant DE-FG02-03ER15424. C Cisneros acknowledges
support from PAPIT-UNAM IN107912-IN102613, Mexico. B M McLaughlin
acknowledges support by the US National Science Foundation through a
grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics, a
visiting research fellowship from Queen's University Belfast and the
hospitality of AM and SS during a recent visit to Giessen. We thank John
C Raymond and Randall K Smith from the Harvard Smithsonian Center for
Astrophysics for helpful discussions on the astrophysical applications.
The computational work was carried out at the National Energy Research
Scientific Computing Center in Oakland, CA, USA, the Kraken XT5 facility
at the National Institute for Computational Science (NICS) in Knoxville,
TN, USA and at the High Performance Computing Center Stuttgart (HLRS) of
the University of Stuttgart, Stuttgart, Germany. We thank Stefan
Andersson from Cray Research for his assistance and advice with the
implementation and optimization of the parallel R-matrix codes on the
Cray-XE6 at HLRS. The Kraken XT5 facility is a resource of the Extreme
Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number OCI-1053575. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the US Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 93
TC 9
Z9 9
U1 0
U2 10
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
EI 1361-6455
J9 J PHYS B-AT MOL OPT
JI J. Phys. B-At. Mol. Opt. Phys.
PD JUL 14
PY 2014
VL 47
IS 13
AR 135201
DI 10.1088/0953-4075/47/13/135201
PG 13
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA AK9WU
UT WOS:000338780100003
ER
PT J
AU McKinney, JC
Tchekhovskoy, A
Sadowski, A
Narayan, R
AF McKinney, Jonathan C.
Tchekhovskoy, Alexander
Sadowski, Aleksander
Narayan, Ramesh
TI Three-dimensional general relativistic radiation magnetohydrodynamical
simulation of super-Eddington accretion, using a new code harmrad with
M1 closure
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE accretion; accretion discs; black hole physics; gravitation;
hydrodynamics; MHD; methods: numerical
ID BLACK-HOLE ACCRETION; ADVECTION-DOMINATED ACCRETION; RUNGE-KUTTA
SCHEMES; SLIM-DISK MODEL; X-RAY BINARIES; MAGNETIC-FIELD GEOMETRY;
HEAT-TRANSFER EQUATIONS; SAGITTARIUS-A-ASTERISK; FLUX-LIMITED DIFFUSION;
ACTIVE GALACTIC NUCLEI
AB Black hole (BH) accretion flows and jets are dynamic hot relativistic magnetized plasma flows whose radiative opacity can significantly affect flow structure and behaviour. We describe a numerical scheme, tests, and an astrophysically relevant application using the M1 radiation closure within a new 3D general relativistic radiation magnetohydrodynamics (GRRMHD) massively parallel code called harmrad. Our 3D GRRMHD simulation of super-Eddington accretion (about 20 times Eddington) on to a rapidly rotating BH (dimensionless spin j = 0.9375) shows sustained non-axisymmemtric disc turbulence, a persistent electromagnetic jet driven by the Blandford-Znajek effect, a disc wind, and a polar radiation jet. The total accretion efficiency is of the order of 20 per cent, the large-scale electromagnetic jet efficiency is of the order of 10 per cent, the disc wind efficiency is less than 1 per cent, and the total radiative efficiency remains low at only of the order of 1 per cent (of order the Eddington luminosity). However, the radiation jet and the electromagnetic jet both emerge from a geometrically beamed polar region, with super-Eddington isotropic equivalent luminosities. Such simulations with harmrad can enlighten the role of BH spin versus discs in launching jets, help determine the origin of spectral and temporal states in X-ray binaries, help to understand how tidal disruption events work, provide an accurate horizon-scale flow structure for M87 and other active galactic nuclei (AGN), and isolate whether AGN feedback is driven by radiation or by an electromagnetic, thermal, or kinetic wind/jet. For example, the low radiative efficiency and weak BH spin-down rate from our simulation suggest that BH growth over cosmological times to billions of solar masses by redshifts of z similar to 6-8 is achievable even with rapidly rotating BHs and 10 M-aS (TM) BH seeds.
C1 [McKinney, Jonathan C.] Univ Maryland, Dept Phys, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Tchekhovskoy, Alexander] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.
[Sadowski, Aleksander; Narayan, Ramesh] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02134 USA.
RP McKinney, JC (reprint author), Univ Maryland, Dept Phys, Joint Space Sci Inst, 1117 John S Toll Bldg 082, College Pk, MD 20742 USA.
EM jcm@umd.edu
OI Narayan, Ramesh/0000-0002-1919-2730
FU NSF [AST1312651]; NASA through Einstein Fellowship Programme
[PF3-140115]; NICS Kraken and Nautilus [TG-PHY120005, TG-AST100040,
TG-AST080026N]; NASA via High-End Computing (HEC) Program through NASA
Advanced Supercomputing (NAS) Division at Ames Research Center
FX We thank James M. Stone and Omer Blaes for useful discussions. RN and AS
were supported in part by NSF grant AST1312651. AT was supported by NASA
through the Einstein Fellowship Programme, grant PF3-140115. We
acknowledge NSF support via XSEDE resources, NICS Kraken and Nautilus
under grant numbers TG-PHY120005 (JCM), TG-AST100040 (AT), TG-AST080026N
(RN and AS), and NASA support via High-End Computing (HEC) Program
through the NASA Advanced Supercomputing (NAS) Division at Ames Research
Center (JCM, AS, and RN) that provided access to the Pleiades
supercomputer.
NR 192
TC 69
Z9 69
U1 1
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 11
PY 2014
VL 441
IS 4
BP 3177
EP 3208
DI 10.1093/mnras/stu762
PG 32
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RP
UT WOS:000338764700029
ER
PT J
AU Avila, S
Knebe, A
Pearce, FR
Schneider, A
Srisawat, C
Thomas, PA
Behroozi, P
Elahi, PJ
Han, JX
Mao, YY
Onions, J
Rodriguez-Gomez, V
Tweed, D
AF Avila, Santiago
Knebe, Alexander
Pearce, Frazer R.
Schneider, Aurel
Srisawat, Chaichalit
Thomas, Peter A.
Behroozi, Peter
Elahi, Pascal J.
Han, Jiaxin
Mao, Yao-Yuan
Onions, Julian
Rodriguez-Gomez, Vicente
Tweed, Dylan
TI SUSSING MERGER TREES: the influence of the halo finder
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: numerical; galaxies: evolution; galaxies: haloes; dark matter
ID ACTIVE GALACTIC NUCLEI; DARK-MATTER HALOES; COMPARISON PROJECT; GALAXY
FORMATION; BLACK-HOLES; MODELS; SUBHALOES; CLUSTER; LIVES; NOTTS
AB Merger tree codes are routinely used to follow the growth and merger of dark matter haloes in simulations of cosmic structure formation. Whereas in Srisawat et. al. we compared the trees built using a wide variety of such codes, here we study the influence of the underlying halo catalogue upon the resulting trees. We observe that the specifics of halo finding itself greatly influences the constructed merger trees. We find that the choices made to define the halo mass are of prime importance. For instance, amongst many potential options different finders select self-bound objects or spherical regions of defined overdensity, decide whether or not to include substructures within the mass returned and vary in their initial particle selection. The impact of these decisions is seen in tree length (the period of time a particularly halo can be traced back through the simulation), branching ratio (essentially the merger rate of subhaloes) and mass evolution. We therefore conclude that the choice of the underlying halo finder is more relevant to the process of building merger trees than the tree builder itself. We also report on some built-in features of specific merger tree codes that (sometimes) help to improve the quality of the merger trees produced.
C1 [Avila, Santiago; Knebe, Alexander] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, E-28049 Madrid, Spain.
[Avila, Santiago] Univ Autonoma Madrid, UAM CSIC, Inst Fis Teor, E-28049 Madrid, Spain.
[Pearce, Frazer R.; Onions, Julian] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Schneider, Aurel; Srisawat, Chaichalit; Thomas, Peter A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Behroozi, Peter; Mao, Yao-Yuan] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Elahi, Pascal J.] Univ Sydney, Sydney Inst Astron, Sydney, NSW 2016, Australia.
[Han, Jiaxin] Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China.
[Han, Jiaxin] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England.
[Rodriguez-Gomez, Vicente] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Tweed, Dylan] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel.
[Tweed, Dylan] Shanghai Jiao Tong Univ, Dept Phys & Astron, Ctr Astron & Astrophys, Shanghai 200240, Peoples R China.
RP Avila, S (reprint author), Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, Modulo C-15, E-28049 Madrid, Spain.
EM santiagoavilaperez@gmail.com
RI Knebe, Alexander/N-1815-2014;
OI Mao, Yao-Yuan/0000-0002-1200-0820; Schneider, Aurel/0000-0001-7055-8104;
Rodriguez-Gomez, Vicente/0000-0002-9495-0079; Knebe,
Alexander/0000-0003-4066-8307; Onions, Julian/0000-0001-5192-6856;
Pearce, Frazer/0000-0002-2383-9250
FU European Commission through Marie Curie Initial Training Network
CosmoComp [PITN-GA-2009-238356]; Universidad Autonoma de Madrid;
University of Western Australia; Ministerio de Economia y Competitividad
(MINECO) in Spain [AYA2012-31101]; Spanish Ministerio de Ciencia e
Innovacion (MICINN) [CSD2009-00064]; Australian Research Council (ARC)
[DP130100117, DP140100198]; Giacconi Fellowship through Space Telescope
Science Institute under NASA [NAS5-26555]; SSimPL programme; Sydney
Institute for Astronomy (SIfA); STFC; The Development and Promotion of
Science and Technology Talents Project (DPST), Thailand; Science and
Technology Facilities Council [ST/I000976/1]; Weiland Family Stanford
Graduate Fellowship; [AYA2009-13936-C06-06]; [FPA2012-39684-C03-02];
[SEV-2012-0249]
FX The SUSSING MERGER TREES Workshop was supported by the European
Commission's Framework Programme 7, through the Marie Curie Initial
Training Network CosmoComp (PITN-GA-2009-238356). This also provided
fellowship support for AS.; SA is supported by a PhD fellowship from the
Universidad Autonoma de Madrid and the Spanish ministerial grants
AYA2009-13936-C06-06, AYA2009-13936-C06-06, FPA2012-39684-C03-02 and
SEV-2012-0249. He also acknowledges the support of the University of
Western Australia through their Research Collaboration Award 2014 scheme
and thanks its International Centre for Radio Astronomy Research (and
especially Chris Power) for the hospitality during the final stages of
the paper writing.; AK is supported by the Ministerio de Economia y
Competitividad (MINECO) in Spain through grant AYA2012-31101 as well as
the Consolider-Ingenio 2010 Programme of the Spanish Ministerio de
Ciencia e Innovacion (MICINN) under grant MultiDark CSD2009-00064. He
also acknowledges support from the Australian Research Council (ARC)
grants DP130100117 and DP140100198. He further thanks Belle & Sebastian
for tigermilk.; PSB is funded by a Giacconi Fellowship through the Space
Telescope Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Incorporated, under NASA
contract NAS5-26555.; PJE is supported by the SSimPL programme and the
Sydney Institute for Astronomy (SIfA).; JXH is supported by an STFC
Rolling Grant to the Institute for Computational Cosmology, Durham
University.; CS is supported by The Development and Promotion of Science
and Technology Talents Project (DPST), Thailand.; PAT acknowledges
support from the Science and Technology Facilities Council (grant number
ST/I000976/1).; YYM received support from the Weiland Family Stanford
Graduate Fellowship.
NR 27
TC 12
Z9 12
U1 0
U2 7
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 11
PY 2014
VL 441
IS 4
BP 3488
EP 3501
DI 10.1093/mnras/stu799
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RP
UT WOS:000338764700047
ER
PT J
AU Zapata, LA
Arce, HG
Brassfield, E
Palau, A
Patel, N
Pineda, JE
AF Zapata, Luis A.
Arce, Hector G.
Brassfield, Erin
Palau, Aina
Patel, Nimesh
Pineda, Jaime E.
TI A spider-like outflow in Barnard 5-IRS 1: the transition from a
collimated jet to a wide-angle outflow?
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE stars: formation; ISM: individual objects: Barnard 5-IRS1; ISM:
individual objects: HH 366 VLA 1; ISM: jets and outflows
ID DRIVEN MOLECULAR OUTFLOW; HUBBLE-SPACE-TELESCOPE; HERBIG-HARO OBJECTS;
PROPER MOTIONS; BIPOLAR OUTFLOWS; YOUNG STARS; CO OUTFLOW; EVOLUTION;
EMISSION; IMAGES
AB We present line and continuum observations made with the Submillimeter Array of the young stellar object Barnard 5 - IRS1 located in the Perseus molecular cloud. Our (CO)-C-12(2-1) line observations resolve the high-velocity bipolar north-east-south-west outflow associated with this source. We find that the outflowing gas shows different structures at three different velocity regimes, in both lobes, resulting in a spider-like morphology. In addition to the low-velocity, cone-like (wide-angle) lobes that have previously been observed, we report the presence of intermediate-velocity parabolic shells emerging very close to the Class I protostar, as well as high-velocity molecular bullets that appear to be associated with the optical/IR jet emanating from this source. These compact high-velocity features reach radial velocities of about 50 km s(-1) away from the cloud velocity. We interpret that the peculiar spider-like morphology is a result of the molecular material being entrained by a wind with both a collimated jet-like component and a wide-angle component. We suggest that the outflow is in a transitional evolutionary phase between a mostly jet-driven flow and an outflow in which the entrainment is dominated by the wide-angle wind component. We also detect 1300 mu m continuum emission at the position of the protostar, which likely arises from the dusty envelope and disc surrounding the protostar. Finally, we report the detection of (CO)-C-13(2-1) and SO(6(5)-5(4)) emission arising from the outflow and the location of the young stellar object.
C1 [Zapata, Luis A.] UNAM, Ctr Radioastron & Astrofis, Morelia 58089, Michoacan, Mexico.
[Arce, Hector G.] Yale Univ, Dept Astron, New Haven, CT 06511 USA.
[Brassfield, Erin; Patel, Nimesh] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Palau, Aina] Inst Ciencies Espai CSIC IEEC, Fac Ciencies, E-08193 Bellaterra, Catalunya, Spain.
[Pineda, Jaime E.] ETH, Inst Astron, CH-8093 Zurich, Switzerland.
RP Zapata, LA (reprint author), UNAM, Ctr Radioastron & Astrofis, Morelia 58089, Michoacan, Mexico.
EM lzapata@crya.unam.mx
OI Pineda, Jaime/0000-0002-3972-1978
FU DGAPA; UNAM; CONACyT, Mexico; NSF [AST-0845619]; Spanish MICINN
[AYA2011-30228-C03-02]; AGAUR grant (Catalonia) [2009SGR1172]; FEDER
FX LAZ acknowledge the financial support from DGAPA, UNAM, and CONACyT,
Mexico. HGA acknowledges support from his NSF CAREER award AST-0845619.
AP is supported by the Spanish MICINN grant AYA2011-30228-C03-02
(co-funded with FEDER funds) and by the AGAUR grant 2009SGR1172
(Catalonia).
NR 46
TC 5
Z9 5
U1 0
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 11
PY 2014
VL 441
IS 4
BP 3696
EP 3702
DI 10.1093/mnras/stu810
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RP
UT WOS:000338764700066
ER
PT J
AU Kleint, L
Antolin, P
Tian, H
Judge, P
Testa, P
De Pontieu, B
Martinez-Sykora, J
Reeves, KK
Wuelser, JP
McKillop, S
Saar, S
Carlsson, M
Boerner, P
Hurlburt, N
Lemen, J
Tarbell, TD
Title, A
Golub, L
Hansteen, V
Jaeggli, S
Kankelborg, C
AF Kleint, L.
Antolin, P.
Tian, H.
Judge, P.
Testa, P.
De Pontieu, B.
Martinez-Sykora, J.
Reeves, K. K.
Wuelser, J. P.
McKillop, S.
Saar, S.
Carlsson, M.
Boerner, P.
Hurlburt, N.
Lemen, J.
Tarbell, T. D.
Title, A.
Golub, L.
Hansteen, V.
Jaeggli, S.
Kankelborg, C.
TI DETECTION OF SUPERSONIC DOWNFLOWS AND ASSOCIATED HEATING EVENTS IN THE
TRANSITION REGION ABOVE SUNSPOTS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE Sun: transition region; sunspots
ID IMAGING-SPECTROGRAPH; THERMAL-INSTABILITY; CORONAL LOOPS; SOLAR CORONA;
PROMINENCES; FLOWS; OSCILLATIONS; VELOCITIES; TELESCOPE; RAIN
AB Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0 ''.33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s(-1) and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 angstrom, and 1403 angstrom, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.
C1 [Kleint, L.; Martinez-Sykora, J.] Bay Area Environm Res Inst, Petaluma, CA 94952 USA.
[Kleint, L.; De Pontieu, B.; Martinez-Sykora, J.; Wuelser, J. P.; Boerner, P.; Hurlburt, N.; Lemen, J.; Tarbell, T. D.; Title, A.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA.
[Kleint, L.] Univ Appl Sci & Arts Northwestern Switzerland, CH-5210 Windisch, Switzerland.
[Antolin, P.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan.
[Tian, H.; Testa, P.; Reeves, K. K.; McKillop, S.; Saar, S.; Golub, L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Judge, P.] High Altitude Observ NCAR, Boulder, CO 80307 USA.
[Carlsson, M.; Hansteen, V.] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway.
[Jaeggli, S.; Kankelborg, C.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA.
RP Kleint, L (reprint author), Bay Area Environm Res Inst, 625 2nd St,Ste 209, Petaluma, CA 94952 USA.
EM lucia.kleint@fhnw.ch
RI Reeves, Katharine/P-9163-2014;
OI Antolin, Patrick/0000-0003-1529-4681
FU Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract
FX IRIS is a NASA small explorer mission developed and operated by LMSAL
with mission operations executed at NASA Ames Research center and major
contributions to downlink communications funded by the Norwegian Space
Center (NSC, Norway) through an ESA PRODEX contract.
NR 27
TC 17
Z9 17
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 10
PY 2014
VL 789
IS 2
AR L42
DI 10.1088/2041-8205/789/2/L42
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AM5DS
UT WOS:000339876800017
ER
PT J
AU Dumusque, X
Bonomo, AS
Haywood, RD
Malavolta, L
Segransan, D
Buchhave, LA
Cameron, AC
Latham, DW
Molinari, E
Pepe, F
Udry, S
Charbonneau, D
Cosentino, R
Dressing, CD
Figueira, P
Fiorenzano, AFM
Gettel, S
Harutyunyan, A
Horne, K
Lopez-Morales, M
Lovis, C
Mayor, M
Micela, G
Motalebi, F
Nascimbeni, V
Phillips, DF
Piotto, G
Pollacco, D
Queloz, D
Rice, K
Sasselov, D
Sozzetti, A
Szentgyorgyi, A
Watson, C
AF Dumusque, Xavier
Bonomo, Aldo S.
Haywood, Raphaelle D.
Malavolta, Luca
Segransan, Damien
Buchhave, Lars A.
Cameron, Andrew Collier
Latham, David W.
Molinari, Emilio
Pepe, Francesco
Udry, Stephane
Charbonneau, David
Cosentino, Rosario
Dressing, Courtney D.
Figueira, Pedro
Fiorenzano, Aldo F. M.
Gettel, Sara
Harutyunyan, Avet
Horne, Keith
Lopez-Morales, Mercedes
Lovis, Christophe
Mayor, Michel
Micela, Giusi
Motalebi, Fatemeh
Nascimbeni, Valerio
Phillips, David F.
Piotto, Giampaolo
Pollacco, Don
Queloz, Didier
Rice, Ken
Sasselov, Dimitar
Sozzetti, Alessandro
Szentgyorgyi, Andrew
Watson, Chris
TI THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD
AND A SOLID NEPTUNE-MASS PLANET
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE planetary systems; stars: individual (Kepler-10 KOI-072 KIC 11904151);
stars: statistics; techniques: photometric; techniques: spectroscopic
ID LIMB-DARKENING COEFFICIENTS; MAIN-SEQUENCE STARS; CHAIN MONTE-CARLO; 100
EARTH MASSES; TRANSITING PLANET; EXTRASOLAR PLANETS; MULTIPLE SYSTEM;
LIGHT CURVES; SUPER-EARTHS; STELLAR
AB Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only good enough to set an upper limit of 20 M-circle plus for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 +/- 0.49 M-circle plus and an updated radius of 1.47(-0.02)(+0.03) R-circle plus, Kepler-10b has a density of 5.8 +/- 0.8 g cm(-3), very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 +/- 1.9 M-circle plus and radius of 2.35(-0.04)(+0.09) R-circle plus, Kepler-10c has a density of 7.1 +/- 1.0 g cm(-3). Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.
C1 [Dumusque, Xavier; Buchhave, Lars A.; Latham, David W.; Charbonneau, David; Dressing, Courtney D.; Gettel, Sara; Lopez-Morales, Mercedes; Phillips, David F.; Sasselov, Dimitar; Szentgyorgyi, Andrew] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bonomo, Aldo S.; Sozzetti, Alessandro] INAF Osservatorio Astrofis Torino, I-10025 Pino Torinese, Italy.
[Haywood, Raphaelle D.; Cameron, Andrew Collier; Horne, Keith] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland.
[Malavolta, Luca; Piotto, Giampaolo] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35122 Padua, Italy.
[Malavolta, Luca; Nascimbeni, Valerio; Piotto, Giampaolo] INAF Osservatorio Astron Padova, I-35122 Padua, Italy.
[Segransan, Damien; Pepe, Francesco; Udry, Stephane; Lovis, Christophe; Mayor, Michel; Motalebi, Fatemeh; Queloz, Didier] Univ Geneva, Astron Observ, CH-1290 Versoix, Switzerland.
[Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark.
[Molinari, Emilio; Cosentino, Rosario; Fiorenzano, Aldo F. M.; Harutyunyan, Avet] INAF Fdn Galileo Galilei, E-38712 Brea Baja, Spain.
[Molinari, Emilio] INAF IASF, I-20133 Milan, Italy.
[Figueira, Pedro] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Micela, Giusi] INAF Osservatorio Astron Palermo, I-90124 Palermo, Italy.
[Pollacco, Don] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Queloz, Didier] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Rice, Ken] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Watson, Chris] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland.
RP Dumusque, X (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM xdumusque@cfa.harvard.edu
RI Rice, Ken/H-5084-2011; Figueira, Pedro/J-4916-2013;
OI Rice, Ken/0000-0002-6379-9185; Figueira, Pedro/0000-0001-8504-283X;
Micela, Giuseppina/0000-0002-9900-4751; Molinari,
Emilio/0000-0002-1742-7735; Sozzetti, Alessandro/0000-0002-7504-365X;
Cameron, Andrew/0000-0002-8863-7828; Buchhave, Lars
A./0000-0003-1605-5666; Piotto, Giampaolo/0000-0002-9937-6387
FU Prodex Program of the Swiss Space Office (SSO); Harvard University
Origin of Life Initiative (HUOLI); Scottish Universities Physics
Alliance (SUPA); University of Geneva; Smithsonian Astrophysical
Observatory (SAO); Italian National Astrophysical Institute (INAF);
University of St. Andrews; Queens University Belfast; University of
Edinburgh; European Union Seventh Framework Programme (ETAEARTH)
[313014]; Swiss National Science Foundation (SNSF) through an Early
Postdoc Mobility fellowship; Fundacao para a Ciencia e a Tecnologia
(FCT) through the Investigador FCT [IF/01037/2013]; FEDER through the
program "Programa Operacional de Factores de Competitividade - COMPETE";
STFC postgraduate research studentship; John Templeton Foundation;
Italian Ministero dellIstruzione; Universita e Ricerca (MIUR) within the
Piano Operativo Nazionale Ricerca Scientifica, Sviluppo Tecnologico,
Alta Formazione [PON 20002006]
FX The HARPS-N project was funded by the Prodex Program of the Swiss Space
Office (SSO), the Harvard University Origin of Life Initiative (HUOLI),
the Scottish Universities Physics Alliance (SUPA), the University of
Geneva, the Smithsonian Astrophysical Observatory (SAO), and the Italian
National Astrophysical Institute (INAF), University of St. Andrews,
Queens University Belfast, and University of Edinburgh. The research
leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No.
313014 (ETAEARTH). X. Dumusque would like to thank the Swiss National
Science Foundation (SNSF) for its support through an Early Postdoc
Mobility fellowship. P. Figueira acknowledges support by Fundacao para a
Ciencia e a Tecnologia (FCT) through the Investigador FCT contract of
reference IF/01037/2013 and POPH/FSE (EC) by FEDER funding through the
program "Programa Operacional de Factores de Competitividade - COMPETE."
R. D. Haywood acknowledges support from an STFC postgraduate research
studentship. This publication was made possible through the support of a
grant from the John Templeton Foundation. The opinions expressed in this
publication are those of the authors and do not necessarily reflect the
views of the John Templeton Foundation. This research has made use of
the results produced by the PI2S2 Project managed by the Consorzio
COMETA, a co-funded project by the Italian Ministero dellIstruzione,
Universita e Ricerca (MIUR) within the Piano Operativo Nazionale Ricerca
Scientifica, Sviluppo Tecnologico, Alta Formazione (PON 20002006). We
would like to thank A. McWilliam, I. Ivans, and C. Sneden for providing
us their software that interpolates between atmospheric models.
NR 87
TC 64
Z9 64
U1 1
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2014
VL 789
IS 2
AR 154
DI 10.1088/0004-637X/789/2/154
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8JY
UT WOS:000338674900063
ER
PT J
AU Le Chat, G
Kasper, JC
Cohen, O
Spangler, SR
AF Le Chat, G.
Kasper, J. C.
Cohen, O.
Spangler, S. R.
TI DIAGNOSTICS OF THE SOLAR CORONA FROM COMPARISON BETWEEN FARADAY ROTATION
MEASUREMENTS AND MAGNETOHYDRODYNAMIC SIMULATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE magnetohydrodynamics (MHD); methods: numerical; Sun: corona; Sun:
magnetic fields
ID WHOLE SUN MONTH; MAGNETIC-FIELD; ELECTRON-DENSITY; PLASMA STRUCTURE;
MASS EJECTIONS; WIND; MODEL; OCCULTATION
AB Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.
C1 [Le Chat, G.; Kasper, J. C.; Cohen, O.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Kasper, J. C.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
[Spangler, S. R.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Le Chat, G.; Kasper, J. C.] NASA, Lunar Sci Inst, Moffett Field, CA USA.
RP Le Chat, G (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM gaetan.lechat@obspm.fr
RI Kasper, Justin/D-1152-2010;
OI Kasper, Justin/0000-0002-7077-930X; Cohen, Ofer/0000-0003-3721-0215
FU NASA ESS; NASA ESTO-CT; NSF KDI; DoD MURI; National Science Foundation
[ATM09-56901, AST09-07911]
FX Simulation results were obtained using the Space Weather Modeling
Framwork, developed by the Center for Space Environment Modeling, at the
University of Michigan with funding support from NASA ESS, NASA ESTO-CT,
NSF KDI, and DoD MURI. This work was supported at the University of Iowa
by grants ATM09-56901 and AST09-07911 from the National Science
Foundation.
NR 39
TC 1
Z9 1
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2014
VL 789
IS 2
AR 163
DI 10.1088/0004-637X/789/2/163
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8JY
UT WOS:000338674900072
ER
PT J
AU Liu, X
Shen, Y
Bian, FY
Loeb, A
Tremaine, S
AF Liu, Xin
Shen, Yue
Bian, Fuyan
Loeb, Abraham
Tremaine, Scott
TI CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH
MULTI-EPOCH SPECTROSCOPY. II. THE POPULATION WITH KINEMATICALLY OFFSET
BROAD BALMER EMISSION LINES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE black hole physics; galaxies: active; galaxies: nuclei; line: profiles;
quasars: general
ID ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; TERM PROFILE VARIABILITY;
DOUBLE-PEAKED EMITTER; LOW-REDSHIFT QSOS; 7TH DATA RELEASE; OJ 287;
GALAXY MERGERS; RADIO-LOUD; X-RAY
AB A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km s(-1)) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (similar to sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selected a sample of 399 quasars with kinematically offset broad H beta lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad H beta lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (> 10(3) km s(-1)), we explore the parameter space with smaller (a few hundred km s(-1)) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad H beta lines in 24 of the 50 objects, of similar to 10-200 km s(-1) yr(-1) with a median measurement uncertainty of similar to 10 km s(-1) yr(-1), implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either H alpha or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and the average acceleration between two epochs, which could be explained by orbital phase modulation when the time separation between two epochs is a non-negligible fraction of the orbital period of the motion causing the line displacement. We discuss the implications of our results for the identification of sub-pc BBH candidates in offset-line quasars and for the constraints on their frequency and orbital parameters.
C1 [Liu, Xin] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Shen, Yue] Carnegie Observ, Pasadena, CA 91101 USA.
[Bian, Fuyan] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Bian, Fuyan] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Loeb, Abraham] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Loeb, Abraham] Harvard Univ, Inst Theory & Computat, Cambridge, MA 02138 USA.
[Tremaine, Scott] Inst Adv Study, Princeton, NJ 08540 USA.
RP Liu, X (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
EM xinliu@astro.ucla.edu
RI Tremaine, Scott/M-4281-2015
OI Tremaine, Scott/0000-0002-0278-7180
FU NASA through Hubble Fellowship [HST-HF-51307.01, HST-HF-51314.01]; Space
Telescope Science Institute; Association of Universities for Research in
Astronomy, Inc., for NASA [NAS 5-26555]; NSF [AST-1312034]; NASA
[NNX11AF29G]; Alfred P. Sloan Foundation; National Science Foundation;
U.S. Department of Energy; National Aeronautics and Space
Administration; Japanese Monbukagakusho; Max Planck Society; Higher
Education Funding Council for England
FX We thank Mike Eracleous, Luis Ho, and Alice Shapley for useful
discussion, Perry Berlind, Michael Calkins, and Bill Wyatt for
assistance with FLWO 1.5 m/FAST queue observations and data retrieval,
and Michael Strauss for his support during the course of this work. We
also thank an anonymous referee for a prompt and careful report. Support
for the work of X.L. and Y.S. was provided by NASA through Hubble
Fellowship grant numbers HST-HF-51307.01 and HST-HF-51314.01,
respectively, awarded by the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in Astronomy,
Inc., for NASA, under contract NAS 5-26555. This work was supported in
part by NSF grant AST-1312034 (A.L.) and NASA grant NNX11AF29G (S.T.).;
Funding for the SDSS and SDSS-II has been provided by the Alfred P.
Sloan Foundation, the Participating Institutions, the National Science
Foundation, the U.S. Department of Energy, the National Aeronautics and
Space Administration, the Japanese Monbukagakusho, the Max Planck
Society, and the Higher Education Funding Council for England. The SDSS
Web site is http://www.sdss.org/.
NR 145
TC 19
Z9 19
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2014
VL 789
IS 2
AR 140
DI 10.1088/0004-637X/789/2/140
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8JY
UT WOS:000338674900049
ER
PT J
AU Patnaude, DJ
Fesen, RA
AF Patnaude, Daniel J.
Fesen, Robert A.
TI A COMPARISON OF X-RAY AND OPTICAL EMISSION IN CASSIOPEIA A
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE ISM: individual objects (Cassiopeia A); radiation mechanisms: thermal
ID A SUPERNOVA REMNANT; CORE-COLLAPSE SUPERNOVAE; 3-DIMENSIONAL STRUCTURE;
PROPER MOTIONS; HIGH-VELOCITY; LIGHT ECHOES; NOVA REMNANT; EJECTA;
EXPANSION; CHANDRA
AB Broadband optical and narrowband Si XIII X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near-infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and of X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant's X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which have brightened due to recent interactions with the reverse shock. We also find instances (1) where a time delay is observed between the appearance of a feature's optical and X-ray emissions, (2) of displacements of several arcseconds between a feature's X-ray and optical emission peaks, and (3) of regions showing no corresponding X-ray or optical emissions. To explain this behavior, we propose a highly inhomogeneous density model for Cas A's ejecta consisting of small, dense optically emitting knots (n similar to 10(2-3) cm(-3)) and a much lower density (n similar to 0.1-1 cm(-3)) diffuse X-ray emitting component often spatially associated with optical emission knots. The X-ray emitting component is sometimes linked to optical clumps through shock-induced mass ablation generating trailing material leading to spatially offset X-ray/optical emissions. A range of ejecta densities can also explain the observed X-ray/optical time delays since the remnant's approximate to 5000 km s(-1) reverse shock heats dense ejecta clumps to temperatures around 3 x 10(4) K relatively quickly, which then become optically bright while more diffuse ejecta become X-ray bright on longer timescales. Highly inhomogeneous ejecta as proposed here for Cas A may help explain some of the X-ray/optical emission features seen in other young core-collapse supernova remnants.
C1 [Patnaude, Daniel J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Fesen, Robert A.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA.
RP Patnaude, DJ (reprint author), Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
FU Chandra X-ray Center [GO8-9065A]; Space Telescope Science Institute
[GO-11337.01-A]; NASA [NAS8-03060, GO-8281, 9238, 9890, 10286, 12300];
National Science Foundation [AST-0908237]; Space Telescope Science
Institute operated by the Association of Universities for Research in
Astronomy, Inc [12674]
FX We thank Sidney van den Bergh for making available the extensive Palomar
plate collection of Cas A images dating back to 1951 and to Josh
Grindlay and the DASCH plate scanning team at CfA/Harvard for their
expert help and assistance in scanning these priceless photographic
plates. We also thank J. Thorstensen for assistance with applying WCS
coordinates to the scanned Palomar plates. We thank Dan Milisavljevic,
J. Martin Laming, Roger Chevalier, and the anonymous referee for useful
comments during the preparation and revision of this manuscript. D.J.P.
acknowledges support from the Chandra X-ray Center through GO8-9065A and
from the Space Telescope Science Institute through grant GO-11337.01-A.
D.J.P. also acknowledges support through NASA contract NAS8-03060.
R.A.F. acknowledges support from the National Science Foundation under
grant AST-0908237 and from NASA through grants GO-8281, 9238, 9890,
10286, 12300, and 12674 from the Space Telescope Science Institute,
which is operated by the Association of Universities for Research in
Astronomy, Inc.
NR 64
TC 3
Z9 3
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 10
PY 2014
VL 789
IS 2
AR 138
DI 10.1088/0004-637X/789/2/138
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8JY
UT WOS:000338674900047
ER
PT J
AU Bertrand, C
Janzen, DH
Hallwachs, W
Burns, JM
Gibson, JF
Shokralla, S
Hajibabaei, M
AF Bertrand, Claudia
Janzen, Daniel H.
Hallwachs, Winnie
Burns, John M.
Gibson, Joel F.
Shokralla, Shadi
Hajibabaei, Mehrdad
TI Mitochondrial and nuclear phylogenetic analysis with Sanger and
next-generation sequencing shows that, in Area de Conservacion
Guanacaste, northwestern Costa Rica, the skipper butterfly named Urbanus
belli (family Hesperiidae) comprises three morphologically cryptic
species
SO BMC EVOLUTIONARY BIOLOGY
LA English
DT Article
DE Lepidoptera; Intragenomic variation; Non-metric multi-dimensional
scaling; Phylogeny; DNA barcoding
ID INTERNAL TRANSCRIBED SPACER; PARASITOID FLIES DIPTERA; DNA BARCODES;
WOLBACHIA; ITS2; LEPIDOPTERA; TACHINIDAE; INFERENCE; TAXONOMY; SYSTEM
AB Background: Skipper butterflies (Hesperiidae) are a relatively well-studied family of Lepidoptera. However, a combination of DNA barcodes, morphology, and natural history data has revealed several cryptic species complexes within them. Here, we investigate three DNA barcode lineages of what has been identified as Urbanus belli (Hesperiidae, Eudaminae) in Area de Conservacion Guanacaste (ACG), northwestern Costa Rica.
Results: Although no morphological traits appear to distinguish among the three, congruent nuclear and mitochondrial lineage patterns show that "Urbanus belli" in ACG is a complex of three sympatric species. A single strain of Wolbachia present in two of the three cryptic species indicates that Urbanus segnestami Burns (formerly Urbanus belliDHJ01), Urbanus bernikerni Burns (formerly Urbanus belliDHJ02), and Urbanus ehakernae Burns (formerly Urbanus belliDHJ03) may be biologically separated by Wolbachia, as well as by their genetics. Use of parallel sequencing through 454-pyrosequencing improved the utility of ITS2 as a phylogenetic marker and permitted examination of the intra-and interlineage relationships of ITS2 variants within the species complex. Interlineage, intralineage and intragenomic compensatory base pair changes were discovered in the secondary structure of ITS2.
Conclusion: These findings corroborate the existence of three cryptic species. Our confirmation of a novel cryptic species complex, initially suggested by DNA barcode lineages, argues for using a multi-marker approach coupled with next-generation sequencing for exploration of other suspected species complexes.
C1 [Bertrand, Claudia; Gibson, Joel F.; Shokralla, Shadi; Hajibabaei, Mehrdad] Univ Guelph, Biodivers Inst Ontario, Guelph, ON N1G 2W1, Canada.
[Bertrand, Claudia; Gibson, Joel F.; Shokralla, Shadi; Hajibabaei, Mehrdad] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada.
[Janzen, Daniel H.; Hallwachs, Winnie] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA.
[Burns, John M.] Smithsonian Inst, Natl Museum Nat Hist, Dept Entomol, Washington, DC 20013 USA.
[Shokralla, Shadi] Mansoura Univ, Dept Microbiol, Mansoura 35516, Egypt.
RP Hajibabaei, M (reprint author), Univ Guelph, Biodivers Inst Ontario, Guelph, ON N1G 2W1, Canada.
EM mhajibab@uoguelph.ca
FU U.S. National Science Foundation [BSR 9024770, DEB 9306296, 9400829,
9705072, 0072730, 0515699]; Wege Foundation; International Conservation
Fund of Canada; Jessie B. Cox Charitable Trust; Blue Moon Fund;
Guanacaste Dry Forest Conservation Fund; Permian Global; University of
Pennsylvania; Government of Canada through Genome Canada; Ontario
Genomics Institute through the Biomonitoring 2.0 project [OGI-050];
Natural Sciences and Engineering Research Council of Canada; Area de
Conservacion Guanacaste
FX We gratefully acknowledge the team of ACG parataxonomists [13,60] who
found and reared the specimens used in this study, and the team of
biodiversity managers who keep the ACG forests that host these
butterflies alive. We thank Karie Darrow for preparing Figure 3 and
Donald Harvey for dissecting many genitalia. We also thank Teresa Crease
and Alex Smith for providing advice and editorial assistance in the
early stages of this research. The study has been supported by U.S.
National Science Foundation grants BSR 9024770 and DEB 9306296, 9400829,
9705072, 0072730, 0515699, and grants from the Wege Foundation,
International Conservation Fund of Canada, Jessie B. Cox Charitable
Trust, Blue Moon Fund, Guanacaste Dry Forest Conservation Fund, Permian
Global, Area de Conservacion Guanacaste, and University of Pennsylvania
(DHJ). This project was funded by the Government of Canada through
Genome Canada and the Ontario Genomics Institute (OGI-050) through the
Biomonitoring 2.0 project (www.biomonitoring2.org) (MH) and by a
Discovery Grant from Natural Sciences and Engineering Research Council
of Canada (MH).
NR 60
TC 11
Z9 11
U1 0
U2 34
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2148
J9 BMC EVOL BIOL
JI BMC Evol. Biol.
PD JUL 9
PY 2014
VL 14
AR 153
DI 10.1186/1471-2148-14-153
PG 18
WC Evolutionary Biology; Genetics & Heredity
SC Evolutionary Biology; Genetics & Heredity
GA AM0DI
UT WOS:000339513100001
PM 25005355
ER
PT J
AU Yong, S
Perez-Gelabert, DE
AF Yong, Sheyla
Perez-Gelabert, Daniel E.
TI Grasshoppers, Crickets and Katydids (Insecta: Orthoptera) of Cuba: an
annotated checklist
SO ZOOTAXA
LA English
DT Article
DE Orthoptera; taxonomy; diversity; Cuba; Greater Antilles; West Indies
ID SPECIES ORTHOPTERA; MOLE CRICKETS; UNITED-STATES; WEST-INDIES; REVISION;
GENUS; GRYLLOTALPIDAE; GRYLLOIDEA; HISPANIOLA; GRYLLIDAE
AB An annotated list of the Cuban fauna of Orthoptera is presented. For each species we include details of valid names, synonyms, type specimens (type category, sex, locality and depository), geographic distribution and bibliographic references. Clarifying notes are added, as well as comments on the species considered doubtful. A total of 140 species included in 62 genera, 31 subfamilies and 12 families make up the known Cuban fauna of Orthoptera. The family Episactidae, the acridid subfamily Ommatolampidinae with 3 unknown genera, 3 unknown genera of Tettigoniidae (Conocephalinae) and 1 undescribed new genus of Tetrigidae (Cladonotinae) are here recorded for the first time from Cuba. Syntypes are designated for Hygronemobius histrionicus Zayas.
C1 [Perez-Gelabert, Daniel E.] ITIS, Washington, DC 20013 USA.
[Perez-Gelabert, Daniel E.] Smithsonian Inst, US Natl Museum Nat Hist, Dept Entomol, Washington, DC 20013 USA.
RP Yong, S (reprint author), Calle 200,3759-37 & 45,CP 13500, Havana, Cuba.
EM gruenes@estudiantes.fbio.uh.cu; perezd@si.edu
NR 136
TC 0
Z9 1
U1 3
U2 12
PU MAGNOLIA PRESS
PI AUCKLAND
PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND
SN 1175-5326
EI 1175-5334
J9 ZOOTAXA
JI Zootaxa
PD JUL 7
PY 2014
VL 3827
IS 4
BP 401
EP 438
PG 38
WC Zoology
SC Zoology
GA AK4YN
UT WOS:000338430600001
PM 25081171
ER
PT J
AU Sneed, JM
Sharp, KH
Ritchie, KB
Paul, VJ
AF Sneed, Jennifer M.
Sharp, Koty H.
Ritchie, Kimberly B.
Paul, Valerie J.
TI The chemical cue tetrabromopyrrole from a biofilm bacterium induces
settlement of multiple Caribbean corals
SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
LA English
DT Article
DE biofilm; chemical ecology; coral recruitment; larval settlement;
Pseudoalteromonas
ID MARINE-INVERTEBRATE LARVAE; ANTIBIOTIC PRODUCTION; MICROBIAL BIOFILMS;
METAMORPHOSIS; RECRUITMENT; PSEUDOALTEROMONAS; COMMUNITIES; MUCUS; ALGAE
AB Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species.
C1 [Sneed, Jennifer M.; Paul, Valerie J.] Smithsonian Marine Stn Ft Pierce, Ft Pierce, FL 34949 USA.
[Sharp, Koty H.] Eckerd Coll, St Petersburg, FL 33711 USA.
[Ritchie, Kimberly B.] Mote Marine Lab & Aquarium, Sarasota, FL 34236 USA.
RP Sneed, JM (reprint author), Smithsonian Marine Stn Ft Pierce, 701 Seaway Dr, Ft Pierce, FL 34949 USA.
EM sneedj@si.edu
FU Mote Protect Our Reef Grant program [POR-2010-29, POR-2011-21,
POR-2012-3]; Dart Foundation; Smithsonian Competitive Grants Program for
Science; CCRE program [958]
FX Funding was provided by Mote Protect Our Reef Grant program
(POR-2010-29, POR-2011-21 and POR-2012-3), the Dart Foundation and
Smithsonian Competitive Grants Program for Science. This is contribution
no. 950 of the Smithsonian Marine Station at Fort Pierce and no. 958 of
the CCRE program.
NR 30
TC 20
Z9 20
U1 6
U2 70
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 0962-8452
EI 1471-2954
J9 P ROY SOC B-BIOL SCI
JI Proc. R. Soc. B-Biol. Sci.
PD JUL 7
PY 2014
VL 281
IS 1786
AR 20133086
DI 10.1098/rspb.2013.3086
PG 9
WC Biology; Ecology; Evolutionary Biology
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Evolutionary Biology
GA AI3TA
UT WOS:000336784500006
ER
PT J
AU Anton, SC
Potts, R
Aiello, LC
AF Anton, Susan C.
Potts, Richard
Aiello, Leslie C.
TI Evolution of early Homo: An integrated biological perspective
SO SCIENCE
LA English
DT Review
ID GENUS HOMO; TURKANA BASIN; EAST-AFRICA; AUSTRALOPITHECUS-AFARENSIS;
CLIMATE-CHANGE; LIFE-HISTORY; SOUTH-AFRICA; KOOBI-FORA; BRAIN SIZE;
BODY-SIZE
AB Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From similar to 2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments.
C1 [Anton, Susan C.] NYU, Dept Anthropol, Ctr Study Human Origins, New York, NY 10003 USA.
[Potts, Richard] Smithsonian Inst, Natl Museum Nat Hist, Human Origins Program, Washington, DC 20013 USA.
[Aiello, Leslie C.] Wenner Gren Fdn, New York, NY 10016 USA.
RP Anton, SC (reprint author), NYU, Dept Anthropol, Ctr Study Human Origins, Rufus D Smith Hall,25 Waverly Pl, New York, NY 10003 USA.
EM susan.anton@nyu.edu; pottsr@si.edu; laiello@wennergren.org
FU Wenner-Gren Foundation for Anthropological Research; New York
University; Peter Buck Fund for Human Origins Research; Human Origins
Program (Smithsonian)
FX We thank the participants of the Wenner-Gren Symposium "Human Biology
and the Origin of Homo"; our field and laboratory collaborators for
contributing stimulating conversation and ideas; J. B. Clark, who
assisted in creating the figures; and E. R. Middleton, who provided
bibliographic assistance. Funding provided by the Wenner-Gren Foundation
for Anthropological Research (S. C. A. and L. C. A.), New York
University (S. C. A.), the Peter Buck Fund for Human Origins Research,
and the Human Origins Program (Smithsonian) (R. P.). The authors
contributed equally to this work.
NR 152
TC 56
Z9 58
U1 30
U2 279
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD JUL 4
PY 2014
VL 345
IS 6192
BP 45
EP +
AR 1236828
DI 10.1126/science.1236828
PG 14
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK2XU
UT WOS:000338284400043
PM 24994657
ER
PT J
AU Gould, A
Udalski, A
Shin, IG
Porritt, I
Skowron, J
Han, C
Yee, JC
Kozlowski, S
Choi, JY
Poleski, R
Wyrzykowski, L
Ulaczyk, K
Pietrukowicz, P
Mroz, P
Szymanski, MK
Kubiak, M
Soszynski, I
Pietrzynski, G
Gaudi, BS
Christie, GW
Drummond, J
McCormick, J
Natusch, T
Ngan, H
Tan, TG
Albrow, M
DePoy, DL
Hwang, KH
Jung, YK
Lee, CU
Park, H
Pogge, RW
Abe, F
Bennett, DP
Bond, IA
Botzler, CS
Freeman, M
Fukui, A
Fukunaga, D
Itow, Y
Koshimoto, N
Larsen, P
Ling, CH
Masuda, K
Matsubara, Y
Muraki, Y
Namba, S
Ohnishi, K
Philpott, L
Rattenbury, NJ
Saito, T
Sullivan, DJ
Sumi, T
Suzuki, D
Tristram, PJ
Tsurumi, N
Wada, K
Yamai, N
Yock, PCM
Yonehara, A
Shvartzvald, Y
Maoz, D
Kaspi, S
Friedmann, M
AF Gould, A.
Udalski, A.
Shin, I. -G.
Porritt, I.
Skowron, J.
Han, C.
Yee, J. C.
Kozlowski, S.
Choi, J. -Y.
Poleski, R.
Wyrzykowski, L.
Ulaczyk, K.
Pietrukowicz, P.
Mroz, P.
Szymanski, M. K.
Kubiak, M.
Soszynski, I.
Pietrzynski, G.
Gaudi, B. S.
Christie, G. W.
Drummond, J.
McCormick, J.
Natusch, T.
Ngan, H.
Tan, T. -G.
Albrow, M.
DePoy, D. L.
Hwang, K. -H.
Jung, Y. K.
Lee, C. -U.
Park, H.
Pogge, R. W.
Abe, F.
Bennett, D. P.
Bond, I. A.
Botzler, C. S.
Freeman, M.
Fukui, A.
Fukunaga, D.
Itow, Y.
Koshimoto, N.
Larsen, P.
Ling, C. H.
Masuda, K.
Matsubara, Y.
Muraki, Y.
Namba, S.
Ohnishi, K.
Philpott, L.
Rattenbury, N. J.
Saito, To.
Sullivan, D. J.
Sumi, T.
Suzuki, D.
Tristram, P. J.
Tsurumi, N.
Wada, K.
Yamai, N.
Yock, P. C. M.
Yonehara, A.
Shvartzvald, Y.
Maoz, D.
Kaspi, S.
Friedmann, M.
CA OGLE Team
FUN Team Microlensing Follow
MOA Team Microlensing Observations
Wise Team Wise Observ
TI A terrestrial planet in a similar to 1-AU orbit around one member of a
similar to 15-AU binary
SO SCIENCE
LA English
DT Article
ID MICROLENSING OBSERVATIONS; GALACTIC BULGE; SYSTEMS; STARS; COMPANION;
PARALLAX; LENS
AB Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at similar to 0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.
C1 [Gould, A.; Yee, J. C.; Poleski, R.; Pietrzynski, G.; Gaudi, B. S.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Udalski, A.; Shin, I. -G.; Skowron, J.; Kozlowski, S.; Choi, J. -Y.; Poleski, R.; Wyrzykowski, L.; Ulaczyk, K.; Pietrukowicz, P.; Mroz, P.; Szymanski, M. K.; Kubiak, M.; Soszynski, I.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
[Han, C.; Hwang, K. -H.; Jung, Y. K.; Park, H.] Chungbuk Natl Univ, Dept Phys, Cheongju 371763, South Korea.
[Porritt, I.] Turitea Observ, Palmerston North, New Zealand.
[Yee, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Pietrzynski, G.] Univ Concepcion, Dept Astron, Concepcion, Chile.
[Christie, G. W.] Auckland Observ, Auckland, New Zealand.
[Drummond, J.; Natusch, T.; Ngan, H.] Possum Observ, Patutahi, New Zealand.
[McCormick, J.] Farm Cove Observ, Ctr Backyard Astrophys, Auckland, New Zealand.
[Natusch, T.] Auckland Univ Technol, Auckland, New Zealand.
[Tan, T. -G.] Perth Exoplanet Survey Telescope, Perth, WA, Australia.
[Albrow, M.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand.
[DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Lee, C. -U.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
[Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Tsurumi, N.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Bond, I. A.; Ling, C. H.] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand.
[Botzler, C. S.; Freeman, M.; Larsen, P.; Rattenbury, N. J.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1001, New Zealand.
[Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, Okayama 7190232, Japan.
[Koshimoto, N.; Namba, S.; Sumi, T.; Suzuki, D.; Wada, K.] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan.
[Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan.
[Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan.
[Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand.
[Tristram, P. J.] Mt John Univ Observ, Lake Tekapo 8770, New Zealand.
[Yamai, N.; Yonehara, A.] Kyoto Sangyo Univ, Fac Sci, Dept Phys, Kyoto 6038555, Japan.
[Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Friedmann, M.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Larsen, P.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Philpott, L.] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC V6T 1Z4, Canada.
RP Han, C (reprint author), Chungbuk Natl Univ, Dept Phys, Cheongju 371763, South Korea.
EM cheongho@astroph.chungbuk.ac.kr
RI Skowron, Jan/M-5186-2014; Kozlowski, Szymon/G-4799-2013;
OI Skowron, Jan/0000-0002-2335-1730; Kozlowski, Szymon/0000-0003-4084-880X;
Tan, Thiam-Guan/0000-0001-5603-6895
FU NSF [AST-1103471, AST-1211875]; NASA [NNGX12AB99G, NNX13AF64G]; Ohio
State University fellowship; NASA Sagan fellowship; ERC AdG [246678];
IDEAS program; Polish MNiSW [IP2011026771]; Korea NRF CRIP
[2009-0081561]; U.S.-Israel BSF; New Zealand Marsden Fund; Israel SF
PBC-ICORE [1829/12]; [JSPS23340044]; [JSPS24253004]
FX We acknowledge support from NSF AST-1103471 (A. G., B. S. G., and
J.C.Y.); NSF AST-1211875 (D. P. B.); NASA NNGX12AB99G (A. G., B. S. G.,
and R. W. P.); NASA NNX13AF64G (D. P. B.); Ohio State University
fellowship and NASA Sagan fellowship (J.C.Y.); ERC AdG 246678 and IDEAS
program (A. U.); Polish MNiSW IP2011026771 (S. K.); Korea NRF CRIP
2009-0081561 (C. H.); U.S.-Israel BSF (A. G. and D. M.); JSPS23340044
and JSPS24253004 (T. S.); New Zealand Marsden Fund (P.C.M.Y.); and
Israel SF PBC-ICORE 1829/12 (D. M.). Data are available at
astroph.chungbuk.ac.kr/similar to cheongho/OB130341/data.html.
NR 26
TC 28
Z9 28
U1 2
U2 21
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD JUL 4
PY 2014
VL 345
IS 6192
BP 46
EP 49
DI 10.1126/science.1251527
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK2XU
UT WOS:000338284400044
PM 24994642
ER
PT J
AU Collins, M
AF Collins, Martin
TI Adelheid Voskuhl's Androids in the Enlightenment: Mechanics, Artisans,
and Cultures of the Self
SO HISTORY AND TECHNOLOGY
LA English
DT Article
C1 Smithsonian Inst, Natl Air & Space Museum, Space Hist Div, Washington, DC 20560 USA.
RP Collins, M (reprint author), Smithsonian Inst, Natl Air & Space Museum, Space Hist Div, Washington, DC 20560 USA.
EM CollinsM@si.edu
NR 1
TC 0
Z9 0
U1 0
U2 0
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND
SN 0734-1512
EI 1477-2620
J9 HIST TECHNOL
JI Hist. Technol.
PD JUL 3
PY 2014
VL 30
IS 3
SI SI
BP 252
EP 254
DI 10.1080/07341512.2015.1007557
PG 3
WC History
SC History
GA CA9MS
UT WOS:000349248900006
ER
PT J
AU Loss, SR
Will, T
Marra, PP
AF Loss, Scott R.
Will, Tom
Marra, Peter P.
TI Refining Estimates of Bird Collision and Electrocution Mortality at
Power Lines in the United States
SO PLOS ONE
LA English
DT Article
ID EAGLE HIERAAETUS-FASCIATUS; RAPTOR ELECTROCUTION; TRANSMISSION-LINES;
UTILITY STRUCTURES; AVIAN MORTALITY; RISK; POPULATION; MARKING; CANADA;
AREAS
AB Collisions and electrocutions at power lines are thought to kill large numbers of birds in the United States annually. However, existing estimates of mortality are either speculative (for electrocution) or based on extrapolation of results from one study to all U.S. power lines (for collision). Because national-scale estimates of mortality and comparisons among threats are likely to be used for prioritizing policy and management strategies and for identifying major research needs, these estimates should be based on systematic and transparent assessment of rigorously collected data. We conducted a quantitative review that incorporated data from 14 studies meeting our inclusion criteria to estimate that between 12 and 64 million birds are killed each year at U.S. power lines, with between 8 and 57 million birds killed by collision and between 0.9 and 11.6 million birds killed by electrocution. Sensitivity analyses indicate that the majority of uncertainty in our estimates arises from variation in mortality rates across studies; this variation is due in part to the small sample of rigorously conducted studies that can be used to estimate mortality. Little information is available to quantify species-specific vulnerability to mortality at power lines; the available literature over-represents particular bird groups and habitats, and most studies only sample and present data for one or a few species. Furthermore, additional research is needed to clarify whether, to what degree, and in what regions populations of different bird species are affected by power line-related mortality. Nonetheless, our data-driven analysis suggests that the amount of bird mortality at U.S. power lines is substantial and that conservation management and policy is necessary to reduce this mortality.
C1 [Loss, Scott R.; Marra, Peter P.] Migratory Bird Ctr, Smithsonian Conservat Biol Inst, Washington, DC USA.
[Will, Tom] US Fish & Wildlife Serv, Div Migratory Birds, Midwest Reg Off, Bloomington, MA USA.
RP Loss, SR (reprint author), Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA.
EM scott.loss@okstate.edu
FU U.S. Fish and Wildlife Service
FX S.R.L. was supported by a postdoctoral fellowship funded by the U. S.
Fish and Wildlife Service through the Smithsonian Institution's
Postdoctoral Fellowship program. T.W. participated as a collaborator and
co-author throughout the project; however, the U.S. Fish and Wildlife as
a larger entity had no role in study design; collection, analysis, and
interpretation of data; in writing the report; and in the decision to
submit the paper for publication.
NR 68
TC 13
Z9 13
U1 6
U2 56
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUL 3
PY 2014
VL 9
IS 7
AR e101565
DI 10.1371/journal.pone.0101565
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO3RT
UT WOS:000341253400091
PM 24991997
ER
PT J
AU Deane, RP
Paragi, Z
Jarvis, MJ
Coriat, M
Bernardi, G
Fender, RP
Frey, S
Heywood, I
Klockner, HR
Grainge, K
Rumsey, C
AF Deane, R. P.
Paragi, Z.
Jarvis, M. J.
Coriat, M.
Bernardi, G.
Fender, R. P.
Frey, S.
Heywood, I.
Kloeckner, H-R
Grainge, K.
Rumsey, C.
TI A close-pair binary in a distant triple supermassive black hole system
SO NATURE
LA English
DT Article
ID ACTIVE GALACTIC NUCLEUS; RADIO-SOURCES; MINOR MERGER; GALAXIES;
DISCOVERY; JETS; SCALE; SKY; EVOLUTION; QUASARS
AB Galaxies are believed to evolve through merging(1), which should lead to some hosting multiple supermassive black holes(2-4). There are four known triple black hole systems(5-8), with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs)(7), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare(9), with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments(11,12).
C1 [Deane, R. P.; Coriat, M.] Univ Cape Town, Dept Astron, Astrophys Cosmol & Grav Ctr, ZA-7701 Cape Town, South Africa.
[Deane, R. P.; Coriat, M.; Bernardi, G.] Sq Kilometre Array South Africa, ZA-7405 Cape Town, South Africa.
[Paragi, Z.] Joint Inst VLBI Europe, NL-7990 AA Dwingeloo, Netherlands.
[Jarvis, M. J.; Fender, R. P.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Jarvis, M. J.] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa.
[Bernardi, G.; Heywood, I.] Rhodes Univ, Dept Phys & Elect, Ctr Radio Astron Tech & Technol, ZA-6140 Grahamstown, South Africa.
[Bernardi, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Frey, S.] Inst Geodesy Cartog & Remote Sensing, Satellite Geodet Observ, H-1592 Budapest, Hungary.
[Heywood, I.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia.
[Kloeckner, H-R] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Grainge, K.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England.
[Rumsey, C.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
RP Deane, RP (reprint author), Univ Cape Town, Dept Astron, Astrophys Cosmol & Grav Ctr, ZA-7701 Cape Town, South Africa.
EM roger.deane@ast.uct.ac.za
RI Frey, Sandor/G-4465-2013;
OI Frey, Sandor/0000-0003-3079-1889; Paragi, Zsolt/0000-0002-5195-335X
FU European Union [RI-261525 NEXPReS]; South African SKA Project (SKA SA);
Hungarian Scientific Research Fund [OTKA 104539]; International Space
Science Institute
FX We thank J. Magorrian, A. Karastergiou, S. Ransom and B. Fanaroff for
discussions. The European VLBI Network is a joint facility of European,
Chinese, South African and other radio astronomy institutes funded by
their national research councils. e-VLBI research infrastructure in
Europe was supported by the European Union's Seventh Framework Programme
(FP7/2007-2013) under grant agreement number RI-261525 NEXPReS. The
financial assistance of the South African SKA Project (SKA SA) towards
this research is acknowledged. Opinions expressed and conclusions
arrived at are those of the authors and are not necessarily to be
attributed to the SKA SA. Z.P. and S.F. acknowledge funding from the
Hungarian Scientific Research Fund (OTKA 104539). Z.P. is grateful for
funding support from the International Space Science Institute.
NR 45
TC 21
Z9 21
U1 0
U2 9
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD JUL 3
PY 2014
VL 511
IS 7507
BP 57
EP U578
DI 10.1038/nature13454
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK1TN
UT WOS:000338199400034
PM 24990745
ER
PT J
AU Rougerie, R
Kitching, IJ
Haxaire, J
Miller, SE
Hausmann, A
Hebert, PDN
AF Rougerie, Rodolphe
Kitching, Ian J.
Haxaire, Jean
Miller, Scott E.
Hausmann, Axel
Hebert, Paul D. N.
TI Australian Sphingidae - DNA Barcodes Challenge Current Species
Boundaries and Distributions
SO PLOS ONE
LA English
DT Article
ID LEPIDOPTERA SPHINGIDAE; CRYPTIC DIVERSITY; BIODIVERSITY; MOTH; LIFE;
ENDEMISM; TAXONOMY; REVEALS; FAUNA
AB Main Objective: We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae).
Methods: We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries.
Results: Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%). Only seven species (10%) have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World.
Main Conclusions: This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies.
C1 [Rougerie, Rodolphe; Hebert, Paul D. N.] Univ Guelph, Biodivers Inst Ontario, Guelph, ON N1G 2W1, Canada.
[Kitching, Ian J.] Nat Hist Museum, Dept Life Sci, London SW7 5BD, England.
[Haxaire, Jean] Museum Natl Hist Nat Paris, Le Roc, Laplume, France.
[Miller, Scott E.] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20560 USA.
[Hausmann, Axel] Bavarian State Collect Zool, Sect Lepidoptera, Munich, Germany.
RP Rougerie, R (reprint author), INRA, Zool Forestiere UR633, Orleans, France.
EM rrougeri@gmail.com
RI Rougerie, Rodolphe/D-2930-2009; Hebert, Paul/C-4161-2013;
OI Rougerie, Rodolphe/0000-0003-0937-2815; Hebert,
Paul/0000-0002-3081-6700; Miller, Scott/0000-0002-4138-1378
FU government of Canada through Genome Canada; Ontario Genomics Institute;
Natural Sciences and Engineering Research Council of Canada (NSERC)
FX This work was supported by funding from the government of Canada through
Genome Canada (www.genomecanada.ca) and the Ontario Genomics Institute
(www.ontariogenomics.ca) in support of the International Barcode of Life
project (www.iBOL.org), and by the Natural Sciences and Engineering
Research Council of Canada (NSERC, www.nserc-crsng.gc.ca). The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 57
TC 10
Z9 10
U1 1
U2 21
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUL 2
PY 2014
VL 9
IS 7
AR e101108
DI 10.1371/journal.pone.0101108
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AO5BA
UT WOS:000341354100060
PM 24987846
ER
PT J
AU Nguyen, TQ
Botov, A
Le, MD
Nophaseud, L
Zug, G
Bonkowski, M
Ziegler, T
AF Truong Quang Nguyen
Botov, Andreas
Minh Duc Le
Nophaseud, Liphone
Zug, George
Bonkowski, Michael
Ziegler, Thomas
TI A new species of Hemiphyllodactylus (Reptilia: Gekkonidae) from northern
Laos
SO ZOOTAXA
LA English
DT Article
DE Slender Gecko; karst forest; phylogeny; taxonomy; Luang Prabang Province
ID 1860 SQUAMATA GEKKONIDAE; PHYLOGENY; DIVERSITY; BLEEKER; GECKOS; MODEL
AB A new species of the genus Hemiphyllodactylus is described from Luang Prabang Province, northern Laos. Hemiphyllodactylus kiziriani sp. nov. is distinguished from the remaining congeners by morphology, coloration, and a significant genetic divergence of greater than 20% (ND2 gene). The new species from Laos is characterized by the following features: SVL of adult males 35.1-40.1 mm, of adult females 36.3-40.8 mm; dorsal scale rows 18-27; ventral scale rows 11-15; chin scales bordering mental and first infralabial distinctly enlarged; digital lamellae formulae 3-4-4-4 (forefoot) and 4-4/5-4/5-4 (hindfoot); femoral pores 0-4, total precloacal pores 10-13 in males, 8-10 pitted precloacal scales in females; cloacal spurs present in both sexes; dorsal trunk pattern dark brown with two rows of irregular transverse bands; dark lateral head stripe distinct; upper zone of flank with a dark brown stripe; caecum and gonadal ducts unpigmented.
C1 [Truong Quang Nguyen] Vietnam Acad Sci & Technol, Inst Ecol & Biol Resources, Hanoi, Vietnam.
[Truong Quang Nguyen; Bonkowski, Michael; Ziegler, Thomas] Univ Cologne, Inst Zool, Dept Terr Ecol, D-50674 Cologne, Germany.
[Botov, Andreas; Ziegler, Thomas] AG Zool Garten Koln, D-50735 Cologne, Germany.
[Minh Duc Le] Vietnam Natl Univ, Hanoi Univ Sci, Fac Environm Sci, Hanoi, Vietnam.
[Minh Duc Le] Hanoi Natl Univ, Ctr Nat Resources & Environm Studies, Hanoi, Vietnam.
[Minh Duc Le] Amer Museum Nat Hist, Dept Herpetol, New York, NY 10024 USA.
[Nophaseud, Liphone] Natl Univ Laos, Fac Sci, Viangchan, Laos.
[Zug, George] Natl Museum Nat Hist, Smithsonian Inst, Dept Vertebrate Zool, Washington, DC 20560 USA.
RP Nguyen, TQ (reprint author), Vietnam Acad Sci & Technol, Inst Ecol & Biol Resources, 18 Hoang Quoc Viet, Hanoi, Vietnam.
EM nqt2@yahoo.com; andreasbotov@googlemail.com; le.duc.minh@hus.edu.vn;
nophasead2007@yahoo.com; zugg@si.edu; m.bonkowski@uni-koeln.de;
ziegler@koelnerzoo.de
RI Nguyen, Truong/F-3730-2012; Bonkowski, Michael/C-3700-2013
OI Bonkowski, Michael/0000-0003-2656-1183
FU Alexander von Humboldt Foundation [VIE 1143441]
FX We are grateful to S. Wayakone, S. Bounphanmy, B. Praxaysombath
(National University of Laos, Vientiane), and V. Kanyasone (Provincial
Natural Resources and Environment Office of LuangPrabang) for supporting
our field research in Laos. Field survey in Luang Prabang was assisted
by N. Schneider (Cologne Zoo). Export of collected specimens was done
due to the export permit Nr. 141/13 signed by the CITES Management
Authority of Lao PDR. T. Q. Nguyen thanks C. X. Le and T. H. Tran
(Hanoi) as well as T. Pagel (Cologne) for support of his research. We
are grateful to A. Bauer (Villanova), P. David (Paris), and L. L.
Grismer (La Sierra) for their reviews of the manuscript. Thanks to E.
Sterling (New York) and K. Koy (Berkeley) for providing the map. Field
survey in Luang Prabang Province and research of T. Q. Nguyen was funded
by the Alexander von Humboldt Foundation (VIE 1143441).
NR 22
TC 3
Z9 4
U1 0
U2 4
PU MAGNOLIA PRESS
PI AUCKLAND
PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND
SN 1175-5326
EI 1175-5334
J9 ZOOTAXA
JI Zootaxa
PD JUL 2
PY 2014
VL 3827
IS 1
BP 45
EP 56
PG 12
WC Zoology
SC Zoology
GA AK0OR
UT WOS:000338114000004
PM 25081145
ER
PT J
AU Kidwell, PA
AF Kidwell, Peggy Aldrich
TI From the Curator's Desk: Online Encyclopedia of Smithsonian Mathematical
Instruments
SO IEEE ANNALS OF THE HISTORY OF COMPUTING
LA English
DT News Item
C1 Smithsonian Inst, Natl Museum Amer Hist, Washington, DC 20560 USA.
RP Kidwell, PA (reprint author), Smithsonian Inst, Natl Museum Amer Hist, Washington, DC 20560 USA.
EM kidwellp@si.edu
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1058-6180
EI 1934-1547
J9 IEEE ANN HIST COMPUT
JI IEEE Ann. Hist. Comput.
PD JUL-SEP
PY 2014
VL 36
IS 3
BP 88
EP 89
PG 2
WC Computer Science, Theory & Methods; History & Philosophy Of Science
SC Computer Science; History & Philosophy of Science
GA AW5MT
UT WOS:000346319900011
ER
PT J
AU Ceruzzi, PE
AF Ceruzzi, Paul E.
TI Are Historians Failing to Tell the Real Story about the History of
Computing?
SO IEEE ANNALS OF THE HISTORY OF COMPUTING
LA English
DT Editorial Material
C1 Smithsonian Inst, Washington, DC 20560 USA.
RP Ceruzzi, PE (reprint author), Smithsonian Inst, Washington, DC 20560 USA.
EM ceruzzip@si.edu
NR 9
TC 1
Z9 1
U1 1
U2 1
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1058-6180
EI 1934-1547
J9 IEEE ANN HIST COMPUT
JI IEEE Ann. Hist. Comput.
PD JUL-SEP
PY 2014
VL 36
IS 3
BP 94
EP 95
PG 2
WC Computer Science, Theory & Methods; History & Philosophy Of Science
SC Computer Science; History & Philosophy of Science
GA AW5MT
UT WOS:000346319900016
ER
PT J
AU Brown, JW
Copeland, RS
Aarvik, L
Miller, SE
Rosati, ME
Luke, Q
AF Brown, J. W.
Copeland, R. S.
Aarvik, L.
Miller, S. E.
Rosati, M. E.
Luke, Q.
TI Host records for fruit-feeding Afrotropical Tortricidae (Lepidoptera)
SO AFRICAN ENTOMOLOGY
LA English
DT Article
DE DNA barcode; false codling moth; host plants; Kenya; leaf-rollers;
macadamia nut borer; USAID
ID FALSE CODLING MOTH; CRYPTOPHLEBIA-LEUCOTRETA MEYRICK;
RAVENELIA-MACOWANIANA PAZSCHKE; ACACIA-KARROO HAYNE; SOUTH-AFRICA; DNA
BARCODES; LANTANA-CAMARA; NATIVE FRUIT; MACADAMIA; KENYA
AB We present host records for the following Afrotropical Tortricidae reared from fruit in Kenya: Idiothauma nr africanum Walsingham, Paraccra mimesa Razowski, Apotoforma nr uncifera Razowski, Eugnosta percnoptila. (Meyrick), Phtheochroa aarviki Razowski & Brown, Actihema hemiacta (Meyrick), Choristoneura dinota (Meyrick), Choristoneura occidentalis (Walsingham), Procrica nr ophiograpta (Meyrick), Metamesia nr episema.(Diakonoff), Epichoristodes acerbella (Walker), Cryptaspasma phycitinana Aarvik, Cryptaspasma subtilis Diakonoff complex, Cryptaspasma caryothia (Meyrick) complex, Cryptaspasma n. sp., Lobesia vanillana (Joannis), Lobesia semosa Diakonoff, Eccopsis nebulana Walsingham, Eccopsis praecedens Walsingham, Afrothreutes madoffei Aarvik, Afroploce nr karsholti Aarvik, Metendothenia balanacma (Meyricic), Endothenia ator Razowski & Brown, Anthozela chrysoxantha Meyridc, Anthozela psychotriae Razowski & Brown, Concinocordis wilsonarum Razowski & Brown, Crocidosema plebejana Zeller, Crocidosema lantana (Busck), Gypsonoma scolopiae Razowski &Brown, Cosmetra nereidopa (Meyrick), Cosmetra sp. 1, Cosmetra sp. 2, Cosmetra sp. 3, Cosmetra podocarpivora Razowski gt Brown, Cosmetra taitana Razowski & Brown, Thaumatotibia leucotreta (Meyrick), Thaumatotibia batrachopa (Meyrick), Thaumatotibia salaciae Razowski & Brown, Cryptophlebia semilunana (Saalmiiller), Cryptophlebia sp. 1, Cryptophlebia peltastica (Meyrick), Cydia connara Razowski & Brown, Cydia sennae Razowski & Brown, Cydia nr choleropa (Meyrick), Fulcrifera crotalariae Razowski & Brown, Fulcrifera nr periculosa (Meyrick), Fulcrifera sp. 1, Fulcrifera sp. 2, Dracontogena continentalis Karisch, Dracontogena solii Aarvik & Karisch, Grapholita limbata Diakonoff, Grapholita mesosocia (Meyridc), Grapholita nr mesosocia (Meyrick), Selania exornata (Diakonoff), Eucosmocydia monitrix (Meyrick), Stenentoma sorindeiae Razowski & Brown, and Thylacogaster garcinivora Razowski & Brown. Nearly 75 % of all our reared tortricids are members of Grapholitini, a tribe that includes numerous pests of fruit worldwide. Approximately 77 % of the reared species are recorded from only one or two different plants species (frequently in the same plant genus). Plant families that support the greatest numbers of tortricid fruit-feeders are Rubiaceae (13 tortricid species), Ochnaceae (11 tortricid species), Sapindaceae (10 tortricid species), Rosaceae (8 tortricid species), Connaraceae (7 tortricid species) and Fabaceae (7 tortricid species). We also review previously reported food plants and provide a few new records for four foliage- and/or fruit-feeding tortricids from the Afrotopical Region, e.g. Goniotorna erratica (Diakonof-f), Taiteccopsis taitana Razowski, Cydia choleropa (Meyrick) and Leguminivora ptychora (Meyrick). Identifications are based on morphology and DNA barcodes (COI).
C1 [Brown, J. W.] ARS, Systemat Entomol Lab, USDA, Natl Museum Nat Hist, Washington, DC 20013 USA.
[Copeland, R. S.] Int Ctr Insect Physiol & Ecol, Nairobi, Kenya.
[Copeland, R. S.] Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA.
[Aarvik, L.] Univ Oslo, Nat Hist Museum, NO-0318 Oslo, Norway.
[Miller, S. E.; Rosati, M. E.] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20013 USA.
[Luke, Q.] E African Herbarium, Nairobi 00100, Kenya.
RP Brown, JW (reprint author), ARS, Systemat Entomol Lab, USDA, Natl Museum Nat Hist, POB 37012, Washington, DC 20013 USA.
OI Miller, Scott/0000-0002-4138-1378
FU Ministry for Foreign Affairs of Finland for the CHIESA Project, Climate
Change Impacts on Ecosystem Services and Food Security in Eastern
Africa; Government of Canada through Genome Canada; Ontario Genomics
Institute; Smithsonian Institution; USAID [PCE-G-00-98-0048-00];
USDA/CSREES/IFAFS [00-52103-9651]
FX We are indebted to R. Bagine, formerly of the Kenya Wildlife Service,
who was very helpful in granting permission to sample fruits within
Kenyan forests. National Museums of Kenya also facilitated all stages of
the research. The work of R.S.C. in the Taita Hills was supported with
funds from the Ministry for Foreign Affairs of Finland for the CHIESA
Project, Climate Change Impacts on Ecosystem Services and Food Security
in Eastern Africa. We also thank K. Darrow and L. Helgen of the USNM for
invaluable assistance with dissections and preparation of the reared
material. DNA sequencing was supported by a grant from the Government of
Canada through Genome Canada and the Ontario Genomics Institute in
support of the iBOL project, courtesy of P. Hebert, with additional
support from the Smithsonian Institution. This work was supported in
part by USAID grant no. PCE-G-00-98-0048-00 (in collaboration with the
International Centre of Insect Physiology and Ecology and its African
Fruit Fly Initiative) and in part by USDA/CSREES/IFAFS grant no.
00-52103-9651, both to R.A. Wharton, Texas A&M University The following
provided helpful reviews that enhanced the clarity and quality of the
final paper: T Gilligan, USDA, APHIS, PPQ, CPHST, Fort Collins
Laboratory, Fort Coffins, Colorado, U.S.A.; and J. Baixeras, Cavanilles
Institute of Biodiversity and Evolutionary Biology, University of
Valencia, Paterna, Spain.
NR 131
TC 7
Z9 7
U1 2
U2 12
PU ENTOMOLOGICAL SOC SOUTHERN AFRICA
PI HATFIELD
PA PO BOX 13162, HATFIELD 0028, SOUTH AFRICA
SN 1021-3589
EI 1026-4914
J9 AFR ENTOMOL
JI Afr. Entomol.
PD JUL
PY 2014
VL 22
IS 2
BP 343
EP 376
PG 34
WC Entomology
SC Entomology
GA AR5HO
UT WOS:000343616000014
ER
PT J
AU Buffington, ML
Forshage, M
AF Buffington, Matthew L.
Forshage, Mattias
TI THE DESCRIPTION OF GARUDELLA BUFFINGTON AND FORSHAGE, NEW GENUS
(HYMENOPTERA: FIGITIDAE: EUCOILINAE)
SO PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON
LA English
DT Article
DE Kleidotomini; occipital impression; new species; new genus; morphology;
Thailand; Laos; Vietnam
ID REVISION
AB Garudella, a remarkable new genus of eucoiline wasp is described from Thailand, Laos, and the Republic of Congo. Four new species of Garudella are described as well: G. acothonaspis, G. afrotropica, G. algo, and G. alicae. Several autapomorphies distinguish this genus from other eucoiline genera: a distinctly protracted and broadened pronotal plate; a massive, posteriorly protruding propodeum; reduced posterior rim of metapleuron; reduced scutellar foveae and lack of lateral bar ''windows''; and a generally reduced scutellar plate. In addition, the posterior of the head has a distinctly curved occipital impression, resulting in the cuticle surrounding the foramen magnum to be extruded into a neck-like process. The biology of Garudella is unknown, but based on phylogenetic inference from morphology, the presumed host could be a cyclorrhaphous Diptera in a saprophagous environment.
C1 [Buffington, Matthew L.] USDA, Smithsonian NMNH, Systemat Entomol Lab, Washington, DC 20013 USA.
[Forshage, Mattias] Nat Hist Riksmuseet, Dept Entomol, SE-10405 Stockholm, Sweden.
RP Buffington, ML (reprint author), USDA, Smithsonian NMNH, Systemat Entomol Lab, 10th & Constitut Ave NW, Washington, DC 20013 USA.
EM matt.buffington@ars.usda.gov; Mattias.Forshage@nrm.se
FU Systematic Entomology Lab (USDA-ARS); Smithsonian Institution Short-term
Visitor Grants program; NSF [DEB-0542864, EF-0337220]
FX We thank Mike Sharkey (University of Kentucky) and Brian Brown (Los
Angeles County Museum) for inviting us to collaborate on the cynipoid
portion of the TIGER Project. Smithsonian Institution intern Agnes
Cororaton helped considerably in mounting and labeling cynipoids
collected in the TIGER Project, and her help is greatly appreciated.
Taina Litwak (Systematic Entomology Lab, USDA-ARS) produced the
fantastic painting found in Figure 1; Sarah King (SI Intern Program)
edited Fig. 7. Guilherme Baiao (NHRS) found the Vietnamese Garudella
specimens in RMNH, where Kees van Achterberg and Frederique Bakker
assisted with guidance and loans. Fritz Gusenleitner and Martin Schwarz
(OSML, Linz, Austria) assisted MF with the loan of the first Vietnamese
specimen. Funding was provided to MB by the Systematic Entomology Lab
(USDA-ARS) and a short-term visitors grant to the USNM for MF was
provided by the Smithsonian Institution Short-term Visitor Grants
program. Funding for Mike Sharkey and Brian Brown for running Malaise
traps in Thailand was provided by NSF grants DEB-0542864 and EF-0337220.
USDA is an equal opportunity provider and employer.
NR 12
TC 0
Z9 0
U1 0
U2 0
PU ENTOMOL SOC WASHINGTON
PI WASHINGTON
PA SMITHSONIAN INSTITUTION DEPT ENTOMOLOGY, WASHINGTON, DC 20560 USA
SN 0013-8797
J9 P ENTOMOL SOC WASH
JI Proc. Entomol. Soc. Wash.
PD JUL
PY 2014
VL 116
IS 3
BP 225
EP 242
DI 10.4289/0013-8797.116.3.225
PG 18
WC Entomology
SC Entomology
GA AQ9PL
UT WOS:000343187700001
ER
PT J
AU Buffington, ML
Perkovsky, EE
Brady, SG
AF Buffington, Matthew L.
Perkovsky, Evgeny E.
Brady, Sean G.
TI THE DESCRIPTION OF ROVNOEUCOILA TYMPANOMORPHA BUFFINGTON AND PERKOVSKY,
A NEW GENUS AND SPECIES OF FOSSIL EUCOILINE, WITH OBSERVATIONS ON THE
ASYNCHRONOUS EVOLUTION OF DIGLYPHOSEMATINI (HYMENOPTERA: FIGITIDAE:
EUCOILINAE)
SO PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON
LA English
DT Article
DE Rovno amber; amber inclusion; divergence estimation; parasitoid
ID CALIBRATION UNCERTAINTY; GALL WASPS; CYNIPOIDEA; PARASITOIDS;
FORMICIDAE; CYNIPIDAE; PHYLOGENY; INSECTA; HISTORY; AMBER
AB A new genus and species of Eucoilinae, Rovnoeucoila tympanomorpha Buffington and Perkovsky, from a Rovno Amber inclusion, is described. This new taxon differs from extant eucoilines by having a clearly segmented metasoma and singular flagellomere morphology in the antenna. The new taxon is included in the re-analysis of a fossil calibrated, relaxed molecular clock divergence date analysis of Figitidae. The new analysis infers a mean crown group age for Eucoilinae at approximately 10 million years younger than previously estimated. The age of the eucoiline tribe Diglyphosematini does not change substantially in our new dating analysis, and is much younger when compared to the age of its host lineage Agromyzidae (Diptera); we discuss potential implications of this situation within the context of natural enemy selection in biological control projects that include parasitoid Hymenoptera.
C1 [Buffington, Matthew L.] USDA, Smithsonian NMNH, Systemat Entomol Lab, Washington, DC 20013 USA.
[Perkovsky, Evgeny E.] NAS Ukraine, Schmalhausen Inst Zool, UA-01601 Kiev, Ukraine.
[Brady, Sean G.] Smithsonian Inst, Natl Museum Nat Hist, Dept Entomol, Washington, DC 20013 USA.
RP Buffington, ML (reprint author), USDA, Smithsonian NMNH, Systemat Entomol Lab, 10th & Constitut Ave NW, Washington, DC 20013 USA.
EM matt.buffington@ars.usda.gov; perkovsk@gmail.com; bradys@si.edu
NR 36
TC 2
Z9 3
U1 1
U2 1
PU ENTOMOL SOC WASHINGTON
PI WASHINGTON
PA SMITHSONIAN INSTITUTION DEPT ENTOMOLOGY, WASHINGTON, DC 20560 USA
SN 0013-8797
J9 P ENTOMOL SOC WASH
JI Proc. Entomol. Soc. Wash.
PD JUL
PY 2014
VL 116
IS 3
BP 243
EP 254
DI 10.4289/0013-8797.116.3.243
PG 12
WC Entomology
SC Entomology
GA AQ9PL
UT WOS:000343187700002
ER
PT J
AU Cecil, CB
DiMichele, WA
Elrick, SD
AF Cecil, C. Blaine
DiMichele, William A.
Elrick, Scott D.
TI Middle and Late Pennsylvanian cyclothems, American Midcontinent: Ice-age
environmental changes and terrestrial biotic dynamics
SO COMPTES RENDUS GEOSCIENCE
LA English
DT Article
DE Climate; Coal; Cyclothem; Paleoecology; Pennsylvanian
ID CENTRAL APPALACHIAN BASIN; CLIMATE-CHANGE; NORTH-AMERICA; PALEOCLIMATE
CONTROLS; PERMIAN PALEOBOTANY; TROPICAL LOWLANDS; GEOLOGICAL TIME;
ILLINOIS BASIN; GLACIAL PHASES; PEAT FORMATION
AB The Pennsylvanian portion of the Late Paleozoic Ice Age was characterized by stratigraphic repetition of chemical and siliciclastic rocks in the equatorial regions of the Pangean interior. Known as "cyclothems", these stratigraphic successions are a 10(5) yr-record of glacial waxing and waning, superimposed on longer term, 10(6) yr intervals of global warming and cooling and a still longer term trend of increasing equatorial aridity. During periods of maximum ice-minimum sea level, the interior craton was widely exposed. Epicontinental landscapes were initially subjected to dry subhumid climate when first exposed, as sea level fell, but transitioned to humid climates and widespread wetlands during maximum lowstands. During interglacials (ice-minima) seasonally dry vegetation predominated. The wetland and seasonally dry biomes were compositionally distinct and had different ecological and evolutionary dynamics. Published by Elsevier Masson SAS on behalf of Academie des sciences.
C1 [Cecil, C. Blaine] US Geol Survey, Rockbridge Baths, VA 24473 USA.
[Cecil, C. Blaine; DiMichele, William A.] Smithsonian Inst, NMNH, Dept Paleobiol, Washington, DC 20560 USA.
[Elrick, Scott D.] Univ Illinois, Illinois State Geol Survey, Champaign, IL 61820 USA.
RP DiMichele, WA (reprint author), Smithsonian Inst, NMNH, Dept Paleobiol, MRC-121, Washington, DC 20560 USA.
EM dimichel@si.edu
FU U.S. Geological Survey; Smithsonian Institution; State of Illinois
FX We thank Sylvie Bourquin for the invitation to submit this paper.
Research supported by U.S. Geological Survey, Smithsonian Institution,
and State of Illinois. We thank many colleagues for sharing their ideas
and expertise.
NR 107
TC 9
Z9 9
U1 2
U2 18
PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
PI PARIS
PA 23 RUE LINOIS, 75724 PARIS, FRANCE
SN 1631-0713
EI 1778-7025
J9 CR GEOSCI
JI C. R. Geosci.
PD JUL-AUG
PY 2014
VL 346
IS 7-8
BP 159
EP 168
DI 10.1016/j.crte.2014.03.008
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA AQ1FF
UT WOS:000342526600001
ER
PT J
AU Remo, JL
Haubold, HJ
AF Remo, John L.
Haubold, Hans J.
TI Threats from space: 20 years of progress
SO BULLETIN OF THE ATOMIC SCIENTISTS
LA English
DT Article
DE asteroid; Chelyabinsk; comet; near-Earth object; NEO; United Nations
ID CHELYABINSK; METEORITE; AIRBURST; EARTH
AB It has been 20 years since planning began for the 1995 United Nations International Conference on Near-Earth Objects. The conference proceedings established the scientific basis for an international organizational framework to support research and collective actions to mitigate a potential near-Earth object (NEO) threat to the planet. Since that time, researchers have conducted telescope surveys that should, within the coming decade, answer many questions about the size, number, and Earth impact probability of these objects. Space explorations to asteroids and comets have been successfully carried out, including sample recovery. Laboratory experiments and computer simulations at Sandia National Laboratories have analyzed the effects of high-energy-density soft x-ray radiation on meteorites-which might help researchers develop a way to redirect an incoming asteroid by vaporizing a thin layer of its surface. An Action Team on NEOs, established in 2001 in response to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space, identified the primary components of NEO mitigation and emphasized the value of finding potentially hazardous NEOs as soon as possible. Recommendations from the action team are meant to ensure that all nations are aware of the NEO danger, and to coordinate mitigation activities among nations that could be affected by an impact, as well as those that might play an active role in any eventual deflection or disruption campaign.
C1 [Remo, John L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Remo, John L.] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA.
[Remo, John L.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Remo, John L.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Haubold, Hans J.] UN, Off Outer Space Affairs, Vienna, Austria.
[Haubold, Hans J.] Ctr Math Sci, Pala, India.
[Haubold, Hans J.] UN Basic Space Sci Initiat, Berkeley, CA USA.
RP Remo, JL (reprint author), Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
NR 22
TC 1
Z9 1
U1 1
U2 11
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0096-3402
EI 1938-3282
J9 B ATOM SCI
JI Bull. Atom. Scient.
PD JUL-AUG
PY 2014
VL 70
IS 4
BP 85
EP 93
DI 10.1177/0096340214539125
PG 9
WC International Relations; Social Issues
SC International Relations; Social Issues
GA AP1NN
UT WOS:000341837400012
ER
PT J
AU Crida, A
Batygin, K
AF Crida, A.
Batygin, K.
TI Spin-orbit angle distribution and the origin of (mis)aligned hot
Jupiters
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE planets and satellites: formation; planets and satellites: dynamical
evolution and stability; planet-disk interactions; methods: statistical
ID INTERNAL GRAVITY-WAVES; PLANET SCATTERING; TAURUS-AURIGA; YOUNG STARS;
MIGRATION; SYSTEMS; MISALIGNMENTS; INSTABILITY; ROTATION; MODEL
AB Context. For 61 transiting hot Jupiters, the projection of the angle between the orbital plane and the stellar equator (called the spin-orbit angle) has been measured. For about half of them, a significant misalignment is detected, and retrograde planets have been observed. This challenges scenarios of the formation of hot Jupiters.
Aims. In order to better constrain formation models, we relate the distribution of the real spin-orbit angle Psi to the projected one beta. Then, a comparison with the observations is relevant.
Methods. We analyse the geometry of the problem to link analytically the projected angle beta to the real spin-orbit angle Psi. The distribution of Psi expected in various models is taken from the literature, or derived with a simplified model and Monte Carlo simulations in the case of the disk-torquing mechanism.
Results. An easy formula to compute the probability density function (PDF) of beta knowing the PDF of Psi is provided. All models tested here look compatible with the observed distribution beyond 40 degrees, which is so far poorly constrained by only 18 observations. But only the disk-torquing mechanism can account for the excess of aligned hot Jupiters, provided that the torquing is not always efficient. This is the case if the exciting binaries have semi-major axes as large as similar to 10(4) AU.
Conclusions. Based on comparison with the set of observations available today, scattering models and the Kozai cycle with tidal friction models can not be solely responsible for the production of all hot Jupiters. Conversely, the presently observed distribution of the spin-orbit angles is compatible with most hot Jupiters having been transported by smooth migration inside a proto-planetary disk, itself possibly torqued by a companion.
C1 [Crida, A.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange,UMR 7293, F-06300 Nice, France.
[Batygin, K.] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA.
RP Crida, A (reprint author), Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange,UMR 7293, F-06300 Nice, France.
EM crida@oca.eu
FU ITC Prize Postdoctoral Fellowship at the Institute for Theory and
Computation, Harvard-Smithsonian Center for Astrophysics
FX K.B. acknowledges the generous support from the ITC Prize Postdoctoral
Fellowship at the Institute for Theory and Computation,
Harvard-Smithsonian Center for Astrophysics. This research has made use
of the Exoplanet Orbit Database and the Exoplanet Data Explorer at
exoplanets.org (Wright et al. 2011). We thank the referee C. Beauge, as
well as D. Nesvorny, for comments and suggestions that led to
improvement of this article. We further thank S. Tremaine for pointing
out a mistake (now corrected) in our Sect. 2.4.
NR 50
TC 20
Z9 20
U1 0
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR A42
DI 10.1051/0004-6361/201323292
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300057
ER
PT J
AU D'Ago, G
Paolillo, M
Fabbiano, G
Puzia, TH
Maccarone, TJ
Kundu, A
Goudfrooij, P
Zepf, SE
AF D'Ago, G.
Paolillo, M.
Fabbiano, G.
Puzia, T. H.
Maccarone, T. J.
Kundu, A.
Goudfrooij, P.
Zepf, S. E.
TI Luminosity function of low-mass X-ray binaries in the globular cluster
system of NGC 1399
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE X-rays: binaries; X-rays: galaxies; galaxies: elliptical and lenticular,
cD; galaxies: individual: NGC 1399
ID EARLY-TYPE GALAXIES; HUBBLE-SPACE-TELESCOPE; STAR-FORMING GALAXIES;
ELLIPTIC GALAXIES; STELLAR MASS; WIDE-FIELD; MILKY-WAY; CHANDRA;
CONNECTION; POPULATION
AB Aims. We present a study of the faint end of the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the Globular Cluster (GC) system of the cD galaxy NGC 1399.
Methods. We performed a stacking experiment on 618 X-ray undetected GCs. in order to verify the Presence of faint LMXBs and to constrain the faint end slope of the GC-LMXBs XLF below the individual detection threshold of 8 x 10(37) erg s(-1) in the 0.5-8 keV band.
Results. We obtain a significant X-ray detection for the whole GC sample, as well as for the red and blue GC subpopulations, corresponding to an average luminosity per GC < L-X >(GC) of (3.6 +/- 1.0) x 10(36) erg s(-1), (6.9 +/- 2.1) x 10(36) erg s(-1), and (1.7 +/- 0.9) x 10(36) erg s(-1), respectively, for all GCs, red GCs, and blue GCs. If LMXBs in red and blue GCs have the same average intrinsic luminosity, we derive a red/blue ratio similar or equal to 3 of GCs hosting LMXBs (2.5 +/- 1.0 or 4.1 +/- 2.5 depending on the surveyed region); alternatively, assuming the fractions observed for brighter sources, we measure an average X-ray luminosity of L-X = (4.3 +/- 1.3) x 10(37) erg s(-1) and L-X = (3.4 +/- 1.7) x 10(37) erg s(-1) per red and blue GC-LMXBs, respectively. In the assumption that the XLF follows a power-law distribution, we find that a low luminosity break is required at L-X <= 8 x 10(37) erg s(-1) both in the whole, as well as in the color-selected (red and blue) subsamples. Given the bright-end slopes measured above the X-ray completeness limit, this result is significant at >3 sigma level. Our best estimates for the faint-end slope are beta(L) = -1.39/-1.38/-1.36 for all/red/blue GC-LMXBs. We also find evidence that the luminosity function becomes steeper at luminosities L-X greater than or similar to 3 x 10(39) erg s(-1), as observed in old ellipticals.
Conclusions. If most GCs host a single X-ray binary, we conclude that in NGC 1399 the XLF flattens at low luminosities as observed in other nearer galaxies, and we discuss some consequences of this flattening on LMXBs formation scenarios.
C1 [D'Ago, G.; Paolillo, M.] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy.
[D'Ago, G.] Univ Salerno, Phys Dept ER Caianiello, I-84084 Fisciano, Italy.
[D'Ago, G.] INFN, Grp Collegato Salerno, Sez Napoli, I-84084 Fisciano, Italy.
[Paolillo, M.] INFN, Sez Napoli, I-80126 Naples, Italy.
[Paolillo, M.] ASI Sci Data Ctr, I-00133 Rome, Italy.
[Fabbiano, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Puzia, T. H.] Pontificia Univ Catolica Chile, Inst Astrophys, Santiago 7820436, Chile.
[Maccarone, T. J.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA.
[Maccarone, T. J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Kundu, A.] TIFR, Bombay 400005, Maharashtra, India.
[Kundu, A.] Eureka Sci Inc, Oakland, CA 94602 USA.
[Goudfrooij, P.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Zepf, S. E.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
RP D'Ago, G (reprint author), Univ Naples Federico II, Dept Phys, Via Cinthia 9, I-80126 Naples, Italy.
EM paolillo@na.infn.it
RI Paolillo, Maurizio/J-1733-2012; D'Ago, Giuseppe/N-8318-2016
OI Paolillo, Maurizio/0000-0003-4210-7693; D'Ago,
Giuseppe/0000-0001-9697-7331
FU University Federico II of Naples; NSF [1066293i]
FX M.P. acknowledges support from the FARO 2011 project from the University
Federico II of Naples. He also thanks the International Academic
Exchange Fund of the "Vicerrectoria Academica" at the Pontificia
Universidad Catolica in Santiago, and the Department of Astronomy and
Astrophysics for providing travel and lodging support. G.F. is grateful
for the hospitality of the Aspen Center for Physics supported by NSF
grant No 1066293i.
NR 56
TC 1
Z9 1
U1 0
U2 4
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR A2
DI 10.1051/0004-6361/201322722
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300024
ER
PT J
AU Desidera, S
Bonomo, AS
Claudi, RU
Damasso, M
Biazzo, K
Sozzetti, A
Marzari, F
Benatti, S
Gandolfi, D
Gratton, R
Lanza, AF
Nascimbeni, V
Andreuzzi, G
Affer, L
Barbieri, M
Bedin, LR
Bignamini, A
Bonavita, M
Borsa, F
Calcidese, P
Christille, JM
Cosentino, R
Covino, E
Esposito, M
Giacobbe, P
Harutyunyan, A
Latham, D
Lattanzi, M
Leto, G
Lodato, G
Lovis, C
Maggio, A
Malavolta, L
Mancini, L
Fiorenzano, AFM
Micela, G
Molinari, E
Mordasini, C
Munari, U
Pagano, L
Pedani, M
Pepe, F
Piotto, G
Poretti, E
Rainer, M
Ribas, I
Santos, NC
Scandariato, G
Silvotti, R
Southworth, J
Sanchez, RZ
AF Desidera, S.
Bonomo, A. S.
Claudi, R. U.
Damasso, M.
Biazzo, K.
Sozzetti, A.
Marzari, F.
Benatti, S.
Gandolfi, D.
Gratton, R.
Lanza, A. F.
Nascimbeni, V.
Andreuzzi, G.
Affer, L.
Barbieri, M.
Bedin, L. R.
Bignamini, A.
Bonavita, M.
Borsa, F.
Calcidese, P.
Christille, J. M.
Cosentino, R.
Covino, E.
Esposito, M.
Giacobbe, P.
Harutyunyan, A.
Latham, D.
Lattanzi, M.
Leto, G.
Lodato, G.
Lovis, C.
Maggio, A.
Malavolta, L.
Mancini, L.
Fiorenzano, A. F. Martinez
Micela, G.
Molinari, E.
Mordasini, C.
Munari, U.
Pagano, L.
Pedani, M.
Pepe, F.
Piotto, G.
Poretti, E.
Rainer, M.
Ribas, I.
Santos, N. C.
Scandariato, G.
Silvotti, R.
Southworth, J.
Sanchez, R. Zanmar
TI The GAPS programme with HARPS-N at TNG IV. A planetary system around
XO-2S
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE techniques: radial velocities; planetary systems; stars: individual:
XO-2S; stars: individual: XO-2N
ID RADIAL-VELOCITY MEASUREMENTS; CHAIN MONTE-CARLO; EXTRASOLAR PLANETS;
BINARY-SYSTEMS; HOT JUPITERS; HOST STARS; COMPANIONS; EXOPLANETS;
SEARCH; II.
AB We performed an intensive radial velocity monitoring of XO-2S, the wide companion of the transiting planet-host XO-2N, using HARPS-N at TNG in the framework of the GAPS programme. The radial velocity measurements indicate the presence of a new planetary system formed by a planet that is slightly more massive than Jupiter at 0.48 au and a Saturn-mass planet at 0.13 au. Both planetary orbits are moderately eccentric and were found to be dynamically stable. There are also indications of a long-term trend in the radial velocities. This is the first confirmed case of a wide binary whose components both host planets, one of which is transiting, which makes the XO-2 system a unique laboratory for understanding the diversity of planetary systems.
C1 [Desidera, S.; Claudi, R. U.; Marzari, F.; Benatti, S.; Gratton, R.; Nascimbeni, V.; Bedin, L. R.; Bonavita, M.; Munari, U.; Piotto, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy.
[Bonomo, A. S.; Damasso, M.; Sozzetti, A.; Giacobbe, P.; Lattanzi, M.; Silvotti, R.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy.
[Damasso, M.; Calcidese, P.; Christille, J. M.] Osservatorio Astron Reg Autonoma Valle Aosta, I-11020 Nus, Aosta, Italy.
[Biazzo, K.; Gandolfi, D.; Lanza, A. F.; Cosentino, R.; Leto, G.; Pagano, L.; Scandariato, G.; Sanchez, R. Zanmar] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy.
[Marzari, F.] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy.
[Gandolfi, D.] Heidelberg Univ, ZAH, Landessternwarte Konigstuhl, D-69117 Heidelberg, Germany.
[Nascimbeni, V.; Barbieri, M.; Malavolta, L.; Piotto, G.] Univ Padua, Dip Fis & Astron Galileo Galilei, I-35122 Padua, Italy.
[Andreuzzi, G.; Cosentino, R.; Harutyunyan, A.; Fiorenzano, A. F. Martinez; Molinari, E.; Pedani, M.] Fdn Galileo Galilei INAF, Brena Baja 38712, Spain.
[Affer, L.; Maggio, A.; Micela, G.] INAF Osservatorio Astron Palermo, I-90134 Palermo, Italy.
[Bignamini, A.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy.
[Borsa, F.; Poretti, E.; Rainer, M.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy.
[Christille, J. M.] Univ Perugia, Dept Phys, I-06123 Perugia, Italy.
[Covino, E.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy.
[Esposito, M.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain.
[Latham, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Lodato, G.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Lovis, C.; Malavolta, L.; Pepe, F.] Univ Geneva, Astron Observ, CH-1290 Sauverny, Versoix, Switzerland.
[Mancini, L.; Mordasini, C.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Molinari, E.] INAF IASF Milano, I-20133 Milan, Italy.
[Ribas, I.] Fac Ciencies, Inst Ciencies Espai CSIC IEEC, Bellaterra 08193, Spain.
[Santos, N. C.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Santos, N. C.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4150762 Oporto, Portugal.
[Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England.
RP Desidera, S (reprint author), INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy.
EM silvano.desidera@oapd.inaf.it
RI Santos, Nuno/E-9957-2011; Leto, Giuseppe/N-3355-2015; Maggio,
Antonio/P-5700-2015;
OI Gratton, Raffaele/0000-0003-2195-6805; Sozzetti,
Alessandro/0000-0002-7504-365X; Lattanzi, Mario
Gilberto/0000-0003-0429-7748; bedin, luigi/0000-0003-4080-6466; Santos,
Nuno/0000-0003-4422-2919; Poretti, Ennio/0000-0003-1200-0473; Lanza,
Antonino Francesco/0000-0001-5928-7251; Gandolfi,
Davide/0000-0001-8627-9628; Munari, Ulisse/0000-0001-6805-9664; Piotto,
Giampaolo/0000-0002-9937-6387; Leto, Giuseppe/0000-0002-0040-5011;
Molinari, Emilio/0000-0002-1742-7735; Maggio,
Antonio/0000-0001-5154-6108; Silvotti, Roberto/0000-0002-1295-8174;
Biazzo, Katia/0000-0002-1892-2180; Covino, Elvira/0000-0002-6187-6685;
Desidera, Silvano/0000-0001-8613-2589; Barbieri,
Mauro/0000-0001-8362-3462; Micela, Giuseppina/0000-0002-9900-4751
FU INAF through the "Progetti Premiali" funding scheme of the Italian
Ministry of Education, University, and Research; Regional Government of
the Aosta Valley; Town Municipality of Nus; Mont Emilius Community;
EU-ESF; Autonomous Region of the Aosta Valley; Italian Ministry of
Labour and Social Policy; ASI [I/037/08/0, I/058/10/0]; Fondazione CRT;
EU [267251]; Fundacao para a Ciencia e a Tecnologia (FCT, Portugal)
[RECI/FIS-AST/0176/2012 (FCOMP-01-0124-FEDER-027493),
RECI/FIS-AST/0163/2012 (FCOMP-01-0124-FEDER-027492)]; FCT
[IF/00169/2012]; POPH/FSE (EC) - FEDER through the program Programa
Operacional de Factores de Competitividade - COMPETE; ERC/EC [239953]
FX The GAPS project in Italy acknowledges support from INAF through the
"Progetti Premiali" funding scheme of the Italian Ministry of Education,
University, and Research. The Aosta Valley Observatory is supported by
the Regional Government of the Aosta Valley, the Town Municipality of
Nus and the Mont Emilius Community. J.M.C. is supported by a grant of
the EU-ESF, the Autonomous Region of the Aosta Valley and the Italian
Ministry of Labour and Social Policy. We thank ASI (through contracts
I/037/08/0 and I/058/10/0) and the Fondazione CRT for their support to
the APACHE Project. D. G. acknowledges support from the EU FP7 under
grant agreement No. 267251. N.C.S. acknowledges support from Fundacao
para a Ciencia e a Tecnologia (FCT, Portugal) through the FEDER funds in
the program COMPETE, as well as through national funds, in the form of
grants references RECI/FIS-AST/0176/2012 (FCOMP-01-0124-FEDER-027493),
and RECI/FIS-AST/0163/2012 (FCOMP-01-0124-FEDER-027492), and in the form
of the Investigador FCT contract reference IF/00169/2012 and POPH/FSE
(EC) by the FEDER funding through the program Programa Operacional de
Factores de Competitividade - COMPETE. N.C.S. furthermore acknowledges
support from the ERC/EC under the FP7 through Starting Grant agreement
No. 239953. We thank the TNG staff for help with the observations.
NR 34
TC 14
Z9 14
U1 0
U2 7
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR L6
DI 10.1051/0004-6361/201424339
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300154
ER
PT J
AU Frau, P
Girart, JM
Zhang, Q
Rao, R
AF Frau, P.
Girart, J. M.
Zhang, Q.
Rao, R.
TI Shaping a high-mass star-forming cluster through stellar feedback The
case of the NGC 7538 IRS 1-3 complex
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE ISM: individual objects: NGC 7538 IRS 1; ISM: magnetic fields; stars:
formation; polarization; submillimeter: ISM; techniques: interferometric
ID NGC-7538 MOLECULAR CLOUD; 1333 IRAS 4A; MAGNETIC-FIELDS; PROTOSTELLAR
CORES; VLA OBSERVATIONS; METHANOL MASERS; RECOMBINATION LINE;
CIRCUMSTELLAR DISK; HII-REGIONS; OUTFLOWS
AB Context. NGC 7538 IRS 1-3 is a high-mass star-forming cluster with several detected dust cores, infrared sources, (ultra) compact H II regions, molecular outflows, and masers. In such a complex environment, interactions and feedback among the embedded objects are expected to play a major role in the evolution of the region.
Aims. We study the dust, kinematic, and polarimetric properties of the NGC 7538 IRS 1-3 region to investigate the role of the different forces in the formation and evolution of high-mass star-forming clusters.
Methods. We performed SMA high angular resolution observations at 880 mu m with the compact configuration. We developed the RATPACKS code to generate synthetic velocity cubes from models of choice to be compared to the observational data. To quantify the stability against gravitational collapse we developed the "mass balance" analysis that accounts for all the energetics on core scales.
Results. We detect 14 dust cores from 3.5 M-circle dot to 37 M-circle dot arranged in two larger scale structures: a central bar and a filamentary spiral arm. The spiral arm presents large-scale velocity gradients in (HCO+)-C-13 4-3 and (CO)-O-17 3-2, and magnetic field segments aligned well to the dust main axis. The velocity gradient is reproduced well by a spiral arm expanding at 9 km s(-1) with respect to the central core MM1, which is known to power a large precessing outflow. The energy of the outflow is comparable to the spiral-arm kinetic energy, which dominates gravitational and magnetic energies. In addition, the dynamical ages of the outflow and spiral arm are comparable. On core scales, those embedded in the central bar seem to be unstable against gravitational collapse and prone to forming high-mass stars, while those in the spiral arm have lower masses that seem to be supported by non-thermal motions and magnetic fields.
Conclusions. The NGC 7538 IRS 1-3 cluster seems to be dominated by protostellar feedback. The dusty spiral arm appears to be formed in a snowplow fashion owing to the outflow from the MM1 core. We speculate that the external pressure from the redshifted lobe of the outflow could trigger star formation in the spiral arm cores. This scenario would form a small cluster with a few central high-mass stars, surrounded by a number of low-mass stars formed through protostellar feedback.
C1 [Frau, P.] CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain.
[Frau, P.] Observ Astron Nacl, Madrid 28014, Spain.
[Girart, J. M.] CSIC IEEC, Fac Ciencies, Inst Ciencies Espai, Bellaterra 08193, Catalonia, Spain.
[Zhang, Q.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Rao, R.] Acad Sinica, Inst Astron & Astrophys, Hilo, HI 96720 USA.
RP Frau, P (reprint author), CSIC, Inst Ciencia Mat Madrid, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain.
EM pfrau@icmm.csic.es; girart@ice.cat; qzhang@cfa.harvard.edu;
rrao@sma.hawaii.edu
RI Girart, Josep/O-1638-2014;
OI Girart, Josep/0000-0002-3829-5591; Zhang, Qizhou/0000-0003-2384-6589
FU Spanish CONSOLIDER [CSD2009-00038]; Spanish MINECO
[AYA2011-30228-C03-02]; Catalan AGAUR [2009SGR1172]
FX We thank all members of the SMA staff that made these observations
possible. This research made use of NASA's Astrophysics Data System
Bibliographic Services (http://adsabs.harvard.edu/), the SIMBAD
database, operated at the CDS, Strasbourg, France (http
://simbad.u-strasbg.fr/simbad/), and the Splatalogue database for
astronomical spectroscopy (http://www.splatalogue.net). We thank the
anonymous referee for the useful comments. PF is supported by the
Spanish CONSOLIDER project CSD2009-00038. PF and JMG are supported by
the Spanish MINECO AYA2011-30228-C03-02 and Catalan AGAUR 2009SGR1172
grants.
NR 69
TC 6
Z9 6
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR A116
DI 10.1051/0004-6361/201423917
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300133
ER
PT J
AU Gallenne, A
Kervella, P
Merand, A
Evans, NR
Girard, JHV
Gieren, W
Pietrzynski, G
AF Gallenne, A.
Kervella, P.
Merand, A.
Evans, N. R.
Girard, J. H. V.
Gieren, W.
Pietrzynski, G.
TI Searching for visual companions of close Cepheids VLT/NACO lucky imaging
of Y Oph, FF Aql, X Sgr, W Sgr, and eta Aql
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE instrumentation: adaptive optics; techniques: high angular resolution;
stars: variables: Cepheids; binaries: visual
ID PERIOD-LUMINOSITY RELATIONS; ICCD SPECKLE OBSERVATIONS; BASE-LINE
INTERFEROMETRY; ECLIPSING BINARY-SYSTEM; HUBBLE-SPACE-TELESCOPE; PEAK
4-M TELESCOPE; CLASSICAL CEPHEID; GALACTIC CEPHEIDS; INTRINSIC COLORS;
STARS
AB Aims. High-resolution imaging in several photometric bands can provide color and astrometric information of the wide orbit component of Cepheid stars. Such measurements are needed to understand the age and evolution of pulsating stars. In addition, binary Cepheids have the potential to provide direct and model-independent distances and masses.
Methods. We used the NAOS-CONICA adaptive optics instrument (NACO) in the near-infrared to perform a deep search for wide components around the classical Cepheids, Y Oph, FF Aql, X Sgr, W Sgr, and eta Aql, within a field of view of 1,7" x 1.7" (3.4" x 3.4" for eta Aql),
Results. We were able to reach contrast Delta N = 5-8 mag and Delta K, = 4-7 mag in the radius range r > 0.2", which enabled us to constrain the presence of wide companions. For Y Oph, FF Aql, X Sgr, W Sgr, and eta Aql at r > 0.2", we ruled out the presence of companions with a spectral type that is earlier than a B7V, A9V, A9V, AIN, and G5V star, respectively. For 0.1" < r < 0.2". no companions earlier than O9V. B3V, B4V, B2V, and B2V star, respectively, are detected. A component is detected close to eta Aql at projected separation p 654.7 +/- 0.9 mas and a position angle PA = 92.8 +/- 0.1 degrees. We estimated its dereddened apparent magnitude to be m 9.34 +/- 0.04 and derived a spectral type that ranges between an F1V and an F6V star. Additional photometric and astrometric measurements are necessary to better constrain this star and check its physical association to the eta Aql system.
C1 [Gallenne, A.; Gieren, W.; Pietrzynski, G.] Univ Concepcion, Dept Astron, Concepcion, Chile.
[Kervella, P.] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris,UMR 8109, F-92195 Meudon, France.
[Merand, A.; Girard, J. H. V.] European So Observ, Santiago 19, Chile.
[Evans, N. R.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
[Pietrzynski, G.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Gallenne, A (reprint author), Univ Concepcion, Dept Astron, Casilla 160-C, Concepcion, Chile.
EM agallenne@astro-udec.cl
FU FONDECYT [3130361]; BASAL Centro de Astrofisica y Tecnologias Afines
(CATA) [PFB-06/2007]; Polish National Science Center [MAESTRO
2012/06/A/ST9/00269]; Polish Ministry of Science grant Ideas Plus;
"Programme National de Physique Stellaire" (PNPS) of CNRS/INSU, France;
ECOS/Conicyt [C13U01]; PHASE; ONERA; Observatoire de Paris; CNRS;
University Denis Diderot Paris 7
FX A.G. acknowledges support from FONDECYT grant 3130361. W.G. an G.P.
gratefully acknowledge financial support for this work from the BASAL
Centro de Astrofisica y Tecnologias Afines (CATA) PFB-06/2007. Support
from the Polish National Science Center grant MAESTRO
2012/06/A/ST9/00269 and the Polish Ministry of Science grant Ideas Plus
(awarded to G.P.) is also acknowledged. We acknowledge financial support
from the "Programme National de Physique Stellaire" (PNPS) of CNRS/INSU,
France, and the ECOS/Conicyt grant C13U01. This research received the
support of PHASE, the high angular resolution partnership between ONERA,
the Observatoire de Paris, CNRS, and University Denis Diderot Paris 7.
This work made use of the SIMBAD and VizieR astrophysical database from
the CDS, Strasbourg, France and the bibliographic informations from the
NASA Astrophysics Data System. Data processing for this work has been
done using the Yorick language which is freely available at
http://yorick. sourceforgenet/
NR 63
TC 2
Z9 2
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR A60
DI 10.1051/0004-6361/201423872
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300125
ER
PT J
AU Jones, SC
Houde, M
Harwit, M
Kidger, M
Kraus, A
McCoey, C
Marston, A
Melnick, G
Menten, KM
Morris, P
Teyssier, D
Tolls, V
AF Jones, S. C.
Houde, M.
Harwit, M.
Kidger, M.
Kraus, A.
McCoey, C.
Marston, A.
Melnick, G.
Menten, K. M.
Morris, P.
Teyssier, D.
Tolls, V.
TI Polarisation observations of H2O J(K-1) K-1=5(32)-4(41) 620.701 GHz
maser emission with Herschel/HIFI in Orion KL
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE magnetic fields; masers; polarisation; ISM: magnetic fields
ID WATER MASER; RADIATION; HIFI
AB Context. The high intensities and narrow bandwidths exhibited by some astronomical masers make them ideal tools for studying star-forming giant molecular clouds. The water maser transition JK(-1)K(1) = 5(32)-4(41) at 620.701 GHz can only be observed from above Earth's strongly absorbing atmosphere; its emission has recently been detected from space.
Aims. We sought to further characterize the star-forming environment of Orion KL by investigating the linear polarisation of a source emitting a narrow 620.701 GHz maser feature with the heterodyne spectrometer HIFI on board the Herschel Space Observatory.
Methods. High-resolution spectral datasets were collected over a thirteen month period beginning in 2011 March, to establish not only the linear polarisation but also the temporal variability of the source.
Results. Within a 3 sigma uncertainty, no polarisation was detected to an upper limit of approximately 2%. These results are compared with coeval linear polarisation measurements of the 22.235 GHz J(K-1)K(1) = 6(16)-5(23) maser line from the Effelsberg 100-m radio telescope, typically a much stronger maser transition. Although strongly polarised emission is observed for one component of the 22.235 GHz maser at 7.2 km s(-1), a weaker component at the same velocity as the 620.701 GHz maser at 11.7 km s(-1) is much less polarised.
C1 [Jones, S. C.; Houde, M.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada.
[Houde, M.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Harwit, M.] Cornell Univ, Ctr Radiophys & Space Res, Washington, DC 20024 USA.
[Kidger, M.; Marston, A.; Teyssier, D.] European Space Agcy, ESAC, Herschel Sci Ctr, Madrid 28691, Spain.
[Kraus, A.; Menten, K. M.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.
[McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada.
[Melnick, G.; Tolls, V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA.
RP Jones, SC (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada.
EM sjone7@uwo.ca
FU NSERC; Canada Research Chair; Western's Academic Development Fund
programs; NASA of JPL [1393122, 1463766]
FX We thank D. Neufeld et al. (2013) for alerting us to the presence of the
621 GHz transition prior to publication. HIFI has been designed and
built by a consortium of institutes and university departments from
across Europe, Canada and the United States under the leadership of SRON
Netherlands Institute for Space Research, Groningen, The Netherlands and
with major contributions from Germany, France, and the US. Consortium
members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM;
Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI,
IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON,
TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN),
Centro de Astrobiologia (CSIC-INTA); Sweden: Chalmers University of
Technology - MC2, RSS & GARD, Onsala Space Observatory, Swedish National
Space Board, Stockholm University - Stockholm Observatory; Switzerland:
ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Partly based on observations
with the 100-m telescope of the MPIfR (Max-Planck-Institut fur
Radioastronomie) at Effelsberg. M.H.'s research is funded through the
NSERC Discovery Grant, Canada Research Chair, and Western's Academic
Development Fund programs. The work of M.O.H. has been supported by NASA
through awards of JPL subcontracts 1393122 and 1463766 to Cornell
University.
NR 16
TC 1
Z9 1
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR A31
DI 10.1051/0004-6361/201323267
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300055
ER
PT J
AU Kacharov, N
Bianchini, P
Koch, A
Frank, MJ
Martin, NF
van de Ven, G
Puzia, TH
McDonald, I
Johnson, CI
Zijlstra, AA
AF Kacharov, N.
Bianchini, P.
Koch, A.
Frank, M. J.
Martin, N. F.
van de Ven, G.
Puzia, T. H.
McDonald, I.
Johnson, C. I.
Zijlstra, A. A.
TI A study of rotating globular clusters The case of the old, metal-poor
globular cluster NGC 4372
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE globular clusters: general; globular clusters: individual: NGC 4372;
Galaxy: halo
ID HORIZONTAL-BRANCH STARS; STELLAR EVOLUTION DATABASE; AGE-METALLICITY
RELATION; COLOR-MAGNITUDE DIAGRAM; WIDE-FIELD IMAGER; DARK-MATTER HALOS;
MILKY-WAY; DYNAMICAL MODELS; HOMOGENEOUS PHOTOMETRY; POPULATION
SYNTHESIS
AB Context. NGC 4372 is a poorly studied old, very metal-poor globular cluster (GC) located in the inner Milky Way halo.
Aims. We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution.
Methods. We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. We build a velocity dispersion profile and a systemic rotation curve using this kinematic data set. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a Markov chain Monte Carlo fitting algorithm. From this, we derive the cluster's half-light radius and ellipticity as rh = 3.44' +/- 0.04' and is an element of = 0.08 +/- 0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model.
Results. Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km s(-1)) for its metallicity. This puts it in line, however, with two other exceptional, very metal-poor GCs: M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC M-dyn = 2.0 +/- 0.5 x 10(5) M-circle dot based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M-circle dot/L-circle dot, representative of an old, purely stellar population.
C1 [Kacharov, N.; Koch, A.; Frank, M. J.] Heidelberg Univ, Zentrum Astron, Landessternwarte, D-69117 Heidelberg, Germany.
[Bianchini, P.; Martin, N. F.; van de Ven, G.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Martin, N. F.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France.
[Puzia, T. H.] Pontificia Univ Catolica Chile, Inst Astrophys, Santiago, Chile.
[McDonald, I.; Zijlstra, A. A.] Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Johnson, C. I.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Kacharov, N (reprint author), Heidelberg Univ, Zentrum Astron, Landessternwarte, Konigstuhl 12, D-69117 Heidelberg, Germany.
EM n.kacharov@lsw.uni-heidelberg.de
OI Koch, Andreas/0000-0002-9859-4956
FU Deutsche Forschungsgemeinschaft [Ko 4161/1]; Clay Fellowship; FONDECYT
Regular Project [1121005]; BASAL Center for Astrophysics and Associated
Technologies [PFB-06]; German Research Foundation (DFG)
[Sonderforschungsbereich SFB 881]; National Aeronautics and Space
Administration; National Science Foundation
FX We thank Benjamin Hendricks for valuable discussions. N.K., A. K., and
M.J.F. acknowledge the Deutsche Forschungsgemeinschaft for funding
through Emmy-Noether grant Ko 4161/1. C.I.J. gratefully acknowledges
support through the Clay Fellowship administered by the Smithsonian
Astrophysical Observatory. T. H. P. acknowledges support in the form of
a FONDECYT Regular Project Grant (No. 1121005) and from BASAL Center for
Astrophysics and Associated Technologies (PFB-06). This work was in part
supported by Sonderforschungsbereich SFB 881 "The Milky Way System"
(subproject A4) of the German Research Foundation (DFG). This
publication makes use of data products from the Two Micron All Sky
Survey, which is a joint project of the University of Massachusetts and
the Infrared Processing and Analysis Center/California Institute of
Technology, funded by the National Aeronautics and Space Administration
and the National Science Foundation. This research used the facilities
of the Canadian Astronomy Data Centre operated by the National Research
Council of Canada with the support of the Canadian Space Agency. This
research has made use of NASA's Astrophysics Data System.
NR 102
TC 15
Z9 15
U1 1
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR A69
DI 10.1051/0004-6361/201423709
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300105
ER
PT J
AU Pillitteri, I
Wolk, SJ
Goodman, A
Sciortino, S
AF Pillitteri, Ignazio
Wolk, Scott J.
Goodman, Alyssa
Sciortino, Salvatore
TI Smooth X-ray variability from rho Ophiuchi A plus B A strongly
magnetized primary B2 star?
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE early-type; stars: activity; stars: magnetic field; stars: individual:
rho Ophiuchi; starspots
ID COUNTING DETECTOR IMAGES; DRIVEN STELLAR WINDS; THETA(1) ORIONIS-C;
CHANDRA SPECTROSCOPY; WAVELET TRANSFORMS; HOT STAR; EMISSION; CLUSTER;
CARINA; CLOUD
AB X-rays from massive stars are ubiquitous yet not clearly understood. In an XMM-Newton observation devoted to observing the first site of star formation in the p Ophiuchi dark cloud, we detect smoothly variable X-ray emission from the B2IV+B2V system of rho Ophiuchi. We tentatively assign the emission to the primary component. The light curve of the pn camera shows a first phase of low, almost steady rate, then a rise phase of duration of 10 ks, followed by a high rate phase. The variability is seen primarily in the band 1.0-8.0 keV while little variability is detected below 1 keV. The spectral analysis of the three phases reveals the presence of a hot component at 3.0 keV that adds up to two relatively cold components at 0.9 keV and 2.2 keV. We explain the smooth variability with the emergence of an extended active region on the surface of the primary star as being due to its fast rotation (upsilon sin i similar to 315 km s(-1)). We estimate that the region has a diameter in the range 0.5-0.6 R-*. The hard X-ray emission and its variability hint at a magnetic origin, as suggested for a few other late-O through early-B type stars. We also discuss an alternative explanation based on the emergence from occultation of a young (5-10 Myr) low mass companion that is bright and hot in X-rays.
C1 [Pillitteri, Ignazio; Sciortino, Salvatore] INAF Osservatorio Astron Palermo, I-90134 Palermo, Italy.
[Wolk, Scott J.; Goodman, Alyssa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Pillitteri, I (reprint author), INAF Osservatorio Astron Palermo, Piazza Parlamento 1, I-90134 Palermo, Italy.
EM pilli@astropa.inaf.it
RI Goodman, Alyssa/A-6007-2010; Pillitteri, Ignazio/L-1549-2016
OI Goodman, Alyssa/0000-0003-1312-0477; Pillitteri,
Ignazio/0000-0003-4948-6550
FU European Union; NASA [NAS8-03060]
FX I.P. acknowledges Dr. Mario Guarcello and Dr. Javier Lopez-Santiago for
the helpful discussions on the topics of this paper. I.P. acknowledges
financial support of the European Union under the project "Astronomy
Fellowships in Italy" (AstroFit). S.J.W. was supported by NASA contract
NAS8-03060.
NR 32
TC 4
Z9 4
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR L4
DI 10.1051/0004-6361/201424243
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300152
ER
PT J
AU Cort, LA
AF Cort, Louise Allison
TI WHO MADE CHIGUSA? A Tea-leaf Storage Jar's Owners Over Seven Centuries
SO ARTS OF ASIA
LA English
DT Article
C1 [Cort, Louise Allison] Freer Gallery Art, Ceram, Washington, DC 20560 USA.
[Cort, Louise Allison] Smithsonian Inst, Arthur M Sackler Gallery, Washington, DC 20560 USA.
RP Cort, LA (reprint author), Freer Gallery Art, Ceram, Washington, DC 20560 USA.
NR 7
TC 0
Z9 0
U1 1
U2 1
PU ARTS ASIA PUBLICATIONS LTD
PI KOWLOON
PA KOWLOON CENTER-SUITE 1309 29-39 ASHLEY RD, KOWLOON, HONG KONG
SN 0004-4083
J9 ART ASIA
JI Arts Asia
PD JUL-AUG
PY 2014
VL 44
IS 4
BP 73
EP 83
PG 11
WC Art; Asian Studies
SC Art; Asian Studies
GA AO8QA
UT WOS:000341618100006
ER
PT J
AU Barnacka, A
Moderski, R
Behera, B
Brun, P
Wagner, S
AF Barnacka, Anna
Moderski, Rafal
Behera, Bagmeet
Brun, Pierre
Wagner, Stefan
TI PKS 1510-089: a rare example of a flat spectrum radio quasar with a very
high-energy emission
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE galaxies: jets; galaxies: active; quasars: individual: PKS 1510-089
ID EXTRAGALACTIC BACKGROUND LIGHT; SPACE-TELESCOPE OBSERVATIONS; GAMMA-RAY
ABSORPTION; LARGE-AREA TELESCOPE; RELATIVISTIC JET; MULTIWAVELENGTH
OBSERVATIONS; RADIATION-FIELDS; 3C 279; BLAZARS; COMPTONIZATION
AB Context. The blazar PKS 1510-089 is an example of flat spectrum radio quasars. High-energy emissions from this class of objects are believed to have been produced by IC radiation with seed photons originating from the broad line region. In such a paradigm, a lack of very high-energy emissions is expected because of the Klein-Nishina effect and strong absorption in the broad line region. Recent detection of at least three such blazars by Cherenkov telescopes has forced a revision of our understanding of these objects.
Aims. We have aimed to model the observed spectral energy distribution of PKS 1510-089 from the high-energy flares in March 2009. during which very high-energy emission were also detected by H.E.S.S.
Methods. We have applied the single zone internal shock scenario to reproduce the multiwavelength spectrum of PKS 1510-089. We have followed the evolution of the electrons as they propagate along the jet and emit synchrotron and IC radiation. We have considered two sources of external photons: the dusty torus and the broad line region. We have also examined the effects of the gamma-gamma absorption of the high-energy photons both in the AGN environment (the broad line region and the dusty torus), as well as while traveling over cosmological distances: the extragalactic background light.
Results. We have successfully modeled the observed spectrum of PKS 1510-089. In our model, the highest energy emission is the result of the Comptonization of the infrared photons from the dusty torus, thus avoiding Klein-Nishina regime, while the bulk of the emissions in the GeV range may still be dominated by the Comptonization of radiation coming from the broad line region.
C1 [Barnacka, Anna; Moderski, Rafal] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland.
[Barnacka, Anna] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Brun, Pierre] Ctr Saclay, CEA Irfu, F-91191 Gif Sur Yvette, France.
[Behera, Bagmeet] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany.
[Wagner, Stefan] Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany.
RP Barnacka, A (reprint author), Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland.
EM abarnacka@cfa.harvard.edu
FU Polish Ministry of Science and Higher Education
[Dec-2011/01/N/ST9/06007]; French national Program for High Energy
Astrophysics PNHE; French ANR project CosmoTeV
FX We would like to thank the referee the valuable comments. We would like
to thank Jeff Grube for help with the Swift/XRT data analysis. This work
was supported by the Polish Ministry of Science and Higher Education
under Grants No. Dec-2011/01/N/ST9/06007. Part of this work was
supported by the French national Program for High Energy Astrophysics
PNHE, and the French ANR project CosmoTeV.
NR 52
TC 5
Z9 5
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR A113
DI 10.1051/0004-6361/201322205
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300014
ER
PT J
AU Miotello, A
Testi, L
Lodato, G
Ricci, L
Rosotti, G
Brooks, K
Maury, A
Natta, A
AF Miotello, A.
Testi, L.
Lodato, G.
Ricci, L.
Rosotti, G.
Brooks, K.
Maury, A.
Natta, A.
TI Grain growth in the envelopes and disks of Class I protostars
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE circumstellar matter; opacity; radiative transfer; protoplanetary disks;
stars: protostars; dust, extinction
ID YOUNG STELLAR OBJECTS; T-TAURI STARS; MAGNETIC BRAKING CATASTROPHE;
GRAVITATING ACCRETION DISCS; PROTOPLANETARY DISKS; CIRCUMSTELLAR DISKS;
SIZE DISTRIBUTION; MOLECULAR CLOUDS; PROTOSTELLAR CORES; OHMIC
DISSIPATION
AB We present new 3 mm ATCA data of two Class I young stellar objects (YSOs) in the Ophiucus star forming region: Elias29 and WL12. For our analysis we compare them with archival 1.1 mm SMA data. In the (u, v) plane the two sources present a similar behavior: a nearly constant non-zero emission at long baselines, which suggests the presence of an unresolved component and an increase of the fluxes at short baselines, related to the presence of an extended envelope. Our data analysis leads to unusually low values of the spectral index alpha(1.1-3) mm, which may indicate that mm-sized dust grains have already formed both in the envelopes and in the disk-like structures at such early stages. To explore the possible scenarios for the interpretation of the sources we perform a radiative transfer modeling using a Monte Carlo code, in order to take into account possible deviations from the Rayleigh-Jeans and optically thin regimes. Comparison between the model outputs and the observations indicates that dust grains may form aggregates up to millimeter size already in the inner regions of the envelopes of Class I YSOs. Moreover, we conclude that the embedded disk-like structures in our two Class I YSOs are probably very compact, in particular in the case of WL12, with outer radii down to tens of AU.
C1 [Miotello, A.; Testi, L.] European So Observ, D-85748 Garching, Germany.
[Miotello, A.; Lodato, G.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Testi, L.; Natta, A.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy.
[Testi, L.; Rosotti, G.] Excellence Cluster Universe, D-85748 Garching, Germany.
[Ricci, L.] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
[Rosotti, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Brooks, K.] Australia Telescope Natl Facil, Epping, NSW 1710, Australia.
[Maury, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Natta, A.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland.
RP Miotello, A (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany.
EM miotello@mpe.mpg.de
OI Brooks, Kate/0000-0001-9373-8992; Rosotti, Giovanni/0000-0003-4853-5736
FU ESO DGDF program; Italian Ministero dell'Istruzione, Universita e
Ricerca through the grant Progetti Premiali iALMA
FX The authors wish to thank ATNF&CSIRO staff for the support and the
hospitality, F. Trotta and F. Testi for their help during the observing
session. The authors also thank E. van Dishoeck and the referee, J.
Jorgensen, for insightful comments that significantly improved our work.
This work was partly supported by the ESO DGDF program and by the
Italian Ministero dell'Istruzione, Universita e Ricerca through the
grant Progetti Premiali 2012-iALMA.
NR 74
TC 21
Z9 21
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUL
PY 2014
VL 567
AR A32
DI 10.1051/0004-6361/201322945
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AO2VU
UT WOS:000341185300034
ER
PT J
AU Bret, A
Stockem, A
Narayan, R
Silva, LO
AF Bret, A.
Stockem, A.
Narayan, R.
Silva, L. O.
TI Collisionless Weibel shocks: Full formation mechanism and timing
SO PHYSICS OF PLASMAS
LA English
DT Article
ID ELECTRON-POSITRON PLASMAS; PARTICLE-ACCELERATION; ASTROPHYSICAL SHOCKS;
COSMIC-RAYS; INSTABILITY; WAVES; FILAMENTATION; GENERATION; DYNAMICS;
FRONTS
AB Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions. (C) 2014 AIP Publishing LLC.
C1 [Bret, A.] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain.
[Bret, A.] Inst Invest Energet & Aplicac Ind, Ciudad Real 13071, Spain.
[Stockem, A.; Silva, L. O.] Univ Lisbon, Inst Super Tecn, GoLP Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal.
[Stockem, A.] Ruhr Univ Bochum, Lehrstuhl Weltraum & Astrophys 4, Inst Theoret Phys, D-44780 Bochum, Germany.
[Narayan, R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Bret, A (reprint author), Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain.
RI Bret, Antoine/C-9112-2009
OI Bret, Antoine/0000-0003-2030-0046
FU European Research Council (ERC) [67841]; FCT (Portugal)
[PTDC/FIS/111720/2009, SFRH/BD/38952/2007]
FX This work was supported by the European Research Council (ERC-2010-AdG
Grant 267841) and FCT (Portugal) Grant Nos. PTDC/FIS/111720/2009 and
SFRH/BD/38952/2007. We acknowledge PRACE for providing access to
resource SuperMUC based in Germany at the Leibniz research center. The
authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS)
for providing computing time through the John von Neumann Institute for
Computing (NIC) on the GCS share of the supercomputer JUQUEEN at Julich
Supercomputing Centre (JSC). Thanks are due to Martin Lemoine, Laurent
Gremillet, and Charles Ruyer for enriching discussions.
NR 43
TC 22
Z9 23
U1 4
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUL
PY 2014
VL 21
IS 7
AR 072301
DI 10.1063/1.4886121
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA AO2LN
UT WOS:000341154100029
ER
PT J
AU Reynolds, SM
Uy, JAC
Patricelli, GL
Coleman, SW
Braun, MJ
Borgia, G
AF Reynolds, Sheila M.
Uy, J. Albert C.
Patricelli, Gail L.
Coleman, Seth W.
Braun, Michael J.
Borgia, Gerald
TI Tests of the kin selection model of mate choice and inbreeding avoidance
in satin bowerbirds
SO BEHAVIORAL ECOLOGY
LA English
DT Article
DE bowerbirds; inbreeding avoidance; kin selection; leks; mate choice;
outbreeding; relatedness; sexual selection
ID MAJOR HISTOCOMPATIBILITY COMPLEX; EXTRA-PAIR PATERNITY; LEK-BREEDING
BIRD; GENETIC SIMILARITY; PTILONORHYNCHUS-VIOLACEUS; CROCIDURA-RUSSULA;
BIASED DISPERSAL; SOCIAL MATES; COMPATIBILITY; PREFERENCE
AB In typically outbreeding species, females can avoid a reduction in offspring fitness by choosing unrelated sires. However, the kin selection model of mate choice suggests that it may be adaptive to mate with relatives to gain inclusive fitness benefits, especially in lekking species. Several studies have shown that females tend to mate with relatives, but the detailed behavioral data necessary to determine whether this reflects an active preference is difficult to acquire. We test the hypotheses that females actively preferred or avoided relatives in mate choice in satin bowerbirds (Ptilonorhynchus violaceus), a lekking species in which comprehensive observations of natural mate choice were obtained using automated video cameras positioned at bowers. We identified specific males that were sampled by individual females and assessed whether relatedness influenced their acceptance or rejection as mates. We found no consistent effect of relatedness on mate choice across years or among multiple stages of mate choice. In 2 of 6 years, females copulated with relatives at or above the half-sibling level significantly more often than expected, but this was attributed to females searching for mates in areas populated by relatives, and not to an active preference for relatives. Furthermore, we found no evidence for inbreeding avoidance through mate choice discrimination or sex-biased dispersal.
C1 [Reynolds, Sheila M.; Coleman, Seth W.; Braun, Michael J.; Borgia, Gerald] Univ Maryland, Behav Ecol Evolut & Systemat Program, College Pk, MD 20742 USA.
[Reynolds, Sheila M.; Braun, Michael J.] Smithsonian Inst, Dept Vertebrate Zool, Natl Museum Nat Hist, Suitland, MD 20746 USA.
[Uy, J. Albert C.; Patricelli, Gail L.; Braun, Michael J.; Borgia, Gerald] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
[Uy, J. Albert C.] Univ Miami, Dept Biol, Coral Gables, FL 33146 USA.
[Patricelli, Gail L.] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA.
RP Reynolds, SM (reprint author), Univ Maryland, Behav Ecol Evolut & Systemat Program, Biol Psychol Bldg, College Pk, MD 20742 USA.
EM sheila.reynolds@gmail.com
OI Uy, J. Albert C./0000-0002-8437-5525
FU National Science Foundation Animal Behavior Program [0518844];
Smithsonian Institution; University of Maryland
FX Funding was provided by the National Science Foundation Animal Behavior
Program (0518844) to G. B., the Smithsonian Institution to M. J. Braun,
and the University of Maryland, Anne G. Wylie Dissertation Fellowship to
S. M. Reynolds.
NR 64
TC 3
Z9 3
U1 10
U2 72
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 1045-2249
EI 1465-7279
J9 BEHAV ECOL
JI Behav. Ecol.
PD JUL-AUG
PY 2014
VL 25
IS 4
BP 1005
EP 1014
DI 10.1093/beheco/aru065
PG 10
WC Behavioral Sciences; Biology; Ecology; Zoology
SC Behavioral Sciences; Life Sciences & Biomedicine - Other Topics;
Environmental Sciences & Ecology; Zoology
GA AM7LH
UT WOS:000340048200044
ER
PT J
AU Herman, RDK
AF Herman, R. D. K.
TI A Shark Going Inland is My Chief: The Island Civilization of Ancient
Hawai'i
SO JOURNAL OF HISTORICAL GEOGRAPHY
LA English
DT Book Review
C1 [Herman, R. D. K.] Smithsonian Natl Museum Amer Indian, Washington, DC 20560 USA.
RP Herman, RDK (reprint author), Smithsonian Natl Museum Amer Indian, Washington, DC 20560 USA.
NR 1
TC 0
Z9 0
U1 1
U2 1
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0305-7488
J9 J HIST GEOGR
JI J. Hist. Geogr.
PD JUL
PY 2014
VL 45
BP 138
EP 139
DI 10.1016/j.jhg.2014.05.020
PG 2
WC Geography; History Of Social Sciences
SC Geography; Social Sciences - Other Topics
GA AO0FW
UT WOS:000340985500033
ER
PT J
AU Moser, WE
Bowerman, J
Hovingh, P
Pearl, CA
Oceguera-Figueroa, A
AF Moser, William E.
Bowerman, Jay
Hovingh, Peter
Pearl, Christopher A.
Oceguera-Figueroa, Alejandro
TI New Host and Distribution Records of the Leech Placobdella sophieae
Oceguera-Figueroa et al., 2010 (Hirudinida: Glossiphoniidae)
SO COMPARATIVE PARASITOLOGY
LA English
DT Article
DE Rhynchobdellida; Placobdella picta; Placobdella burresonae;
Desserobdella; Batracobdella; Taricha granulosa; Rana pretiosa; Rana
aurora; Bufo boreas; Anaxyrus boreas
ID REDESCRIPTION; VERRILL
AB Placobdella sophieae Oceguera-Figueroa et al., 2010 (Hirudinida: Glossiphoniidae) is reported from Oregon, California, and British Columbia for the first time. New hosts reported for P. sophieae include Taricha granulosa (rough-skinned newt), Rana pretiosa (Oregon spotted frog), and Anaxyrus boreas (western toad). Placobdella sophieae exhibits relatively low host specificity and all amphibians occurring in the Pacific Northwest are potential hosts.
C1 [Moser, William E.] Smithsonian Inst, Museum Support Ctr, Dept Invertebrate Zool, Natl Museum Nat Hist, Suitland, MD 20746 USA.
[Bowerman, Jay] Sunriver Nat Ctr, Sunriver, OR 97707 USA.
[Pearl, Christopher A.] US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Corvallis, OR 97331 USA.
[Oceguera-Figueroa, Alejandro] Univ Nacl Autonoma Mexico, Inst Biol, Lab Hehnintol, Mexico City 04510, DF, Mexico.
RP Moser, WE (reprint author), Smithsonian Inst, Museum Support Ctr, Dept Invertebrate Zool, Natl Museum Nat Hist, MRC 534,4210 Silver Hill Rd, Suitland, MD 20746 USA.
EM moserw@si.edu; frogs1@sunrivematurecenter.org; phovingh@xmission.com;
christopher_pearl@usgs.gov; aoceguera@ib.unam.mx
NR 17
TC 1
Z9 1
U1 1
U2 5
PU HELMINTHOLOGICAL SOC WASHINGTON
PI LAWRENCE
PA C/O ALLEN PRESS INC, 1041 NEW HAMPSHIRE ST, ACCT# 141866, LAWRENCE, KS
66044 USA
SN 1525-2647
EI 1938-2952
J9 COMP PARASITOL
JI Comp. Parasitol.
PD JUL
PY 2014
VL 81
IS 2
BP 199
EP 202
PG 4
WC Parasitology; Zoology
SC Parasitology; Zoology
GA AM9WC
UT WOS:000340230700010
ER
PT J
AU Rose, KC
Hamilton, DP
Williamson, CE
McBride, CG
Fischer, JM
Olson, MH
Saros, JE
Allan, MG
Cabrol, N
AF Rose, Kevin C.
Hamilton, David P.
Williamson, Craig E.
McBride, Chris G.
Fischer, Janet M.
Olson, Mark H.
Saros, Jasmine E.
Allan, Mathew G.
Cabrol, Nathalie
TI Light attenuation characteristics of glacially-fed lakes
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
ID DISSOLVED ORGANIC-CARBON; ULTRAVIOLET-RADIATION; ALPINE LAKES;
VERTICAL-DISTRIBUTION; ABSORPTION-SPECTRUM; MOUNTAIN LAKES; FRESH-WATER;
UV; ZOOPLANKTON; MELTWATER
AB Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U. S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400-700nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320nm) but not at longer UVR wavelengths (380nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.
C1 [Rose, Kevin C.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
[Hamilton, David P.; McBride, Chris G.; Allan, Mathew G.] Univ Waikato, Environm Res Inst, Hamilton, New Zealand.
[Williamson, Craig E.] Miami Univ, Dept Biol, Oxford, OH 45056 USA.
[Fischer, Janet M.; Olson, Mark H.] Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA.
[Saros, Jasmine E.] Univ Maine, Climate Change Inst, Orono, ME USA.
[Saros, Jasmine E.] Univ Maine, Sch Biol & Ecol, Orono, ME USA.
[Cabrol, Nathalie] NASA, Ames Res Ctr, SETI Inst Carl Sagan Ctr, Mountain View, CA USA.
RP Rose, KC (reprint author), Smithsonian Environm Res Ctr, POB 28, Edgewater, MD 21037 USA.
EM kev.c.rose@gmail.com
FU National Science Foundation (NSF) Division of Graduate Education (DGE)
Integrative Graduate Education Research and Traineeship (IGERT) grant
[0903560]; Smithsonian Institution; Franklin and Marshall College;
Andrew W. Mellon Foundation through Central Pennsylvania Consortium;
Ministry of Business, Employment and Innovation [UOWX0505]; NASA
Planetary Lake Lander project [10-ASTEP10-0011]
FX K.C.R. and C. E. W. received support from the National Science
Foundation (NSF) Division of Graduate Education (DGE) Integrative
Graduate Education Research and Traineeship (IGERT) grant 0903560. K. C.
R. also received support from the Smithsonian Institution as a
Smithsonian Postdoctoral Fellow. J.M.F. and M.H.O. received funding from
Franklin and Marshall College and the Andrew W. Mellon Foundation
through its grant in support of faculty development within the Central
Pennsylvania Consortium. We acknowledge support for the New Zealand
component of the study through the Ministry of Business, Employment and
Innovation (contract UOWX0505). We thank the Parks Canada Agency for
their permission to conduct our research in the national mountain parks
of Canada (YNP-2008-1585). Field work on South American lakes (Negra and
Lo Encanado) was supported by the NASA Planetary Lake Lander project
(grant 10-ASTEP10-0011) and the SETI Institute. We thank Megan Rose,
Jeremy Mack, Lucia Acosta, and Erin Overholt for assistance with field
work and lab analyses. There are no supporting data for this manuscript.
NR 47
TC 4
Z9 4
U1 4
U2 43
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-8953
EI 2169-8961
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD JUL
PY 2014
VL 119
IS 7
BP 1446
EP 1457
DI 10.1002/2014JG002674
PG 12
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA AN4FM
UT WOS:000340543000013
ER
PT J
AU Rojas-Sandoval, J
Melendez-Ackerman, EJ
Fumero-Caban, J
Garcia-Bermudez, MA
Sustache, J
Aragon, S
Morales, M
Fernandez, DS
AF Rojas-Sandoval, Julissa
Melendez-Ackerman, Elvia J.
Fumero-Caban, Jose
Garcia-Bermudez, Miguel A.
Sustache, Jose
Aragon, Susan
Morales, Mariely
Fernandez, Denny S.
TI Effects of hurricane disturbance and feral goat herbivory on the
structure of a Caribbean dry forest
SO JOURNAL OF VEGETATION SCIENCE
LA English
DT Article
DE Coppicing; Forest structure; Goat herbivory; Hurricane Georges;
Successional status; Tree mortality
ID PUERTO-RICO; TROPICAL FOREST; WEST-INDIES; ECOSYSTEMS; VEGETATION;
UNGULATE; WINDS; MORTALITY; GILBERT; DAMAGE
AB Question: Hurricanes are a major factor influencing forest structure and have been linked to higher incidences of multiple-stemmed trees in Caribbean dry forests relative to the continent. In Sept 1998, category 3 Hurricane Georges passed over Mona Island. This island, unlike others in the Caribbean, has had feral goats for five centuries. In this study we addressed the following questions: (i) what are the short-term (4 mo) and long-term (10 yr) responses of Mona Island's dry forests to hurricane disturbance in terms of forest structure and tree mortality; and (ii) is there any effect of goat exclusion on the recovery process and forest structure after the hurricane?
Location: Dry forest of Mona Island, Puerto Rico.
Methods: Permanent fenced and unfenced plots established in 1997 and monitored annually until 2008 were used to evaluate the interplay between goat herbivory and hurricane effects on structural dynamics of the tree community. Within these plots, vegetation data collected include species identity, DBH, successional status and hurricane-related tree mortality.
Results: We found that vegetation responses to hurricane disturbances may have been influenced by the presence of feral goats through at least two mechanisms. First, goats may have led to changes in forest structure and composition that feed back into the recovery dynamics that follow hurricane events. Second, goat herbivory limits the production of multiple stems, a trait that could be an adaptive response in hurricane-prone areas. Feral goats may lead to alternate successional pathways by keeping this dry forest at early-successional stages much longer than expected, and shifting vegetation communities to an alternate state where smaller, shrubbier and perhaps less palatable species dominate.
Conclusions: Differences in structure between Mona Island's dry forest and other tropical dry forests are related to changes in species composition that may have been triggered by introduced goats. Our results highlight the potential complexities that may arise when setting management goals within the context of novel ecosystems. Ultimately, implementation of management goals requires knowing what changes are linked to the ecological integrity of the ecosystem and what cultural values are placed on the current state of the tree community vs its historical condition.
C1 [Rojas-Sandoval, Julissa] Smithsonian Inst, Dept Bot, Natl Museum Nat Hist, Washington, DC 20013 USA.
[Melendez-Ackerman, Elvia J.] Univ Puerto Rico, Dept Environm Sci, Coll Nat Sci, San Juan, PR 00931 USA.
[Fumero-Caban, Jose] Univ Puerto Rico, Dept Biol, San Juan, PR 00931 USA.
[Garcia-Bermudez, Miguel A.; Sustache, Jose] Commonwealth Puerto Rico, Dept Nat & Environm Resources, San Juan, PR 00936 USA.
[Morales, Mariely; Fernandez, Denny S.] Univ Puerto Rico Humacao, Dept Biol, Humacao, PR 00792 USA.
[Morales, Mariely; Fernandez, Denny S.] Univ Puerto Rico, Ctr Appl Trop Ecol & Conservat, San Juan, PR 00936 USA.
[Aragon, Susan] Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA.
RP Rojas-Sandoval, J (reprint author), Smithsonian Inst, Dept Bot, Natl Museum Nat Hist, MRC 166,POB 37012, Washington, DC 20013 USA.
EM julirs07@gmail.com; elmelend@gmail.com; josejfumero@yahoo.com;
miguelag@onelinkpr.net; jsustache@drna.gobierno.pr;
saragongeo@yahoo.com; mariely.morales@gmail.com; dsfernandez@gmail.com
FU NSF-CREST through the Center for Applied Tropical Ecology and
Conservation at the University of Puerto Rico [HRD-0206200, HRD 0734826]
FX The authors thank Ariel E. Lugo, James D. Ackerman and two anonymous
reviewers for helpful comments that significantly improved this
manuscript. This study was funded by NSF-CREST (HRD-0206200 and HRD
0734826) through the Center for Applied Tropical Ecology and
Conservation at the University of Puerto Rico.
NR 48
TC 2
Z9 2
U1 2
U2 17
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1100-9233
EI 1654-1103
J9 J VEG SCI
JI J. Veg. Sci.
PD JUL
PY 2014
VL 25
IS 4
BP 1069
EP 1077
DI 10.1111/jvs.12160
PG 9
WC Plant Sciences; Ecology; Forestry
SC Plant Sciences; Environmental Sciences & Ecology; Forestry
GA AN4QF
UT WOS:000340572000017
ER
PT J
AU Inoue, M
Algaba-Marcos, JC
Asada, K
Blundell, R
Brisken, W
Burgos, R
Chang, CC
Chen, MT
Doeleman, SS
Fish, V
Grimes, P
Han, J
Hirashita, H
Ho, PTP
Hsieh, SN
Huang, T
Jiang, H
Keto, E
Koch, PM
Kubo, DY
Kuo, CY
Liu, B
Martin-Cocher, P
Matsushita, S
Meyer-Zhao, Z
Nakamura, M
Napier, P
Nishioka, H
Nystrom, G
Paine, S
Patel, N
Pradel, N
Pu, HY
Raffin, PA
Shen, HY
Snow, W
Srinivasan, R
Wei, TS
AF Inoue, M.
Algaba-Marcos, J. C.
Asada, K.
Blundell, R.
Brisken, W.
Burgos, R.
Chang, C-C.
Chen, M-T.
Doeleman, S. S.
Fish, V.
Grimes, P.
Han, J.
Hirashita, H.
Ho, P. T. P.
Hsieh, S-N.
Huang, T.
Jiang, H.
Keto, E.
Koch, P. M.
Kubo, D. Y.
Kuo, C-Y.
Liu, B.
Martin-Cocher, P.
Matsushita, S.
Meyer-Zhao, Z.
Nakamura, M.
Napier, P.
Nishioka, H.
Nystrom, G.
Paine, S.
Patel, N.
Pradel, N.
Pu, H-Y.
Raffin, P. A.
Shen, H-Y.
Snow, W.
Srinivasan, R.
Wei, T-S.
TI Greenland telescope project: Direct confirmation of black hole with
sub-millimeter VLBI
SO RADIO SCIENCE
LA English
DT Article
ID GALACTIC-CENTER; M87; JET
AB A 12 m diameter radio telescope will be deployed to the Summit Station in Greenland to provide direct confirmation of a Super Massive Black Hole (SMBH) by observing its shadow image in the active galaxy M87. The telescope (Greenland Telescope: GLT) is to become one of the Very Long Baseline Interferometry (VLBI) stations at sub-millimeter (submm) regime, providing the longest baseline >9000 km to achieve an exceptional angular resolution of 20 mu as at 350 GHz, which will enable us to resolve the shadow size of similar to 40 mu as. The triangle with the longest baselines formed by the GLT, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the Submillimeter Array (SMA) in Hawaii will play a key role for the M87 observations. We have been working on the image simulations based on realistic conditions for a better understanding of the possible observed images. In parallel, retrofitting of the telescope and the site developments are in progress. Based on 3 years of opacity monitoring at 225 GHz, our measurements indicate that the site is excellent for submm observations, comparable to the ALMA site. The GLT is also expected to make single-dish observations up to 1.5 THz.
C1 [Inoue, M.; Algaba-Marcos, J. C.; Asada, K.; Chang, C-C.; Chen, M-T.; Han, J.; Hirashita, H.; Ho, P. T. P.; Hsieh, S-N.; Huang, T.; Jiang, H.; Koch, P. M.; Kubo, D. Y.; Kuo, C-Y.; Liu, B.; Martin-Cocher, P.; Matsushita, S.; Meyer-Zhao, Z.; Nakamura, M.; Nishioka, H.; Nystrom, G.; Pradel, N.; Pu, H-Y.; Raffin, P. A.; Shen, H-Y.; Snow, W.; Srinivasan, R.; Wei, T-S.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Blundell, R.; Burgos, R.; Grimes, P.; Keto, E.; Napier, P.; Paine, S.; Patel, N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Brisken, W.] Natl Radio Astron Observ, Array Operat Ctr, Socorro, NM 87801 USA.
[Doeleman, S. S.; Fish, V.] MIT, Haystack Observ, Westford, MA 01886 USA.
RP Inoue, M (reprint author), Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
EM inoue@asiaa.sinica.edu.tw
OI Paine, Scott/0000-0003-4622-5857
NR 20
TC 11
Z9 11
U1 1
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0048-6604
EI 1944-799X
J9 RADIO SCI
JI Radio Sci.
PD JUL
PY 2014
VL 49
IS 7
BP 564
EP 571
DI 10.1002/2014RS005450
PG 8
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences; Remote Sensing; Telecommunications
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences; Remote Sensing; Telecommunications
GA AN2OV
UT WOS:000340426100009
ER
PT J
AU Moini, M
O'Halloran, A
Peters, AM
France, CAM
Vicenzi, EP
DeWitt, TG
Langan, E
Walsh, T
Speakman, RJ
AF Moini, Mehdi
O'Halloran, Aoife
Peters, Alan M.
France, Christine A. M.
Vicenzi, Edward P.
DeWitt, Tamsen G.
Langan, Esther
Walsh, Tim
Speakman, Robert J.
TI Understanding Irregular Shell Formation of Nautilus in Aquaria: Chemical
Composition and Structural Analysis
SO ZOO BIOLOGY
LA English
DT Article
DE cephalopods; shell formation; black line; isotopic abundances; Mollusca
ID ISOTOPE FRACTIONATION; CHAMBER FORMATION; STABLE ISOTOPES; CARBON;
POMPILIUS; OXYGEN; MACROMPHALUS; TEMPERATURE; ANIMALS; GROWTH
AB Irregular shell formation and black lines on the outside of live chambered nautilus shells have been observed in all adult specimens at aquariums and zoos soon after the organisms enter aquaria. Black lines have also been observed in wild animals at sites of broken shell, but continued growth from that point returns to a normal, smooth structure. In contrast, rough irregular deposition of shell continues throughout residence in aquaria. The composition and reasons for deposition of the black material and mitigation of this irregular shell formation is the subject of the current study. A variety of analytical techniques were used, including stable isotope mass spectrometry (SI-MS), inductively coupled plasma mass spectrometry (ICP-MS), micro x-ray fluorescence (mXRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) based X-ray microanalysis. Results indicate that the black material contains excess amounts of copper, zinc, and bromine which are unrelated to the Nautilus diet. The combination of these elements and proteins plays an important role in shell formation, growth, and strengthening. Further study will be needed to compare the proteomics of the shell under aquaria versus natural wild environments. The question remains as to whether the occurrence of the black lines indicates normal healing followed by growth irregularities that are caused by stress from chemical or environmental conditions. In this paper we begin to address this question by examining elemental and isotopic differences of Nautilus diet and salt water. The atomic composition and light stable isotopic ratios of the Nautilus shell formed in aquaria verses wild conditions are presented. (C) 2014 Wiley Periodicals, Inc.
C1 [Moini, Mehdi] George Washington Univ, Dept Forens Sci, Washington, DC 20052 USA.
[O'Halloran, Aoife; France, Christine A. M.; Vicenzi, Edward P.] Smithsonian Inst, Museum Conservat Inst, Suitland, MD USA.
[Peters, Alan M.; DeWitt, Tamsen G.; Langan, Esther; Walsh, Tim] Smithsonian Inst, Natl Zoo Anim Care Sci, Washington, DC 20560 USA.
[Speakman, Robert J.] Univ Georgia, Ctr Appl Isotope Studies, Athens, GA 30602 USA.
RP Peters, AM (reprint author), Natl Zool Pk, 3001 Connecticut Ave NW, Washington, DC 20008 USA.
EM petersam@si.edu
OI Speakman, Robert/0000-0003-2063-154X
NR 40
TC 1
Z9 1
U1 3
U2 29
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0733-3188
EI 1098-2361
J9 ZOO BIOL
JI Zoo Biol.
PD JUL-AUG
PY 2014
VL 33
IS 4
BP 285
EP 294
DI 10.1002/zoo.21132
PG 10
WC Veterinary Sciences; Zoology
SC Veterinary Sciences; Zoology
GA AN3VX
UT WOS:000340517900005
PM 24797217
ER
PT J
AU Petzinger, C
Oftedal, OT
Jacobsen, K
Murtough, KL
Irlbeck, NA
Power, ML
AF Petzinger, Christina
Oftedal, Olav T.
Jacobsen, Krista
Murtough, Katie L.
Irlbeck, Nancy A.
Power, Michael L.
TI Proximate Composition of Milk of the Bongo (Tragelaphus eurycerus) in
Comparison to Other African Bovids and to Hand-Rearing Formulas
SO ZOO BIOLOGY
LA English
DT Article
DE lactation; Bovidae; calf; hand-rearing; protein; energy
ID DZANGA NATIONAL-PARK; RAIN-FOREST; LACTATION; ANTELOPE; MAMMALS; YIELD;
STAGE
AB African bovids represent a highly diverse group with divergent neonatal care strategies. The extent to which their milks reflect this diversity is poorly understood. We analyzed milk of the bongo (Tragelaphus eurycerus) to compare its composition to milks of other African bovids and to evaluate bongo milk replacement formulas. Milk samples from three individuals (0 through 300 days postpartum, n = 28) were assayed for dry matter (total solids), crude fat, crude protein, total sugar, ash, calcium, and phosphorus; gross energy was assayed on a subset of samples and compared to calculated values. Nutrient composition changed very little over the lactation period except for day 0 (colostrum) and the last sample (day 300). Bongo milk (days 6-286) contained (mean +/- SEM): 28.1 +/- 0.7% dry matter (71.9 +/- 0.7% water), 12.3 +/- 0.6% fat, 10.6 +/- 0.3% crude protein, 3.6 +/- 0.1% sugar, 1.05 +/- 0.03% ash, 0.26 +/- 0.01% calcium, 0.16 +/- 0.01% phosphorus, and a GE of 1.88 +/- 0.06 kcal/g. The protein content of bongo milk accounts for 33% of energy. High protein energy appears to be typical of Tragelaphines and of African bovids that utilize a "hider" system of postnatal care. The stability of milk composition until day 300 suggests complete weaning may not occur until 9 months rather than at 6 months of age, as commonly assumed. None of the milk replacement formulas previously used for bongos was well matched to bongo milk composition; therefore, a new milk replacement formula is proposed. (C) 2014 Wiley Periodicals, Inc.
C1 [Petzinger, Christina; Murtough, Katie L.; Power, Michael L.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Nutr Lab, Washington, DC 20013 USA.
[Petzinger, Christina; Murtough, Katie L.; Power, Michael L.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Conservat Ecol Ctr, Washington, DC 20013 USA.
[Oftedal, Olav T.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
[Jacobsen, Krista] Univ Calif Davis, Davis, CA 95616 USA.
[Irlbeck, Nancy A.] Colorado State Univ, Ft Collins, CO 80523 USA.
RP Power, ML (reprint author), Natl Zool Pk, Smithsonian Conservat Biol Inst, POB 37012,MRC 5503, Washington, DC 20013 USA.
EM powerm@si.edu
OI Power, Michael/0000-0002-6120-3528
NR 51
TC 3
Z9 3
U1 2
U2 10
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0733-3188
EI 1098-2361
J9 ZOO BIOL
JI Zoo Biol.
PD JUL-AUG
PY 2014
VL 33
IS 4
BP 305
EP 313
DI 10.1002/zoo.21139
PG 9
WC Veterinary Sciences; Zoology
SC Veterinary Sciences; Zoology
GA AN3VX
UT WOS:000340517900007
PM 24978056
ER
PT J
AU Swanson, DA
Rose, TR
Mucek, AE
Garcia, MO
Fiske, RS
Mastin, LG
AF Swanson, Donald A.
Rose, Timothy R.
Mucek, Adonara E.
Garcia, Michael O.
Fiske, Richard S.
Mastin, Larry G.
TI Cycles of explosive and effusive eruptions at Kilauea Volcano, Hawai'i
SO GEOLOGY
LA English
DT Article
ID MAGMA RESERVOIR; KEANAKAKOI ASH; PUNA RIDGE; MAUNA-LOA; SUMMIT; AD;
GROUNDWATER; CALIBRATION; CALDERA; VIOLENT
AB The subaerial eruptive activity at Kilauea Volcano (Hawaii) for the past 2500 yr can be divided into 3 dominantly effusive and 2 dominantly explosive periods, each lasting several centuries. The prevailing style of eruption for 60% of this time was explosive, manifested by repeated phreatic and phreatomagmatic activity in a deep summit caldera. During dominantly explosive periods, the magma supply rate to the shallow storage volume beneath the summit dropped to only a few percent of that during mainly effusive periods. The frequency and duration of explosive activity are contrary to the popular impression that Kilauea is almost unceasingly effusive. Explosive activity apparently correlates with the presence of a caldera intersecting the water table. The decrease in magma supply rate may result in caldera collapse, because erupted or intruded magma is not replaced. Glasses with unusually high MgO, TiO2, and K2O compositions occur only in explosive tephra (and one related lava flow) and are consistent with disruption of the shallow reservoir complex during caldera formation. Kilauea is a complex, modulated system in which melting rate, supply rate, conduit stability (in both mantle and crust), reservoir geometry, water table, and many other factors interact with one another. The hazards associated with explosive activity at Kilauea's summit would have major impact on local society if a future dominantly explosive period were to last several centuries. The association of lowered magma supply, caldera formation, and explosive activity might characterize other basaltic volcanoes, but has not been recognized.
C1 [Swanson, Donald A.] US Geol Survey, Hawaiian Volcano Observ, Hawaii Natl Pk, HI 96718 USA.
[Rose, Timothy R.; Fiske, Richard S.] Smithsonian Inst, Museum Nat Hist, Dept Mineral Sci, Washington, DC 20013 USA.
[Mucek, Adonara E.; Garcia, Michael O.] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Dept Geol & Geophys, Honolulu, HI 96822 USA.
[Mastin, Larry G.] US Geol Survey, Cascades Volcano Observ, Vancouver, WA 98683 USA.
RP Swanson, DA (reprint author), US Geol Survey, Hawaiian Volcano Observ, Hawaii Natl Pk, Hawaii Natl Pk, HI 96718 USA.
FU National Science Foundation [EAR-1118741]
FX We thank Dave Clague, Dan Dzurisin, Shaul Hurwitz, and Pete Lipman for
insightful manuscript reviews. Tom Wright's comments on a preliminary
version were provocative. Dave Sherrod supplied three unpublished
14C ages. Discussions with Frank Trusdell were valuable.
Robin Holcomb proposed eruptive cycles that differ from ours but
stimulated our thinking. Garcia and Mucek were supported by National
Science Foundation grant EAR-1118741. This paper is School of Ocean and
Earth Science and Technology (SOEST) contribution 9115.
NR 35
TC 9
Z9 9
U1 0
U2 17
PU GEOLOGICAL SOC AMER, INC
PI BOULDER
PA PO BOX 9140, BOULDER, CO 80301-9140 USA
SN 0091-7613
EI 1943-2682
J9 GEOLOGY
JI Geology
PD JUL
PY 2014
VL 42
IS 7
BP 631
EP 634
DI 10.1130/G35701.1
PG 4
WC Geology
SC Geology
GA AM6GJ
UT WOS:000339961400022
ER
PT J
AU Tavares, M
Lemaitre, R
AF Tavares, Marcos
Lemaitre, Rafael
TI NEW MORPHOLOGICAL AND DISTRIBUTIONAL INFORMATION ON HOMOLODROMIIDAE AND
HOMOLIDAE (DECAPODA: BRACHYURA) FROM THE AMERICAS, WITH DESCRIPTION OF A
NEW SPECIES AND COMMENTS ON WESTERN PACIFIC SPECIES
SO JOURNAL OF CRUSTACEAN BIOLOGY
LA English
DT Article
DE Decapoda; Dicranodromia galapagensis n. sp.; eastern Pacific; Homolidae;
Homolodromiidae; homoloidian and eubrachyuran locking-system; Lamoha
williamsi; western Atlantic; western Pacific
ID FAMILY HOMOLODROMIIDAE; CRUSTACEA DECAPODA; CRABS DECAPODA; ATLANTIC;
EVOLUTION; EDWARDS,A.MILNE; REDESCRIPTION; PHILIPPINES; SPECIMENS;
ZONATION
AB Seventeen crab species of Homolodromiidae and Homolidae, in seven genera, are recognized in the Atlantic and Pacific coasts of the Americas. The genus Dicranodromia A. Milne-Edwards, 1880, is recorded for the first time from the eastern Pacific with a new species described from the Galapagos Islands. Nine species, five Homolodromiidae and four Homolidae, are taxonomically evaluated and circumscribed based on morphological information, their geographic and bathymetric distribution clarified and updated, and the similarities and differences of each with other members of the families discussed. Photographs, SEM photomicrographs and line drawings for selected species, including notes on habitat, nomenclature, and distinguishing features, are provided. Biramous uropods and complete pleopod formula in males are discovered to occur in juveniles of Homo la minima Guinot and Richer de Forges, 1995, providing evidence that homoloidian and eubrachyuran pleonal locking-system (homoloidian and the eubrachyuran sockets) are not homologous. A checklist of all homolodromiid and homolid species known from both ocean sides of the Americas, with their bathymetric ranges, is presented. The diagnostic characters of one western Pacific species, Lamoha williamsi (Takeda, 1980), are reevaluated.
C1 [Tavares, Marcos] Univ Sao Paulo, Museu Zool, BR-04263000 Sao Paulo, Brazil.
[Lemaitre, Rafael] Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, Suitland, MD 20746 USA.
RP Lemaitre, R (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, 4210 Silver Hill Rd, Suitland, MD 20746 USA.
EM lemaitrr@si.edu
RI Museu de Zoologia da USP, MZ-USP/Q-2192-2016
FU CNPq [301806/2010-1]; Petrobras [4600224970]
FX We are sincerely grateful to Adam Baldinger (MCZ), Carole Baldwin (USNM)
and Fabrizio Scarabino (Direccion Nacional de Recursos Acuaticos,
DINARA) for making the type material of Homolodromia paradoxa and the
material of Dicranodromia from the Galapagos Islands and Homola minima
from Uruguay, respectively, available for study. Many thanks to Rose
Gulledge, who prepared all the plates and SEM photomicrographs, and to
William Santana who prepared the digitized version of Fig. 8B and 8C.
Thanks also to Karen Reed (USNM) and Joana d'Arc (MZUSP) for their kind
assistance throughout the execution of this work. MT acknowledges grants
CNPq (301806/2010-1) and Petrobras (4600224970) for supporting studies
on the systematics of decapod crustaceans.
NR 67
TC 1
Z9 1
U1 1
U2 3
PU CRUSTACEAN SOC
PI SAN ANTONIO
PA 840 EAST MULBERRY, SAN ANTONIO, TX 78212 USA
SN 0278-0372
EI 1937-240X
J9 J CRUSTACEAN BIOL
JI J. Crustac. Biol.
PD JUL
PY 2014
VL 34
IS 4
BP 504
EP 524
DI 10.1163/1937240X-00002243
PG 21
WC Marine & Freshwater Biology
SC Marine & Freshwater Biology
GA AM2RF
UT WOS:000339697800011
ER
PT J
AU Winter, K
Holtum, JAM
AF Winter, Klaus
Holtum, Joseph A. M.
TI Facultative crassulacean acid metabolism (CAM) plants: powerful tools
for unravelling the functional elements of CAM photosynthesis
SO JOURNAL OF EXPERIMENTAL BOTANY
LA English
DT Review
DE C4/CAM; Calandrinia; Clusia; constitutive CAM; crassulacean acid
metabolism; inducible CAM; Isoetes; Mesembryanthemum; Portulaca; Talinum
ID MESEMBRYANTHEMUM-CRYSTALLINUM L; COMMON ICE PLANT; PORTULACA-OLERACEA L;
C-4 SUCCULENT PLANT; CLUSIA-MINOR L; CARBON-ISOTOPE DISCRIMINATION;
SUBMERGED AQUATIC PLANTS; UNIFLORA L ASCHERS; SEDUM-ACRE-L;
PHOSPHOENOLPYRUVATE CARBOXYLASE
AB Facultative crassulacean acid metabolism (CAM) describes the optional use of CAM photosynthesis, typically under conditions of drought stress, in plants that otherwise employ C-3 or C-4 photosynthesis. In its cleanest form, the upregulation of CAM is fully reversible upon removal of stress. Reversibility distinguishes facultative CAM from ontogenetically programmed unidirectional C-3-to-CAM shifts inherent in constitutive CAM plants. Using mainly measurements of 24 h CO2 exchange, defining features of facultative CAM are highlighted in five terrestrial species, Clusia pratensis, Calandrinia polyandra, Mesembryanthemum crystallinum, Portulaca oleracea and Talinum triangulare. For these, we provide detailed chronologies of the shifts between photosynthetic modes and comment on their usefulness as experimental systems. Photosynthetic flexibility is also reviewed in an aquatic CAM plant, Isoetes howellii. Through comparisons of C-3 and CAM states in facultative CAM species, many fundamental biochemical principles of the CAM pathway have been uncovered. Facultative CAM species will be of even greater relevance now that new sequencing technologies facilitate the mapping of genomes and tracking of the expression patterns of multiple genes. These technologies and facultative CAM systems, when joined, are expected to contribute in a major way towards our goal of understanding the essence of CAM.
C1 [Winter, Klaus; Holtum, Joseph A. M.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
[Holtum, Joseph A. M.] James Cook Univ, Sch Marine & Trop Biol, Townsville, Qld, Australia.
RP Winter, K (reprint author), Smithsonian Trop Res Inst, POB 08403-03092, Balboa, Ancon, Panama.
EM winterk@si.edu
RI Research ID, CTBCC /O-3564-2014
FU Smithsonian Tropical Research Institute; School of Marine and Tropical
Biology, James Cook University
FX This research was funded by the Smithsonian Tropical Research Institute.
JAMH was supported by the School of Marine and Tropical Biology, James
Cook University. We gratefully acknowledge the assistance of A. Virgo in
preparing the figures.
NR 163
TC 30
Z9 30
U1 15
U2 119
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0022-0957
EI 1460-2431
J9 J EXP BOT
JI J. Exp. Bot.
PD JUL
PY 2014
VL 65
IS 13
SI SI
BP 3425
EP 3441
DI 10.1093/jxb/eru063
PG 17
WC Plant Sciences
SC Plant Sciences
GA AM6DU
UT WOS:000339953400010
PM 24642847
ER
PT J
AU Silvera, K
Winter, K
Rodriguez, BL
Albion, RL
Cushman, JC
AF Silvera, Katia
Winter, Klaus
Rodriguez, B. Leticia
Albion, Rebecca L.
Cushman, John C.
TI Multiple isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae
(subtribe Oncidiinae): implications for the evolution of crassulacean
acid metabolism
SO JOURNAL OF EXPERIMENTAL BOTANY
LA English
DT Article
DE Crassulacean acid metabolism; gene duplication; Orchidaceae; Oncidiinae;
phosphoenolpyruvate carboxylase; photosynthesis
ID LATERAL GENE-TRANSFER; C-4 PHOTOSYNTHESIS;
MESEMBRYANTHEMUM-CRYSTALLINUM; PHENOTYPIC PLASTICITY;
MAXIMUM-LIKELIHOOD; MOLECULAR-GENETICS; VASCULAR EPIPHYTES; CAM PLANTS;
ADAPTATION; EXPRESSION
AB Phosphoenolpyruvate carboxylase (PEPC) catalyses the initial fixation of atmospheric CO2 into oxaloacetate and subsequently malate. Nocturnal accumulation of malic acid within the vacuole of photosynthetic cells is a typical feature of plants that perform crassulacean acid metabolism (CAM). PEPC is a ubiquitous plant enzyme encoded by a small gene family, and each member encodes an isoform with specialized function. CAM-specific PEPC isoforms probably evolved from ancestral non-photosynthetic isoforms by gene duplication events and subsequent acquisition of transcriptional control elements that mediate increased leaf-specific or photosynthetic-tissue-specific mRNA expression. To understand the patterns of functional diversification related to the expression of CAM, ppc gene families and photosynthetic patterns were characterized in 11 closely related orchid species from the subtribe Oncidiinae with a range of photosynthetic pathways from C-3 photosynthesis (Oncidium cheirophorum, Oncidium maduroi, Rossioglossum krameri, and Oncidium sotoanum) to weak CAM (Oncidium panamense, Oncidium sphacelatum, Gomesa flexuosa and Rossioglossum insleayi) and strong CAM (Rossioglossum ampliatum, Trichocentrum nanum, and Trichocentrum carthagenense). Phylogenetic analysis revealed the existence of two main ppc lineages in flowering plants, two main ppc lineages within the eudicots, and three ppc lineages within the Orchidaceae. Our results indicate that ppc gene family expansion within the Orchidaceae is likely to be the result of gene duplication events followed by adaptive sequence divergence. CAM-associated PEPC isoforms in the Orchidaceae probably evolved from several independent origins.
C1 [Silvera, Katia; Winter, Klaus] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
[Silvera, Katia; Rodriguez, B. Leticia; Albion, Rebecca L.; Cushman, John C.] Univ Nevada, Dept Biochem & Mol Biol, Reno, NV 89557 USA.
RP Silvera, K (reprint author), Smithsonian Trop Res Inst, POB 0843-03092, Balboa, Ancon, Panama.
EM katias@ucr.edu
FU Smithsonian Tropical Research Institute; US Environmental Protection
Agency [MA 91685201]; National Science Foundation NSF [IOB-0543659];
National Institute of Health (NIH) from the INBRE Program of the
National Center for Research Resources through Nevada Genomics,
Proteomics, and Bioinformatics Centers [P20 RR-016464]
FX The authors thank Mark Whitten, Norris H. Williams, and Kurt M. Neubig
for providing the Oncidiinae matrix to construct the phylogeny of
species used in this study; Pascal-Antoine Christin for invaluable help
with Bayesian analyses and for providing additional ppc plant sequences;
Mary Jane West-Eberhard for comments and discussions to improve a
previous version of the manuscript; Gaspar Silvera for supplying the
orchid plant species; Cristina Milsner for assistance with PEPC cloning
and sampling; the laboratories of Norm Ellstrand and Louis Santiago at
the University of California, Riverside, for greenhouse assistance and
support; and L. Santiago, B. Gulle Bilgi, M.A. Cushman, and two
anonymous reviewers for helpful comments on the manuscript. This work
was partially supported by funding from the Smithsonian Tropical
Research Institute (to KS and KW), the US Environmental Protection
Agency under the Greater Research Opportunities Graduate Program
Agreement no. MA 91685201 (to KS), and the National Science Foundation
NSF IOB-0543659 (to JCC). This publication was also made possible by the
Panamanian Secretaria Nacional de Ciencia, Tecnologia e Innovacion
(SENACYT), and by the National Institute of Health (NIH) Grant Number
P20 RR-016464 from the INBRE Program of the National Center for Research
Resources through its support of the Nevada Genomics, Proteomics, and
Bioinformatics Centers. The views expressed in this publication are
solely those of the authors and the EPA does not endorse any products or
commercial services mentioned in this publication.
NR 68
TC 9
Z9 9
U1 2
U2 42
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0022-0957
EI 1460-2431
J9 J EXP BOT
JI J. Exp. Bot.
PD JUL
PY 2014
VL 65
IS 13
SI SI
BP 3623
EP 3636
DI 10.1093/jxb/eru234
PG 14
WC Plant Sciences
SC Plant Sciences
GA AM6DU
UT WOS:000339953400025
PM 24913627
ER
PT J
AU Winter, K
Garcia, M
Holtum, JAM
AF Winter, Klaus
Garcia, Milton
Holtum, Joseph A. M.
TI Nocturnal versus diurnal CO2 uptake: how flexible is Agave angustifolia?
SO JOURNAL OF EXPERIMENTAL BOTANY
LA English
DT Article
DE Agave; biofuel; climate change; crassulacean acid metabolism; C-3
photosynthesis; CO2 response; drought stress; temperature response
ID CRASSULACEAN ACID METABOLISM; ELEVATED CO2; ENVIRONMENTAL RESPONSES;
BIOFUEL FEEDSTOCK; DELTA-C-13 VALUES; CAM PLANTS; PRODUCTIVITY;
TEQUILANA; SEEDLINGS; OPUNTIA
AB Agaves exhibit the water-conserving crassulacean acid metabolism (CAM) photosynthetic pathway. Some species are potential biofuel feedstocks because they are highly productive in seasonally dry landscapes. In plants with CAM, high growth rates are often believed to be associated with a significant contribution of C-3 photosynthesis to total carbon gain when conditions are favourable. There has even been a report of a shift from CAM to C-3 in response to overwatering a species of Agave. We investigated whether C-3 photosynthesis can contribute substantially to carbon uptake and growth in young and mature Agave angustifolia collected from its natural habitat in Panama. In well-watered plants, CO2 uptake in the dark contributed about 75% of daily carbon gain. This day/night pattern of CO2 exchange was highly conserved under a range of environmental conditions and was insensitive to intensive watering. Elevated CO2 (800 ppm) stimulated CO2 fixation predominantly in the light. Exposure to CO2-free air at night markedly enhanced CO2 uptake during the following light period, but CO2 exchange rapidly reverted to its standard pattern when CO2 was supplied during the subsequent 24 h. Although A. angustifolia consistently engages in CAM as its principal photosynthetic pathway, its relatively limited photosynthetic plasticity does not preclude it from occupying a range of habitats, from relatively mesic tropical environments in Panama to drier habitats in Mexico.
C1 [Winter, Klaus; Garcia, Milton; Holtum, Joseph A. M.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
[Holtum, Joseph A. M.] James Cook Univ, Townsville, Qld 4811, Australia.
RP Winter, K (reprint author), Smithsonian Trop Res Inst, POB 0843-03092, Balboa, Ancon, Panama.
EM winterk@si.edu
RI Research ID, CTBCC /O-3564-2014
FU Smithsonian Tropical Research Institute; JCU School of Marine and
Tropical Biology
FX The authors acknowledge the contributions of J. Aranda who grew and
maintained the plants and A. Virgo who drew the illustrations. The
research was supported by funds from the Smithsonian Tropical Research
Institute. J.A.M.H. was supported by the JCU School of Marine and
Tropical Biology.
NR 40
TC 4
Z9 4
U1 5
U2 21
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0022-0957
EI 1460-2431
J9 J EXP BOT
JI J. Exp. Bot.
PD JUL
PY 2014
VL 65
IS 13
SI SI
BP 3695
EP 3703
DI 10.1093/jxb/eru097
PG 9
WC Plant Sciences
SC Plant Sciences
GA AM6DU
UT WOS:000339953400031
PM 24648568
ER
PT J
AU Paul, VJ
Ritson-Williams, R
Campbell, J
Craft, JD
Langdon, C
AF Paul, V. J.
Ritson-Williams, R.
Campbell, J.
Craft, J. D.
Langdon, C.
TI Algal chemical ecology in a changing ocean
SO PLANTA MEDICA
LA English
DT Meeting Abstract
CT 55th Annual Meeting of the American-Society-of-Pharmacognosy (ASP)
CY AUG 02-06, 2014
CL Oxford, MS
SP Amer Soc Pharmacognosy
C1 [Paul, V. J.; Ritson-Williams, R.; Campbell, J.; Craft, J. D.] Smithsonian Marine Stn, Ft Pierce, FL 34949 USA.
[Langdon, C.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA.
NR 0
TC 0
Z9 0
U1 0
U2 6
PU GEORG THIEME VERLAG KG
PI STUTTGART
PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY
SN 0032-0943
EI 1439-0221
J9 PLANTA MED
JI Planta Med.
PD JUL
PY 2014
VL 80
IS 10
MA IL11
BP 751
EP 752
PG 2
WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary
Medicine; Pharmacology & Pharmacy
SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary
Medicine
GA AM3VP
UT WOS:000339781200013
ER
PT J
AU Neufeld, MJ
AF Neufeld, Michael J.
TI Close Up at a Distance: Mapping, Technology and Politics
SO TECHNOLOGY AND CULTURE
LA English
DT Book Review
C1 [Neufeld, Michael J.] Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA.
RP Neufeld, MJ (reprint author), Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA.
NR 1
TC 0
Z9 0
U1 0
U2 1
PU JOHNS HOPKINS UNIV PRESS
PI BALTIMORE
PA JOURNALS PUBLISHING DIVISION, 2715 NORTH CHARLES ST, BALTIMORE, MD
21218-4363 USA
SN 0040-165X
EI 1097-3729
J9 TECHNOL CULT
JI Technol. Cult.
PD JUL
PY 2014
VL 55
IS 3
BP 769
EP 772
PG 4
WC History & Philosophy Of Science
SC History & Philosophy of Science
GA AM3WI
UT WOS:000339783100030
ER
PT J
AU Sofaer, HR
Sillett, TS
Langin, KM
Morrison, SA
Ghalambor, CK
AF Sofaer, Helen R.
Sillett, T. Scott
Langin, Kathryn M.
Morrison, Scott A.
Ghalambor, Cameron K.
TI Partitioning the sources of demographic variation reveals
density-dependent nest predation in an island bird population
SO ECOLOGY AND EVOLUTION
LA English
DT Article
DE Demography; density dependence; fecundity; island syndrome; nest
predation; zero-inflated model
ID CLUTCH SIZE; MIGRATORY SONGBIRD; WATERFOWL NESTS; MARKED ANIMALS;
LIFE-HISTORY; RED DEER; SURVIVAL; FOOD; ABUNDANCE; DYNAMICS
AB Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.
C1 [Sofaer, Helen R.; Langin, Kathryn M.; Ghalambor, Cameron K.] Colorado State Univ, Grad Degree Program Ecol & Biol Dept, Ft Collins, CO 80523 USA.
[Sillett, T. Scott] Natl Zool Pk, Migratory Bird Ctr, Smithsonian Conservat Biol Inst, Washington, DC 20013 USA.
[Morrison, Scott A.] Nature Conservancy, San Francisco, CA 94105 USA.
RP Sofaer, HR (reprint author), Colorado State Univ, Dept Fish Wildlife & Conservat Biol, 1474 Campus Delivery, Ft Collins, CO 80523 USA.
EM Helen.Sofaer@colostate.edu
OI Langin, Kathryn/0000-0002-1799-1942
FU Nature Conservancy; Smithsonian Institution; National Science
Foundation; Colorado State University
FX This research was funded by The Nature Conservancy, the Smithsonian
Institution, the National Science Foundation, and Colorado State
University.
NR 91
TC 5
Z9 5
U1 6
U2 34
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2045-7758
J9 ECOL EVOL
JI Ecol. Evol.
PD JUL
PY 2014
VL 4
IS 13
BP 2738
EP 2748
DI 10.1002/ece3.1127
PG 11
WC Ecology; Evolutionary Biology
SC Environmental Sciences & Ecology; Evolutionary Biology
GA AL9WT
UT WOS:000339494900010
PM 25077023
ER
PT J
AU Field, DJ
Gauthier, JA
King, BL
Pisani, D
Lyson, TR
Peterson, KJ
AF Field, Daniel J.
Gauthier, Jacques A.
King, Benjamin L.
Pisani, Davide
Lyson, Tyler R.
Peterson, Kevin J.
TI Toward consilience in reptile phylogeny: miRNAs support an archosaur,
not lepidosaur, affinity for turtles
SO EVOLUTION & DEVELOPMENT
LA English
DT Article
ID SISTER GROUP; EVOLUTION; POSITION; GENOME; SHELL; MICRORNAS; HOMOLOGY;
INSIGHTS; SNAKES; ORIGIN
AB Understanding the phylogenetic position of crown turtles (Testudines) among amniotes has been a source of particular contention. Recent morphological analyses suggest that turtles are sister to all other reptiles, whereas the vast majority of gene sequence analyses support turtles as being inside Diapsida, and usually as sister to crown Archosauria (birds and crocodilians). Previously, a study using microRNAs (miRNAs) placed turtles inside diapsids, but as sister to lepidosaurs (lizards and Sphenodon) rather than archosaurs. Here, we test this hypothesis with an expanded miRNA presence/absence dataset, and employ more rigorous criteria for miRNA annotation. Significantly, we find no support for a turtle+lepidosaur sister-relationship; instead, we recover strong support for turtles sharing a more recent common ancestor with archosaurs. We further test this result by analyzing a super-alignment of precursor miRNA sequences for every miRNA inferred to have been present in the most recent common ancestor of tetrapods. This analysis yields a topology that is fully congruent with our presence/absence analysis; our results are therefore in accordance with most gene sequence studies, providing strong, consilient molecular evidence from diverse independent datasets regarding the phylogenetic position of turtles.
C1 [Field, Daniel J.; Gauthier, Jacques A.; Lyson, Tyler R.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06511 USA.
[Field, Daniel J.; Lyson, Tyler R.] Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, Washington, DC 20560 USA.
[King, Benjamin L.] Mt Desert Isl Biol Lab, Salsbury Cove, ME 04672 USA.
[Pisani, Davide] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England.
[Pisani, Davide] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England.
[Peterson, Kevin J.] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA.
RP Field, DJ (reprint author), Yale Univ, Dept Geol & Geophys, 210 Whitney Ave, New Haven, CT 06511 USA.
EM daniel.field@yale.edu; kevin.j.peterson@dartmouth.edu
OI King, Benjamin/0000-0001-6463-1336; Field, Daniel/0000-0002-1786-0352
FU NSERC CGS; Lougheed Award of Distinction; Yale Peabody Museum of Natural
History; NASA-Ames
FX The authors thank K. Kuester for providing an egg of Columba livia, J.
Musser and G. Watkins-Colwell for assistance processing the pigeon, A.
Heimberg and A. Hsiang for comments, J. Tarver and J. Vinther for
laboratory assistance, and G. Wagner for providing lab space. Funding
for this project was provided by a NSERC CGS and Lougheed Award of
Distinction to D. J. F., and Yale Peabody Museum of Natural History to
J. A. G. NASA-Ames supported K. J. P and B. L. K.
NR 49
TC 30
Z9 30
U1 8
U2 40
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1520-541X
EI 1525-142X
J9 EVOL DEV
JI Evol. Dev.
PD JUL-AUG
PY 2014
VL 16
IS 4
BP 189
EP 196
DI 10.1111/ede.12081
PG 8
WC Evolutionary Biology; Developmental Biology; Genetics & Heredity
SC Evolutionary Biology; Developmental Biology; Genetics & Heredity
GA AL8ZM
UT WOS:000339428500003
PM 24798503
ER
PT J
AU How, MJ
Christy, J
Roberts, NW
Marshall, NJ
AF How, Martin J.
Christy, John
Roberts, Nicholas W.
Marshall, N. Justin
TI Null point of discrimination in crustacean polarisation vision
SO JOURNAL OF EXPERIMENTAL BIOLOGY
LA English
DT Article
DE Polarisation distance; Fiddler crab; Mantis shrimp; Discrimination
threshold
ID STOMATOPOD CRUSTACEAN; PREDATOR AVOIDANCE; MANTIS SHRIMP; COMPOUND EYES;
COLOR-VISION; LIGHT; SENSITIVITY; CUTTLEFISH; CONTRAST; OCTOPUS
AB The polarisation of light is used by many species of cephalopods and crustaceans to discriminate objects or to communicate. Most visual systems with this ability, such as that of the fiddler crab, include receptors with photopigments that are oriented horizontally and vertically relative to the outside world. Photoreceptors in such an orthogonal array are maximally sensitive to polarised light with the same fixed e-vector orientation. Using opponent neural connections, this two-channel system may produce a single value of polarisation contrast and, consequently, it may suffer from null points of discrimination. Stomatopod crustaceans use a different system for polarisation vision, comprising at least four types of polarisation-sensitive photoreceptor arranged at 0, 45, 90 and 135 deg relative to each other, in conjunction with extensive rotational eye movements. This anatomical arrangement should not suffer from equivalent null points of discrimination. To test whether these two systems were vulnerable to null points, we presented the fiddler crab Uca heteropleura and the stomatopod Haptosquilla trispinosa with polarised looming stimuli on a modified LCD monitor. The fiddler crab was less sensitive to differences in the degree of polarised light when the e-vector was at -45 deg than when the e-vector was horizontal. In comparison, stomatopods showed no difference in sensitivity between the two stimulus types. The results suggest that fiddler crabs suffer from a null point of sensitivity, while stomatopods do not.
C1 [How, Martin J.; Roberts, Nicholas W.] Univ Bristol, Sch Biol Sci, Bristol BS8 1TQ, Avon, England.
[How, Martin J.; Marshall, N. Justin] Univ Queensland, Queensland Brain Inst, St Lucia, Qld 4072, Australia.
[How, Martin J.; Christy, John] Smithsonian Trop Res Inst, Panama City, Panama.
RP How, MJ (reprint author), Univ Bristol, Sch Biol Sci, Bristol Life Sci Bldg,Tyndall Ave, Bristol BS8 1TQ, Avon, England.
EM m.how@bristol.ac.uk
RI How, Martin/G-1925-2010;
OI How, Martin/0000-0001-5135-8828; Roberts, Nicholas/0000-0002-4540-6683
FU US Air Force Office of Scientific Research [FA8655-12-1-2112]; Asian and
European Offices of Aerospace Research and Development;
Queensland-Smithsonian Fellowship
FX M.J.H., N.J.M. and N.W.R. were supported by the US Air Force Office of
Scientific Research (grant no. FA8655-12-1-2112) and the Asian and
European Offices of Aerospace Research and Development. M.J.H. was also
supported by a Queensland-Smithsonian Fellowship award.
NR 48
TC 5
Z9 5
U1 10
U2 50
PU COMPANY OF BIOLOGISTS LTD
PI CAMBRIDGE
PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL,
CAMBS, ENGLAND
SN 0022-0949
EI 1477-9145
J9 J EXP BIOL
JI J. Exp. Biol.
PD JUL
PY 2014
VL 217
IS 14
BP 2462
EP 2467
DI 10.1242/jeb.103457
PG 6
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA AL6WG
UT WOS:000339273500011
PM 24737768
ER
PT J
AU Karakaya, C
Guzeloglu-Kayisli, O
Hobbs, RJ
Gerasimova, T
Uyar, A
Erdem, M
Oktem, M
Erdem, A
Gumuslu, S
Ercan, D
Sakkas, D
Comizzoli, P
Seli, E
Lalioti, MD
AF Karakaya, Cengiz
Guzeloglu-Kayisli, Ozlem
Hobbs, Rebecca J.
Gerasimova, Tsilya
Uyar, Asli
Erdem, Mehmet
Oktem, Mesut
Erdem, Ahmet
Gumuslu, Seyhan
Ercan, Deniz
Sakkas, Denny
Comizzoli, Pierre
Seli, Emre
Lalioti, Maria D.
TI Follicle-stimulating hormone receptor (FSHR) alternative skipping of
exon 2 or 3 affects ovarian response to FSH
SO MOLECULAR HUMAN REPRODUCTION
LA English
DT Review
DE FSHR; alternative splicing; cumulus cells; IVF or ICSI; ovarian response
ID IN-VITRO FERTILIZATION; SINGLE-NUCLEOTIDE POLYMORPHISMS; HUMAN
CHORIONIC-GONADOTROPIN; MESSENGER-RNA TRANSCRIPTS; GENOME-WIDE
ASSOCIATION; BOVINE GRANULOSA-CELLS; LUTEINIZING-HORMONE; CHROMOSOME
2P16.3; MOLECULAR-CLONING; GENE-EXPRESSION
AB Genes critical for fertility are highly conserved in mammals. Interspecies DNA sequence variation, resulting in amino acid substitutions and post-transcriptional modifications, including alternative splicing, are a result of evolution and speciation. The mammalian follicle-stimulating hormone receptor (FSHR) gene encodes distinct species-specific forms by alternative splicing. Skipping of exon 2 of the human FSHR was reported in women of North American origin and correlated with low response to ovarian stimulation with exogenous follicle-stimulating hormone (FSH). To determine whether this variant correlated with low response in women of different genetic backgrounds, we performed a blinded retrospective observational study in a Turkish cohort. Ovarian response was determined as low, intermediate or high according to retrieved oocyte numbers after classifying patients in four age groups (< 35, 35-37, 38-40, > 40). Cumulus cells collected from 96 women undergoing IVF/ICSI following controlled ovarian hyperstimulation revealed four alternatively spliced FSHR products in seven patients (8%): exon 2 deletion in four patients; exon 3 and exons 2 + 3 deletion in one patient each, and a retention of an intron 1 fragment in one patient. In all others (92%) splicing was intact. Alternative skipping of exons 2, 3 or 2 + 3 were exclusive to low responders and was independent of the use of agonist or antagonist. Interestingly, skipping of exon 3 occurs naturally in the ovaries of domestic cats-a good comparative model for human fertility. We tested the signaling potential of human and cat variants after transfection in HEK293 cells and FSH stimulation. None of the splicing variants initiated cAMP signaling despite high FSH doses, unlike full-length proteins. These data substantiate the occurrence of FSHR exon skipping in a subgroup of low responders and suggest that species-specific regulation of FSHR splicing plays diverse roles in mammalian ovarian function.
C1 [Karakaya, Cengiz; Guzeloglu-Kayisli, Ozlem; Gerasimova, Tsilya; Uyar, Asli; Sakkas, Denny; Seli, Emre; Lalioti, Maria D.] Yale Univ, Sch Med, Div Reprod Endocrinol & Infertil, Dept Obstet Gynecol & Reprod Sci, New Haven, CT 06510 USA.
[Karakaya, Cengiz; Erdem, Mehmet; Oktem, Mesut; Erdem, Ahmet; Gumuslu, Seyhan; Ercan, Deniz] Gazi Univ, Sch Med, Div Reprod Endocrinol & Infertil, IVF Ctr,Dept Obstet & Gynecol, TR-06500 Ankara, Turkey.
[Hobbs, Rebecca J.; Comizzoli, Pierre] Smithsonian Conservat Biol Inst, Natl Zool Pk, Washington, DC 20008 USA.
RP Lalioti, MD (reprint author), FMB329J,330 Cedar St, New Haven, CT 06510 USA.
EM maria.lalioti@yale.edu
FU National Center for Research Resources (NCRR); National Center for
Advancing Translational Science (NCATS) [KL2 RR024138]; National
Institute of Health (NIH) [R01HD059909]; Smithsonian Scholarly Studies
Program
FX This work was supported by the National Center for Research Resources
(NCRR) and the National Center for Advancing Translational Science
(NCATS) (KL2 RR024138) to M.D.L., by the National Institute of Health
(NIH) Award (R01HD059909) to E.S., and by the Smithsonian Scholarly
Studies Program to PC. The contents of the article are solely the
responsibility of the authors and do not necessarily represent the
official view of NIH.
NR 82
TC 3
Z9 3
U1 2
U2 12
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1360-9947
EI 1460-2407
J9 MOL HUM REPROD
JI Mol. Hum. Reprod.
PD JUL
PY 2014
VL 20
IS 7
BP 630
EP 643
DI 10.1093/molehr/gau024
PG 14
WC Developmental Biology; Obstetrics & Gynecology; Reproductive Biology
SC Developmental Biology; Obstetrics & Gynecology; Reproductive Biology
GA AL8XZ
UT WOS:000339424400004
PM 24670307
ER
PT J
AU Ballantine, DL
Lozada-Troche, C
Ruiz, H
AF Ballantine, David L.
Lozada-Troche, Chad
Ruiz, Hector
TI Metapeyssonnelia tangerina (Peyssonneliaceae, Rhodophyta), a new species
associated with coral reef habitats in Puerto Rico, Caribbean Sea
SO PHYCOLOGICAL RESEARCH
LA English
DT Article
DE Caribbean; Metapeyssonnelia tangerina sp nov; Metapeyssonnelia;
Peyssonneliaceae; Puerto Rico; Rhodophyta; small subunit ribosomal DNA;
western Atlantic
ID RIBOSOMAL-RNA GENE; SP-NOV PEYSSONNELIACEAE; SUBUNIT RDNA SEQUENCES;
KILLING RED ALGA; RHODYMENIALES RHODOPHYTA; SSU RDNA; ORD NOV;
GIGARTINALES; FAMILIES; REPRESENTATIVES
AB A new Metapeyssonnelia species that comprises up to 7% bottom cover at shallow-water reef habitats in southwest Puerto Rico is described herein. It forms conspicuous orange encrustations on hard substrata and does not grow on living coral as does its two Caribbean congeners. The new species possesses conspicuous, to 30 cm in extent, tightly adherent crusts up to 950 mu m thick, only hypobasal calcification, hypothallial cells arranged in broad flabellules and superficial (raised) tetrasporangial and carposporangial nemathecia. Tetrasporangia are pedicellate, borne laterally from cup-like cells that are derived from basal paraphysal cells. Tetrasporangia measure up to 120 mu m long and individual carposporangia to 80 mu m long. The new species differs from other Metapeyssonnelia species developmentally in that perithallial cells at mid thallus height will divide laterally to form a new hypothallium. Small subunit gene sequences relate the new species to the two Metapeyssonnelia species that are previously known from Puerto Rico.
C1 [Ballantine, David L.; Lozada-Troche, Chad; Ruiz, Hector] Univ Puerto Rico, Dept Marine Sci, Mayaguez, PR 00709 USA.
[Lozada-Troche, Chad] Univ Puerto Rico, Dept Biol, Cayey, PR USA.
[Ballantine, David L.] Smithsonian Inst, Dept Bot, Natl Museum Nat Hist, Washington, DC 20560 USA.
RP Ballantine, DL (reprint author), Univ Puerto Rico, Dept Marine Sci, Mayaguez, PR 00709 USA.
EM david.ballantine@upr.edu
FU National Oceanographic and Atmospheric Administration Coastal Ocean
Programs [NA17OP2919]; Institutional Fund for Research Development at
UPR- Cayey
FX This paper is a result of research funded by the National Oceanographic
and Atmospheric Administration Coastal Ocean Programs under award
#NA17OP2919 to the University of Puerto Rico - Mayaguez. The research
was also funded in part by the Institutional Fund for Research
Development at UPR- Cayey awarded to the second author.
NR 29
TC 2
Z9 2
U1 1
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1322-0829
EI 1440-1835
J9 PHYCOL RES
JI Phycol. Res.
PD JUL
PY 2014
VL 62
IS 3
BP 197
EP 205
DI 10.1111/pre.12051
PG 9
WC Marine & Freshwater Biology
SC Marine & Freshwater Biology
GA AM0EW
UT WOS:000339517600004
ER
PT J
AU Hsyu, T
Johnson, CI
Lee, YW
Rich, RM
AF Hsyu, Tiffany
Johnson, Christian I.
Lee, Young-Wook
Rich, R. Michael
TI Light-Element Chemistry and the Double Red Giant Branch in the Galactic
Globular Cluster NGC 288
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
ID MULTIPLE POPULATIONS; MILKY-WAY; ABUNDANCE VARIATIONS; STARS;
SPECTROSCOPY; ENRICHMENT; SAMPLE; I.
AB The globular cluster NGC 288 was previously reported to exhibit two distinct red giant branches (RGBs) in the narrowband calcium (HK) and Stromgren b- and y-band passes. In order to investigate this phenomenon further, we obtained moderate resolution (R similar to 18,000) spectra of 27 RGB stars in NGC 288 with the Hydra multifiber spectrograph on the Blanco 4 m telescope at Cerro Tololo Inter-American Observatory (CTIO). From these data we derive iron (<[Fe/HD]> = 1.19; sigma = 0.12), oxygen (<[O/Fe]> = +0.25; sigma = 0.13), and sodium (<[Na/Fe]> = +0.15; sigma = 0.26) abundances using standard equivalent width and spectrum synthesis techniques. Combining these data with those available in the literature indicates that the two giant branches have distinctly different light-element chemistry but do not exhibit a significant spread in [Fe/H]. A new transmission tracing for the CTIO Ca filter, obtained for this project, shows that CN contamination is the primary spectral feature driving the split RGB. Interestingly, the CM leak in the current CTIO Ca filter may be used as an efficient means to search for CN-weak and CN-strong stars in systems with otherwise small Ca abundance variations.
C1 [Hsyu, Tiffany; Rich, R. Michael] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Johnson, Christian I.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Lee, Young-Wook] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea.
[Lee, Young-Wook] Yonsei Univ, Dept Astron, Seoul 120749, South Korea.
RP Hsyu, T (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
EM tiffanyhsyu@ucla.edu; cjohnson@cfa.harvard.edu; ywlee2@yonsei.ac.kr;
rmr@astro.ucla.edu
FU National Aeronautics and Space Administration; National Science
Foundation; Clay Fellowship; National Science Foundation [AST-1003201];
NSF [AST-0709479, AST-12112099]; National Research Foundation of Korea
(NRF) of Korea
FX We thank the referee for a careful review and thoughtful comments that
lead to an improvement of the manuscript. This publication makes use of
data products from the Two Micron All Sky Survey, which is a joint
project of University of Massachusetts and the Infrared Processing and
Analysis Center/California Institute of Technology, funded by the
National Aeronautics and Space Administration and the National Science
Foundation. We thank the Cerro Tololo Inter-American Observatory (CTIO)
staff Daniel Holck and Andrea Kunder for providing the new response
curve for the CTIO Ca filter. C. I. J gratefully acknowledges support
from the Clay Fellowship, administered by the Smithsonian Astrophysical
Observatory. This material is based upon work supported by the National
Science Foundation under award No. AST-1003201 to C. I. J; R. M. R
acknowledges support from NSF grants AST-0709479 and AST-12112099. Y.-W.
L. acknowledges support from National Research Foundation of Korea (NRF)
of Korea to Center for Galaxy Evolution Research (CGER).
NR 38
TC 4
Z9 4
U1 0
U2 0
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA
SN 0004-6280
EI 1538-3873
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD JUL
PY 2014
VL 126
IS 941
BP 597
EP 604
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AM1JQ
UT WOS:000339602600001
ER
PT J
AU Gedan, KB
Kellogg, L
Breitburg, DL
AF Gedan, Keryn B.
Kellogg, Lisa
Breitburg, Denise L.
TI Accounting for Multiple Foundation Species in Oyster Reef Restoration
Benefits
SO RESTORATION ECOLOGY
LA English
DT Article
DE clearance rate; Crassostrea virginica; ecosystem services; Ischadium
recurvum; phytoplankton; top-down control; water quality
ID CHESAPEAKE BAY; CRASSOSTREA-VIRGINICA; SALINITY GRADIENT; CURRENT
KNOWLEDGE; RIVER ESTUARY; BIODIVERSITY; CONSERVATION; HABITAT;
EUTROPHICATION; PHYTOPLANKTON
AB Many coastal habitat restoration projects are focused on restoring the population of a single foundation species to recover an entire ecological community. Estimates of the ecosystem services provided by the restoration project are used to justify, prioritize, and evaluate such projects. However, estimates of ecosystem services provided by a single species may vastly under-represent true provisioning, as we demonstrate here with an example of oyster reefs, often restored to improve estuarine water quality. In the brackish Chesapeake Bay, the hooked mussel Ischadium recurvum can have greater abundance and biomass than the focal restoration species, the eastern oyster Crassostrea virginica. We measured the temperature-dependent phytoplankton clearance rates of both bivalves and their filtration efficiency on three size classes of phytoplankton to parameterize an annual model of oyster reef filtration, with and without hooked mussels, for monitored oyster reefs and restoration scenarios in the eastern Chesapeake Bay. The inclusion of filtration by hooked mussels increased the filtration capacity of the habitat greater than 2-fold. Hooked mussels were also twice as effective as oysters at filtering picoplankton (1.5-3 mu m), indicating that they fill a distinct ecological niche by controlling phytoplankton in this size class, which makes up a significant proportion of the phytoplankton load in summer. When mussel and oyster filtration are accounted for in this, albeit simplistic, model, restoration of oyster reefs in a tributary scale restoration is predicted to control 100% of phytoplankton during the summer months.
C1 [Gedan, Keryn B.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
[Gedan, Keryn B.; Breitburg, Denise L.] Smithsonian Environm Res Ctr, Edgewater, MD 20137 USA.
[Kellogg, Lisa] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA.
RP Gedan, KB (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
EM kgedan@umd.edu
FU David H. Smith Conservation Research Fellowship; Oyster Recovery
Partnership
FX For assistance with models and graphics, we thank Virginia Clark and
Keira Heggie. For donations of datasets, materials, and equipment, we
thank Chris Judy, Sharyn Hedrick, Pat Neale, Mitch Tarnowski, and Odi
Zmora. We thank the David H. Smith Conservation Research Fellowship for
funding to K. Gedan, the Oyster Recovery Partnership for funding sample
collection in the Choptank River, and numerous volunteers for collecting
and analyzing those samples.
NR 48
TC 4
Z9 4
U1 7
U2 66
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1061-2971
EI 1526-100X
J9 RESTOR ECOL
JI Restor. Ecol.
PD JUL
PY 2014
VL 22
IS 4
BP 517
EP 524
DI 10.1111/rec.12107
PG 8
WC Ecology
SC Environmental Sciences & Ecology
GA AM2EP
UT WOS:000339662400012
ER
PT J
AU Collins, CW
Monfort, SL
Vick, MM
Wolfe, BA
Weiss, RB
Keefer, CL
Songsasen, N
AF Collins, C. Wynne
Monfort, Steven L.
Vick, Mandi M.
Wolfe, Barbara A.
Weiss, Rachael B.
Keefer, Carol L.
Songsasen, Nucharin
TI Oral and injectable synthetic progestagens effectively manipulate the
estrous cycle in the Przewalski's horse (Equus ferus przewalskii)
SO ANIMAL REPRODUCTION SCIENCE
LA English
DT Article
DE Estrous synchrony; Equids; Altrenogest; Ovulation induction
ID ARTIFICIAL-INSEMINATION; REPRODUCTIVE-PERFORMANCE; ENZYME-IMMUNOASSAY;
MARES; OVULATION; ALTRENOGEST; SYNCHRONIZATION; PROGESTERONE; ESTRUS;
INDUCTION
AB To date, there has been limited research on manipulation of the estrous cycle in endangered equids. The objectives of this study were to assess the efficacy of using combinations of: (a) oral altrenogest and PGF(2)alpha, and (b) injectable altrenogest and PGF(2)alpha for manipulation of ovarian activity in Przewalski's mares. Reproductive cycles were monitored by assessing follicular changes with rectal ultrasound and changes in urinary steroid hormones. In Study 1, five cycling mares were treated with oral altrenogest (n = 11 cycles) for 14 days. In Study 2, cycling mares were treated with oral altrenogest for 12 days (n = 5 cycles; n = 5 mares) or a single injection of biorelease altrenogest (n = 10 cycles; n = 6 mares). In all study groups, PGF(2)alpha was given 2 days before cessation of progestagen treatment. In Study 1, mares responded in six of 11 cycles (54%) where treatment occurred with normal ovarian follicular development post hormone therapy. In Study 2, mares responded in four of five (80%, oral altrenogest) and eight of 10 (80%, injectable altrenogest) cycles with the development of an ovulatory follicle. With the use of injectable altrenogest, there was an obvious suppression of urinary estrogens and progetsagens. These results indicate that manipulation of the estrous cycle of Przewalski's mares can be achieved by administering oral (12 days) or injectable form of altrenogest in conjunction with PGF(2)alpha. Findings in the present study may have long term application for the development of timed artificial insemination as a genetic management tool for this critically endangered equid. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Collins, C. Wynne; Monfort, Steven L.; Vick, Mandi M.; Songsasen, Nucharin] Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.
[Vick, Mandi M.; Wolfe, Barbara A.; Weiss, Rachael B.] Wilds, Cumberland, OH 43732 USA.
[Collins, C. Wynne; Keefer, Carol L.] Univ Maryland, Dept Anim & Avian Sci, College Pk, MD 20742 USA.
RP Collins, CW (reprint author), Univ Queensland, Sch Vet Sci, Gatton Campus, Gatton, Qld 4343, Australia.
EM w.collins@uq.edu.au
FU Morris Animal Foundation [D07Z0-403]; Smithsonian Institution Endowment
Funds; Shirley Sichel Endowment Fund
FX This research was supported by Morris Animal Foundation (Grant numbers:
D07Z0-403); Smithsonian Institution Endowment Funds; and the Shirley
Sichel Endowment Fund.
NR 47
TC 2
Z9 2
U1 2
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4320
EI 1873-2232
J9 ANIM REPROD SCI
JI Anim. Reprod. Sci.
PD JUL
PY 2014
VL 148
IS 1-2
BP 42
EP 52
DI 10.1016/j.anireprosci.2014.03.018
PG 11
WC Agriculture, Dairy & Animal Science; Reproductive Biology
SC Agriculture; Reproductive Biology
GA AL4ZU
UT WOS:000339144100005
PM 24856195
ER
PT J
AU Cranmer, SR
AF Cranmer, Steven R.
TI ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE
AND ION CYCLOTRON RESONANCE
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE plasmas; solar wind; Sun: corona; Sun: heliosphere; turbulence; waves
ID KINETIC ALFVEN WAVES; ANISOTROPIC MAGNETOHYDRODYNAMIC TURBULENCE;
TEMPERATURE-ANISOTROPY; 1 AU; CORONAL HOLES; MAGNETIC-FIELD; MINOR IONS;
VELOCITY DISTRIBUTIONS; DIFFERENTIAL FLOW; PLASMA TURBULENCE
AB Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfven waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.
C1 Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Cranmer, SR (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
FU NASA [NNX10AC11G]; NSF SHINE program [AGS-1259519]
FX The author gratefully acknowledges Adriaan van Ballegooijen, Lauren
Woolsey, Phil Isenberg, Peter Gary, Justin Kasper, and Ben Maruca for
many valuable discussions. This work was supported by NASA grant
NNX10AC11G and NSF SHINE program grant AGS-1259519. The OMNI solar wind
data were obtained from the NASA/GSFC Space Physics Data Facility's
OMNIWeb service, and we thank the principal investigators of the IMP 8,
Wind, and ACE instruments who provided their data to OMNI. This research
made extensive use of NASA's Astrophysics Data System (ADS).
NR 202
TC 11
Z9 11
U1 1
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD JUL
PY 2014
VL 213
IS 1
AR 16
DI 10.1088/0067-0049/213/1/16
PG 26
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL6HO
UT WOS:000339233400016
ER
PT J
AU Jiang, YF
Stone, JM
Davis, SW
AF Jiang, Yan-Fei
Stone, James M.
Davis, Shane W.
TI AN ALGORITHM FOR RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE
TIME-DEPENDENT TRANSFER EQUATION
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE accretion, accretion disks; magnetohydrodynamics (MHD); methods:
numerical; radiative transfer
ID DOMINATED ACCRETION DISKS; FLUX-LIMITED DIFFUSION; BLACK-HOLES; VERTICAL
STRUCTURE; GALACTIC NUCLEI; GODUNOV METHOD; GAS-PRESSURE; HYDRODYNAMICS;
SIMULATIONS; INSTABILITY
AB We describe a new algorithm for solving the coupled frequency-integrated transfer equation and the equations of magnetohydrodynamics in the regime that light-crossing time is only marginally shorter than dynamical timescales. The transfer equation is solved in the mixed frame, including velocity-dependent source terms accurate to O(v/c). An operator split approach is used to compute the specific intensity along discrete rays, with upwind monotonic interpolation used along each ray to update the transport terms, and implicit methods used to compute the scattering and absorption source terms. Conservative differencing is used for the transport terms, which ensures the specific intensity (as well as energy and momentum) are conserved along each ray to round-off error. The use of implicit methods for the source terms ensures the method is stable even if the source terms are very stiff. To couple the solution of the transfer equation to the MHD algorithms in the ATHENA code, we perform direct quadrature of the specific intensity over angles to compute the energy and momentum source terms. We present the results of a variety of tests of the method, such as calculating the structure of a non-LTE atmosphere, an advective diffusion test, linear wave convergence tests, and the well-known shadow test. We use new semi-analytic solutions for radiation modified shocks to demonstrate the ability of our algorithm to capture the effects of an anisotropic radiation field accurately. Since the method uses explicit differencing of the spatial operators, it shows excellent weak scaling on parallel computers.
C1 [Jiang, Yan-Fei] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Stone, James M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Davis, Shane W.] Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H4, Canada.
RP Jiang, YF (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
FU NASA through Einstein Postdoctoral Fellowship [PF-140109]; Chandra X-ray
Center; NASA [NAS8-03060, NNX11AF49G]; NSF [AST-1333612]
FX We thank the anonymous referee for helpful comments that improved the
paper. Support for this work was provided by NASA through Einstein
Postdoctoral Fellowship grant number PF-140109 awarded by the Chandra
X-ray Center, which is operated by the Smithsonian Astrophysical
Observatory for NASA under contract NAS8-03060, and by NASA grant
NNX11AF49G and NSF grant AST-1333612.
NR 52
TC 19
Z9 21
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD JUL
PY 2014
VL 213
IS 1
AR 7
DI 10.1088/0067-0049/213/1/7
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL6HO
UT WOS:000339233400007
ER
PT J
AU Yan, HJ
Stefanon, M
Ma, ZY
Willner, SP
Somerville, R
Ashby, MLN
Dave, R
Perez-Gonzalez, PG
Cava, A
Wiklind, T
Kocevski, D
Rafelski, M
Kartaltepe, J
Cooray, A
Koekemoer, AM
Grogin, NA
AF Yan, Haojing
Stefanon, Mauro
Ma, Zhiyuan
Willner, S. P.
Somerville, Rachel
Ashby, Matthew L. N.
Dave, Romeel
Perez-Gonzalez, Pablo G.
Cava, Antonio
Wiklind, Tommy
Kocevski, Dale
Rafelski, Marc
Kartaltepe, Jeyhan
Cooray, Asantha
Koekemoer, Anton M.
Grogin, Norman A.
TI OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS
FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF
SOURCE BLENDING
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE galaxies: starburst; infrared: galaxies; methods: data analysis;
submillimeter: galaxies
ID STAR-FORMING GALAXIES; HUBBLE-DEEP-FIELD; EXTENDED GROTH STRIP;
EXTRAGALACTIC LEGACY SURVEY; SUBMILLIMETER GALAXIES; HIGH-REDSHIFT;
PHOTOMETRIC REDSHIFTS; MASSIVE GALAXIES; ALMA SURVEY; MU-M
AB The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven "SDSS-invisible," very bright 250 mu m sources (S-250 > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z similar to 1-2 whose high L-IR is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.
C1 [Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
[Willner, S. P.; Ashby, Matthew L. N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Somerville, Rachel] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Dave, Romeel] Univ Western Cape, ZA-7535 Cape Town, South Africa.
[Perez-Gonzalez, Pablo G.] Univ Complutense Madrid, Dept Astrofis, Fac CC Fis, E-28040 Madrid, Spain.
[Cava, Antonio] Univ Geneva, Observ Geneva, CH-1290 Versoix, Switzerland.
[Wiklind, Tommy] Joint ALMA Observ, Santiago, Chile.
[Kocevski, Dale] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA.
[Rafelski, Marc] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Kartaltepe, Jeyhan] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Koekemoer, Anton M.; Grogin, Norman A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
RP Yan, HJ (reprint author), Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
RI Stefanon, Mauro/F-8708-2016; Perez-Gonzalez, Pablo/J-2871-2016; Cava,
Antonio/C-5274-2017;
OI Stefanon, Mauro/0000-0001-7768-5309; Perez-Gonzalez,
Pablo/0000-0003-4528-5639; Cava, Antonio/0000-0002-4821-1275; Koekemoer,
Anton/0000-0002-6610-2048
FU Spitzer RSA [1445905]; NASA [HST-GO-12060, NAS5-26555]; Space Telescope
Science Institute; Alfred P. Sloan Foundation; National Aeronautics and
Space Administration; National Science Foundation; Department of Energy;
Japanese Monbukagakusho; Max Planck Society; Spanish MINECO
[AYA2012-31277]
FX We thank the anonymous referee for the critical reading and useful
comments which helped improve the quality of the paper. We thank M.
Bolzonella for providing the latest update of the Hyperz code, C. Peng
for the useful discussion of the GALFIT code, R. Siebenmorgen for
explaining a number of details of the SK07 models, R. Ivison for
allowing the use of the non-public radio map in the EGS field, and E.
Laird and K. Nandra for the AEGIS Chandra X-ray catalog that is not yet
public. We also thank M. Dickinson, H. Ferguson, J. Newman, and M.
Salvato for their useful comments. H.Y., M.S., and Z.M. acknowledge the
support of Spitzer RSA 1445905. This work is based on observations made
by Herschel, an ESA space observatory with science instruments provided
by European-led Principal Investigator consortia and with important
participation from NASA. Support for Program number HST-GO-12060 was
provided by NASA through a grant from the Space Telescope Science
Institute, which is operated by the Association of Universities for
Research in Astronomy, Incorporated, under NASA contract NAS5-26555.
This work is also based in part on observations made with the Spitzer
Space Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. Support
for this work was provided by NASA through an award issued by
JPL/Caltech. This work also makes use of the SDSS. Funding for the
creation and distribution of the SDSS Archive has been provided by the
Alfred P. Sloan Foundation, the Participating Institutions, the National
Aeronautics and Space Administration, the National Science Foundation,
the Department of Energy, the Japanese Monbukagakusho, and the Max
Planck Society. The SDSS Web site is http://www.sdss.org. The SDSS is
managed by the Astrophysical Research Consortium for the Participating
Institutions. The Participating Institutions are the University of
Chicago, Fermilab, the Institute for Advanced Study, the Japan
Participation Group, The Johns Hopkins University, Los Alamos National
Laboratory, the Max Planck Institute for Astronomy, the Max Planck
Institute for Astrophysics, New Mexico State University, the University
of Pittsburgh, Princeton University, the US Naval Observatory, and the
University of Washington. This paper has used data obtained by the
SHARDS project, funded by the Spanish MINECO grant AYA2012-31277, and
based on observations made with the Gran Telescopio Canarias (GTC).
NR 106
TC 7
Z9 7
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD JUL
PY 2014
VL 213
IS 1
AR 2
DI 10.1088/0067-0049/213/1/2
PG 40
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AL6HO
UT WOS:000339233400002
ER
PT J
AU Ellison, AR
Savage, AE
DiRenzo, GV
Langhammer, P
Lips, KR
Zamudio, KR
AF Ellison, Amy R.
Savage, Anna E.
DiRenzo, Grace V.
Langhammer, Penny
Lips, Karen R.
Zamudio, Kelly R.
TI Fighting a Losing Battle: Vigorous Immune Response Countered by Pathogen
Suppression of Host Defenses in the Chytridiomycosis-Susceptible Frog
Atelopus zeteki
SO G3-GENES GENOMES GENETICS
LA English
DT Article
DE Batrachochytrium dendrobatidis; immunogenomics Atelopus zeteki; acquired
immunity immuno-suppression; genetics of immunity; innate immunity;
complex genetics; tolerance complex immunity; infection resistance
ID FUNGUS BATRACHOCHYTRIUM-DENDROBATIDIS; EMERGING INFECTIOUS-DISEASES;
GLOBAL AMPHIBIAN DECLINES; DEADLY CHYTRID FUNGUS; TIME TAQMAN PCR;
GENE-EXPRESSION; RNA-SEQ; POPULATION DECLINES; SERINE PROTEASES;
REFERENCE GENOME
AB The emergence of the disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in dramatic global amphibian declines. Although many species have undergone catastrophic declines and/or extinctions, others appear to be unaffected or persist at reduced frequencies after Bd outbreaks. The reasons behind this variance in disease outcomes are poorly understood: differences in host immune responses have been proposed, yet previous studies suggest a lack of robust immune responses to Bd in susceptible species. Here, we sequenced transcriptomes from clutchmates of a highly susceptible amphibian, Atelopus zeteki, with different infection histories. We found significant changes in expression of numerous genes involved in innate and inflammatory responses in infected frogs despite high susceptibility to chytridiomycosis. We show evidence of acquired immune responses generated against Bd, including increased expression of immunoglobulins and major histocompatibility complex genes. In addition, fungal-killing genes had significantly greater expression in frogs previously exposed to Bd compared with Bd-na ve frogs, including chitinase and serine-type proteases. However, our results appear to confirm recent in vitro evidence of immune suppression by Bd, demonstrated by decreased expression of lymphocyte genes in the spleen of infected compared with control frogs. We propose susceptibility to chytridiomycosis is not due to lack of Bd-specific immune responses but instead is caused by failure of those responses to be effective. Ineffective immune pathway activation and timing of antibody production are discussed as potential mechanisms. However, in light of our findings, suppression of key immune responses by Bd is likely an important factor in the lethality of this fungus.
C1 [Ellison, Amy R.; Savage, Anna E.; Zamudio, Kelly R.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA.
[Savage, Anna E.] Smithsonian Inst, Ctr Conservat & Evolutionary Genet, Washington, DC 20013 USA.
[DiRenzo, Grace V.; Lips, Karen R.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
[Langhammer, Penny] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA.
RP Ellison, AR (reprint author), Cornell Univ, E221 Corson Hall, Ithaca, NY 14853 USA.
EM are35@cornell.edu
RI Savage, Anna/D-8296-2015; Zamudio, Kelly/R-3533-2016;
OI Savage, Anna/0000-0002-4917-8358; Zamudio, Kelly/0000-0001-5107-6206;
Lips, Karen/0000-0002-2719-1551; Ellison, Amy/0000-0003-3885-6077
FU National Science Foundation [DEB-0815315, DEB-1120249]; Cornell Center
for Vertebrate Genomics; Cornell's Atkinson Center for Sustainable
Future
FX We thank Vicky Poole and Kevin Murphy of Project Golden Frog and the
Maryland Zoo in Baltimore for help in obtaining surplus Atelopus zeteki
for research; Steven Bogdanowicz and Jennifer Mosher for advice on
Illumina library preparation; Brian Gratwicke for photography; and Brian
Lazzaro and Zamudio Lab members for their constructive comments. This
study was supported by grants from the National Science Foundation
(DEB-0815315 and DEB-1120249), the Cornell Center for Vertebrate
Genomics, and Cornell's Atkinson Center for Sustainable Future.
NR 102
TC 23
Z9 23
U1 3
U2 72
PU GENETICS SOCIETY AMERICA
PI BETHESDA
PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA
SN 2160-1836
J9 G3-GENES GENOM GENET
JI G3-Genes Genomes Genet.
PD JUL 1
PY 2014
VL 4
IS 7
BP 1275
EP 1289
DI 10.1534/g3.114.010744
PG 15
WC Genetics & Heredity
SC Genetics & Heredity
GA AL7PK
UT WOS:000339326600009
PM 24841130
ER
PT J
AU Lemoine, X
Zeder, MA
Bishop, KJ
Rufolo, SJ
AF Lemoine, Ximena
Zeder, Melinda A.
Bishop, Katelyn J.
Rufolo, Scott J.
TI A new system for computing dentition-based age profiles in Sus scrofa
SO JOURNAL OF ARCHAEOLOGICAL SCIENCE
LA English
DT Article
DE Aging; Sus scrofa; Pig; Harvest profiles; Tooth eruption; Tooth wear;
Zooarchaeology
ID GOATS CAPRA-HIRCUS; TOOTH ERUPTION; MOLAR ERUPTION; WILD BOAR;
DOMESTICATION; FUSION; DEATH; WEAR
AB Reconstructing demographic profiles is valuable for revealing animal exploitation strategies at archaeological sites. For pig (Sus scrofa), the method presented by Grant (1982) demonstrates a promising technique for estimating age through dental wear pattern analysis. Grant's study is, however, limited as it requires complete or nearly complete mandibles, exclusively uses mandibular teeth, and offers only a relative scale for aging. While some work has been done to establish useful age classes based on tooth eruption and wear patterns in S. scrofa, a systematic study producing a standardized and comprehensive methodology for using tooth wear to age pigs remains to be conducted.
The study presented here is part of ongoing research aimed at developing new methods for the construction of S. scrofa demographic profiles based on both dentition and long bone fusion. In this paper, we present the results of a study of eruption and wear patterns in a large modern assemblage of wild boar which provides the basis for a new method for constructing pig harvest profiles and addresses some of the most serious limitations of Grant's earlier study. The utility of this method in detecting subtle differences in pig prey/harvest profiles is demonstrated through its application to three Near Eastern archaeological assemblages from three distinct time periods: Bronze Age Tell Leilan, Halafian Banahilk, and Epipaleolithic Hallan cemi, where residents likely employed widely different pig exploitation strategies. The results of these case studies demonstrate the ability of this method to reliably reconstruct age demography and distinguish age profiles between sites with different animal procurement strategies. This method provides a standardized means of collecting accurate and reliable age data crucial in examining patterns of past pig exploitation. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Lemoine, Ximena; Zeder, Melinda A.; Rufolo, Scott J.] Smithsonian Inst, Natl Museum Nat Hist, Dept Anthropol, Program Human Ecol & Archaeobiol, Washington, DC 20560 USA.
[Bishop, Katelyn J.] Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90024 USA.
RP Lemoine, X (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Anthropol, Program Human Ecol & Archaeobiol, Washington, DC 20560 USA.
EM lemoinex@SI.edu
FU Wenner-Gren Foundation [Gr. 8619]; Committee for Research and
Exploration of the National Geographic Society [9113-13]; Scholarly
Studies Humanities Fund of the Smithsonian Institution
FX This research has been supported by grants from the Wenner-Gren
Foundation (Gr. 8619), the Committee for Research and Exploration of the
National Geographic Society (9113-13), and the Scholarly Studies
Humanities Fund of the Smithsonian Institution. We would like to express
our very great appreciation to Sebastian Payne who not only provided us
access to the remarkable collection of wild boar he collected, but put
us up in his lovely home while we studied these skeletons. His
hospitality and generosity during this study greatly enhanced our work
and lifted our spirits. Thanks also go to Rosemary Payne for lending us
her study while we conducted this work. We would also like to thank the
Zoology Department of the Field Museum of Natural History and the
Division of Mammals of the National Museum of Natural History for
providing access to the modern museum collections analyzed in this
study. Additional thanks go to Anna Goldfield for redrawing tooth-wear
patterns in Fig. 1 for this publication. Finally, a special thank you
goes to Bruce D. Smith for providing us with the appropriate attire to
get through this study.
NR 43
TC 6
Z9 6
U1 1
U2 16
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0305-4403
EI 1095-9238
J9 J ARCHAEOL SCI
JI J. Archaeol. Sci.
PD JUL
PY 2014
VL 47
BP 179
EP 193
DI 10.1016/j.jas.2014.04.002
PG 15
WC Anthropology; Archaeology; Geosciences, Multidisciplinary
SC Anthropology; Archaeology; Geology
GA AL3OE
UT WOS:000339037300016
ER
PT J
AU Lemorini, C
Plummer, TW
Braun, DR
Crittenden, AN
Ditchfield, PW
Bishop, LC
Hertel, F
Oliver, JS
Marlowe, FW
Schoeninger, MJ
Potts, R
AF Lemorini, Cristina
Plummer, Thomas W.
Braun, David R.
Crittenden, Alyssa N.
Ditchfield, Peter W.
Bishop, Laura C.
Hertel, Fritz
Oliver, James S.
Marlowe, Frank W.
Schoeninger, Margaret J.
Potts, Richard
TI Old stones' song: Use-wear experiments and analysis of the Oldowan
quartz and quartzite assemblage from Kanjera South (Kenya)
SO JOURNAL OF HUMAN EVOLUTION
LA English
DT Article
DE Early Pleistocene; Oldowan archaeological sites; Artifact function;
Kenya
ID UNDERGROUND-STORAGE ORGANS; INVESTIGATING MICROWEAR POLISHES; HUMAN
LIFE-HISTORY; ISOTOPIC EVIDENCE; FALLBACK FOODS; OLDUVAI-GORGE;
HOMO-ERECTUS; PLANT FOODS; MORTALITY PROFILES; FLK ZINJANTHROPUS
AB Evidence of Oldowan tools by similar to 2.6 million years ago (Ma) may signal a major adaptive shift in hominin evolution. While tool-dependent butchery of large mammals was important by at least 2.0 Ma, the use of artifacts for tasks other than faunal processing has been difficult to diagnose. Here we report on use-wear analysis of similar to 2.0 Ma quartz and quartzite artifacts from Kanjera South, Kenya. A use-wear framework that links processing of specific materials and tool motions to their resultant use-wear patterns was developed. A blind test was then carried out to assess and improve the efficacy of this experimental use-wear framework, which was then applied to the analysis of 62 Oldowan artifacts from Kanjera South. Use-wear on a total of 23 artifact edges was attributed to the processing of specific materials. Use-wear on seven edges (30%) was attributed to animal tissue processing, corroborating zooarchaeological evidence for butchery at the site. Use-wear on 16 edges (70%) was attributed to the processing of plant tissues, including wood, grit-covered plant tissues that we interpret as underground storage organs (USOs), and stems of grass or sedges. These results expand our knowledge of the suite of behaviours carried out in the vicinity of Kanjera South to include the processing of materials that would be 'invisible' using standard archaeological methods. Wood cutting and scraping may represent the production and/or maintenance of wooden tools. Use-wear related to USO processing extends the archaeological evidence for hominin acquisition and consumption of this resource by over 1.5 Ma. Cutting of grasses, sedges or reeds may be related to a subsistence task (e.g., grass seed harvesting, cutting out papyrus culm for consumption) and/or a non-subsistence related task (e.g., production of 'twine,' simple carrying devices, or bedding). These results highlight the adaptive significance of lithic technology for hominins at Kanjera. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Lemorini, Cristina] Univ Roma La Sapienza, Dipartimento Sci Antichita, I-00185 Rome, Italy.
[Plummer, Thomas W.] CUNY Queens Coll, Dept Anthropol, Flushing, NY 11367 USA.
[Plummer, Thomas W.] CUNY, NYCEP, Flushing, NY 11367 USA.
[Braun, David R.] Univ Cape Town, Dept Archaeol, ZA-7701 Rondebosch, South Africa.
[Braun, David R.] George Washington Univ, Ctr Adv Study Hominid Paleobiol, Washington, DC 20052 USA.
[Braun, David R.] Max Planck Inst Evolutionary Anthropol, Dept Human Evolut, D-04103 Leipzig, Germany.
[Crittenden, Alyssa N.] Univ Nevada, Dept Anthropol, Las Vegas, NV 89154 USA.
[Ditchfield, Peter W.] Univ Oxford, Res Lab Archaeol & Hist Art, Oxford OX1 3QT, England.
[Bishop, Laura C.; Oliver, James S.] Liverpool John Moores Univ, Sch Nat Sci & Psychol, Res Ctr Evolutionary Anthropol & Palaeoecol, Liverpool L3 3AF, Merseyside, England.
[Hertel, Fritz] Calif State Univ Northridge, Dept Biol, Northridge, CA 91330 USA.
[Oliver, James S.] Illinois State Museum, Dept Anthropol, Springfield, IL 62703 USA.
[Marlowe, Frank W.] Univ Cambridge, Dept Archaeol & Anthropol, Div Biol Anthropol, Cambridge CB2 3QG, England.
[Schoeninger, Margaret J.] Univ Calif San Diego, Dept Anthropol, San Diego, CA 92093 USA.
[Potts, Richard] Smithsonian Inst, Natl Museum Nat Hist, Human Origins Program, Washington, DC 20013 USA.
[Potts, Richard] Natl Museums Kenya, Dept Earth Sci, Palaeontol Sect, Nairobi, Kenya.
RP Plummer, TW (reprint author), CUNY Queens Coll, Dept Anthropol, Flushing, NY 11367 USA.
EM cristina.lemorini@uniroma1.it; thomas.plummer@qc.cuny.edu;
drbraun76@gmail.com; Alyssa.Crittenden@unlv.edu;
peter.ditchfield@rlaha.ox.ac.uk; L.C.Bishop@ljmu.ac.uk;
fritz.hertel@csun.edu; J.S.Oliver@2012.ljmu.ac.uk;
frank.marlowe@gmail.com; mjschoen@ucsd.edu; POTTSR@si.edu
OI Bishop, Laura/0000-0002-4216-8667; , cristina/0000-0002-6998-1615
FU Smithsonian's Human Origins Program; L. S. B. Leakey Foundation;
National Geographic Society; National Science Foundation; Wenner-Gren
Foundation; Professional Staff Congress-City University of New York
Research Award Program; University of California, San Diego
FX We are grateful to the Office of the President of Kenya, the National
Museums of Kenya for permission to study the Kanjera fossils and
artifacts, and the Tanzanian Commission for Science and Technology
(COSTECH). The Homa Peninsula field research was conducted through the
cooperative agreement between the National Museums of Kenya and the
Smithsonian Institution. Logistical support and funding was also
provided by the Smithsonian's Human Origins Program. Funding for Kanjera
field and laboratory work from the L. S. B. Leakey Foundation, the
National Geographic Society, the National Science Foundation, the
Wenner-Gren Foundation, and the Professional Staff Congress-City
University of New York Research Award Program is gratefully
acknowledged. The Tanzanian fieldwork was funded by the National Science
Foundation and the University of California, San Diego. We thank
Jennifer Parkinson and Frances Forrest for their assistance in
conducting the blind test experiments. Finally, we would also like to
gratefully acknowledge the Hadza for their participation.
NR 126
TC 22
Z9 22
U1 5
U2 30
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0047-2484
J9 J HUM EVOL
JI J. Hum. Evol.
PD JUL
PY 2014
VL 72
BP 10
EP 25
DI 10.1016/j.jhevol.2014.03.002
PG 16
WC Anthropology; Evolutionary Biology
SC Anthropology; Evolutionary Biology
GA AL4XZ
UT WOS:000339139400002
PM 24726228
ER
PT J
AU Williams, EM
Gordon, AD
Richmond, BG
AF Williams, E. M.
Gordon, A. D.
Richmond, B. G.
TI Biomechanical strategies for accuracy and force generation during stone
tool production
SO JOURNAL OF HUMAN EVOLUTION
LA English
DT Article
DE Dart-thrower's arc; Hand and wrist evolution; Kinematics; Knapping;
Oldowan tool making; Wrist anatomy
ID OVERARM THROWS; KNUCKLE-WALKING; HUMAN-EVOLUTION; COORDINATION PATTERNS;
BASEBALL PLAYERS; DIFFERENT SPEEDS; MIDCARPAL JOINT; FOSSIL EVIDENCE;
HAND; WRIST
AB Multiple hominin species used and produced stone tools, and the archaeological record provides evidence that stone tool behaviors intensified among later members of the genus Homo. This intensification is widely thought to be the product of cognitive and anatomical adaptations that enabled later Homo taxa to produce stone tools more efficiently relative to earlier hominin species. This study builds upon recent investigations of the knapping motions of modern humans to test whether aspects of our upper limb anatomy contribute to accuracy and/or efficiency. Knapping kinematics were captured from eight experienced knappers using a Vicon motion capture system. Each subject produced a series of Oldowan bifacial choppers under two conditions: with normal wrist mobility and while wearing a brace that reduced wrist extension (similar to 30 degrees-35 degrees), simulating one aspect of the likely primitive hominin condition. Under normal conditions, subjects employed a variant of the proximal-to-distal joint sequence common to throwing activities: subjects initiated down-swing upper limb motion at the shoulder and proceeded distally, increasing peak linear and angular velocities from the shoulder to the elbow to the wrist. At the wrist, subjects utilized the 'dart-thrower's arc,' the most stable plane of radiocarpal motion, during which wrist extension is coupled with radial deviation and flexion with ulnar deviation. With an unrestrained wrist, subjects achieved significantly greater target accuracy, wrist angular velocities, and hand linear velocities compared with the braced condition. Additionally, the modern wrist's ability to reach high degrees of extension (>= 28.5 degrees) following strike may decrease risk of carpal and ligamentous damage caused by hyperextension. These results suggest that wrist extension in humans contributes significantly to stone tool-making performance. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Williams, E. M.] Chatham Univ, Dept Biol, Pittsburgh, PA 15232 USA.
[Gordon, A. D.] SUNY Albany, Dept Anthropol, Albany, NY 12222 USA.
[Richmond, B. G.] George Washington Univ, Dept Anthropol, Ctr Adv Study Hominid Paleobiol, Washington, DC 20052 USA.
[Richmond, B. G.] Smithsonian Inst, Natl Museum Nat Hist, Human Origins Program, Washington, DC 20560 USA.
RP Williams, EM (reprint author), Chatham Univ, Dept Biol, Buhl Hall,Woodland Rd, Pittsburgh, PA 15232 USA.
EM ewilliams2@chatham.edu; agordon@albany.edu; brich@gwu.edu
OI Gordon, Adam/0000-0002-1807-4644
FU National Science Foundation [BCS-0903652]; Integrative Graduate
Education and Research Traineeship (IGERT) [DGE 9987590, DGE 0801634];
L'Oreal USA Fellowship for Women in Science; Bouchet Dissertation
Writing Fellowship (The George Washington University Chapter); George
Washington University
FX We are very grateful to the knappers that took part in this experiment.
We appreciate the assistance provided by Alison Brooks, Peter Lucas,
Daniel Schmitt, Dietrich Stout, and Kevin Hatala in preparing this
manuscript. We also wish to thank Craig Ratzat at Neolithics.com for his
careful selection of raw materials for this project. This research was
supported by the National Science Foundation's Doctoral Dissertation
Improvement Grant (# BCS-0903652) and Integrative Graduate Education and
Research Traineeship (IGERT # DGE 9987590 and # DGE 0801634), The
L'Oreal USA Fellowship for Women in Science, The Bouchet Dissertation
Writing Fellowship (The George Washington University Chapter), and by
The George Washington University's Research Enhancement Fund and
Selective Excellence Fund.
NR 71
TC 4
Z9 4
U1 2
U2 19
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0047-2484
J9 J HUM EVOL
JI J. Hum. Evol.
PD JUL
PY 2014
VL 72
BP 52
EP 63
DI 10.1016/j.jhevol.2014.03.004
PG 12
WC Anthropology; Evolutionary Biology
SC Anthropology; Evolutionary Biology
GA AL4XZ
UT WOS:000339139400004
PM 24746547
ER
PT J
AU Li, R
Wen, J
AF Li, Rong
Wen, Jun
TI Phylogeny and biogeography of Asian Schefflera (Araliaceae) based on
nuclear and plastid DNA sequence data
SO JOURNAL OF SYSTEMATICS AND EVOLUTION
LA English
DT Article
DE Araliaceae; Asian Schefflera; biogeography; phylogeny
ID CHLOROPLAST DNA; PHILIPPINE ARCHIPELAGO; MOLECULAR PHYLOGENY; MALAYSIAN
REGION; CLOSE RELATIVES; RIBOSOMAL DNA; LARGE GENUS; DATA SETS;
EVOLUTION; DIVERSIFICATION
AB The phylogeny of Asian Schefflera was inferred from sequences of the nuclear ribosomal internal transcribed spacer region, and six plastid regions (the ndhF gene, the trnL-trnF region, the rps16 intron, the atpB-rbcL intergenic spacer, the rpl16 intron, and the psbA-trnH intergenic spacer). Phylogenetic analyses of the combined plastid and internal transcribed spacer data with parsimony and Bayesian methods strongly support the monophyly of Asian Schefflera. The genus is supported to be closely related to Heteropanax and Tetrapanax with the small tropical continental Asian genus Heteropanax as its sister. Within Asian Schefflera, four distinct subclades were identified: (i) the widely distributed Asian Heptapleurum group with no styles in the gynoecium; (ii) the main Agalma group with racemose or spicate inflorescence units with a few umbellate taxa; (iii) the Schefflera hypoleuca group; and (iv) the Schefflera heptaphylla group. In a broader phylogenetic framework of Araliaceae, Asian Schefflera is hypothesized to have originated in continental Asia at 57.41 Mya (95% high posterior density interval of 40.33-76.06 Mya) in the early Tertiary and radiated into the now SE Asia, eastern Himalaya, and E Asia at 46.11 Mya (95% high posterior density interval of 33.02-60.69 Mya). Its subsequent diversification in Asia may have been driven largely by the collision of the Indian plate with the Asian plate in the middle Eocene and the collision of the Australian margin with the Eurasian margin in the early Miocene.
C1 [Li, Rong] Chinese Acad Sci, Kunming Inst Bot, Key Lab Biodivers & Biogeog, Kunming 650201, Peoples R China.
[Wen, Jun] Smithsonian Inst, Natl Museum Nat Hist, Dept Bot, Washington, DC 20013 USA.
RP Wen, J (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Bot, Washington, DC 20013 USA.
EM wenj@si.edu
FU John D. and Catherine T. MacArthur Foundation; Laboratory of Analytical
Biology at the National Museum of Natural History of the Smithsonian
Institution; Independent Research Program of the Chinese Academy of
Sciences [KSCX2-EW-J-24]
FX The study was supported by a grant from the John D. and Catherine T.
MacArthur Foundation, the Laboratory of Analytical Biology at the
National Museum of Natural History of the Smithsonian Institution, and
the Independent Research Program of the Chinese Academy of Sciences
(Grant No. KSCX2-EW-J-24). Laboratory assistance was provided by Jeff
HUNT, Lei XIE, Xinwei XU, and Yunjuan ZUO. We thank S. OLIVER, M. K.
PATHAK, H. KATO, Heng LI, and Yumin SHUI for collecting samples and
field assistance.
NR 80
TC 7
Z9 8
U1 5
U2 23
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1674-4918
EI 1759-6831
J9 J SYST EVOL
JI J. Syst. Evol.
PD JUL
PY 2014
VL 52
IS 4
BP 431
EP 449
DI 10.1111/jse.12052
PG 19
WC Plant Sciences
SC Plant Sciences
GA AL3EE
UT WOS:000339007600004
ER
PT J
AU Dalebout, ML
Baker, CS
Steel, D
Thompson, K
Robertson, KM
Chivers, SJ
Perrin, WF
Goonatilake, M
Anderson, RC
Mead, JG
Potter, CW
Thompson, L
Jupiter, D
Yamada, TK
AF Dalebout, Merel L.
Baker, C. Scott
Steel, Debbie
Thompson, Kirsten
Robertson, Kelly M.
Chivers, Susan J.
Perrin, William F.
Goonatilake, Manori
Anderson, R. Charles
Mead, James G.
Potter, Charles W.
Thompson, Lisa
Jupiter, Danielle
Yamada, Tadasu K.
TI Resurrection of Mesoplodon hotaula Deraniyagala 1963: A new species of
beaked whale in the tropical Indo-Pacific
SO MARINE MAMMAL SCIENCE
LA English
DT Article
DE speciation; taxonomy; species delimitation; mtDNA; nuclear introns;
Y-chromosome; morphology; Mesoplodon; beaked whale
ID DNA EXTRACTION; ANCIENT DNA; ZIPHIIDAE; PURIFICATION; SEQUENCE; NUCLEAR;
CETACEA; DISTINCTIVENESS; PHYLOGEOGRAPHY; DELIMITATION
AB We present genetic and morphological evidence supporting the recognition of a previously synonymized species of Mesoplodon beaked whale in the tropical Indo-Pacific, Mesoplodon hotaula. Although the new species is closely-related to the rare ginkgo-toothed beaked whale M. ginkgodens, we show that these two lineages can be differentiated by maternally (mitochondrial DNA), biparentally (autosomal), and paternally (Y chromosome) inherited DNA sequences, as well as by morphological features. The reciprocal monophyly of the mtDNA genealogies and the largely parapatric distribution of these lineages is consistent with reproductive isolation. The new lineage is currently known from at least seven specimens: Sri Lanka (1), Gilbert Islands, Republic of Kiribati (1+), Palmyra Atoll, Northern Line Islands, U. S. A. (3), Maldives (1), and Seychelles (1). The type specimen (Sri Lanka) was described as a new species, M. hotaula, in 1963, but later synonymized with M. ginkgodens. This discovery brings the total number of Mesoplodon species to 15, making it, by far, the most speciose yet least known genus of cetaceans.
C1 [Dalebout, Merel L.] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia.
[Baker, C. Scott; Steel, Debbie; Thompson, Kirsten] Univ Auckland, Sch Biol Sci, Auckland 1000, New Zealand.
[Baker, C. Scott; Steel, Debbie] Oregon State Univ, Hatfield Marine Sci Ctr, Marine Mammal Inst, Newport, OR 97365 USA.
[Robertson, Kelly M.; Chivers, Susan J.; Perrin, William F.] NOAA, Southwest Fisheries Sci Ctr, NMFS, La Jolla, CA 92037 USA.
[Goonatilake, Manori] Dept Natl Museums, Colombo 7, Sri Lanka.
[Anderson, R. Charles] Manta Marine Pvt Ltd, Male, Maldives.
[Mead, James G.; Potter, Charles W.] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20560 USA.
[Thompson, Lisa; Jupiter, Danielle] Isl Conservat Soc Fdn Conservat Iles Pointe Larue, Victoria, Seychelles.
[Yamada, Tadasu K.] Natl Sci Museum, Shinjuku Ku, Tokyo 1690073, Japan.
RP Dalebout, ML (reprint author), Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia.
EM mereldalebout@gmail.com
OI Thompson, Kirsten Freja/0000-0003-4277-3549
FU US Marine Mammal Commission; National Geographic Society
FX For collection and access to samples and specimens, we thank Roger V.
Grace (Kiribati), NOAA Pacific Islands Regional Office, U. S. Fish and
Wildlife Service, and the Nature Conservancy (Palmyra Atoll), New
Zealand Department of Conservation field center staff (NZ DoC), John
Wang, FormosaCetus, Taiwan, Janette Norman and Wayne Longmore, Museum
Victoria, Melbourne, Australia, and Abdullah Asif Waheed, Maldives. We
thank the Director General of the Department of Wildlife Conservation of
Sri Lanka, and the Director of Departments of the National Museums of
Sri Lanka for permission to sample the M. hotaula holotype and
tissue-export permits. We thank Bob Pitman, US NMFS Southwest Fisheries
Science Center, for discussion regarding color pattern differences,
Anton van Helden, National Museum of New Zealand Te Papa Tongarewa for
photographs and discussion regarding M. ginkgodens. This manuscript
benefitted from comments by Randall Reeves, IUCN Cetacean Specialist
Group, and three anonymous reviewers. For additional photographs, we
thank Hans Stoffregen and Bryan Williams (NZ DoC). Partial funding for
laboratory analyses was provided by grants to CSB from the US Marine
Mammal Commission and the National Geographic Society. MLD is a Visiting
Fellow at the University of New South Wales, Sydney, Australia.
NR 62
TC 12
Z9 15
U1 0
U2 37
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0824-0469
EI 1748-7692
J9 MAR MAMMAL SCI
JI Mar. Mamm. Sci.
PD JUL
PY 2014
VL 30
IS 3
BP 1081
EP 1108
DI 10.1111/mms.12113
PG 28
WC Marine & Freshwater Biology; Zoology
SC Marine & Freshwater Biology; Zoology
GA AL4KM
UT WOS:000339101800013
ER
PT J
AU MacPherson, GJ
Krot, AN
AF MacPherson, Glenn J.
Krot, Alexander N.
TI The formation of Ca-, Fe-rich silicates in reduced and oxidized CV
chondrites: The roles of impact-modified porosity and permeability, and
heterogeneous distribution of water ices
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID OXYGEN-ISOTOPIC COMPOSITIONS; ALLENDE DARK INCLUSIONS; EARLY
SOLAR-SYSTEM; CARBONACEOUS CHONDRITES; MAGNETIC-SUSCEPTIBILITY; AQUEOUS
ALTERATION; ASTEROIDAL ALTERATION; FAYALITE FORMATION; IODINE-XENON;
BALI-LIKE
AB CV (Vigarano type) carbonaceous chondrites, comprising Allende-like (CVoxA) and Bali-like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid-assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside-hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe-Ni-sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca-, Fe-rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca, Al-rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large-scale (>several cm) fluid transport. Published Mn-53-Cr-53 ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice-bearing asteroids by decay of Al-26, not shock metamorphism.
C1 [MacPherson, Glenn J.] Smithsonian Inst, Dept Mineral Sci, US Natl Museum Nat Hist, Washington, DC 20560 USA.
[Krot, Alexander N.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean Earth Sci & Technol, Honolulu, HI 96821 USA.
RP MacPherson, GJ (reprint author), Smithsonian Inst, Dept Mineral Sci, US Natl Museum Nat Hist, Washington, DC 20560 USA.
EM macphers@si.edu
FU NASA [NNX11AD43G, NNX07AJ05G, NNX10AH76G]
FX We thank Cari Corrigan and Michael Velbel for very helpful and
illuminating discussions. We also thank Larry Grossman and Steve Simon
(both at University of Chicago) for very generously loaning us thin
sections of Allende CAIs from their collection. The paper benefited from
reviews by Neyda Abreu, Lysa Chizmadia, and Associate Editor Ed Scott.
This work was supported under NASA grants NNX11AD43G and NNX07AJ05G
(GJM, P.I.), and NNX10AH76G (ANK, P.I.).
NR 75
TC 11
Z9 11
U1 1
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD JUL
PY 2014
VL 49
IS 7
BP 1250
EP 1270
DI 10.1111/maps.12316
PG 21
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AL5FQ
UT WOS:000339159300008
ER
PT J
AU Slater, GJ
AF Slater, Graham J.
TI Correction to 'Phylogenetic evidence for a shift in the mode of
mammalian body size evolution at the Cretaceous-Palaeogene boundary',
and a note on fitting macroevolutionary models to comparative
paleontological data sets
SO METHODS IN ECOLOGY AND EVOLUTION
LA English
DT Article
DE fossils; macroevolution; non-ultrametric; Ornstein-Uhlenbeck;
variance-covariance matrix
ID TREES
AB In this note, I correct two errors from an earlier paper that investigated tempo and mode of mammalian body size evolution across the Cretaceous-Palaeogene boundary. Both errors arose from use of branch length rescaling under the Ornstein-Uhlenbeck process, which I here show to be inappropriate for non-ultrametric trees. Correction of these errors does not change the conclusions of my original study. However, recognition of the underlying problem highlights that comparative methods developed by biologists for examining trait evolution on ultrametric trees may not always be appropriate for paleontological datasets.
C1 Smithsonian Inst, Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20013 USA.
RP Slater, GJ (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20013 USA.
EM SlaterG@si.edu
NR 13
TC 6
Z9 6
U1 3
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2041-210X
EI 2041-2096
J9 METHODS ECOL EVOL
JI Methods Ecol. Evol.
PD JUL
PY 2014
VL 5
IS 7
BP 714
EP 718
DI 10.1111/2041-210X.12201
PG 5
WC Ecology
SC Environmental Sciences & Ecology
GA AL6MT
UT WOS:000339247500015
ER
PT J
AU Kralj-Fiser, S
Celik, T
Lokovsek, T
Suen, K
Siling, R
Kuntner, M
AF Kralj-Fiser, Simona
Celik, Tatjana
Lokovsek, Tjasa
Suen, Klavdija
Siling, Rebeka
Kuntner, Matjaz
TI Development and growth in synanthropic species: plasticity and
constraints
SO NATURWISSENSCHAFTEN
LA English
DT Article
DE Arthropod development; Growth patterns; Life history; Nuctenea
umbratica; Spider; Urban ecology
ID SEXUAL SIZE DIMORPHISM; ORB-WEAVING SPIDER; MANDUCA-SEXTA L; BODY-SIZE;
PHENOTYPIC PLASTICITY; NEPHILA-CLAVIPES; TOBACCO HORNWORM; LIFE-HISTORY;
ARANEAE; TEMPERATURE
AB Urbanization poses serious extinction risks, yet some species thrive in urban environments. This may be due to a pronounced developmental plasticity in these taxa, since phenotypically, plastic organisms may better adjust to unpredictable urban food resources. We studied phenotypic plasticity in Nuctenea umbratica, a common European forest and urban vegetation spider. We subjected spiderlings to low (LF), medium (MF) and high (HF) food treatments and documented their growth and developmental trajectories into adulthood. Spiders from the three treatments had comparable numbers of instars and growth ratios, but differed in developmental periods. Longest developing LF spiders (a (TM) EuroaEuro parts per thousand= 390, a (TM),aEuro parts per thousand= 320 days) had the smallest adults, but MF (a (TM) EuroaEuro parts per thousand= 300, a (TM),aEuro parts per thousand= 240 days) and HF (a (TM) EuroaEuro parts per thousand= 240, a (TM),aEuro parts per thousand= 210 days) spiders reached comparable adult sizes through shorter development. While males and females had comparable instar numbers, females had longer development, higher growth ratios, adult sizes and mass; and while males adjusted their moulting to food availability, female moulting depended on specific mass, not food treatment. We discussed the patterns of Nuctenea sex-specific development and compared our results with published data on two other Holarctic urban colonizers (Larinioides sclopetarius, Zygiella x-notata) exhibiting high plasticity and fast generation turn-over. We conclude that despite relatively unconstrained developmental time in the laboratory enabling Nuctenea to achieve maximal mass and size-main female fitness proxies-their relatively fixed growth ratio and long generation turn-over may explain their lower success in urban environments.
C1 [Kralj-Fiser, Simona; Celik, Tatjana; Lokovsek, Tjasa; Kuntner, Matjaz] Slovenian Acad Sci & Arts, Inst Biol, Ctr Sci Res, SI-1001 Ljubljana, Slovenia.
[Kralj-Fiser, Simona] Univ Primorska, Fac Math Nat Sci & Informat Technol, SI-6000 Koper, Slovenia.
[Suen, Klavdija] Univ Ljubljana, Biotech Fac, SI-1000 Ljubljana, Slovenia.
[Siling, Rebeka] Inst Water Republ Slovenia, SI-1000 Ljubljana, Slovenia.
[Kuntner, Matjaz] Smithsonian Inst, Dept Entomol, Natl Museum Nat Hist, Washington, DC 20013 USA.
[Kuntner, Matjaz] Hubei Univ, Coll Life Sci, Ctr Behav Ecol & Evolut, Wuhan 430062, Hubei, Peoples R China.
RP Kralj-Fiser, S (reprint author), Slovenian Acad Sci & Arts, Inst Biol, Ctr Sci Res, Novi Trg 2,POB 306, SI-1001 Ljubljana, Slovenia.
EM simonakf@gmail.com
FU Slovenian Research Agency [Z1-4194, P1-0236]
FX This work was funded by the Slovenian Research Agency (grants Z1-4194
and P1-0236).
NR 67
TC 0
Z9 0
U1 3
U2 25
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0028-1042
EI 1432-1904
J9 NATURWISSENSCHAFTEN
JI Naturwissenschaften
PD JUL
PY 2014
VL 101
IS 7
BP 565
EP 575
DI 10.1007/s00114-014-1194-y
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AL3BC
UT WOS:000338998900006
PM 24898706
ER
PT J
AU Baber, O
Slot, M
Celis, G
Kitajima, K
AF Baber, Ori
Slot, Martijn
Celis, Gerardo
Kitajima, Kaoru
TI Diel patterns of leaf carbohydrate concentrations differ between
seedlings and mature trees of two sympatric oak species
SO BOTANY-BOTANIQUE
LA English
DT Article
DE carbohydrate dynamics; gas exchange; Quercus virginiana; Quercus
hemisphaerica; plant ontogeny
ID QUERCUS-VIRGINIANA; GAS-EXCHANGE; PLANT-GROWTH; CO2; MORTALITY; STORAGE;
LEAVES; VOLUME
AB A fundamental aspect of the carbon cycle is the exchange of carbon between plants and the atmosphere. It is, therefore, important to understand factors that affect differences in gas exchange and carbon balance within and among species. Concentrations of nonstructural carbohydrates are often used as a proxy for carbon balance. We determined diel patterns of leaf carbohydrate concentrations in relation to irradiance (sun vs. shade) in seedlings and mature trees of two sympatric oak species (Quercus virginiana Mill. and Quercus hemisphaerica Bartram ex Willd.). For seedlings, we also measured leaf gas exchange. Higher sun exposure significantly increased photosynthesis and carbohydrate concentrations in both species. Carbohydrate concentrations of seedling leaves showed strong diel fluctuations, whereas concentrations in mature tree leaves did not. This contrast might be attributed to faster carbohydrate export from leaves of mature trees. The difference in sink strength between seedlings and adults may be related to the decreasing ratio of leaf mass to plant mass with ontogeny, increasing the demand for carbohydrates per unit leaf mass. Seedlings and mature trees are clearly functionally different and care must be taken when extrapolating results from seedling experiments to mature trees.
C1 [Baber, Ori; Slot, Martijn; Celis, Gerardo; Kitajima, Kaoru] Univ Florida, Dept Biol, Gainesville, FL 32611 USA.
[Slot, Martijn; Kitajima, Kaoru] Smithsonian Trop Res Inst, Balboa, Panama.
[Kitajima, Kaoru] Kyoto Univ, Grad Sch Agr, Kyoto, Japan.
RP Slot, M (reprint author), Smithsonian Trop Res Inst, Apartado 0843-03092, Balboa, Panama.
EM martijnslot78@gmail.com
OI Celis, Gerardo/0000-0003-1265-4063
NR 29
TC 4
Z9 4
U1 0
U2 16
PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
PI OTTAWA
PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA
SN 1916-2790
EI 1916-2804
J9 BOTANY
JI Botany
PD JUL
PY 2014
VL 92
IS 7
BP 535
EP 540
DI 10.1139/cjb-2014-0032
PG 6
WC Plant Sciences
SC Plant Sciences
GA AL0SS
UT WOS:000338837700008
ER
PT J
AU Maragkoudakis, A
Zezas, A
Ashby, MLN
Willner, SP
AF Maragkoudakis, A.
Zezas, A.
Ashby, M. L. N.
Willner, S. P.
TI Aperture effects on spectroscopic galaxy activity classification
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: active; galaxies: nuclei; galaxies: Seyfert; galaxies:
starburst
ID DIGITAL SKY SURVEY; H-II REGIONS; GALACTIC NUCLEI; SEMIEMPIRICAL
ANALYSIS; HOST GALAXIES; PARAMETERS; SAMPLE
AB Activity classification of galaxies based on long-slit and fibre spectroscopy can be strongly influenced by aperture effects. Here, we investigate how activity classification for 14 nearby galaxies depends on the proportion of the host galaxy's light that is included in the aperture. We use both observed long-slit spectra and simulated elliptical-aperture spectra of different sizes. The degree of change varies with galaxy morphology and nuclear activity type. Starlight removal techniques can mitigate but not remove the effect of host galaxy contamination in the nuclear aperture. Galaxies with extranuclear star formation can show higher [O iii] lambda 5007/H beta ratios with increasing aperture, in contrast to the naive expectation that integrated light will only dilute the nuclear emission lines. We calculate the mean dispersion for the diagnostic line ratios used in the standard BPT diagrams with respect to the central aperture of spectral extraction to obtain an estimate of the uncertainties resulting from aperture effects.
C1 [Maragkoudakis, A.; Zezas, A.] Univ Crete, Dept Phys, Iraklion 71003, Greece.
[Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Zezas, A.] Fdn Res & Technol Hellas FORTH, Iraklion 71003, Greece.
RP Maragkoudakis, A (reprint author), Univ Crete, Dept Phys, Iraklion 71003, Greece.
EM amarag@physics.uoc.gr
RI Zezas, Andreas/C-7543-2011
OI Zezas, Andreas/0000-0001-8952-676X
FU 'Maria Michail Manasaki' bequest fellowship; HST [AR-12621-01-A]; NASA
[NNX12AN05G]; Chandra [AR1-12011X]; Alfred P. Sloan Foundation; National
Science Foundation; US Department of Energy Office of Science
FX This work was supported by a 'Maria Michail Manasaki' bequest
fellowship. AM acknowledges partial support by HST grant AR-12621-01-A.
AZ acknowledges partial support by NASA grant NNX12AN05G, and Chandra
grant AR1-12011X. We would like to thank the referee for his/her useful
comments and suggestions which have improved the clarity of this paper.
We also thank observers P. Berlind and M. Calkins for performing the
FLWO observations. Funding for SDSS-III has been provided by the Alfred
P. Sloan Foundation, the Participating Institutions, the National
Science Foundation, and the US Department of Energy Office of Science.
The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by
the Astrophysical Research Consortium for the Participating Institutions
of the SDSS-III Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Laboratory, Carnegie
Mellon University, University of Florida, the French Participation
Group, the German Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA
Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max Planck
Institute for Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State University,
University of Portsmouth, Princeton University, the Spanish
Participation Group, University of Tokyo, University of Utah, Vanderbilt
University, University of Virginia, University of Washington, and Yale
University. This research has made use of the NASA/IPAC Extragalactic
Database (NED) which is operated by the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National
Aeronautics and Space Administration.
NR 29
TC 4
Z9 4
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2014
VL 441
IS 3
BP 2296
EP 2308
DI 10.1093/mnras/stu634
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RE
UT WOS:000338763600037
ER
PT J
AU Brorby, M
Kaaret, P
Prestwich, A
AF Brorby, M.
Kaaret, P.
Prestwich, A.
TI X-ray binary formation in low-metallicity blue compact dwarf galaxies
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: dwarf; galaxies: star formation; X-rays: galaxies
ID STAR-FORMING GALAXIES; METAL-POOR GALAXIES; PRIMORDIAL ABUNDANCE;
LUMINOSITY FUNCTIONS; FORMATION RATES; EMISSION; CLUSTERS; UNIVERSE;
DISPLACEMENT; EVOLUTION
AB X-rays from binaries in small, metal-deficient galaxies may have contributed significantly to the heating and reionization of the early Universe. We investigate this claim by studying blue compact dwarfs (BCDs) as local analogues to these early galaxies. We constrain the relation of the X-ray luminosity function (XLF) to the star formation rate (SFR) using a Bayesian approach applied to a sample of 25 BCDs. The functional form of the XLF is fixed to that found for near-solar metallicity galaxies and is used to find the probability distribution of the normalization that relates X-ray luminosity to SFR. Our results suggest that the XLF normalization for low-metallicity BCDs (12+log(O/H) < 7.7) is not consistent with the XLF normalization for galaxies with near-solar metallicities, at a confidence level 1-5 x 10(- 6). The XLF normalization for the BCDs is found to be 14.5 +/- 4.8 (M-circle dot(-1) yr), a factor of 9.7 +/- 3.2 higher than for near-solar metallicity galaxies. Simultaneous determination of the XLF normalization and power-law index result in estimates of q = 21.2(8.8)(+12.2) (M-circle dot(-1) yr) and alpha = 1.89(-0.30)(+0.41), respectively. Our results suggest a significant enhancement in the population of high-mass X-ray binaries in BCDs compared to the near-solar metallicity galaxies. This suggests that X-ray binaries could have been a significant source of heating in the early Universe.
C1 [Brorby, M.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Prestwich, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Brorby, M (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
EM matthew-brorby@uiowa.edu
FU National Aeronautics and Space Administration through Chandra Award
[GO0-11103X]; National Aeronautics Space Administration [NAS8-03060]
FX Support for this work was provided by the National Aeronautics and Space
Administration through Chandra Award Number GO0-11103X issued by the
Chandra X-ray Observatory Center, which is operated by the Smithsonian
Astrophysical Observatory for and on behalf of the National Aeronautics
Space Administration under contract NAS8-03060.; This work is based in
part on observations made with the Spitzer Space Telescope, which is
operated by the Jet Propulsion Laboratory, California Institute of
Technology under a contract with NASA. This research has made use of the
NASA/IPAC Infrared Science Archive, which is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration.
NR 34
TC 22
Z9 22
U1 0
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2014
VL 441
IS 3
BP 2346
EP 2353
DI 10.1093/mnras/stu736
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RE
UT WOS:000338763600041
ER
PT J
AU Vidotto, AA
Gregory, SG
Jardine, M
Donati, JF
Petit, P
Morin, J
Folsom, CP
Bouvier, J
Cameron, AC
Hussain, G
Marsden, S
Waite, IA
Fares, R
Jeffers, S
do Nascimento, JD
AF Vidotto, A. A.
Gregory, S. G.
Jardine, M.
Donati, J. F.
Petit, P.
Morin, J.
Folsom, C. P.
Bouvier, J.
Cameron, A. C.
Hussain, G.
Marsden, S.
Waite, I. A.
Fares, R.
Jeffers, S.
do Nascimento, J. D.
TI Stellar magnetism: empirical trends with age and rotation
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE techniques: polarimetric; stars: activity; stars: evolution; stars:
magnetic field; planetary systems; stars: rotation
ID PRE-MAIN-SEQUENCE; X-RAY-EMISSION; LOW-MASS STARS; T-TAURI STARS;
SUN-LIKE STARS; ORION NEBULA CLUSTER; SOLAR-TYPE STARS; HIGH-RESOLUTION
SPECTROSCOPY; LITHIUM DEPLETION; MAGNETOSPHERIC ACCRETION
AB We investigate how the observed large-scale surface magnetic fields of low-mass stars (similar to 0.1-2 M-aS (TM)), reconstructed through Zeeman-Doppler imaging, vary with age t, rotation and X-ray emission. Our sample consists of 104 magnetic maps of 73 stars, from accreting pre-main sequence to main-sequence objects (1 Myr a parts per thousand(2) t a parts per thousand(2) 10 Gyr). For non-accreting dwarfs we empirically find that the unsigned average large-scale surface field is related to age as t(-0.655 +/- 0.045). This relation has a similar dependence to that identified by Skumanich, used as the basis for gyrochronology. Likewise, our relation could be used as an age-dating method ('magnetochronology'). The trends with rotation we find for the large-scale stellar magnetism are consistent with the trends found from Zeeman broadening measurements (sensitive to large- and small-scale fields). These similarities indicate that the fields recovered from both techniques are coupled to each other, suggesting that small- and large-scale fields could share the same dynamo field generation processes. For the accreting objects, fewer statistically significant relations are found, with one being a correlation between the unsigned magnetic flux and rotation period. We attribute this to a signature of star-disc interaction, rather than being driven by the dynamo.
C1 [Vidotto, A. A.; Gregory, S. G.; Jardine, M.; Cameron, A. C.; Fares, R.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland.
[Vidotto, A. A.] Univ Geneva, Observ Geneve, CH-1290 Versoix, Switzerland.
[Donati, J. F.; Petit, P.; Folsom, C. P.] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France.
[Morin, J.] CNRS, LUPM, UMR5299, F-34095 Montpellier, France.
[Morin, J.] Univ Montpellier 2, F-34095 Montpellier, France.
[Bouvier, J.] UJF Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France.
[Hussain, G.] ESO, D-85748 Garching, Germany.
[Marsden, S.; Waite, I. A.] Univ So Queensland, Computat Engn & Sci Res Ctr, Toowoomba, Qld 4350, Australia.
[Jeffers, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany.
[do Nascimento, J. D.] Univ Fed Rio Grande do Norte, Dep Fis Teor & Exp, BR-59072970 Natal, RN, Brazil.
[do Nascimento, J. D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Vidotto, AA (reprint author), Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland.
EM aline.vidotto@unige.ch
RI do Nascimento, Jose Dias/D-2416-2014;
OI do Nascimento, Jose Dias/0000-0001-7804-2145; Petit,
Pascal/0000-0001-7624-9222; Morin, Julien/0000-0002-4996-6901; Gregory,
Scott/0000-0003-3674-5568; Vidotto, Aline/0000-0001-5371-2675; Marsden,
Stephen/0000-0001-5522-8887
FU Royal Astronomical Society Fellowship; Swiss National Science Foundation
via an Ambizione Fellowship; Science and Technology Facilities Council
(STFC) via an Ernest Rutherford Fellowship [ST/J003255/1]; RF via a
consolidated grant [ST/J001651/1]; ANR [Blanc SIMI5-6 020 01]
FX AAV acknowledges support from a Royal Astronomical Society Fellowship
and from the Swiss National Science Foundation via an Ambizione
Fellowship. SGG acknowledges support from the Science and Technology
Facilities Council (STFC) via an Ernest Rutherford Fellowship
[ST/J003255/1] and RF via a consolidated grant [ST/J001651/1]. JB, PP
and CPF acknowledge support from the ANR 2011 Blanc SIMI5-6 020 01
'Toupies: Towards understanding the spin evolution of stars'
(http://ipag.osug.fr/Anr_Toupies/). AAV would like to thank Professor
Keith Horne and Dr Kate Rowlands for advice in the statistical analysis.
NSO/Kitt Peak data used here are produced cooperatively by NSF/NOAO,
NASA/GSFC and NOAA/SEL. Partly based on Rotation periods are usually
well constrained in the literature. In light of that and that errors are
significantly larger for ages, magnetic fields and X-ray luminosities,
we have neglected errors in rotation periods.
NR 141
TC 58
Z9 58
U1 0
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2014
VL 441
IS 3
BP 2361
EP 2374
DI 10.1093/mnras/stu728
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RE
UT WOS:000338763600043
ER
PT J
AU Guo, H
Zheng, Z
Zehavi, I
Xu, HJ
Eisenstein, DJ
Weinberg, DH
Bahcall, NA
Berlind, AA
Comparat, J
McBride, CK
Ross, AJ
Schneider, DP
Skibba, RA
Swanson, MEC
Tinker, JL
Tojeiro, R
Wake, DA
AF Guo, Hong
Zheng, Zheng
Zehavi, Idit
Xu, Haojie
Eisenstein, Daniel J.
Weinberg, David H.
Bahcall, Neta A.
Berlind, Andreas A.
Comparat, Johan
McBride, Cameron K.
Ross, Ashley J.
Schneider, Donald P.
Skibba, Ramin A.
Swanson, Molly E. C.
Tinker, Jeremy L.
Tojeiro, Rita
Wake, David A.
TI The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: modelling of the luminosity and colour dependence
in the Data Release 10
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: distances and redshifts; galaxies: haloes; galaxies:
statistics; cosmology: observations; cosmology: theory; large-scale
structure of Universe
ID DIGITAL SKY SURVEY; HALO OCCUPATION DISTRIBUTION; 3-POINT
CORRELATION-FUNCTION; VLT DEEP SURVEY; RED GALAXIES; REDSHIFT SURVEY;
DARK-MATTER; STELLAR MASS; REAL-SPACE; PHOTOMETRIC REDSHIFTS
AB We investigate the luminosity and colour dependence of clustering of CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Data Release 10, focusing on projected correlation functions of well-defined samples extracted from the full catalogue of similar to 540 000 galaxies at z similar to 0.5 covering about 6500 deg(2). The halo occupation distribution framework is adopted to model the measurements on small and intermediate scales (from 0.02 to 60 h(-1) Mpc), infer the connection of galaxies to dark matter haloes and interpret the observed trends. We find that luminous red galaxies in CMASS reside in massive haloes of mass M similar to 10(13)-10(14) h(-1) M-aS (TM) and more luminous galaxies are more clustered and hosted by more massive haloes. The strong small-scale clustering requires a fraction of these galaxies to be satellites in massive haloes, with the fraction at the level of 5-8 per cent and decreasing with luminosity. The characteristic mass of a halo hosting on average one satellite galaxy above a luminosity threshold is about a factor of 8.7 larger than that of a halo hosting a central galaxy above the same threshold. At a fixed luminosity, progressively redder galaxies are more strongly clustered on small scales, which can be explained by having a larger fraction of these galaxies in the form of satellites in massive haloes. Our clustering measurements on scales below 0.4 h(-1) Mpc allow us to study the small-scale spatial distribution of satellites inside haloes. While the clustering of luminosity-threshold samples can be well described by a Navarro-Frenk-White profile, that of the reddest galaxies prefers a steeper or more concentrated profile. Finally, we also use galaxy samples of constant number density at different redshifts to study the evolution of luminous red galaxies, and find the clustering to be consistent with passive evolution in the redshift range of 0.5 a parts per thousand(2) z a parts per thousand(2) 0.6.
C1 [Guo, Hong; Zheng, Zheng; Xu, Haojie] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Guo, Hong; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA.
[Eisenstein, Daniel J.; McBride, Cameron K.; Swanson, Molly E. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Weinberg, David H.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Bahcall, Neta A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA.
[Berlind, Andreas A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Comparat, Johan] Aix Marseille Univ, CNRS, LAM, UMR 7326, Aix En Provence, France.
[Ross, Ashley J.; Tojeiro, Rita] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Skibba, Ramin A.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA.
[Tinker, Jeremy L.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA.
[Wake, David A.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Wake, David A.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.
RP Guo, H (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
EM hong.guo@utah.edu
RI Guo, Hong/J-5797-2015
OI Guo, Hong/0000-0003-4936-8247
FU NSF [AST-0907947, AST-1208891]; Alfred P. Sloan Foundation; National
Science Foundation; US Department of Energy Office of Science;
University of Arizona; Brazilian Participation Group; Brookhaven
National Laboratory; University of Cambridge; Carnegie Mellon
University; University of Florida; French Participation Group; German
Participation Group; Harvard University; Instituto de Astrofisica de
Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns
Hopkins University; Lawrence Berkeley National Laboratory; Max Planck
Institute for Astrophysics; Max Planck Institute for Extraterrestrial
Physics; New Mexico State University; New York University; Ohio State
University; Pennsylvania State University; University of Portsmouth;
Princeton University; Spanish Participation Group; University of Tokyo;
University of Utah; Vanderbilt University; University of Virginia;
University of Washington; Yale University
FX We thank Yipeng Jing for kindly providing the simulations used in this
paper. We thank Douglas F. Watson for helpful discussions and the
anonymous referee for useful comments which improved the presentation of
this paper. HG, ZZ, and IZ were supported by NSF grant AST-0907947. ZZ
was partially supported by NSF grant AST-1208891.; Funding for SDSS-III
has been provided by the Alfred P. Sloan Foundation, the Participating
Institutions, the National Science Foundation, and the US Department of
Energy Office of Science. The SDSS-III web site is
http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical
Research Consortium for the Participating Institutions of the SDSS-III
Collaboration including the University of Arizona, the Brazilian
Participation Group, Brookhaven National Laboratory, University of
Cambridge, Carnegie Mellon University, University of Florida, the French
Participation Group, the German Participation Group, Harvard University,
the Instituto de Astrofisica de Canarias, the Michigan State/Notre
Dame/JINA Participation Group, Johns Hopkins University, Lawrence
Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max
Planck Institute for Extraterrestrial Physics, New Mexico State
University, New York University, Ohio State University, Pennsylvania
State University, University of Portsmouth, Princeton University, the
Spanish Participation Group, University of Tokyo, University of Utah,
Vanderbilt University, University of Virginia, University of Washington,
and Yale University.
NR 102
TC 28
Z9 28
U1 1
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2014
VL 441
IS 3
BP 2398
EP 2413
DI 10.1093/mnras/stu763
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RE
UT WOS:000338763600047
ER
PT J
AU Hirsch, B
Martinez, D
Kurten, EL
Brown, DD
Carson, WP
AF Hirsch, Ben T.
Martinez, Daniel
Kurten, Erin L.
Brown, Danielle D.
Carson, Walter P.
TI Mammalian Insectivores Exert Top-Down Effects on Azteca Ants
SO BIOTROPICA
LA English
DT Article
DE anti-predatory defenses; Azteca; BCI; indirect predation effects;
tamandua; top-down effects; trophic interactions
ID OCELOT LEOPARDUS-PARDALIS; BARRO-COLORADO ISLAND; JAGUAR PANTHERA-ONCA;
PUMA PUMA-CONCOLOR; COSTA-RICA; TROPICAL FOREST; TERMITES NASUTITERMES;
ANTEATERS EDENTATA; FELIS-PARDALIS; CAMERA TRAPS
AB Insectivorous mammals are hypothesized to reduce the abundance of their insect prey. Using a 14-yr mammal exclusion experiment, we demonstrate for the first time that a widespread and abundant Neotropical mammalian insectivore (Tamandua: Tamandua mexicana) reduced Azteca ant abundance. Azteca ant nests inside mammal exclosures were significantly larger than nests in control plots, where tamanduas were more abundant. These top-down effects were caused not only by direct consumption, but also through non-trophic direct effects, specifically nest damage. In contrast, tamanduas appeared to exert no significant top-down effect on termite prey, which have strong chemical defenses. Our results are consistent with theory that strong defenses against predation can mitigate the top-down effects of predators on some prey species. We argue that predicting the degree of top-down effects caused by predators requires both a quantitative knowledge of prey choice and an understanding of the anti-predator defenses of prey.
C1 [Hirsch, Ben T.] Univ Florida, Gainesville, FL 32611 USA.
[Hirsch, Ben T.; Martinez, Daniel] Smithsonian Trop Res Inst, Unit 9100, Dpo Aa 340029898, Panama.
[Kurten, Erin L.] Stanford Univ, Dept Biol, Stanford, CA 94305 USA.
[Brown, Danielle D.] Western Kentucky Univ, Dept Biol, Bowling Green, KY 42101 USA.
[Carson, Walter P.] Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA.
RP Hirsch, B (reprint author), Univ Florida, POB 110430,110 Newins Ziegler Hall, Gainesville, FL 32611 USA.
EM hirschb@si.edu
FU NSF [DEB-9527729, DEB-0212054]; National Geographic/Waitt grant [W3-08];
Theresa Heinz Environmental Scholars program; NSF; STRI short term
fellowship; Max Planck Institute for Ornithology
FX We thank Lee Dyer, Peter Morin, and Jonathan Pruitt for helpful comments
to an earlier version of this article. We thank Susan Rebellon, Ana
Patricia Calderon, Santiago Escobar, and Jose-Alejandro Ramirez for
field assistance, and Steve Yanoviak for valuable advice concerning
invertebrate sampling. This research was funded by NSF Grants
(DEB-9527729 and DEB-0212054) to WPC, a National Geographic/Waitt grant
(W3-08) to BTH, a Theresa Heinz Environmental Scholars program grant to
ELK, a NSF predoctoral grant and STRI short term fellowship to DDB. We
also thank Roland Kays, Martin Wikelski, and the Max Planck Institute
for Ornithology for materials and support.
NR 71
TC 0
Z9 0
U1 5
U2 30
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0006-3606
EI 1744-7429
J9 BIOTROPICA
JI Biotropica
PD JUL
PY 2014
VL 46
IS 4
BP 489
EP 494
DI 10.1111/btp.12128
PG 6
WC Ecology
SC Environmental Sciences & Ecology
GA AK9SD
UT WOS:000338766100014
ER
PT J
AU Kryukova, E
Megeath, ST
Hora, JL
Gutermuth, RA
Bontemps, S
Kraemer, K
Hennemann, M
Schneider, N
Smith, HA
Motte, F
AF Kryukova, E.
Megeath, S. T.
Hora, J. L.
Gutermuth, R. A.
Bontemps, S.
Kraemer, K.
Hennemann, M.
Schneider, N.
Smith, Howard A.
Motte, F.
TI THE DEPENDENCE OF PROTOSTELLAR LUMINOSITY ON ENVIRONMENT IN THE CYGNUS-X
STAR-FORMING COMPLEX
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE infrared: stars; stars: formation; stars: luminosity function; mass
function; stars: protostars
ID YOUNG STELLAR OBJECTS; INITIAL MASS FUNCTION; NEARBY MOLECULAR CLOUDS;
SPITZER-SPACE-TELESCOPE; RHO-OPHIUCHI CLOUD; ARRAY CAMERA IRAC;
EMBEDDED-CLUSTER; POPULATION; REGION; ORION
AB The Cygnus-X star-forming complex is one of the most active regions of low- and high-mass star formation within 2 kpc of the Sun. Using mid-infrared photometry from the IRAC and MIPS Spitzer Cygnus-X Legacy Survey, we have identified over 1800 protostar candidates. We compare the protostellar luminosity functions of two regions within Cygnus-X: CygX-South and CygX-North. These two clouds show distinctly different morphologies suggestive of dissimilar star-forming environments. We find the luminosity functions of these two regions are statistically different. Furthermore, we compare the luminosity functions of protostars found in regions of high and low stellar density within Cygnus-X and find that the luminosity function in regions of high stellar density is biased to higher luminosities. In total, these observations provide further evidence that the luminosities of protostars depend on their natal environment. We discuss the implications this dependence has for the star formation process.
C1 [Kryukova, E.; Megeath, S. T.] Univ Toledo, Dept Phys & Astron, Ritter Astrophys Observ, Toledo, OH 43606 USA.
[Hora, J. L.; Smith, Howard A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Gutermuth, R. A.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA.
[Bontemps, S.; Schneider, N.] Univ Bordeaux, LAB, UMR 5804, F-33270 Floirac, France.
[Bontemps, S.; Schneider, N.] CNRS, LAB, UMR 5804, F-33270 Floirac, France.
[Kraemer, K.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02467 USA.
[Hennemann, M.; Motte, F.] CEA IRFU CNRS INSU Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM, F-91191 Gif Sur Yvette, France.
RP Kryukova, E (reprint author), Univ Toledo, Dept Phys & Astron, Ritter Astrophys Observ, Toledo, OH 43606 USA.
EM megeath@physics.utoledo.edu
OI Kraemer, Kathleen/0000-0002-2626-7155
FU NASA [NNX12AI55G]; National Aeronautics and Space Administration;
National Science Foundation; project "STARFICH" [ANR-11-BS56-010]
FX This work is based in part on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. Support
for the work of S.T.M., E.K., R.A.G., J.H., and K.K. was provided by
NASA through an award issued by JPL/Caltech. H.A.S. acknowledges partial
support for this work from NASA grant NNX12AI55G. This publication makes
use of data products from the Two Micron All Sky Survey, which is a
joint project of the University of Massachusetts and the Infrared
Processing and Analysis Center/California Institute of Technology,
funded by the National Aeronautics and Space Administration and the
National Science Foundation. N.S. and S.B. acknowledge support by the
ANR-11-BS56-010 project "STARFICH"
NR 65
TC 8
Z9 8
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUL
PY 2014
VL 148
IS 1
AR 11
DI 10.1088/0004-6256/148/1/11
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK4PF
UT WOS:000338405900011
ER
PT J
AU Rodney, SA
Riess, AG
Strolger, LG
Dahlen, T
Graur, O
Casertano, S
Dickinson, ME
Ferguson, HC
Garnavich, P
Hayden, B
Jha, SW
Jones, DO
Kirshner, RP
Koekemoer, AM
McCully, C
Mobasher, B
Patel, B
Weiner, BJ
Cenko, SB
Clubb, KI
Cooper, M
Filippenko, AV
Frederiksen, TF
Hjorth, J
Leibundgut, B
Matheson, T
Nayyeri, H
Penner, K
Trump, J
Silverman, JM
Vivian, U
Bostroem, KA
Challis, P
Rajan, A
Wolff, S
Faber, SM
Grogin, NA
Kocevski, D
AF Rodney, Steven A.
Riess, Adam G.
Strolger, Louis-Gregory
Dahlen, Tomas
Graur, Or
Casertano, Stefano
Dickinson, Mark E.
Ferguson, Henry C.
Garnavich, Peter
Hayden, Brian
Jha, Saurabh W.
Jones, David O.
Kirshner, Robert P.
Koekemoer, Anton M.
McCully, Curtis
Mobasher, Bahram
Patel, Brandon
Weiner, Benjamin J.
Cenko, S. Bradley
Clubb, Kelsey I.
Cooper, Michael
Filippenko, Alexei V.
Frederiksen, Teddy F.
Hjorth, Jens
Leibundgut, Bruno
Matheson, Thomas
Nayyeri, Hooshang
Penner, Kyle
Trump, Jonathan
Silverman, Jeffrey M.
Vivian, U.
Bostroem, K. Azalee
Challis, Peter
Rajan, Abhijith
Wolff, Schuyler
Faber, S. M.
Grogin, Norman A.
Kocevski, Dale
TI TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS:
SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE infrared: general; supernovae: general; surveys
ID CORE-COLLAPSE SUPERNOVAE; DELAY-TIME DISTRIBUTION; ORIGINS DEEP SURVEY;
DIGITAL SKY SURVEY; EXTRAGALACTIC LEGACY SURVEY; TELESCOPE ADVANCED
CAMERA; GOODS-SOUTH FIELD; GAMMA-RAY BURSTS; II-P SUPERNOVAE;
STAR-FORMATION
AB dThe Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of -0.25 deg2 with -900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z 2.5. We classify -24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z =- 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only -3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is fp = 0.53st=sg.Zc6', consistent with a delay time distribution that follows a simple t-1 power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions-though further analysis and larger samples will be needed to examine that suggestion. Key words: infrared: general - supernovae:
C1 [Rodney, Steven A.; Riess, Adam G.; Graur, Or; Jones, David O.; Wolff, Schuyler] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Riess, Adam G.; Strolger, Louis-Gregory; Dahlen, Tomas; Casertano, Stefano; Ferguson, Henry C.; Koekemoer, Anton M.; Bostroem, K. Azalee; Grogin, Norman A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Graur, Or] Tel Aviv Univ, Dept Astrophys, IL-69978 Tel Aviv, Israel.
[Graur, Or] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA.
[Dickinson, Mark E.; Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Garnavich, Peter] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Hayden, Brian] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Jha, Saurabh W.; McCully, Curtis; Patel, Brandon] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Kirshner, Robert P.; Challis, Peter] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Mobasher, Bahram; Nayyeri, Hooshang; Vivian, U.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
[Weiner, Benjamin J.; Penner, Kyle] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA.
[Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Clubb, Kelsey I.; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Cooper, Michael] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Frederiksen, Teddy F.; Hjorth, Jens] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark.
[Leibundgut, Bruno] European So Observ, Garching, Germany.
[Leibundgut, Bruno] Tech Univ Munich, D-80290 Munich, Germany.
[Trump, Jonathan] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Rajan, Abhijith] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Faber, S. M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 92064 USA.
[Kocevski, Dale] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA.
RP Rodney, SA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
RI Hjorth, Jens/M-5787-2014;
OI Hjorth, Jens/0000-0002-4571-2306; Graur, Or/0000-0002-4391-6137;
Koekemoer, Anton/0000-0002-6610-2048
NR 117
TC 28
Z9 28
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUL
PY 2014
VL 148
IS 1
AR 13
DI 10.1088/0004-6256/148/1/13
PG 28
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK4PF
UT WOS:000338405900013
ER
PT J
AU Mommert, M
Farnocchia, D
Hora, JL
Chesley, SR
Trilling, DE
Chodas, PW
Mueller, M
Harris, AW
Smith, HA
Fazio, GG
AF Mommert, M.
Farnocchia, D.
Hora, J. L.
Chesley, S. R.
Trilling, D. E.
Chodas, P. W.
Mueller, M.
Harris, A. W.
Smith, H. A.
Fazio, G. G.
TI PHYSICAL PROPERTIES OF NEAR-EARTH ASTEROID 2011 MD
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE infrared: planetary systems; minor planets, asteroids: individual (2011
MD)
ID SPITZER-SPACE-TELESCOPE; RADIATION PRESSURE; YARKOVSKY; FRAGMENTS;
NEOWISE
AB We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 hr of observing time with channel 2 (4.5 mu m) of the Infrared Array Camera and detected the target within the 2 sigma positional uncertainty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object, we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be (6(-2)(+4) ) m in diameter with a geometric albedo of 0.3(-0.2)(+0.4) (uncertainties are 1 sigma). We find the asteroid's most probable bulk density to be (1.1(-0.5)(+0.7) ) g cm(-3), which implies a total mass of (50-350) t and a macroporosity of >= 65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests that 2011 MD is a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.
C1 [Mommert, M.; Trilling, D. E.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA.
[Farnocchia, D.; Chesley, S. R.; Chodas, P. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Hora, J. L.; Smith, H. A.; Fazio, G. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Mueller, M.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands.
[Harris, A. W.] DLR Inst Planetary Res, D-12489 Berlin, Germany.
RP Mommert, M (reprint author), No Arizona Univ, Dept Phys & Astron, POB 6010, Flagstaff, AZ 86011 USA.
OI Mueller, Michael/0000-0003-3217-5385; Chesley,
Steven/0000-0003-3240-6497
FU Arizona's Technology and Research Initiative Fund; Jet Propulsion
Laboratory RSA [1367413]
FX Some of the computational analyses were run on Northern Arizona
University's monsoon computing cluster, funded by Arizona's Technology
and Research Initiative Fund. M. Mommert thanks P. Penteado for support
on the computational aspects of this work. We thank J. Lee and T. J.
Martin-Mur for providing information on the Spitzer ephemeris
uncertainties. We thank an anonymous referee for useful suggestions that
led to the improvement of this manuscript. The work of D. Farnocchia, S.
Chesley, and P. W. Chodas was conducted at the Jet Propulsion
Laboratory, California Institute of Technology under a contract with the
National Aeronautics and Space Administration. J. L. Hora and H. A.
Smith acknowledge partial support from Jet Propulsion Laboratory RSA
#1367413. This work is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA.
NR 23
TC 6
Z9 6
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 1
PY 2014
VL 789
IS 1
AR L22
DI 10.1088/2041-8205/789/1/L22
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK6UR
UT WOS:000338563300022
ER
PT J
AU Dainou, K
Mahy, G
Duminil, J
Dick, CW
Doucet, JL
Donkpegan, ASL
Pluijgers, M
Sinsin, B
Lejeune, P
Hardy, OJ
AF Dainou, K.
Mahy, G.
Duminil, J.
Dick, C. W.
Doucet, J-L
Donkpegan, A. S. L.
Pluijgers, M.
Sinsin, B.
Lejeune, P.
Hardy, O. J.
TI Speciation slowing down in widespread and long-living tree taxa:
insights from the tropical timber tree genus Milicia (Moraceae)
SO HEREDITY
LA English
DT Article
DE Milicia; speciation; phylogeny; phylogeography; Tertiary diversification
ID POPULATION-STRUCTURE; EXCELSA MORACEAE; COMPUTER-PROGRAM;
PHYLOGENETIC-RELATIONSHIPS; GENETIC DIFFERENTIATION; SPECIES
DELIMITATION; POLLINATION SYSTEMS; VEGETATIVE TRAITS; RAIN-FOREST;
AFRICA
AB The long generation time and large effective size of widespread forest tree species can result in slow evolutionary rate and incomplete lineage sorting, complicating species delimitation. We addressed this issue with the African timber tree genus Milicia that comprises two morphologically similar and often confounded species: M. excelsa, widespread from West to East Africa, and M. regia, endemic to West Africa. We combined information from nuclear microsatellites (nSSRs), nuclear and plastid DNA sequences, and morphological systematics to identify significant evolutionary units and infer their evolutionary and biogeographical history. We detected five geographically coherent genetic clusters using nSSRs and three levels of genetic differentiation. First, one West African cluster matched perfectly with the morphospecies M. regia that formed a monophyletic clade at both DNA sequences. Second, a West African M. excelsa cluster formed a monophyletic group at plastid DNA and was more related to M. regia than to Central African M. excelsa, but shared many haplotypes with the latter at nuclear DNA. Third, three Central African clusters appeared little differentiated and shared most of their haplotypes. Although gene tree paraphyly could suggest a single species in Milicia following the phylogenetic species concept, the existence of mutual haplotypic exclusivity and nonadmixed genetic clusters in the contact area of the two taxa indicate strong reproductive isolation and, thus, two species following the biological species concept. Molecular dating of the first divergence events showed that speciation in Milicia is ancient (Tertiary), indicating that long-living tree taxa exhibiting genetic speciation may remain similar morphologically.
C1 [Dainou, K.; Doucet, J-L; Donkpegan, A. S. L.; Pluijgers, M.] Univ Liege, Gembloux Agrobio Tech, Unit Forest & Nat Management, Lab Trop & Subtrop Forestry, B-5030 Gembloux, Belgium.
[Dainou, K.; Sinsin, B.] Univ Abomey Calavi, Fac Agron Sci, Lab Appl Ecol, Cotonou, Benin.
[Mahy, G.] Univ Liege, Gembloux Agrobio Tech, Biodivers & Landscape Unit, B-5030 Gembloux, Belgium.
[Duminil, J.; Hardy, O. J.] Univ Libre Brussels, Fac Sci, Brussels, Belgium.
[Duminil, J.] Subreg Off Cent Africa, Forest Genet Resources Programme, Biovers Int, Yaounde, Cameroon.
[Dick, C. W.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA.
[Dick, C. W.] Smithsonian Trop Res Inst, Gamboa, Panama.
[Lejeune, P.] Univ Liege, Gembloux Agrobio Tech, Unit Forest & Nat Management, B-5030 Gembloux, Belgium.
RP Dainou, K (reprint author), Univ Liege, Gembloux Agrobio Tech, Unit Forest & Nat Management, Lab Trop & Subtrop Forestry, 2 Passage Deportes, B-5030 Gembloux, Belgium.
EM kdainou@gmail.com
RI Dick, Christopher/A-8744-2008
FU Fund for Scientific Research of Belgium (FNRS) through grants FRFC
[2.4.577.10]; FRFC [2.4.576.07]
FX We thank the project PPR 10.000 (Gembloux Agro-Bio Tech; University of
Liege), the Fonds Leopold III (asbl, Belgium), and the Fund for
Scientific Research of Belgium (FNRS) through grants FRFC no. 2.4.577.10
and FRFC no. 2.4.576.07 for their financial support. We are indebted to
David Monticelli, Lambert Y Kouadio, Guillaume Koffi, Bonaventure Sonke,
Michel Baudoin, Shango Mutambue, Jean-Pierre Mate, Emilien Dubiez,
Pierre Proces, Bertin Kasongo, Pat Stoffelen and Georges Mumbere for
their various contributions. We also acknowledge the logging companies
Pallisco, SFID, Wijma (Cameroon) and Precious Woods Gabon for
facilitating field work, and the National Botanical Garden of Belgium
(Meise) for permitting sample collection from herbaria.
NR 73
TC 6
Z9 6
U1 3
U2 41
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0018-067X
EI 1365-2540
J9 HEREDITY
JI Heredity
PD JUL
PY 2014
VL 113
IS 1
BP 74
EP 85
DI 10.1038/hdy.2014.5
PG 12
WC Ecology; Evolutionary Biology; Genetics & Heredity
SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics &
Heredity
GA AK3QK
UT WOS:000338339600008
PM 24549110
ER
PT J
AU Cook-Patton, SC
Weller, D
Rick, TC
Parker, JD
AF Cook-Patton, Susan C.
Weller, Daniel
Rick, Torben C.
Parker, John D.
TI Ancient experiments: forest biodiversity and soil nutrients enhanced by
Native American middens
SO LANDSCAPE ECOLOGY
LA English
DT Article
DE Land-use legacies; Shell middens; Crassostrea virginica; Forest
diversity; Invasion; Nutrient addition; Calcium; Chesapeake Bay,
Maryland, USA
ID HISTORICAL LAND-USE; PLANT-COMMUNITIES; VASCULAR FLORA; SHELL MIDDENS;
ECOSYSTEMS; LANDSCAPE; DIVERSITY; AMAZONIA; EARTHS; LAYER
AB The legacy of ancient human practices can affect the diversity and structure of modern ecosystems. Here, we examined how prehistoric refuse dumps ("middens") impacted soil chemistry and plant community composition in forests along the Chesapeake Bay by collecting vegetational and soil nutrient data. The centuries- to millennia-old shell middens had elevated soil nutrients compared to adjacent sites, greater vegetative cover, especially of herb and grass species, and higher species richness. Not only are middens important archaeological resources, they also offer a remarkable opportunity to test ecological hypotheses about nutrient addition over very long time scales. We found no evidence, for example, that elevated nutrients enhanced invasion by non-native species as predicted by the fluctuating resource hypothesis. However, we did find that elevated nutrients shifted community structure from woody species to herbaceous species, as predicted by the structural carbon-nutrient hypothesis. These results highlight the long-lasting effects that humans can have on abiotic and biotic properties of the natural environment, and suggest the potential for modern patterns of species' distributions and abundances to reflect ancient human activities.
C1 [Cook-Patton, Susan C.; Parker, John D.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
[Weller, Daniel] Cornell Univ, Ithaca, NY 14853 USA.
[Rick, Torben C.] Smithsonian Inst, Program Human Ecol & Archaeobiol, Natl Museum Nat Hist, Washington, DC 20013 USA.
RP Cook-Patton, SC (reprint author), Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21037 USA.
EM cook-pattons@si.edu
RI Parker, John/F-9761-2010
OI Parker, John/0000-0002-3632-7625
FU Smithsonian Institution/SERC; National Museum of Natural History Small
Grant; National Geographic Society
FX The Smithsonian Institution/SERC supported this work with an internship
to D. Weller and a fellowship to S. C. Cook-Patton. Funds from the
National Museum of Natural History Small Grant (Rick) and the National
Geographic Society (Rick) supported radiocarbon dating. We also thank
Tuck Hines, Robert Aguilar, Allison Everett, Midge Kramer and
researchers in the SERC Crab Lab who provided logistical support and
advice.
NR 48
TC 3
Z9 3
U1 1
U2 19
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0921-2973
EI 1572-9761
J9 LANDSCAPE ECOL
JI Landsc. Ecol.
PD JUL
PY 2014
VL 29
IS 6
BP 979
EP 987
DI 10.1007/s10980-014-0033-z
PG 9
WC Ecology; Geography, Physical; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Physical Geography; Geology
GA AK3NP
UT WOS:000338331600005
ER
PT J
AU Cialdella, AM
Sede, SM
Romaschenko, K
Peterson, PM
Soreng, RJ
Zuloaga, FO
Morrone, O
AF Cialdella, Ana M.
Sede, Silvana M.
Romaschenko, Konstantin
Peterson, Paul M.
Soreng, Robert J.
Zuloaga, Fernando O.
Morrone, O.
TI Phylogeny of Nassella (Stipeae, Pooideae, Poaceae) Based on Analyses of
Chloroplast and Nuclear Ribosomal DNA and Morphology
SO SYSTEMATIC BOTANY
LA English
DT Article
DE ETS; ITS; morphology; phylogeny; plastid DNA; Stipeae
ID NONCODING REGIONS; SEQUENCE; GENUS; CHARACTERS; AMELICHLOA; GRAMINEAE;
EVOLUTION; PLANTS; GENES; NRDNA
AB The genus Nassella, as currently circumscribed, includes 116-117 American species. It is characterized by florets with a strongly convolute lemma, a conspicuous or inconspicuous crown, and a short palea. Using 53 species of Nassella and 22 outgroup species we conducted phylogenetic analyses to test the monophyly of Nassella and relationships among species. Two plastid (trnT-trnL and rpl32-trnL) and two nuclear ribosomal (ITS and ETS) regions and morphology were used. Our DNA data alone and combined with morphology showed Nassella to be paraphyletic with respect to a monophyletic Amelichloa. Two main clades were recovered: one with species of Nassella distributed in regions of high elevation from Mexico to northwestern Argentina and one composed of the remaining species of Nassella and those of Amelichloa. The latter is mainly concentrated in southern South America in a variety of habitats with generally lower elevation than the other clade. The monophyly of the close relative of Nassella, the South American genus Jarava s. s., was rejected. None of the groups previously circumscribed as subgenera of Stipa, that are now considered to be composed of species in Nassella, were recovered as monophyletic. The close phylogenetic relationship of Nassella and Amelichloa is supported by only one morphological synapomorphy: the lemma margins flat and strongly overlapping.
C1 [Cialdella, Ana M.; Sede, Silvana M.; Zuloaga, Fernando O.; Morrone, O.] Inst Bot Darwinion, Buenos Aires, DF, Argentina.
[Romaschenko, Konstantin; Peterson, Paul M.; Soreng, Robert J.] Smithsonian Inst, Natl Museum Nat Hist, Dept Bot, Washington, DC 20013 USA.
RP Cialdella, AM (reprint author), Inst Bot Darwinion, Labarden 200,Casilla Correo 22,B1642HYD San Isidr, Buenos Aires, DF, Argentina.
EM anacialdella@darwin.edu.ar
RI Romaschenko, Konstantin/K-3096-2014
OI Romaschenko, Konstantin/0000-0002-7248-4193
FU CONICET [PIP 11220100100155]; ANPCyT [PICT 2010-1645]; National
Geographic Society [4677-91, 7792-05, 8087-06, 8862-10]; Smithsonian
Institution
FX This research was supported by CONICET, grant PIP 11220100100155 and
ANPCyT, grant PICT 2010-1645; the National Geographic Society, grants
number 4677-91, 7792-05, 8087-06, and 8862-10; and the Smithsonian
Institution. We are also thankful to the curators and staff of the
herbaria mentioned in the text, who allowed the study of the specimens
under their care. Finally, we thank the staff of the Darwinion,
especially Mrs. Mariana Valente, who kindly helped us to compose Figs. 3
and 4.
NR 54
TC 3
Z9 4
U1 1
U2 8
PU AMER SOC PLANT TAXONOMISTS
PI LARAMIE
PA UNIV WYOMING, DEPT BOTANY 3165, 1000 E UNIVERSITY AVE, LARAMIE, WY 82071
USA
SN 0363-6445
EI 1548-2324
J9 SYST BOT
JI Syst. Bot.
PD JUL-SEP
PY 2014
VL 39
IS 3
BP 814
EP 828
DI 10.1600/036364414X681419
PG 15
WC Plant Sciences; Evolutionary Biology
SC Plant Sciences; Evolutionary Biology
GA AK4OY
UT WOS:000338405200014
ER
PT J
AU Bulbul, E
Markevitch, M
Foster, A
Smith, RK
Loewenstein, M
Randall, SW
AF Bulbul, Esra
Markevitch, Maxim
Foster, Adam
Smith, Randall K.
Loewenstein, Michael
Randall, Scott W.
TI DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM
OF GALAXY CLUSTERS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dark matter; elementary particles; line: identification; neutrinos;
X-rays: galaxies: clusters
ID DWARF SPHEROIDAL GALAXY; XMM-NEWTON SPECTROSCOPY; DECAYING DARK-MATTER;
STERILE NEUTRINOS; CHANDRA; SAMPLE; CONSTRAINTS; COSMOLOGY; MODEL; LIGHT
AB We detect a weak unidentified emission line at E = (3.55-3.57) +/- 0.03 keV in a stacked XMM-Newton spectrum of 73 galaxy clusters spanning a redshift range 0.01-0.35. When the full sample is divided into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at >3 sigma statistical significance in all three independent MOS spectra and the PN "all others" spectrum. It is also detected in the Chandra spectra of the Perseus Cluster. However, it is very weak and located within 50-110 eV of several known lines. The detection is at the limit of the current instrument capabilities. We argue that there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with m(s) = 2 E = 7.1 keV, our detection corresponds to a neutrino decay rate consistent with previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples. This appears to be because of an anomalously bright line at E = 3.62 keV in Perseus, which could be an Ar XVII dielectronic recombination line, although its emissivity would have to be 30 times the expected value and physically difficult to understand. Another alternative is the above anomaly in the Ar line combined with the nearby 3.51 keV K line also exceeding expectation by a factor of 10-20. Confirmation with Astro-H will be critical to determine the nature of this new line.
C1 [Bulbul, Esra; Foster, Adam; Smith, Randall K.; Randall, Scott W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bulbul, Esra; Loewenstein, Michael] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
[Bulbul, Esra; Loewenstein, Michael] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA.
[Markevitch, Maxim] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Loewenstein, Michael] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
RP Bulbul, E (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM ebulbul@cfa.harvard.edu
OI Randall, Scott/0000-0002-3984-4337; Smith, Randall/0000-0003-4284-4167
FU Chandra grant [AR0-11020X, GO1-12104X]; NASA ADAP grant [NNX12AF44G];
Chandra X-ray Center through NASA [NAS8-03060]; Smithsonian Institution
FX The authors thank Alexey Vikhlinin for extensive discussions,
cross-checking the results, and spotting several errors; Douglas
Finkbeiner and Serkan Cabi for useful discussions; Christine Jones,
Signe Riemer-Sorensen, Alexander Kusenko, and the anonymous referee for
useful comments on the draft; and Kevork Abazajian and Shunsaku Horiuchi
for providing the limits from their M31 analysis. E.B. also thanks
Adrian Batu Gerard for patiently waiting for the submission to be born.
E.B. was supported in part by Chandra grant AR0-11020X and GO1-12104X.
A.F. and R.S. were supported in part by NASA ADAP grant NNX12AF44G.
S.W.R. was supported by the Chandra X-ray Center through NASA contract
NAS8-03060 and the Smithsonian Institution.
NR 69
TC 218
Z9 218
U1 2
U2 20
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 13
DI 10.1088/0004-637X/789/1/13
PG 23
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400013
ER
PT J
AU Dupree, AK
Brickhouse, NS
Cranmer, SR
Berlind, P
Strader, J
Smith, GH
AF Dupree, A. K.
Brickhouse, N. S.
Cranmer, S. R.
Berlind, P.
Strader, Jay
Smith, Graeme H.
TI STRUCTURE AND DYNAMICS OF THE ACCRETION PROCESS AND WIND IN TW Hya
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; stars: individual (TW Hydrae); stars:
pre-main sequence; stars: variables: T Tauri, Herbig Ae/Be; stars:
winds, outflows
ID POWERED STELLAR WINDS; BALMER LINE-PROFILES; MAIN-SEQUENCE STARS; KECK
II TELESCOPE; IUE MEGA CAMPAIGN; X-RAY-EMISSION; TAURI STARS;
MAGNETOSPHERIC ACCRETION; SPECTRAL VARIABILITY; ECHELLE SPECTROGRAPH
AB Time-domain spectroscopy of the classical accreting T Tauri star, TW Hya, covering a decade and spanning the far UV to the near-infrared spectral regions can identify the radiation sources, the atmospheric structure produced by accretion, and properties of the stellar wind. On timescales from days to years, substantial changes occur in emission line profiles and line strengths. Our extensive time-domain spectroscopy suggests that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as some absorption from infalling material. Stable absorption features appear in Ha, apparently caused by an accreting column silhouetted in the stellar wind. Inflow of material onto the star is revealed by the near-IR He I 10830 angstrom line, and its free-fall velocity correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. However, the predictions of hydrogen line profiles based on accretion stream models are not well-matched by these observations. Evidence of an accelerating warm to hot stellar wind is shown by the near-IR He I line, and emission profiles of C II, C III, C IV, N V, and O VI. The outflow of material changes substantially in both speed and opacity in the yearly sampling of the near-IR He I line over a decade. Terminal outflow velocities that range from 200 km s(-1) to almost 400 km s(-1) in He I appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind. Calculations of the emission from realistic post-shock regions are needed.
C1 [Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Berlind, P.; Strader, Jay] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Smith, Graeme H.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA.
[Berlind, P.] Fred L Whipple Observ, Amado, AZ USA.
[Strader, Jay] Michigan State Univ, E Lansing, MI 48824 USA.
RP Dupree, AK (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
OI Cranmer, Steven/0000-0002-3699-3134; Brickhouse,
Nancy/0000-0002-8704-4473; Dupree, Andrea/0000-0002-8985-8489
FU NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]
FX We thank the anonymous referee for his/her comments that improved the
manuscript. The authors gratefully acknowledge the helpful support from
Gemini-S astronomers, the staff at Magellan, and KECK II while acquiring
these spectra. Observers at FLWO were a great help on short notice. This
research has made use of NASA's Astrophysics Data System Bibliographic
Services. Some of the data presented here was obtained from the Mikulski
Archive for Space Telescopes (MAST). STScI is operated by the
Association of Universities for Research in Astronomy, Inc. under NASA
contract NAS5-26555. Support for MAST for non-HST data is provided by
the NASA Office of Space Science via grant NNX09AF08G and by other
grants and contracts. We wish to extend special thanks to those of
Hawaiian ancestry from whose sacred mountain of Mauna Kea we are
privileged to conduct observations. Without their generous hospitality,
the Keck results presented in this paper would not have been possible.
NR 87
TC 5
Z9 5
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 27
DI 10.1088/0004-637X/789/1/27
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400027
ER
PT J
AU Faesi, CM
Lada, CJ
Forbrich, J
Menten, KM
Bouy, H
AF Faesi, Christopher M.
Lada, Charles J.
Forbrich, Jan
Menten, Karl M.
Bouy, Herve
TI MOLECULAR CLOUD-SCALE STAR FORMATION IN NGC 300
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: individual (NGC 300); galaxies: ISM; galaxies: star formation;
H II regions; stars: formation
ID CO-TO-H-2 CONVERSION FACTOR; MULTIBAND IMAGING PHOTOMETER; FORMATION
RATE INDICATORS; SPIRAL-GALAXY NGC-300; GAS DEPLETION TIME; CO J=2-1
SURVEY; NEARBY GALAXIES; MILKY-WAY; FORMATION RATES; FORMATION LAW
AB We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of similar to 10(5) M-circle dot to 7 x 10(5) M-circle dot. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily to the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 mu m, and H alpha narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.
C1 [Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Forbrich, Jan] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria.
[Menten, Karl M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Bouy, Herve] Ctr Astrobiol, INTA CSIC, Dept Astrofis, Villanueva Dela Canada 28691, Spain.
RP Faesi, CM (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
RI Bouy, Herve/H-2913-2012
OI Bouy, Herve/0000-0002-7084-487X
FU National Aeronautics and Space Administration; National Aeronautics and
Space Administration's Earth Science Technology Office, Computation
Technologies Project [NCC5-626]; National Science Foundation Graduate
Research Fellowship [DGE-1144152]; Spanish Ramon y Cajal fellowship
program [RYC-2009-04497]
FX This work is based in part on observations made with the Spitzer Space
Telescope, obtained from the NASA/IPAC Infrared Science Archive, both of
which are operated by the Jet Propulsion Laboratory, California
Institute of Technology under a contract with the National Aeronautics
and Space Administration. This research has made use of the NASA/IPAC
Extragalactic Database (NED) which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration. This research made use of
Montage, funded by the National Aeronautics and Space Administration's
Earth Science Technology Office, Computation Technologies Project, under
Cooperative Agreement Number NCC5-626 between NASA and the California
Institute of Technology. Montage is maintained by the NASA/IPAC Infrared
Science Archive. C.M.F acknowledges support from a National Science
Foundation Graduate Research Fellowship under grant No. DGE-1144152. H.
Bouy is funded by the Spanish Ramon y Cajal fellowship program number
RYC-2009-04497.
NR 78
TC 5
Z9 5
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 81
DI 10.1088/0004-637X/789/1/81
PG 23
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400081
ER
PT J
AU La Plante, P
Battaglia, N
Natarajan, A
Peterson, JB
Trac, H
Cen, R
Loeb, A
AF La Plante, P.
Battaglia, N.
Natarajan, A.
Peterson, J. B.
Trac, H.
Cen, R.
Loeb, A.
TI REIONIZATION ON LARGE SCALES. IV. PREDICTIONS FOR THE 21 cm SIGNAL
INCORPORATING THE LIGHT CONE EFFECT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: theory; intergalactic medium; large-scale structure of
universe; methods: numerical
ID POWER SPECTRUM; HIGH-REDSHIFT; COSMIC REIONIZATION; 21-CM FLUCTUATIONS;
CENTIMETER FLUCTUATIONS; HYDROGEN REIONIZATION; INTERGALACTIC MEDIUM;
CLUSTERING WEDGES; EPOCH; SPACE
AB We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the "light cone" effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h(-1)). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczynski test for the determination of cosmological parameters.
C1 [La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H.] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA.
[Natarajan, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Natarajan, A.] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr, Pittsburgh, PA 15260 USA.
[Cen, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Loeb, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP La Plante, P (reprint author), Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA.
EM plaplant@andrew.cmu.edu
RI Trac, Hy/N-8838-2014; Peterson, Jeffrey/O-4794-2014;
OI Trac, Hy/0000-0001-6778-3861; Peterson, Jeffrey/0000-0003-1340-818X; La
Plante, Paul/0000-0002-4693-0102
FU McWilliams Center for Cosmology Postdoctoral Fellowship; NSF
[AST-1009615, AST-1109730, AST-1312991, AST-1108700, AST-0907890]; NASA
[NNX12AF91G, NNX08AL43G, NNA09DB30A]
FX N.B. and A.N. are supported by a McWilliams Center for Cosmology
Postdoctoral Fellowship made possible by Bruce and Astrid McWilliams.
A.N. and J.B.P. acknowledge funding from NSF grant AST-1009615. We thank
A. Parsons for supplying the data from PAPER and G. Paciga for supplying
the data from GMRT. H. T. is supported in part by NSF grants AST-1109730
and AST-1312991. R. C. is supported in part by NSF grant AST-1108700 and
NASA grant NNX12AF91G. A. L. is supported in part by NSF grant
AST-0907890 and NASA grants NNX08AL43G and NNA09DB30A. The simulations
were performed at the Pittsburgh Supercomputing Center (PSC) and the
Princeton Institute for Computational Science and Engineering (PICSciE).
We thank Roberto Gomez and Rick Costa at the PSC and Bill Wichser at
PICSciE for invaluable help with computing.
NR 52
TC 9
Z9 9
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 31
DI 10.1088/0004-637X/789/1/31
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400031
ER
PT J
AU Lee, JJ
Park, S
Hughes, JP
Slane, PO
AF Lee, Jae-Joon
Park, Sangwook
Hughes, John P.
Slane, Patrick O.
TI X-RAY OBSERVATION OF THE SHOCKED RED SUPERGIANT WIND OF CASSIOPEIA A
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE ISM: individual objects (Cas A); ISM: supernova remnants; stars: winds,
outflows; X-rays: ISM
ID SUPERNOVA-REMNANTS; MASSIVE STARS; CIRCUMSTELLAR MEDIUM; A SUPERNOVA;
PROGENITOR; EJECTA; IIB; EXPLOSION; EVOLUTION; EMISSION
AB Cas A is a Galactic supernova remnant whose supernova explosion is observed to be of Type IIb from spectroscopy of its light echo. Having its SN type known, observational constraints on the mass-loss history of Cas A's progenitor can provide crucial information on the final fate of massive stars. In this paper, we study X-ray characteristics of the shocked ambient gas in Cas A using the 1 Ms observation carried out with the Chandra X-Ray Observatory and try to constrain the mass-loss history of the progenitor star. We identify thermal emission from the shocked ambient gas along the outer boundary of the remnant. Comparison of measured radial variations of spectroscopic parameters of the shocked ambient gas to the self-similar solutions of Chevalier show that Cas A is expanding into a circumstellar wind rather than into a uniform medium. We estimate a wind density n(H) similar to 0.9 +/- 0.3 cm(-3) at the current outer radius of the remnant (similar to 3 pc), which we interpret as a dense slow wind from a red supergiant (RSG) star. Our results suggest that the progenitor star of Cas A had an initial mass around 16 M-circle dot, and its mass before the explosion was about 5 M-circle dot, with uncertainties of several tens of percent. Furthermore, the results suggest that, among the mass lost from the progenitor star (similar to 11 M-circle dot), a significant amount (more than 6 M-circle dot) could have been via its RSG wind.
C1 [Lee, Jae-Joon] Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
[Park, Sangwook] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Slane, Patrick O.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Lee, JJ (reprint author), Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
EM leejjoon@kasi.re.kr
NR 46
TC 6
Z9 6
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 7
DI 10.1088/0004-637X/789/1/7
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400007
ER
PT J
AU Lehmer, BD
Berkeley, M
Zezas, A
Alexander, DM
Basu-Zych, A
Bauer, FE
Brandt, WN
Fragos, T
Hornschemeier, AE
Kalogera, V
Ptak, A
Sivakoff, GR
Tzanavaris, P
Yukita, M
AF Lehmer, B. D.
Berkeley, M.
Zezas, A.
Alexander, D. M.
Basu-Zych, A.
Bauer, F. E.
Brandt, W. N.
Fragos, T.
Hornschemeier, A. E.
Kalogera, V.
Ptak, A.
Sivakoff, G. R.
Tzanavaris, P.
Yukita, M.
TI THE X-RAY LUMINOSITY FUNCTIONS OF FIELD LOW-MASS X-RAY BINARIES IN
EARLY-TYPE GALAXIES: EVIDENCE FOR A STELLAR AGE DEPENDENCE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: elliptical and lenticular, cD; galaxies: evolution; Galaxy:
stellar content; globular clusters: general; X-rays: binaries; X-rays:
galaxies
ID GLOBULAR-CLUSTERS; ELLIPTIC GALAXIES; STAR-FORMATION; HOT GAS; SAURON
PROJECT; DEEP CHANDRA; POPULATIONS; LMXBS; CATALOG; ENVIRONMENTS
AB We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximate to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background active galactic nuclei/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximate to 2-5 Gyr) has an excess of luminous field LMXBs (L-X greater than or similar to (5-10) x 10(37) erg s(-1)) per unit K-band luminosity (L-K; a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximate to 8-10 Gyr), which results in a factor of approximate to 2-3 excess of L-X/L-K for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.
C1 [Lehmer, B. D.; Tzanavaris, P.; Yukita, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Lehmer, B. D.; Berkeley, M.; Basu-Zych, A.; Hornschemeier, A. E.; Ptak, A.; Tzanavaris, P.; Yukita, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Berkeley, M.] Catholic Univ Amer, Dept Phys, Inst Astrophys & Computat Sci, Washington, DC 20064 USA.
[Zezas, A.; Sivakoff, G. R.] Univ Crete, Dept Phys, Iraklion, Greece.
[Zezas, A.; Fragos, T.] Fdn Res & Technol, IESL, Iraklion 71110, Crete, Greece.
[Zezas, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Basu-Zych, A.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile.
[Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA.
[Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Kalogera, V.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Sivakoff, G. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada.
RP Lehmer, BD (reprint author), Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA.
RI Sivakoff, Gregory/G-9602-2011; Brandt, William/N-2844-2015; Zezas,
Andreas/C-7543-2011; Fragos, Tassos/A-3581-2016
OI Sivakoff, Gregory/0000-0001-6682-916X; Brandt,
William/0000-0002-0167-2453; Zezas, Andreas/0000-0001-8952-676X; Fragos,
Tassos/0000-0003-1474-1523
FU Chandra X-ray Center grant [G02-13107A]; Space Telescope Science
Institute [GO-12760]; NASA ADP [NNX13AI48G, NNX12AL39G]; Basal-CATA
[PFB-06/2007]; CONICYT-Chile [FONDECYT 1101024, Gemini-CONICYT 32120003,
Anillo ACT1101]; Iniciativa Cientifica Milenio del Ministerio de
Economia, Fomento y Turismo [IC120009]; ADP [NNX10AC99G]; NSERC
FX We thank the referee for providing thoughtful comments that have
improved the quality of this paper. We thank Zhongli Zhang for providing
data. We gratefully acknowledge financial support from Chandra X-ray
Center grant G02-13107A, Space Telescope Science Institute grant
GO-12760, and NASA ADP grant NNX13AI48G (B.D.L.). F.E.B. acknowledges
support from Basal-CATA PFB-06/2007, CONICYT-Chile (grants FONDECYT
1101024, Gemini-CONICYT 32120003, "EMBIGGEN" Anillo ACT1101), and
Project IC120009 "Millennium Institute of Astrophysics (MAS)" funded by
the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y
Turismo. W.N.B. acknowledges ADP grant NNX10AC99G. G.R.S. is supported
by an NSERC Discovery Grant. V.K. acknowledges support for this work
from NASA ADP grant NNX12AL39G (sub-contract to Northwestern University)
NR 63
TC 11
Z9 11
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 52
DI 10.1088/0004-637X/789/1/52
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400052
ER
PT J
AU Schlafly, EF
Green, G
Finkbeiner, DP
Juric, M
Rix, HW
Martin, NF
Burgett, WS
Chambers, KC
Draper, PW
Hodapp, KW
Kaiser, N
Kudritzki, RP
Magnier, EA
Metcalfe, N
Morgan, JS
Price, PA
Stubbs, CW
Tonry, JL
Wainscoat, RJ
Waters, C
AF Schlafly, E. F.
Green, G.
Finkbeiner, D. P.
Juric, M.
Rix, H. -W.
Martin, N. F.
Burgett, W. S.
Chambers, K. C.
Draper, P. W.
Hodapp, K. W.
Kaiser, N.
Kudritzki, R. -P.
Magnier, E. A.
Metcalfe, N.
Morgan, J. S.
Price, P. A.
Stubbs, C. W.
Tonry, J. L.
Wainscoat, R. J.
Waters, C.
TI A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; ISM: clouds
ID DIGITAL SKY SURVEY; MILKY-WAY TOMOGRAPHY; COLOR EXCESS METHOD;
INTERSTELLAR EXTINCTION; MOLECULAR CLOUDS; MULTIBAND PHOTOMETRY; 2MASS;
SDSS; DISTANCES; DENSITY
AB We present a map of the dust reddening to 4.5 kpc derived from Pan-STARRS1 stellar photometry. The map covers almost the entire sky north of declination -30 degrees at a resolution of 7'-14', and is based on the estimated distances and reddenings to more than 500 million stars. The technique is designed to map dust in the Galactic plane, where many other techniques are stymied by the presence of multiple dust clouds at different distances along each line of sight. This reddening-based dust map agrees closely with the Schlegel et al. (SFD) far-infrared emission-based dust map away from the Galactic plane, and the most prominent differences between the two maps stem from known limitations of SFD in the plane. We also compare the map with Planck, finding likewise good agreement in general at high latitudes. The use of optical data from Pan-STARRS1 yields reddening uncertainty as low as 25 mmag E(B - V).
C1 [Schlafly, E. F.; Rix, H. -W.; Martin, N. F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Green, G.; Finkbeiner, D. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Finkbeiner, D. P.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Juric, M.] LSST Corp, Tucson, AZ 85721 USA.
[Martin, N. F.] CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France.
[Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R. -P.; Magnier, E. A.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Draper, P. W.; Metcalfe, N.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Price, P. A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
RP Schlafly, EF (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
RI Stubbs, Christopher/C-2829-2012;
OI Stubbs, Christopher/0000-0003-0347-1724; Green,
Gregory/0000-0001-5417-2260; Schlafly, Edward Ford/0000-0002-3569-7421;
Draper, Peter W./0000-0002-7204-9802; Chambers, Kenneth
/0000-0001-6965-7789; Metcalfe, Nigel/0000-0001-9034-4402
FU German Research Foundation (DFG) [Sonderforschungsbereich SFB 881]; NASA
[NNX10AD69G]; NSF [AST-1312891]; CNRS through PICS project [PICS06183];
National Aeronautics and Space Administration through the Planetary
Science Division of the NASA Science Mission Directorate [NNX08AR22G];
National Science Foundation [AST-1238877]
FX E.F.S. acknowledges funding by Sonderforschungsbereich SFB 881 "The
Milky Way System" subproject A3) of the German Research Foundation
(DFG). D.P.F. acknowledges support of NASA grant NNX10AD69G. G.G. and
D.P.F. are partially supported by NSF grant AST-1312891. N.F.M.
gratefully acknowledges the CNRS for support through PICS project
PICS06183. Computation was performed on the GPU Cluster Milky Way at FZ
Juelich and on the Odyssey cluster supported by the FAS Division of
Science, Research Computing Group at Harvard University.; The
Pan-STARRS1 Surveys (PS1) have been made possible through contributions
of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS
Project Office, the Max-Planck Society and its participating institutes,
the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck
Institute for Extraterrestrial Physics, Garching, The Johns Hopkins
University, Durham University, the University of Edinburgh, Queen's
University Belfast, the Harvard-Smithsonian Center for Astrophysics, the
Las Cumbres Observatory Global Telescope Network Incorporated, the
National Central University of Taiwan, the Space Telescope Science
Institute, the National Aeronautics and Space Administration under grant
No. NNX08AR22G issued through the Planetary Science Division of the NASA
Science Mission Directorate, the National Science Foundation under grant
No. AST-1238877, the University of Maryland, and Eotvos Lorand
University (ELTE).
NR 44
TC 28
Z9 28
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 15
DI 10.1088/0004-637X/789/1/15
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400015
ER
PT J
AU Van Loo, S
Keto, E
Zhang, QZ
AF Van Loo, Sven
Keto, Eric
Zhang, Qizhou
TI CORE AND FILAMENT FORMATION IN MAGNETIZED, SELF-GRAVITATING ISOTHERMAL
LAYERS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE ISM: clouds; ISM: structure; methods: numerical; stars: formation
ID MOLECULAR CLOUD FORMATION; MAGNETICALLY-DOMINATED CLOUDS;
SHOCK-TRIGGERED FORMATION; FREE-FALL TIME; STAR-FORMATION; AMBIPOLAR
DIFFUSION; INTERSTELLAR FILAMENTS; INTERNAL STRUCTURE; COMPRESSED
LAYERS; LINE-PROFILES
AB We examine the role of the gravitational instability in an isothermal, self-gravitating layer threaded by magnetic fields on the formation of filaments and dense cores. Using a numerical simulation, we follow the non-linear evolution of a perturbed equilibrium layer. The linear evolution of such a layer is described in the analytic work of Nagai et al. We find that filaments and dense cores form simultaneously. Depending on the initial magnetic field, the resulting filaments form either a spiderweb-like network (for weak magnetic fields) or a network of parallel filaments aligned perpendicular to the magnetic field lines (for strong magnetic fields). Although the filaments are radially collapsing, the density profile of their central region (up to the thermal scale height) can be approximated by a hydrodynamical equilibrium density structure. Thus, the magnetic field does not play a significant role in setting the density distribution of the filaments. The density distribution outside of the central region deviates from the equilibrium. The radial column density distribution is then flatter than the expected power law of r(-4) and similar to filament profiles observed with Herschel. Our results do not explain the near constant filament width of similar to 0.1pc. However, our model does not include turbulent motions. It is expected that the accretion-driven amplification of these turbulent motions provides additional support within the filaments against gravitational collapse. Finally, we interpret the filamentary network of the massive star forming complex G14.225-0.506 in terms of the gravitational instability model and find that the properties of the complex are consistent with being formed out of an unstable layer threaded by a strong, parallel magnetic field.
C1 [Van Loo, Sven; Keto, Eric; Zhang, Qizhou] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Van Loo, S (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM svanloo@cfa.harvard.edu
OI Van Loo, Sven/0000-0003-4746-8500; Zhang, Qizhou/0000-0003-2384-6589
FU SMA Postdoctoral Fellowship of the Smithsonian Astrophysical Observatory
FX We thank Tom Hartquist, Sam Falle, and Phil Myers for useful
discussions, Gemma Busquet for providing the observational data of the
G14.225-0.506 molecular cloud and the anonymous referee for comments
that improved the paper. S. V. L. acknowledges support from the SMA
Postdoctoral Fellowship of the Smithsonian Astrophysical Observatory.
The simulations for this work were run on the Smithsonian Institution
High Performance Cluster (SI/HPC).
NR 73
TC 13
Z9 13
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 37
DI 10.1088/0004-637X/789/1/37
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400037
ER
PT J
AU Qurban, MA
Krishnakumar, PK
Joydas, TV
Manikandan, KP
Ashraf, TTM
Quadri, SI
Wafar, M
Qasem, A
Cairns, SD
AF Qurban, Mohammad A.
Krishnakumar, P. K.
Joydas, T. V.
Manikandan, K. P.
Ashraf, T. T. M.
Quadri, S. I.
Wafar, M.
Qasem, Ali
Cairns, S. D.
TI In-situ observation of deep water corals in the northern Red Sea waters
of Saudi Arabia
SO DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS
LA English
DT Article
DE Cold water corals; Azooxanthellate; Dasmosmilia valida; Eguchipsammia
fistula; Rhizotrochus typus; Octocorallia; Antipatharia
ID MEDITERRANEAN SEA; DIVERSITY; MARGINS; SHELF; ZONE
AB Three sites offshore of the Saudi Arabia coast in the northern Red Sea were surveyed in November 2012 to search for deep-water coral (DWC) grounds using a Remotely Operated Vehicle. A total of 156 colonies were positively identified between 400 and 760 m, and were represented by seven species belonging to Scleractinia (3), Alcyonacea (3) and Antipatharia (1). The scleractinians Dasmosmilia valida Marenzeller, 1907, Eguchipsammia fistula (Alcock, 1902) and Rhizotrochus typus Milne-Edwards and Haime, 1848 were identified to species level, while the octocorals Acanthogorgia sp., Chironephthya sp., Pseudopterogorgia sp., and the antipatharian Stichopathes sp., were identified to genus level. Overall, the highest abundance of DWC was observed at Site A1, the closest to the coast. The most abundant species in the study area was D. valida, which lives attached to rocky substrates and represented 42% of the total coral population at site A1. Water column attributes at this depth were quite homogenous with temperature ca. 21.6 degrees C, salinity ca. 40.56, dissolved oxygen ca. 1.75 ml L-1 and current velocity from 0.6 to 34.5 cm s(-1) with a mean value of 9.5 cm s(-1). Interestingly, these DWC can cope with high temperature and salinity, compared to those in other regions. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Qurban, Mohammad A.; Krishnakumar, P. K.; Joydas, T. V.; Manikandan, K. P.; Ashraf, T. T. M.; Quadri, S. I.; Wafar, M.] King Fand Univ Petr & Minerals, Ctr Environm & Water, Res Inst, Dhahran 31261, Saudi Arabia.
[Qasem, Ali] Saudi Aramco, Environm Protect Dept, Dhahran, Saudi Arabia.
[Cairns, S. D.] Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, Washington, DC 20560 USA.
RP Qurban, MA (reprint author), King Fand Univ Petr & Minerals, Ctr Environm & Water, Res Inst, PB 391, Dhahran 31261, Saudi Arabia.
EM mqurban@kfupm.edu.sa
RI Joydas, Thadickal/F-1809-2015;
OI Joydas, T.V./0000-0002-6725-4094
NR 44
TC 7
Z9 7
U1 2
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0967-0637
EI 1879-0119
J9 DEEP-SEA RES PT I
JI Deep-Sea Res. Part I-Oceanogr. Res. Pap.
PD JUL
PY 2014
VL 89
BP 35
EP 43
DI 10.1016/j.dsr.2014.04.002
PG 9
WC Oceanography
SC Oceanography
GA AJ8YG
UT WOS:000337993400003
ER
PT J
AU Soon, W
Herrera, VMV
Selvaraj, K
Traversi, R
Usoskin, I
Chen, CTA
Lou, JY
Kao, SJ
Carter, RM
Pipin, V
Severi, M
Becagli, S
AF Soon, Willie
Herrera, Victor M. Velasco
Selvaraj, Kandasamy
Traversi, Rita
Usoskin, Ilya
Chen, Chen-Tung Arthur
Lou, Jiann-Yuh
Kao, Shuh-Ji
Carter, Robert M.
Pipin, Valery
Severi, Mirko
Becagli, Silvia
TI A review of Holocene solar-linked climatic variation on centennial to
millennial timescales: Physical processes, interpretative frameworks and
a new multiple cross-wavelet transform algorithm
SO EARTH-SCIENCE REVIEWS
LA English
DT Article
DE Solar-climate variations; Solar activity proxies; Wavelet transform
ID NORTH-ATLANTIC CLIMATE; NORTHEASTERN UNITED-STATES; TROPICAL
PACIFIC-OCEAN; HIGH-RESOLUTION; SOUTHERN-OCEAN; ASIAN MONSOON; ICE CORE;
CIRCULATION PATTERNS; SURFACE-TEMPERATURE; COSMOGENIC ISOTOPES
AB We report on the existence and nature of Holocene solar and climatic variations on centennial to millennial time-scales. We introduce a new solar activity proxy, based on nitrate (NO) concentration from the Tabs Dome ice core, East Antarctica. We also use a new algorithm for computing multiple-cross wavelet spectra in time-frequency space that is generalized for multiple time series (beyond two). Our results provide a new interpretive framework for relating Holocene solar activity variations on centennial to millennial timescales to co-varying climate proxies drawn from a widespread area around the globe. Climatic proxies used represent variation in the North Atlantic Ocean, Western Pacific Warm Pool, Southern Ocean and the East Asian monsoon regions. Our wavelet analysis identifies fundamental solar modes at 2300-yr (Hallstattzeit), 1000-yr (Eddy), and 500-yr (unnamed) periodicities, leaves open the possibility that the 1500-1800-yr cycle may either be fundamental or derived, and identifies intermediary derived cycles at 700-yr and 300-yr that may mark rectified responses of the Atlantic thermohaline circulation to external solar modulation and pacing. Dating uncertainties suggest that the 1500-yr and 1800-yr cycles described in the literature may represent either the same or two separate cycles, but in either case, and irrespective too of whether it is a fundamental or derived mode in the sense of Dima and Lohmann (2009), the 1500-1800-yr periodicity is widely represented in a large number of paleoclimate proxy records. It is obviously premature to reject possible links between changing solar activity at these multiple scales and the variations that are commonly observed in paleoclimatic records. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Soon, Willie] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Herrera, Victor M. Velasco] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico.
[Selvaraj, Kandasamy; Kao, Shuh-Ji] Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen, Peoples R China.
[Traversi, Rita; Severi, Mirko; Becagli, Silvia] Univ Florence, Dept Chem Ugo Schiff, I-50019 Florence, Italy.
[Usoskin, Ilya] Univ Oulu, Sodankyla Geophys Observ, Oulu, Finland.
[Usoskin, Ilya] Univ Oulu, Dept Phys, Oulu, Finland.
[Chen, Chen-Tung Arthur] Natl Sun Yat Sen Univ, Inst Marine Geol & Chem, Kaohsiung 80424, Taiwan.
[Lou, Jiann-Yuh] Naval Acad, Dept Marine Sci, Kaohsiung, Taiwan.
[Carter, Robert M.] Inst Publ Affairs, Melbourne, Australia.
[Pipin, Valery] Russian Acad Sci, Inst Solar Terr Phys, Irkutsk 664033, Russia.
RP Soon, W (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM wsoon@cfa.harvard.edu
RI Kao, Shuh-Ji/F-8418-2015; Traversi, Rita/M-7586-2015; Chen, Chen-Tung
Arthur/C-8901-2011; Severi, Mirko/J-2508-2012;
OI Kao, Shuh-Ji/0000-0002-5054-9099; Traversi, Rita/0000-0002-9790-2195;
Severi, Mirko/0000-0003-1511-6762; Becagli, Silvia/0000-0003-3633-4849;
Velasco, Victor/0000-0002-0100-8878; Usoskin, Ilya/0000-0001-8227-9081
FU ReSoLVE Center of Excellence (Academy of Finland) [272157];
[CONACyT-180148]
FX W.S. thanks Dr. Mihai Dima for his contributions to the scientific
knowledge in this manuscript as well as his unselfish sharing of
published data. Dr. Mathias Moros is thanked for sharing his data and
Dr. Charles Perry is thanked for clarifying the details in Perry and Hsu
(2000). We acknowledge the comments by a total of four reviewers that
helped to improve the clarity of our paper. W.S. and V.M.V.H.
contributed equally to the results in this paper. V.M.V.H. acknowledges
the support from CONACyT-180148 grant I.U.'s contribution was done in
the framework of the ReSoLVE Center of Excellence (Academy of Finland,
project no. 272157). This work is a contribution to TALDICE and HOLOCLIP
projects. TALDICE (Tabs Dome Ice Core Project) is a joint European
programme, funded by national contributions from Italy, France, Germany,
Switzerland and the United Kingdom. Primary logistic support was
provided by PNRA at Tabs Dome. HOLOCLIP is a joint research project of
ESF PolarCLIMATE programme, funded by national contributions from Italy,
France, Germany, Spain, Netherlands, Belgium, and the United Kingdom.
This is TALDICE paper n.38 and HOLOCLIP paper n.22.
NR 150
TC 26
Z9 26
U1 3
U2 63
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-8252
EI 1872-6828
J9 EARTH-SCI REV
JI Earth-Sci. Rev.
PD JUL
PY 2014
VL 134
BP 1
EP 15
DI 10.1016/j.earscirev.2014.03.003
PG 15
WC Geosciences, Multidisciplinary
SC Geology
GA AJ7CW
UT WOS:000337855800001
ER
PT J
AU Anderson, MR
AF Anderson, Megan R.
TI Reaching New Heights: The Effect of an Environmentally Enhanced Outdoor
Enclosure on Gibbons in a Zoo Setting
SO JOURNAL OF APPLIED ANIMAL WELFARE SCIENCE
LA English
DT Article
DE gibbons; behavior; space utilization; environmental enrichment
ID SPACE
AB Gibbons have adapted to live in the canopy layer of the rainforest. Gibbons in the wild predominantly spend their time high in the trees resting, traveling, and foraging for food. Comparatively, gibbons in the zoo often rest and search for their food terrestrially. The purpose of this study was to provide these arboreal smaller apes with more opportunities to utilize more vertical space. Six gibbons (4 Nomascus leucogenys and 2 Symphalangus syndactylus) were observed in 2 phases of an observational study. The 1st phase measured space utilization and behaviors of the zoo-housed gibbons in their original outdoor enclosures using instantaneous sampling. The 2nd phase measured the same space usage and behaviors after several modifications were made to the environmental structures in the same outdoor enclosures. A 2-way mixed-model analysis of variance tested the height utilization of the 6 gibbons. The gibbons chose to spend significantly more time outside and at higher heights when the new structures were added. This study shows that given the opportunity, gibbons will exhibit more species-appropriate behaviors.
C1 Smithsonian Inst, Natl Zool Pk, Washington, DC 20013 USA.
RP Anderson, MR (reprint author), Smithsonian Inst, Natl Zool Pk, MRC 5507, Washington, DC 20013 USA.
EM jordanxmegan@hotmail.com
NR 15
TC 0
Z9 0
U1 3
U2 32
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND
SN 1088-8705
EI 1532-7604
J9 J APPL ANIM WELF SCI
JI J. Appl. Anim. Welf. Sci.
PD JUL-SEP
PY 2014
VL 17
IS 3
BP 216
EP 227
DI 10.1080/10888705.2014.916172
PG 12
WC Veterinary Sciences
SC Veterinary Sciences
GA AJ8AA
UT WOS:000337923000003
PM 24832240
ER
PT J
AU Comita, LS
Queenborough, SA
Murphy, SJ
Eck, JL
Xu, KY
Krishnadas, M
Beckman, N
Zhu, Y
AF Comita, Liza S.
Queenborough, Simon A.
Murphy, Stephen J.
Eck, Jenalle L.
Xu, Kaiyang
Krishnadas, Meghna
Beckman, Noelle
Zhu, Yan
TI Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of
experimental evidence for distance- and density-dependent seed and
seedling survival
SO JOURNAL OF ECOLOGY
LA English
DT Article
DE determinants of plant community diversity and structure; herbivory;
maintenance of diversity; natural enemies; pathogens; plant population
and community dynamics; review; seed predation; species coexistence;
tropical forest
ID TROPICAL TREE DIVERSITY; PLANT-SOIL FEEDBACKS; RAIN-FOREST; SPECIES
COEXISTENCE; PERENNIAL PLANTS; SPATIAL-PATTERNS; PATHOGENS; RECRUITMENT;
MORTALITY; CONSEQUENCES
AB 1. The Janzen-Connell hypothesis proposes that specialist natural enemies, such as herbivores and pathogens, maintain diversity in plant communities by reducing survival rates of conspecific seeds and seedlings located close to reproductive adults or in areas of high conspecific density. Variation in the strength of distance- and density-dependent effects is hypothesized to explain variation in plant species richness along climatic gradients, with effects predicted to be stronger in the tropics than the temperate zone and in wetter habitats compared to drier habitats.
2. We conducted a comprehensive literature search to identify peer-reviewed experimental studies published in the 40+ years since the hypothesis was first proposed. Using data from these studies, we conducted a meta-analysis to assess the current weight of evidence for the distance and density predictions of the Janzen-Connell hypothesis.
3. Overall, we found significant support for both the distance- and density-dependent predictions. For all studies combined, survival rates were significantly reduced near conspecifics compared to far from conspecifics, and in areas with high densities of conspecifics compared to areas with low conspecific densities. There was no indication that these results were due to publication bias.
4. The strength of distance and density effects varied widely among studies. Contrary to expectations, this variation was unrelated to latitude, and there was no significant effect of study region. However, we did find a trend for stronger distance and density dependence in wetter sites compared to sites with lower annual precipitation. In addition, effects were significantly stronger at the seedling stage compared to the seed stage.
5. Synthesis. Our study provides support for the idea that distance- and density-dependent mortality occurs in plant communities world-wide. Available evidence suggests that natural enemies are frequently the cause of such patterns, consistent with the Janzen-Connell hypothesis, but additional studies are needed to rule out other mechanisms (e.g. intraspecific competition). With the widespread existence of density and distance dependence clearly established, future research should focus on assessing the degree to which these effects permit species coexistence and contribute to the maintenance of diversity in plant communities.
C1 [Comita, Liza S.; Queenborough, Simon A.; Murphy, Stephen J.; Eck, Jenalle L.; Xu, Kaiyang; Krishnadas, Meghna] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA.
[Comita, Liza S.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
[Beckman, Noelle] Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USA.
[Zhu, Yan] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China.
RP Comita, LS (reprint author), Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA.
EM liza.comita@yale.edu
RI Beckman, Noelle/E-5554-2011
OI Beckman, Noelle/0000-0001-5822-0610
NR 65
TC 58
Z9 60
U1 35
U2 252
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-0477
EI 1365-2745
J9 J ECOL
JI J. Ecol.
PD JUL
PY 2014
VL 102
IS 4
BP 845
EP 856
DI 10.1111/1365-2745.12232
PG 12
WC Plant Sciences; Ecology
SC Plant Sciences; Environmental Sciences & Ecology
GA AJ9KB
UT WOS:000338027500003
ER
PT J
AU Banin, L
Lewis, SL
Lopez-Gonzalez, G
Baker, TR
Quesada, CA
Chao, KJ
Burslem, DFRP
Nilus, R
Abu Salim, K
Keeling, HC
Tan, S
Davies, SJ
Mendoza, AM
Vasquez, R
Lloyd, J
Neill, DA
Pitman, N
Phillips, OL
AF Banin, Lindsay
Lewis, Simon L.
Lopez-Gonzalez, Gabriela
Baker, Timothy R.
Quesada, Carlos A.
Chao, Kuo-Jung
Burslem, David F. R. P.
Nilus, Reuben
Abu Salim, Kamariah
Keeling, Helen C.
Tan, Sylvester
Davies, Stuart J.
Monteagudo Mendoza, Abel
Vasquez, Rodolfo
Lloyd, Jon
Neill, David A.
Pitman, Nigel
Phillips, Oliver L.
TI Tropical forest wood production: a cross-continental comparison
SO JOURNAL OF ECOLOGY
LA English
DT Article
DE Amazon; Asia; carbon; Dipterocarpaceae; dynamics; growth; plant-soil
interactions; productivity; soil nutrients; tropical forest
ID NET PRIMARY PRODUCTIVITY; RAIN-FOREST; TREE GROWTH; AMAZONIAN FORESTS;
NEOTROPICAL FORESTS; NUTRIENT LIMITATION; LITTER PRODUCTION;
SOIL-PHOSPHORUS; CARBON-DIOXIDE; EL-NINO
AB 1. Tropical forest above-ground wood production (AGWP) varies substantially along environmental gradients. Some evidence suggests that AGWP may vary between regions and specifically that Asian forests have particularly high AGWP. However, comparisons across biogeographic regions using standardized methods are lacking, limiting our assessment of pan-tropical variation in AGWP and potential causes.
2. We sampled AGWP in NW Amazon (17 long-term forest plots) and N Borneo (11 plots), both with abundant year-round precipitation. Within each region, forests growing on a broad range of edaphic conditions were sampled using standardized soil and forest measurement techniques.
3. Plot-level AGWP was 49% greater in Borneo than in Amazonia (9.73 +/- 0.56 vs. 6.53 +/- 0.34 Mg dry mass ha(-1) a(-1), respectively; regional mean +/- 1 SE). AGWP was positively associated with soil fertility (PCA axes, sum of bases and total P). After controlling for the edaphic environment, AGWP remained significantly higher in Bornean plots. Differences in AGWP were largely attributable to differing height-diameter allometry in the two regions and the abundance of large trees in Borneo. This may be explained, in part, by the greater solar radiation in Borneo compared with NW Amazonia.
4. Trees belonging to the dominant SE Asian family, Dipterocarpaceae, gained woody biomass faster than otherwise equivalent, neighbouring non-dipterocarps, implying that the exceptional production of Bornean forests may be driven by floristic elements. This dominant SE Asian family may partition biomass differently or be more efficient at harvesting resources and in converting them to woody biomass.
5. Synthesis. N Bornean forests have much greater AGWP rates than those in NW Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history.
C1 [Banin, Lindsay] Bush Estate, Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland.
[Banin, Lindsay; Lewis, Simon L.; Lopez-Gonzalez, Gabriela; Baker, Timothy R.; Keeling, Helen C.; Phillips, Oliver L.] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England.
[Lewis, Simon L.] UCL, Dept Geog, London WC1E 6BT, England.
[Quesada, Carlos A.] Inst Nacl de Pesquisas da Amazonia, BR-69060001 Manaus, Amazonas, Brazil.
[Chao, Kuo-Jung] Natl Chung Hsing Univ, Coll Agr & Nat Resources, Int Master Program Agr, Taichung 40227, Taiwan.
[Burslem, David F. R. P.] Univ Aberdeen, Sch Biol Sci, Aberdeen AB24 3UU, Scotland.
[Nilus, Reuben] Forest Res Ctr, Sabah Forestry Dept, Sandakan 90715, Sabah, Malaysia.
[Abu Salim, Kamariah] Univ Brunei Darussalam, Fac Sci, BE-1410 Bandar Seri Begawan, Brunei.
[Tan, Sylvester] Sarawak Forestry Corp, KCLD, Kuching 93250, Sarawak, Malaysia.
[Davies, Stuart J.] Smithsonian Trop Res Inst, Ctr Trop Forest Sci, Washington, DC 20013 USA.
[Monteagudo Mendoza, Abel; Vasquez, Rodolfo] Jardin Bot Missouri, Oxapampa 19231, Pasco, Peru.
[Lloyd, Jon] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Fac Nat Sci, London SW7 2AZ, England.
[Neill, David A.] Univ Estatal Amazonica, Puyo, Pastaza, Ecuador.
[Pitman, Nigel] Field Museum, Chicago, IL 60605 USA.
[Pitman, Nigel] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA.
RP Banin, L (reprint author), Bush Estate, Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland.
EM Lindsay.banin@gmail.com
RI Phillips, Oliver/A-1523-2011; Lloyd, Jonathan/F-8893-2010;
OI Phillips, Oliver/0000-0002-8993-6168; Lloyd,
Jonathan/0000-0002-5458-9960; Lewis, Simon/0000-0002-8066-6851; Burslem,
David/0000-0001-6033-0990
FU RAINFOR network; AMAZONICA project; NERC; Gordon and Betty Moore
Foundation; NERC studentship; Henrietta Hutton Grant (RGS-IBG); Dudley
Stamp Award (Royal Society); Royal Society University Research
Fellowship; European Research Council Advanced Grant; Royal Society
Wolfson Research Merit Award
FX This work was supported by the RAINFOR network, the AMAZONICA project
and funding from NERC and the Gordon and Betty Moore Foundation. L. B.
was supported by a NERC studentship with additional funding from
Henrietta Hutton Grant (RGS-IBG) and Dudley Stamp Award (Royal Society).
S. L. L. was supported by a Royal Society University Research
Fellowship. O.L.P. and S. L. L. were supported by a European Research
Council Advanced Grant and O.L.P. by a Royal Society Wolfson Research
Merit Award. For help in collecting data, we thank J.H. Ovalle, M. M.
Solorzano and Antonio Pena Cruz (Peru); R. Sukri and M. Salleh A. B.
(Brunei); C. Maycock (Sabah); and L. Chong, R. Shutine and L. K. Kho
(Sarawak); for logistical aid and access to the forest plots of Lambir
Hills National Park, Sarawak, Malaysia, we thank the Sarawak Forestry
Corporation, Malaysia, the Center for Tropical Forest Science - Arnold
Arboretum Asia Program of the Smithsonian Tropical Research Institute
and Harvard University, USA, and their funding agencies. Additional
thanks go to the Economic Planning Unit, Malaysia, for granting L. B.
access to conduct research and Rachel Gasior, Martin Gilpin and David
Ashley for laboratory assistance. We thank Patrick Meir, Stephen Sitch,
Alan Grainger, Geertje van der Heijden, Ron Smith, Joe Wright and an
anonymous reviewer for their helpful comments on earlier versions of the
manuscript.
NR 85
TC 27
Z9 27
U1 6
U2 73
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-0477
EI 1365-2745
J9 J ECOL
JI J. Ecol.
PD JUL
PY 2014
VL 102
IS 4
BP 1025
EP 1037
DI 10.1111/1365-2745.12263
PG 13
WC Plant Sciences; Ecology
SC Plant Sciences; Environmental Sciences & Ecology
GA AJ9KB
UT WOS:000338027500020
ER
PT J
AU Cohen, EB
Moore, FR
Fischer, RA
AF Cohen, Emily B.
Moore, Frank R.
Fischer, Richard A.
TI Fuel stores, time of spring, and movement behavior influence stopover
duration of Red-eyed Vireo Vireo olivaceus
SO JOURNAL OF ORNITHOLOGY
LA English
DT Article
DE Nearctic-Neotropical migrant; Spring migration; Stopover duration;
Radio-telemetry; Red-eyed Vireo; Vireo olivaceus
ID GULF-OF-MEXICO; MIGRATION STOPOVER; NORTHERN WHEATEARS;
ERITHACUS-RUBECULA; OENANTHE-OENANTHE; EUROPEAN ROBINS; FAT DEPOSITION;
BIRD MIGRATION; DEPARTURES; MIGRANTS
AB Long-distance migration is characterized by periods of flight, when energy stores are consumed, and periods of stopover, when energy stores are replenished. The duration of the migratory period is largely determined by time spent at stopover sites. The time constraints imposed on spring migrants should act to minimize the time spent on migration, yet spring migrants often remain at stopover sites for extended periods. We measured the influence of arrival fuel stores, arrival date, and foraging movement rate on the duration of Red-eyed Vireos (Vireo olivaceus) that remained at stopover sites for more than 1 day. We captured spring migrants in mist-nets as they arrived after crossing the Gulf of Mexico. We released them at an inland site and continuously followed (radio-tracked) their movements until departure. Departure time was confirmed with extensive ground searches and aerial surveys. Migrants remained at the stopover sites from 1 to 8 days (2.80 +/- A 0.14 days). Less than one-third of migrants were transient, leaving the night following release (32 %). Of the migrants that remained more than 1 day, those that arrived with low fuel stores remained longer than those that arrived with more fuel stores. Only migrants arriving early in the spring stayed for extended periods of time (> 5 days). Further, migrants that moved faster within the stopover landscape presumably replenished fuel stores faster because they did not remain as long as migrants that did not move as quickly. When arrival fuel stores, arrival day, and departure day were known, we found multiple factors influenced the length of stay at spring stopover sites. Early spring migrants with low fuel stores that moved slowly through the landscape spent the most time at spring stopover sites.
C1 [Cohen, Emily B.; Moore, Frank R.] Univ So Mississippi, Dept Biol Sci, Hattiesburg, MS 39406 USA.
[Cohen, Emily B.] Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20013 USA.
[Fischer, Richard A.] US Army Engn Res & Dev Ctr, Environm Lab, Vicksburg, MS 39180 USA.
RP Cohen, EB (reprint author), Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Natl Zool Pk,POB 37012,MRC 5503, Washington, DC 20013 USA.
EM cohene@si.edu
FU US Department of Defense Strategic Environmental Research and
Development Program; University of Southern Mississippi
FX Logistical support was provided by J. Johnson and D. Hudson at Fort Polk
and L. Bennett at Louisiana Wildlife and Fisheries. We would especially
like to thank the members of the migratory bird research group at USM
and all of the hard-working assistants who helped us collect data in the
field. Funding for this project was provided by the US Department of
Defense Strategic Environmental Research and Development Program and the
University of Southern Mississippi. This study was conducted in full
compliance with the laws of the United States of America.
NR 62
TC 5
Z9 5
U1 1
U2 30
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0021-8375
EI 1439-0361
J9 J ORNITHOL
JI J. Ornithol.
PD JUL
PY 2014
VL 155
IS 3
BP 785
EP 792
DI 10.1007/s10336-014-1067-3
PG 8
WC Ornithology
SC Zoology
GA AJ6HP
UT WOS:000337792500023
ER
PT J
AU Loss, SR
Will, T
Marra, PP
AF Loss, Scott R.
Will, Tom
Marra, Peter P.
TI Estimation of bird-vehicle collision mortality on US roads
SO JOURNAL OF WILDLIFE MANAGEMENT
LA English
DT Review
DE anthropogenic mortality; automobiles; birds; detection probability;
roadkill; roads; scavenger removal; systematic review; United States;
vehicles
ID UNITED-STATES; AVIAN MORTALITY; BARN OWLS; TYTO-ALBA; POPULATIONS;
VERTEBRATES; AMPHIBIANS; WILDLIFE; MAMMALS; CANADA
AB Roads have numerous direct and indirect ecological impacts on wildlife. Vehicle collisions are a top impact of roads on birds, with tens of millions of birds thought to be killed each year in the United States. However, currently available mortality estimates are extrapolated from a single study. We reviewed the literature and used 20 mortality rates extracted from 13 studies to systematically quantify data-driven estimates of annual U.S. mortality from bird-vehicle collisions. We generated 4 separate estimates along with uncertainty using different subsets of data deemed to be rigorous enough to contribute relatively little bias to estimates. All of our estimates of vehicle mortality are higher than previous U.S. figures. When averaging across model iterations, we estimated that between 89 and 340 million birds die annually from vehicle collisions on U.S. roads. Sensitivity analyses indicated that uncertainty about survey-related biases (scavenger removal and searcher detection of carcasses) contributes the greatest amount of uncertainty to our mortality estimates. Future studies should account for these biases to provide more accurate local estimates of mortality rates and to inform more precise national mortality estimates. We found relatively little information available to quantify regional, seasonal, and taxonomic patterns of vehicle collision risk, and substantial uncertainty remains about whether collisions contribute to large-scale impacts on bird populations. Nonetheless, the large magnitude of bird mortality caused by vehicle collisions combined with evidence that collisions can contribute to local population declines for some species highlights the need for implementation of conservation and management actions to reduce this mortality. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
C1 [Loss, Scott R.; Marra, Peter P.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20013 USA.
[Will, Tom] US Fish & Wildlife Serv, Div Migratory Birds, Midwest Reg Off, Bloomington, MN 55437 USA.
RP Loss, SR (reprint author), Oklahoma State Univ, Dept Nat Resource Ecol & Management, 008C Agr Hall, Stillwater, OK 74078 USA.
EM scott.loss@okstate.edu
FU U.S. Fish and Wildlife Service through the Smithsonian Institution's
Postdoctoral Fellowship program
FX We thank J. Rutter and R. Schneider for assisting with data compilation,
management, and analysis. S. R. L. was supported by a postdoctoral
fellowship funded by the U.S. Fish and Wildlife Service through the
Smithsonian Institution's Postdoctoral Fellowship program. The findings
and opinions expressed in this paper are those of the authors and do not
necessarily reflect the opinions of the U.S. Fish and Wildlife Service,
the Smithsonian Institution, or Oklahoma State University.
NR 68
TC 18
Z9 18
U1 7
U2 84
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-541X
EI 1937-2817
J9 J WILDLIFE MANAGE
JI J. Wildl. Manage.
PD JUL
PY 2014
VL 78
IS 5
BP 763
EP 771
DI 10.1002/jwmg.721
PG 9
WC Ecology; Zoology
SC Environmental Sciences & Ecology; Zoology
GA AJ8PB
UT WOS:000337967100002
ER
PT J
AU Brown, DD
Montgomery, RA
Millspaugh, JJ
Jansen, PA
Garzon-Lopez, CX
Kays, R
AF Brown, D. D.
Montgomery, R. A.
Millspaugh, J. J.
Jansen, P. A.
Garzon-Lopez, C. X.
Kays, R.
TI Selection and spatial arrangement of rest sites within northern tamandua
home ranges
SO JOURNAL OF ZOOLOGY
LA English
DT Article
DE tamandua; selection; telemetry; accelerometry; Panama; rest site; sleep
ID MAMMAL MYRMECOPHAGA-TRIDACTYLA; RESOURCE SELECTION; SLEEPING SITES;
UTILIZATION DISTRIBUTIONS; SAGUINUS-FUSCICOLLIS; SEXUAL SEGREGATION;
HABITAT SELECTION; PREDATION RISK; PANTHERA-ONCA; TREE HOLES
AB The distribution of suitable rest sites is considered to be a key determinant of spatial patterns in animal activity. However, it is not immediately evident which landscape features satisfy rest site requirements or how these sites are configured within the home range. We used Global Positioning System (GPS)/accelerometer telemetry to investigate rest site selection at the home-range scale for northern tamanduas Tamandua mexicana on Barro Colorado Island (BCI), Panama. We developed models specifying each tamandua as the individual experimental unit and averaged coefficients to produce population-level estimates. Tamanduas had on average 17.8 (+/- 8.1) rest sites within their home range and used 1.36 (+/- 0.51) on any given day. These rest sites tended to be located in the core of tamandua home ranges, with active locations associated with the periphery of the home range. Rest sites were positively associated with (1) a high density of Attalea butyracea palm trees; (2) elevation; (3) tall vegetation. There was a slight negative relationship between the distribution of rest sites and slope, and no apparent relationship between rest site selection and relative distance to forest canopy gaps. From focal animal observations, we identified that tamandua rest sites were typically located in trees (90%), with 25% (12 of 49) occurring in palms. We contend that northern tamanduas on BCI selected vegetated arboreal rest sites because of reduced likelihood of detection from terrestrial predators in these sites. Our models identified considerable individual variation in rest site selection, which suggests that the practice of pooling individuals and fitting models at an aggregate level may be inappropriate for certain types of habitat selection research.
C1 [Brown, D. D.] Western Kentucky Univ, Dept Biol, Bowling Green, KY 42101 USA.
[Montgomery, R. A.; Millspaugh, J. J.] Univ Missouri, Dept Fisheries & Wildlife Sci, Columbia, MO USA.
[Montgomery, R. A.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA.
[Jansen, P. A.; Kays, R.] Smithsonian Trop Res Inst, Ancon Panama, Panama.
[Jansen, P. A.] Wageningen Univ, Dept Environm Sci, NL-6700 AP Wageningen, Netherlands.
[Garzon-Lopez, C. X.] Univ Groningen, Netherlands Community & Conservat Ecol, Groningen, Netherlands.
[Garzon-Lopez, C. X.] Ctr Empresarial Potosi, Grp ARCO, Sopo, Colombia.
[Kays, R.] North Carolina Museum Nat Sci, Raleigh, NC USA.
[Kays, R.] N Carolina State Univ, Dept Fisheries Wildlife & Conservat, Raleigh, NC 27695 USA.
RP Brown, DD (reprint author), Western Kentucky Univ, Dept Biol, 1906 Coll Hts Blvd 11080, Bowling Green, KY 42101 USA.
EM danielle.brown@wku.edu
RI Jansen, Patrick/G-2545-2015; Garzon-Lopez, Carol/G-6251-2014
OI Jansen, Patrick/0000-0002-4660-0314; Garzon-Lopez,
Carol/0000-0002-4099-2740
FU Smithsonian Tropical Research Institute
FX The authors wish to thank the Smithsonian Tropical Research Institute
for funding the acquisition of LiDAR and high-resolution optical imagery
of the Barro Colorado Nature Monument as well as Elena Lobo for
facilitating the collection of the LiDAR data. They also wish to thank
Sergio dos Santos of the Smithsonian Tropical Research Institute for
facilitating access to the BCI weather station data.
NR 83
TC 1
Z9 1
U1 3
U2 36
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0952-8369
EI 1469-7998
J9 J ZOOL
JI J. Zool.
PD JUL
PY 2014
VL 293
IS 3
BP 160
EP 170
DI 10.1111/jzo.12131
PG 11
WC Zoology
SC Zoology
GA AJ8QX
UT WOS:000337972800003
ER
PT J
AU Reitzel, K
Turner, BL
AF Reitzel, Kasper
Turner, Benjamin L.
TI Quantification of pyrophosphate in soil solution by pyrophosphatase
hydrolysis
SO SOIL BIOLOGY & BIOCHEMISTRY
LA English
DT Article
DE Pyrophosphate; Phosphatase; Soil solution; Phosphorus; Tropical forests
ID P-31 NMR-SPECTROSCOPY; ORGANIC PHOSPHORUS; MYCORRHIZAL FUNGI;
PHOSPHATASE; FRACTIONS; ADDITIONS; EXTRACTS; FORMS; WATER; ACID
AB A commercial pyrophosphatase from Saccharomyces cerevisiae selectively hydrolyzed sodium pyrophosphate, but showed no significant activity towards a range of other organic and condensed inorganic phosphorus compounds. Pyrophosphate determined by pyrophosphatase hydrolysis accounted for 38 +/- 12% (mean +/- standard error of 19 sites) of the non-reactive phosphorus in soil solution obtained by centrifugation from a series of lowland tropical rain forest soils. Pyrophosphate concentrations were up to 89 mu g P l(-1) and correlated positively with microbial phosphorus, soil solution pH, and native phosphomonoesterase activity in soil solution, but not with total soil pyrophosphate determined by NaOH-EDTA extraction and solution (31)p NMR spectroscopy. In summary, we identify pyrophosphate as a major constituent of soil solution phosphorus in lowland tropical rain forests, and demonstrate that a commercial pyrophosphatase can be used as a selective tool to quantify trace concentrations of pyrophosphate in soil solution. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Reitzel, Kasper] Univ Southern Denmark, Dept Biol, DK-5230 Odense M, Denmark.
[Turner, Benjamin L.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
RP Reitzel, K (reprint author), Univ Southern Denmark, Dept Biol, Campusvej 55, DK-5230 Odense M, Denmark.
EM reitzel@biology.sdu.dk
RI Turner, Benjamin/E-5940-2011
OI Turner, Benjamin/0000-0002-6585-0722
FU Danish Council for Independent Research/Natural Sciences [1637604]
FX We thank the Dayana Agudo and Julio Rodruigez for laboratory and field
assistance. Kasper Reitzel was funded by grant #1637604 from the Danish
Council for Independent Research/Natural Sciences.
NR 23
TC 3
Z9 3
U1 3
U2 31
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-0717
J9 SOIL BIOL BIOCHEM
JI Soil Biol. Biochem.
PD JUL
PY 2014
VL 74
BP 95
EP 97
DI 10.1016/j.soilbio.2014.03.001
PG 3
WC Soil Science
SC Agriculture
GA AJ7BZ
UT WOS:000337853500010
ER
PT J
AU Sekerka, L
Windsor, D
Dury, G
AF Sekerka, Lukas
Windsor, Donald
Dury, Guillaume
TI Cladispa Baly: revision, biology and reassignment of the genus to the
tribe Spilophorini (Coleoptera: Chrysomelidae: Cassidinae)
SO SYSTEMATIC ENTOMOLOGY
LA English
DT Article
ID PHYLOGENETIC ANALYSES; SUBSTITUTION; MODELS
AB The genus, Cladispa Baly 1858, is transferred from the tribe Imatidiini (=Cephaloleiini Chapuis, 1875) to Spilophorini Chapuis, 1875 based on the review of type material, newly collected specimens and molecular phylogenetic analysis. The type species, C.quadrimaculata Baly, 1858, is redescribed, and two new species, C.amboroensis sp.n. from Bolivia (Santa Cruz Department) and C.ecuadorica sp.n. from Ecuador (Pastaza Province), are described and figured. The morphology of C.amboroensis sp.n. immature stages is broadly consistent with other Spilophorini. Field observations document that both C.quadrimaculata and C.amboroensis sp.n. are trophic specialists on Orchideaceae. Keys to Cladispa species and Spilophorini genera are provided. Trophic associations of other Cassidinae and Orchideaceae are discussed. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:42A1ECF3-2030-4938-8F3D-FE7EC36F303A
C1 [Sekerka, Lukas] Natl Museum, Dept Entomol, CZ-14800 Prague, Czech Republic.
[Sekerka, Lukas] Univ South Bohemia, Dept Zool, Fac Sci, Ceske Budejovice, Czech Republic.
[Windsor, Donald; Dury, Guillaume] Smithsonian Trop Res Inst, Panama City, Panama.
[Dury, Guillaume] McGill Univ, Dept Plant Sci, Quebec City, PQ, Canada.
RP Sekerka, L (reprint author), Natl Museum, Dept Entomol, Golcova 1, CZ-14800 Prague, Czech Republic.
EM sagrinae@seznam.cz
FU Faculty of Science, University of South Bohemia; Ministry of Culture of
the Czech Republic (DKRVO, National Museum)
FX We thank M. Barclay (BMNH) and S. Konstantinov (USNM) for loaned
material used in this study; P. Jolivet (Paris) for clarifying
information on the C. quadrimaculata feeding record; A. Murakami (MNKM)
and R. Vasquez (Sociedad Boliviana de Botanica) for identification of
Xylobium; J. Ledezma (MNKM), J. Aramayo (MNKM), A. Schweining (RLV) and
G. Herrera for institutional support and assistance in obtaining
collecting and export permits (MMAyA-VMA-DGBAP No 1735/2011, MHNNKM-OF-
No 441/2012). The Smithsonian Tropical Research Institute provided
logistical support through its imaging laboratory and the services of J.
Ceballos. The field study of L. Sekerka in Bolivia was supported by the
Faculty of Science, University of South Bohemia. The work was partly
supported by the Ministry of Culture of the Czech Republic (DKRVO
2014/13, National Museum, 00023272).
NR 29
TC 2
Z9 2
U1 0
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0307-6970
EI 1365-3113
J9 SYST ENTOMOL
JI Syst. Entomol.
PD JUL
PY 2014
VL 39
IS 3
BP 518
EP 530
DI 10.1111/syen.12070
PG 13
WC Evolutionary Biology; Entomology
SC Evolutionary Biology; Entomology
GA AJ8TC
UT WOS:000337979500011
ER
PT J
AU Datovo, A
Vari, RP
AF Datovo, Alessio
Vari, Richard P.
TI The adductor mandibulae muscle complex in lower teleostean fishes
(Osteichthyes: Actinopterygii): comparative anatomy, synonymy, and
phylogenetic implications
SO ZOOLOGICAL JOURNAL OF THE LINNEAN SOCIETY
LA English
DT Review
DE jaw muscles; musculature; myology; Neoteleostei; Teleostei
ID WHOLE MITOGENOME SEQUENCES; PECTORAL GIRDLE MUSCLES; CEPHALIC REGION;
CHARACIFORM FISHES; CATFISH TELEOSTEI; SILURIFORMES AUTAPOMORPHIES;
CRANIAL MORPHOLOGY; CLARIAS-GARIEPINUS; CHEEK MUSCLES; OSTEOLOGY
AB Bony fishes of the morphologically diverse infraclass Teleostei include more than 31000 species, encompassing almost one-half of all extant vertebrates. A remarkable anatomical complex in teleosts is the adductor mandibulae, the primary muscle in mouth closure and whose subdivisions vary in number and complexity. Difficulties in recognizing homologies amongst adductor mandibulae subdivisions across the Teleostei have hampered the understanding of the evolution of this system and consequently its application in phylogenetic analyses. The adductor mandibulae in representatives of all lower teleost orders is described, illustrated, and compared based on broad taxonomic sampling complemented by extensive literature information. Muscle division homologies are clarified via the application of a standardized homology-driven anatomical terminology with synonymies provided to the myological terminologies of previous studies. Phylogenetic implications of the observed variations in the adductor mandibulae are discussed and new possible synapomorphies are proposed for the Notacanthiformes, Ostariophysi, Cypriniformes, Siluriphysi, Gymnotiformes, and Alepocephaloidei. New characters corroborate the putative monophyly of the clades Albuliformes plus Notacanthiformes (Elopomorpha), Argentinoidei plus Esocoidei plus Salmonoidei (Protacanthopterygii) and Hemiodontidae plus Parodontidae (Characiformes). We further confirm the validity of characters from the adductor mandibulae previously proposed to support the monophyly of the Esocoidei and the gonorynchiform clade Gonorynchoidei plus Knerioidei. (c) 2014 The Linnean Society of London
C1 [Datovo, Alessio] Univ Sao Paulo, Museu Zool, BR-04263000 Sao Paulo, Brazil.
[Datovo, Alessio] Univ Sao Paulo, Lab Ictiol Ribeirao Preto, Dept Biol, FFCLRP, BR-14040901 Ribeirao Preto, SP, Brazil.
[Datovo, Alessio; Vari, Richard P.] Smithsonian Inst, Div Fishes, Dept Vertebrate Zool, Natl Museum Nat Hist, Washington, DC 20013 USA.
RP Datovo, A (reprint author), Univ Sao Paulo, Lab Ictiol, Museu Zool, Av Nazare 481, BR-04263000 Sao Paulo, Brazil.
EM adatovo@gmail.com
RI Datovo, Alessio/K-7133-2016; Museu de Zoologia da USP,
MZ-USP/Q-2192-2016
FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
[2006/56445-7, 2010/18984-9]; Herbert R and Evelyn Axelrod Chair in
Systematic Ichthyology in the Division of Fishes, National Museum of
Natural History, Smithsonian Institution; FAPESP [2004/09219-6,
2009/54931-0, 2011/50282-7]
FX Research associated with this study was supported by fellowships from
the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP
#2006/56445-7 and #2010/18984-9) and funding from the Herbert R and
Evelyn Axelrod Chair in Systematic Ichthyology in the Division of
Fishes, National Museum of Natural History, Smithsonian Institution.
This project was a component of A. D.'s doctoral program in Biologia
Comparada at the FFCLRP, Departamento de Biologia, Universidade de Sao
Paulo. Claudio Oliveira (LBP) and Scott Schaefer (AMNH) generously
loaned important material used in this study. Special thanks are due to
Sandra J. Raredon (USNM) for her assistance in photographing various
specimens and to Luciana F. Tosin in translating texts from German and
editing some images. Ricardo M. C. Castro (LIRP), Flavio A. Bockmann
(LIRP), G. David Johnson (USNM), and Monica Toledo-Piza (Instituto de
Biociencias, Universidade de Sao Paulo) kindly allowed the use of
stereomicroscopic photographic equipment under their care. This paper
benefitted from the careful and constructive reviews by Peter
Konstantinidis, a second anonymous reviewer, and the Associate Editor.
The comprehensive coverage of the literature presented in this study was
only possible because of the initiatives of online open-access
distribution of classic scientific papers, especially the Biodiversity
Heritage Library and the Internet Archive projects. Equipment used in
this study was provided by projects from FAPESP (#2004/09219-6,
#2009/54931-0, and #2011/50282-7).
NR 198
TC 8
Z9 9
U1 0
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0024-4082
EI 1096-3642
J9 ZOOL J LINN SOC-LOND
JI Zool. J. Linn. Soc.
PD JUL
PY 2014
VL 171
IS 3
BP 554
EP 622
DI 10.1111/zoj.12142
PG 69
WC Zoology
SC Zoology
GA AJ9FC
UT WOS:000338012000004
ER
PT J
AU Deluycker, AM
AF Deluycker, Anneke M.
TI EVOLUTIONARY BIOLOGY AND CONSERVATION OF TITIS, SAKIS, AND UACARIS
SO AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY
LA English
DT Book Review
C1 [Deluycker, Anneke M.] Smithsonian Mason Sch Conservat, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.
RP Deluycker, AM (reprint author), Smithsonian Mason Sch Conservat, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.
NR 1
TC 0
Z9 0
U1 1
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-9483
EI 1096-8644
J9 AM J PHYS ANTHROPOL
JI Am. J. Phys. Anthropol.
PD JUL
PY 2014
VL 154
IS 3
BP 467
EP 468
DI 10.1002/ajpa.22515
PG 3
WC Anthropology; Evolutionary Biology
SC Anthropology; Evolutionary Biology
GA AJ4CX
UT WOS:000337619200016
ER
PT J
AU Chisholm, RA
Condit, R
Abd Rahman, K
Baker, PJ
Bunyavejchewin, S
Chen, YY
Chuyong, G
Dattaraja, HS
Davies, S
Ewango, CEN
Gunatilleke, CVS
Gunatilleke, IAUN
Hubbell, S
Kenfack, D
Kiratiprayoon, S
Lin, YC
Makana, JR
Pongpattananurak, N
Pulla, S
Punchi-Manage, R
Sukumar, R
Su, SH
Sun, IF
Suresh, HS
Tan, S
Thomas, D
Yap, S
AF Chisholm, Ryan A.
Condit, Richard
Abd Rahman, K.
Baker, Patrick J.
Bunyavejchewin, Sarayudh
Chen, Yu-Yun
Chuyong, George
Dattaraja, H. S.
Davies, Stuart
Ewango, Corneille E. N.
Gunatilleke, C. V. S.
Gunatilleke, I. A. U. Nimal
Hubbell, Stephen
Kenfack, David
Kiratiprayoon, Somboon
Lin, Yiching
Makana, Jean-Remy
Pongpattananurak, Nantachai
Pulla, Sandeep
Punchi-Manage, Ruwan
Sukumar, Raman
Su, Sheng-Hsin
Sun, I-Fang
Suresh, H. S.
Tan, Sylvester
Thomas, Duncan
Yap, Sandra
TI Temporal variability of forest communities: empirical estimates of
population change in 4000 tree species
SO ECOLOGY LETTERS
LA English
DT Article
DE Abundance fluctuations; biodiversity; demographic stochasticity;
environmental variance; forest dynamics; neutral theory; niche
stabilization
ID TROPICAL FOREST; NEUTRAL-THEORY; DENSITY-DEPENDENCE; NEOTROPICAL FOREST;
TIME-SERIES; LARGE-SCALE; DIVERSITY; DYNAMICS; BIODIVERSITY; ABUNDANCE
AB Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.
C1 [Chisholm, Ryan A.; Condit, Richard; Hubbell, Stephen] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
[Chisholm, Ryan A.] Natl Univ Singapore, Dept Biol Sci, Fac Sci, Singapore 117543, Singapore.
[Abd Rahman, K.] Forest Res Inst Malaysia, Kepong 52109, Selangor Darul, Malaysia.
[Baker, Patrick J.] Univ Melbourne, Dept Forest & Ecosyst Sci, Richmond, Vic 3121, Australia.
[Bunyavejchewin, Sarayudh] Dept Natl Pk Wildlife & Plant Conservat, Res Off, Bangkok 10900, Thailand.
[Chen, Yu-Yun; Sun, I-Fang] Natl Dong Hwa Univ, Dept Nat Resources & Environm Studies, Hualien 97401, Taiwan.
[Chuyong, George] Univ Buea, Dept Bot & Plant Physiol, Buea, Swp, Cameroon.
[Dattaraja, H. S.; Pulla, Sandeep; Sukumar, Raman; Suresh, H. S.] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India.
[Davies, Stuart; Kenfack, David; Tan, Sylvester] Smithsonian Inst, Smithsonian Inst Global Earth Observ, Ctr Trop Forest Sci, Washington, DC 20013 USA.
[Ewango, Corneille E. N.; Makana, Jean-Remy] Wildlife Conservat Soc, Kinshasa, Zaire.
[Gunatilleke, C. V. S.; Gunatilleke, I. A. U. Nimal] Univ Peradeniya, Dept Bot, Fac Sci, Peradeniya 20400, Sri Lanka.
[Hubbell, Stephen] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA.
[Kiratiprayoon, Somboon] Thammasat Univ Rangsit, Fac Sci & Technol, Klongluang, Patumtani, Thailand.
[Lin, Yiching] Tunghai Univ, Dept Life Sci, Taichung 40704, Taiwan.
[Pongpattananurak, Nantachai] Kasetsart Univ, Dept Forest Biol, Fac Forestry, Bangkok 10900, Thailand.
[Punchi-Manage, Ruwan] Univ Gottingen, Dept Ecosyst Modeling, D-37077 Gottingen, Germany.
[Su, Sheng-Hsin] Taiwan Forestry Res Inst, Taipei 10066, Taiwan.
[Thomas, Duncan] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA.
[Yap, Sandra] Univ Philippines, Inst Biol, Quezon City 1101, Philippines.
RP Chisholm, RA (reprint author), Smithsonian Trop Res Inst, POB 0843-03092, Balboa, Ancon, Panama.
EM ryan.chis@gmail.com
RI Chisholm, Ryan/H-8033-2012;
OI Baker, Patrick/0000-0002-6560-7124
NR 49
TC 18
Z9 19
U1 6
U2 75
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1461-023X
EI 1461-0248
J9 ECOL LETT
JI Ecol. Lett.
PD JUL
PY 2014
VL 17
IS 7
BP 855
EP 865
DI 10.1111/ele.12296
PG 11
WC Ecology
SC Environmental Sciences & Ecology
GA AJ2ZP
UT WOS:000337534600010
PM 24805976
ER
PT J
AU Woodman, N
Gaffney, SA
AF Woodman, Neal
Gaffney, Sarah A.
TI Can They Dig It? Functional Morphology and Semifossoriality Among
Small-Eared Shrews, Genus Cryptotis (Mammalia, Soricidae)
SO JOURNAL OF MORPHOLOGY
LA English
DT Article
DE burrowing; Eulipotyphla; fossoriality; insectivora; Neurotrichus;
Soricomorpha; Talpidae; Uropsilus
ID INTRINSIC HAND PROPORTIONS; FOSSORIAL ADAPTATIONS; CENTRAL-AMERICA;
SORICOMORPHA; GUATEMALA; MARSUPIALS; HIGHLANDS; FORELIMB; RODENTS
AB Small-eared shrews (Mammalia: Soricidae: Cryptotis), exhibit modifications of the forelimb skeleton that have been interpreted as adaptations for semifossoriality. Most species inhabit remote regions, however, and their locomotory and foraging behaviors remain mostly speculative. To better understand the morphological modifications in the absence of direct observations, we quantified variation in these species by measuring 151 individuals representing 18 species and populations of Cryptotis and two species of moles (Talpidae) for comparison. From our measurements, we calculated 22 indices, most of which have been used previously to characterize substrate use among rodents and other taxa. We analyzed the indices using 1) average percentile ranks, 2) principal components analysis, and 3) cluster analysis. From these analyses, we determined that three basic modes of substrate adaptation are present within Cryptotis: 1) a primarily terrestrial mode, with species that are capable of burrowing, but lack adaptations to increase digging efficiency, 2) a semi-fossorial mode, with species whose forelimbs bones show strong muscle attachment areas and increased mechanical advantage, and 3) an intermediate mode. In addition to identifying new morphological characters and contributing to our understanding of the functional morphology of soricids, these analyses provide additional insight into the ecology of the species of interest. (C) 2014 Wiley Periodicals, Inc.
C1 [Woodman, Neal] Smithsonian Inst, Natl Museum Nat Hist, USGS Patuxent Wildlife Res Ctr, Washington, DC 20013 USA.
[Gaffney, Sarah A.] Smith Coll, Dept Biol Sci, Northampton, MA 01063 USA.
RP Woodman, N (reprint author), Smithsonian Inst, Natl Museum Nat Hist, USGS Patuxent Wildlife Res Ctr, Washington, DC 20013 USA.
EM woodmann@si.edu
OI Woodman, Neal/0000-0003-2689-7373
FU National Science Foundation - Natural History Research Experiences
program of the USNM
FX Contract grant sponsor: SAG was supported by the National Science
Foundation-funded Natural History Research Experiences program of the
USNM.
NR 42
TC 7
Z9 7
U1 4
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0362-2525
EI 1097-4687
J9 J MORPHOL
JI J. Morphol.
PD JUL
PY 2014
VL 275
IS 7
BP 745
EP 759
DI 10.1002/jmor.20254
PG 15
WC Anatomy & Morphology
SC Anatomy & Morphology
GA AJ4SR
UT WOS:000337666700003
PM 24470078
ER
PT J
AU Galindo, LA
Puillandre, N
Strong, EE
Bouchet, P
AF Galindo, L. A.
Puillandre, N.
Strong, E. E.
Bouchet, P.
TI Using microwaves to prepare gastropods for DNA barcoding
SO MOLECULAR ECOLOGY RESOURCES
LA English
DT Article
DE DNA damage; PCR optimization; shelled molluscs; tissue preparation;
voucher
ID EXTRACTION; INVERTEBRATES; SPECIMENS; BACTERIA; SOIL
AB Extracting DNA from gastropods presents particular difficulties due to the capacity of the living animal to retract into the shell, resulting in poor penetration of the ethanol into the tissues. Because the shell is essential to establish the link between sequences and traditional taxonomic identity, cracking the shell to facilitate fixation is not ideal. Several methods are currently in routine use to overcome this difficulty, including chemical relaxation, drilling the shell and boiling. Most of these methods are time-consuming, may be safety hazards and constitute a bottleneck in the preparation of large numbers of specimens in the field. We have experimented with a method traditionally used to clean shells that involves placing the living gastropods in a microwave (MW) oven; the electromagnetic radiation very quickly heats both the animal and the water trapped inside the shell, resulting in separation of the muscles that anchor the animal to the shell. Done properly, the body can be removed intact from the shell and the shell voucher is preserved undamaged. To test the method, the bodies of live-collected specimens from two gastropod species were separated from their shell by microwaving and by anesthetizing/drilling. After identical extraction and PCR procedures, the gels showed no difference in DNA quantity or quality, and the resulting sequences are identical within species. The method was then implemented on a large scale during expeditions, resulting in higher percentage of DNA extraction success. The MWs are also effective for quickly and easily removing other molluscs from their shells, that is, bivalves and scaphopods. Workflows implementing the MW technique show a three- to fivefold increase in productivity compared with other methods.
C1 [Galindo, L. A.; Puillandre, N.; Bouchet, P.] Museum Natl Hist Nat, Dept Systemat & Evolut, ISyEB Inst UMR CNRS UPMC MNHN EPHE 7205, F-75231 Paris, France.
[Strong, E. E.] Natl Museum Nat Hist, Dept Invertebrate Zool, Smithsonian Inst, Washington, DC 20560 USA.
RP Galindo, LA (reprint author), Museum Natl Hist Nat, Serv Systemat Mol, 43 Rue Cuvier, F-75005 Paris, France.
EM galindo@mnhn.fr
OI Strong, Ellen/0000-0001-7181-4114
NR 27
TC 11
Z9 12
U1 1
U2 15
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1755-098X
EI 1755-0998
J9 MOL ECOL RESOUR
JI Mol. Ecol. Resour.
PD JUL
PY 2014
VL 14
IS 4
BP 700
EP 705
DI 10.1111/1755-0998.12231
PG 6
WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology
SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology;
Evolutionary Biology
GA AJ4AM
UT WOS:000337611400003
PM 24450943
ER
PT J
AU Pizano, C
Mangan, SA
Graham, JH
Kitajima, K
AF Pizano, Camila
Mangan, Scott A.
Graham, James H.
Kitajima, Kaoru
TI Habitat-specific positive and negative effects of soil biota on seedling
growth in a fragmented tropical montane landscape
SO OIKOS
LA English
DT Article
ID ARBUSCULAR MYCORRHIZAL FUNGI; NEOTROPICAL TREE SEEDLINGS; COMMUNITY
STRUCTURE; SHADE TOLERANCE; PLANT; FEEDBACK; MUTUALISTS; PATHOGENS;
ABUNDANCE; RESPONSES
AB Soil biota, in particular fungi and other microbes, are known to interactively influence plant community structure. However, soil biota effects that can be isolated in a greenhouse experiment may be overridden by other biotic and abiotic factors in the field. Here we conducted parallel greenhouse and field experiments and quantified how soil biota sampled at the habitat level affect the performance of potential host plants within and across neighboring habitat types (pastures, coffee plantations and forest fragments) in a montane region in Colombia. We hypothesized that the direction and strength of soil-biota effects depend on the habitat where soil is sampled, focal plant's life history, and field environmental characteristics (soil nutrients, light). In a greenhouse experiment, we compared growth of 10 plant species with soil from home (where species typically occur) and foreign (where conspecific adults rarely occur) habitats, with or without soil sterilization. In the field, we conducted a reciprocal transplant experiment in which we suppressed soil fungi with the application of fungicide. In the greenhouse experiment, fast-growing pasture grass and pioneer trees performed less well with live soil from their home, compared to foreign habitats, and such home disadvantage was reduced following soil sterilization. Home disadvantage associated with live soil biota was also detectable in the field experiment, although light conditions of grasslands and coffee plantations benefited growth of these fast-growing species. In contrast, coffee and shade-tolerant trees performed similarly or better with their home soils, and showed no response to soil biota suppression. Overall, the species-and-habitat specific soil biota effects detectable in the field experiment were similar in direction and relative strength to those from the greenhouse experiments. Our findings highlight the importance of habitat-level plant-soil interactions and plant life history for the regeneration of natural forests and agricultural production in human-modified landscapes.
C1 [Pizano, Camila; Kitajima, Kaoru] Univ Florida, Dept Biol, Gainesville, FL 32611 USA.
[Mangan, Scott A.] Washington Univ, Dept Biol, St Louis, MO 63130 USA.
[Mangan, Scott A.] Smithsonian Trop Res Inst, Balboa, Panama.
[Graham, James H.] Univ Florida, Citrus Res & Educ Ctr, Lake Alfred, FL 33850 USA.
RP Pizano, C (reprint author), Univ Florida, Dept Biol, Gainesville, FL 32611 USA.
EM pizanoc@ufl.edu
FU Compton Foundation; Univ. of Florida Program for Studies in Tropical
Conservation; Aerolineas Aeropobre; Compton Fellowship
FX This study was funded by the Compton Fellowship granted by the Compton
Foundation and the Univ. of Florida Program for Studies in Tropical
Conservation to CP, and by Aerolineas Aeropobre. We are grateful to
Jorge Botero and Gabriel Cadena for their critical institutional
support, and Hector Vargas for his help with the set up and harvesting
of greenhouse and field experiments. We are also grateful to the farmers
that allowed us to carry out this work on their land and provided
relevant information, and to W. van der Putten who significantly
improved this manuscript. The authors declare no conflict of interest.
NR 50
TC 4
Z9 4
U1 11
U2 87
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0030-1299
EI 1600-0706
J9 OIKOS
JI Oikos
PD JUL
PY 2014
VL 123
IS 7
BP 846
EP 856
DI 10.1111/oik.01032
PG 11
WC Ecology
SC Environmental Sciences & Ecology
GA AJ5RP
UT WOS:000337744900010
ER
PT J
AU Almeida, C
Ortega, H
Higginbotham, S
Spadafora, C
Arnold, AE
Coley, PD
Kursar, TA
Gerwick, WH
Cubilla-Rios, L
AF Almeida, C.
Ortega, H.
Higginbotham, S.
Spadafora, C.
Arnold, A. E.
Coley, P. D.
Kursar, T. A.
Gerwick, W. H.
Cubilla-Rios, L.
TI Chemical and bioactive natural products from Microthyriaceae sp., an
endophytic fungus from a tropical grass
SO LETTERS IN APPLIED MICROBIOLOGY
LA English
DT Article
DE antiparasitic activity; endophytic fungi; integrasone B;
sterigmatocystin
ID STERIGMATOCYSTIN; INTEGRASE; DIVERSITY; MICROORGANISMS; HOST
AB In screening for natural products with antiparasitic activity, an endophytic fungus, strain F2611, isolated from above-ground tissue of the tropical grass Paspalum conjugatum (Poaceae) in Panama, was chosen for bioactive principle elucidation. Cultivation on malt extract agar (MEA) followed by bioassay-guided chromatographic fractionation of the extract led to the isolation of the new polyketide integrasone B (1) and two known mycotoxins, sterigmatocystin (2) and secosterigmatocystin (3). Sterigmatocystin (2) was found to be the main antiparasitic compound in the fermentation extract of this fungus, possessing potent and selective antiparasitic activity against Trypanosoma cruzi, the cause of Chagas disease, with an IC50 value of 0 center dot 13moll-1. Compounds 2 and 3 showed high cytotoxicity against Vero cells (IC50 of 0 center dot 06 and 0 center dot 97moll-1, respectively). The new natural product integrasone B (1), which was co-purified from the active fractions, constitutes the second report of a natural product possessing an epoxyquinone with a lactone ring and exhibited no significant biological activity. Strain F2611 represents a previously undescribed taxon within the Microthyriaceae (Dothideomycetes, Ascomycota).
C1 [Almeida, C.; Ortega, H.; Cubilla-Rios, L.] Univ Panama, Fac Nat Exact Sci & Technol, Lab Trop Bioorgan Chem, Panama City, Panama.
[Almeida, C.; Ortega, H.; Higginbotham, S.; Coley, P. D.; Kursar, T. A.; Cubilla-Rios, L.] Smithsonian Trop Res Inst, Panama City, Panama.
[Almeida, C.] Univ Lisbon, Fac Ciencias, Ctr Biodiversidade Genom Integrat & Func BioFIG, Lisbon, Portugal.
[Spadafora, C.] City Knowledge, Natl Secretariat Sci Technol & Innovat, Inst Adv Sci Invest & High Technol Serv, Panama City, Panama.
[Arnold, A. E.] Univ Arizona, Sch Plant Sci, Tucson, AZ USA.
[Coley, P. D.; Kursar, T. A.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA.
[Gerwick, W. H.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA.
[Gerwick, W. H.] Univ Calif San Diego, Scripps Inst Oceanog, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA.
RP Almeida, C (reprint author), Edificio ICAT TecLabs,Campus FCUL, P-1749016 Lisbon, Portugal.
EM celsoguerreiro@gmail.com; luis.cubilla@up.ac.pa
OI Almeida, Celso/0000-0002-5935-612X; Spadafora,
Carmenza/0000-0002-3002-9467
FU US NIH [2 U01 TW006634-06]; College of Agriculture and Life Sciences at
the University of Arizona; National Institute of Mental Health's
Psychoactive Drug Screening Program [HHSN-271-2008-00025-C]
FX This work was supported by a US NIH grant for the International
Cooperative Biodiversity Groups program (ICBG-Panama; 2 U01
TW006634-06). We thank Malkanthi Gunatilaka and Douglas Mahana for DNA
sequencing, and the College of Agriculture and Life Sciences at the
University of Arizona for logistical and financial support. We thank
Mathieu Metifiot (Center for Cancer Research, NCI/NIH, USA) for
providing the HIV integrase assays. We thank Panama's Autoridad Nacional
del Ambiente for facilitating this research. The Ki
determinations and antagonist functional data were generously provided
by the National Institute of Mental Health's Psychoactive Drug Screening
Program, Contract # HHSN-271-2008-00025-C (NIMH PDSP) directed by Bryan
L. Roth MD, PhD at the University of North Carolina at Chapel Hill and
Jamie Driscol at NIMH, Bethesda, MD, USA.
NR 25
TC 2
Z9 2
U1 2
U2 37
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0266-8254
EI 1472-765X
J9 LETT APPL MICROBIOL
JI Lett. Appl. Microbiol.
PD JUL
PY 2014
VL 59
IS 1
BP 58
EP 64
DI 10.1111/lam.12245
PG 7
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA AJ3ZU
UT WOS:000337609000008
PM 24612068
ER
PT J
AU Torres, IC
Turner, BL
Reddy, KR
AF Torres, Isabela C.
Turner, Benjamin L.
Reddy, K. Ramesh
TI The Chemical Nature of Phosphorus in Subtropical Lake Sediments
SO AQUATIC GEOCHEMISTRY
LA English
DT Article
DE Phosphorus; Sediment; Solution P-31 NMR spectroscopy; Sequential
fractionation; Polyphosphate; Subtropical; Florida
ID SOIL ORGANIC PHOSPHORUS; P-31 NMR; INORGANIC PHOSPHORUS; BIOGENIC
PHOSPHORUS; HYPEREUTROPHIC LAKE; EUTROPHIC LAKES; FLORIDA LAKES; WETLAND
SOILS; TROPHIC STATE; POLYPHOSPHATE
AB The phosphorus (P) composition of sediment profiles in three subtropical lakes of contrasting trophic state in Florida, USA, was determined by sequential fractionation and solution P-31 NMR spectroscopy. Sediment from Lake Annie, an oligo-mesotrophic sinkhole with moderately acidic sediment (pH 5.4; loss on ignition 58 %), contained higher total P concentrations than sediment from eutrophic Lake Okeechobee (pH 7.7, loss on ignition 36 %) and hyper-eutrophic Lake Apopka (pH 7.5, loss on ignition 69 %). The chemical nature of sediment P varied markedly among the three lakes, suggesting the predominance of different diagenetic processes. Lake Okeechobee sediment was dominated by inorganic P, indicating the dominance of abiotic reactions; Lake Annie sediment contained abundant organic P throughout the sediment profile, indicating the importance of organic P stabilization at acidic pH; Lake Apopka contained almost half of its sediment P in microbial biomass, indicating the importance of biotic processes in regulating P dynamics. Solution P-31 NMR spectroscopy of NaOH-EDTA extracts revealed that organic P occurred mainly as phosphomonoesters in all lakes. However, sediment from Lake Apopka also contained abundant phosphodiesters and was the only lake to contain detectable concentrations of polyphosphate, perhaps due to a combination of alternating redox conditions and high concentrations of inorganic phosphate and organic carbon. Organic P concentrations determined by sequential fractionation and solution P-31 NMR spectroscopy were similar for all lakes when microbial P was included in values for sequential fractionation. We conclude that the chemical nature of sediment P varies markedly depending on trophic state and can provide important information on the dominant processes controlling P cycling in subtropical lakes.
C1 [Torres, Isabela C.; Reddy, K. Ramesh] Univ Florida, Soil & Water Sci Dept, Wetland Biogeochem Lab, Gainesville, FL 32611 USA.
[Turner, Benjamin L.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
RP Turner, BL (reprint author), Smithsonian Trop Res Inst, 0843-03092 Apartado, Balboa, Ancon, Panama.
EM TurnerBL@si.edu
RI Turner, Benjamin/E-5940-2011
OI Turner, Benjamin/0000-0002-6585-0722
FU USDA-CREES National Research Initiative [2004-35107-14918]
FX This work was funded in part by funded by a grant from the USDA-CREES
National Research Initiative (No. 2004-35107-14918). We thank Matt
Fisher, Jason Smith, Andrea Albertin, and Kathleen McKee for assistance
in the field, and Yu Wang, Jeremy Bright, and Alex Blumenfeld for
laboratory support.
NR 69
TC 10
Z9 11
U1 3
U2 33
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1380-6165
EI 1573-1421
J9 AQUAT GEOCHEM
JI Aquat. Geochem.
PD JUL
PY 2014
VL 20
IS 4
BP 437
EP 457
DI 10.1007/s10498-014-9228-9
PG 21
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AI6KN
UT WOS:000336983000004
ER
PT J
AU Chin, SW
Shaw, J
Haberle, R
Wen, J
Potter, D
AF Chin, Siew-Wai
Shaw, Joey
Haberle, Rosemarie
Wen, Jun
Potter, Dan
TI Diversification of almonds, peaches, plums and cherries - Molecular
systematics and biogeographic history of Prunus (Rosaceae)
SO MOLECULAR PHYLOGENETICS AND EVOLUTION
LA English
DT Article
DE Boreotropical flora; Intercontinental disjunction; Rosaceae; Prunus;
Biogeography; Phylogeny
ID DISPERSAL-VICARIANCE ANALYSIS; EASTERN NORTH-AMERICA; DNA-SEQUENCES;
PHYLOGENETIC ANALYSIS; LIKELIHOOD APPROACH; WASHINGTON-STATE;
BRITISH-COLUMBIA; DIVERGENCE TIMES; MADDENIA CLADE; ABSOLUTE RATES
AB Most previous molecular phylogenetic studies of Prunus have been conducted primarily with crop species and their close relatives. As the center of crop diversity of the genus is in Eurasia, the geographic origin of Prunus has inevitably been inferred to be Eurasia as well. The lesser-known tropical Prunus species have not been well represented in previous phylogenetic reconstructions; therefore, their effects on inferences about the phylogenetic structure and geographic origin of Prunus are uncertain. In this study, we examined the phylogeny of Prunus, including an expanded sampling of species from tropical regions in Southeast Asia and the Americas, using sequences from four plastid markers and the nuclear ribosomal ITS region. A penalized likelihood method was used to estimate the absolute age of Prunus and the timing of infrageneric cladogenic events. The geographic origin of Prunus and ancestral sites of cladogenesis were inferred using the Bayes-DIVA approach. Our results indicate that the modern genus appeared similar to 61 Myr in eastern Asia and that diversification of all major lineages may have been triggered by the global warming period of the early Eocene. In addition, our molecular dating estimates suggest that the crown clade that includes the temperate deciduous crop species is older than the one that includes the tropical evergreen species, while incongruence between plastid and nuclear phylogenies suggests that the latter lineage originated via an ancient hybridization event. The most recent common ancestor (MRCA) of the temperate crop species was a component of the continuous boreotropical forests of the Northern Hemisphere, while the MRCA of the tropical species represented the last remains of the boreotropical elements and subsequently radiated throughout the Old and New World tropics from refugial areas at lower latitudes. Complex biogeographic histories leading to the present global distribution of the genus were driven by several geologic events, climatic oscillations, and independent dispersals across continents via the Bering and the North Atlantic Land Bridges during different geologic time periods. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Chin, Siew-Wai; Potter, Dan] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA.
[Shaw, Joey] Univ Tennessee, Dept Biol & Environm Sci, Chattanooga, TN 37403 USA.
[Haberle, Rosemarie] Pacific Lutheran Univ, Dept Biol, Tacoma, WA 98447 USA.
[Wen, Jun] Smithsonian Inst, Natl Museum Nat Hist, Dept Bot, Washington, DC 20013 USA.
RP Chin, SW (reprint author), Univ Calif Davis, Dept Plant Sci, MS2, Davis, CA 95616 USA.
EM csiewwai@ucdavis.edu
FU NSF [DEB 0515431]
FX The study is part of S-W Chin's doctoral dissertation at the University
of California, Davis. We thank Elizabeth Widjaja (Herbarium Bogoriense)
for assistance with fieldwork in Indonesia. This work was supported by
NSF grant number DEB 0515431.
NR 88
TC 17
Z9 19
U1 11
U2 76
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1055-7903
EI 1095-9513
J9 MOL PHYLOGENET EVOL
JI Mol. Phylogenet. Evol.
PD JUL
PY 2014
VL 76
BP 34
EP 48
DI 10.1016/j.ympev.2014.02.024
PG 15
WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics &
Heredity
SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics &
Heredity
GA AI4FJ
UT WOS:000336820800005
PM 24631854
ER
PT J
AU Johnson, AEM
Freeman, EW
Colgin, M
McDonough, C
Songsasen, N
AF Johnson, Amy E. M.
Freeman, Elizabeth W.
Colgin, Mark
McDonough, Caitlin
Songsasen, Nucharin
TI Induction of ovarian activity and ovulation in an induced ovulator, the
maned wolf (Chrysocyon brachyurus), using GnRH agonist and recombinant
LH
SO THERIOGENOLOGY
LA English
DT Article
DE Maned wolf; Induced ovulator; Ovarian steroid; Canid reproduction;
Estrus induction
ID LAPAROSCOPIC ARTIFICIAL-INSEMINATION; LUTEINIZING-HORMONE; DESLORELIN
IMPLANTS; ESTRUS INDUCTION; DOMESTIC CAT; ASSISTED REPRODUCTION; CLOUDED
LEOPARD; FELIDS; GONADOTROPIN; BITCHES
AB Assisted reproductive techniques, such as ovarian manipulation and artificial insemination, are useful for enhancing genetic management of threatened wildlife maintained ex situ. In this study, we used noninvasive fecal hormone monitoring to investigate (1) the influence of pairing with a male on endocrine responses of female maned wolves (Chrysocyon brachyurus) to a GnRH agonist (deslorelin) and (2) the efficiency of recombinant LH (reLH) on ovulation induction in females housed alone. Deslorelin (2.1 mg Ovuplant) was given to females that were either paired with a male (n = 4) or housed alone (n = 7); the implant was removed 7 to 11 days postimplantation. Three of seven singleton females were injected with reLH (0.0375 mg) on the day of implant removal, whereas the remaining females (n = 4) did not receive the additional treatment. Fecal samples were collected 5 to 7 days/wk from all females starting 11 days prior to hormone insertion until at least 70 days post implant removal for a total of 11 hormone treatment cycles. Fecal estrogen and progestagen metabolites were extracted and analyzed by enzyme immunoassay. Evidence of ovulation, demonstrated by a surge of estrogen followed by a significant rise in progestagen, occurred in all paired females. Three of the four singleton females that did not receive reLH treatment exhibited no rise in progestagen after an estrogen surge. All singleton females treated with reLH exhibited a rise in fecal progestagen after injection, indicating ovulation. In conclusion, deslorelin is effective at inducing ovarian activity and ovulation in paired female maned wolves; however, exogenous reLH is needed to induce ovulation in females housed alone. The findings obtained from this study serve as a foundation for future application of artificial insemination to enhance genetic management of this threatened species ex situ. Published by Elsevier Inc.
C1 [Johnson, Amy E. M.; McDonough, Caitlin; Songsasen, Nucharin] Natl Zool Park, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.
[Johnson, Amy E. M.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA.
[Freeman, Elizabeth W.] George Mason Univ, New Century Coll, Fairfax, VA 22030 USA.
[Colgin, Mark] AspenBio Pharma Inc, Venaxis Inc, Castle Rock, CO USA.
RP Songsasen, N (reprint author), Natl Zool Park, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.
EM songsasenn@si.edu
OI Johnson, Amy/0000-0002-9288-1305
FU Morris Animal Foundation; George Mason University
FX This study was supported by the Morris Animal Foundation. We also thank
George Mason University for supporting a portion of the graduate student
stipend for A.E.M. Johnson. The authors thank animal care and veterinary
staff from the White Oak Conservation Center, Fossil Rim Wildlife
Center, Houston Zoological Park, Dickerson Park Zoo and the Smithsonian
Conservation Biology Institute for their assistance in this project.
Finally, we are extremely grateful to AspenBio Pharma for kindly
providing recombinant LH for this study.
NR 42
TC 3
Z9 3
U1 2
U2 23
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0093-691X
EI 1879-3231
J9 THERIOGENOLOGY
JI Theriogenology
PD JUL 1
PY 2014
VL 82
IS 1
BP 71
EP 79
DI 10.1016/j.theriogenology.2014.03.009
PG 9
WC Reproductive Biology; Veterinary Sciences
SC Reproductive Biology; Veterinary Sciences
GA AI6SA
UT WOS:000337006100010
PM 24742964
ER
PT J
AU Tennyson, J
Bernath, PF
Brown, LR
Campargue, A
Csaszar, AG
Daumont, L
Gamache, RR
Hodges, JT
Naumenko, OV
Polyansky, OL
Rothman, LS
Vandaele, AC
Zobov, NF
Denes, N
Fazliev, AZ
Furtenbacher, T
Gordon, IE
Hu, SM
Szidarovszky, T
Vasilenko, IA
AF Tennyson, Jonathan
Bernath, Peter F.
Brown, Linda R.
Campargue, Alain
Csaszar, Attila G.
Daumont, Ludovic
Gamache, Robert R.
Hodges, Joseph T.
Naumenko, Olga V.
Polyansky, Oleg L.
Rothman, Laurence S.
Vandaele, Ann Carine
Zobov, Nikolai F.
Denes, Nora
Fazliev, Alexander Z.
Furtenbacher, Tibor
Gordon, Iouli E.
Hu, Shui-Ming
Szidarovszky, Tamas
Vasilenko, Irina A.
TI IUPAC critical evaluation of the rotational-vibrational spectra of water
vapor. Part IV. Energy levels and transition wavenumbers for (D2O)-O-16,
(D2O)-O-17, and (D2O)-O-18
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Water vapor; Transition wavenumbers; Atmospheric physics; Energy levels;
Spectroscopic information system
ID LASER-ABSORPTION SPECTROSCOPY; HETERODYNE FREQUENCY MEASUREMENTS;
LORENTZ-BROADENING COEFFICIENTS; FOURIER-TRANSFORM SPECTRUM; TRIPLY
DEUTERATED AMMONIA; INTERSTELLAR HEAVY-WATER; LINE-SHIFT COEFFICIENTS;
HOT EMISSION-SPECTRA; LONG PATH SPECTRA; D2O LOW-PRESSURE
AB This paper is the fourth of a series of papers reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This paper presents energy level and transition data for the following doubly and triply substituted isotopologues of water: (D2O)-O-16, (D2O)-O-17, and (D2O)-O-18. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-14 016, 0-7969, and 0-9108 cm(-1) for (D2O)-O-16, (D2O)-O-17, and (D2O)-O-18, respectively. For (D2O)-O-16, (D2O)-O-17, and (D2O)-O-18, 53 534, 600, and 12 167 lines are considered, respectively, from spectra recorded in absorption at room temperature and in emission at elevated temperatures. The number of validated energy levels is 12 269, 338, and 3351 for (D2O)-O-16, (D2O)-O-17, and (D2O)-O-18, respectively. The energy levels have been checked against the ones determined, with an average accuracy of about 0.03 cm(-1), from variational rovibrational computations employing exact kinetic energy operators and an accurate potential energy surface. Furthermore, the rovibrational labels of the energy levels have been validated by an analysis of the computed wavefunctions using the rigid-rotor decomposition (RRD) scheme. The extensive list of MARVEL lines and levels obtained is deposited in the Supplementary Material of this paper, in a distributed information system applied to water, W@DIS, and on the official MARVEL website, where they can easily be retrieved. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Tennyson, Jonathan; Polyansky, Oleg L.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Bernath, Peter F.] Old Dominion Univ, Norfolk, VA USA.
[Brown, Linda R.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Campargue, Alain] Univ Grenoble Alpes, CNRS, Grenoble, France.
[Csaszar, Attila G.; Denes, Nora; Furtenbacher, Tibor; Szidarovszky, Tamas] Eotvos Lorand Univ, Inst Chem, MTA ELTE Res Grp Complex Chem Syst, Budapest, Hungary.
[Daumont, Ludovic] Univ Reims, Reims, France.
[Gamache, Robert R.] Univ Massachusetts, Lowell, MA USA.
[Hodges, Joseph T.] NIST, Gaithersburg, MD 20899 USA.
[Naumenko, Olga V.; Polyansky, Oleg L.; Fazliev, Alexander Z.; Vasilenko, Irina A.] Russian Acad Sci, Inst Atmospher Opt, Tomsk, Russia.
[Rothman, Laurence S.; Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Vandaele, Ann Carine] Inst Aeron Spatiale Belgique, B-1180 Brussels, Belgium.
[Zobov, Nikolai F.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603600, Russia.
[Hu, Shui-Ming] Univ Sci & Technol China, Hefei 230026, Peoples R China.
RP Tennyson, J (reprint author), UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England.
EM j.tennyson@ucl.ac.uk
RI Tennyson, Jonathan/I-2222-2012; Csaszar, Attila/A-5241-2009; Bernath,
Peter/B-6567-2012; Hu, Shuiming/C-4287-2008; Szidarovszky,
Tamas/E-4376-2015;
OI Tennyson, Jonathan/0000-0002-4994-5238; Bernath,
Peter/0000-0002-1255-396X; Hu, Shuiming/0000-0002-1565-8468; Gordon,
Iouli/0000-0003-4763-2841; Rothman, Laurence/0000-0002-3837-4847
FU International Union of Pure and Applied Chemistry [2004-035-1-100]; UK
Natural Environment Research Council; ERC Advanced Investigator
[267219]; Royal Society; Scientific Research Fund of Hungary [OTKA
NK83583]; Russian Foundation for Basic Research; Belgian Federal Science
Policy Office [EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)]; Belgian
National Fund for Scientific Research (FRFC contracts); Communaute de
Belgique (Action de Recherche Concertees); COST Action CoDECS [CM1002];
NASA AURA mission [NNX11AF91G]
FX We all thank the International Union of Pure and Applied Chemistry for
funding under project 2004-035-1-100 (A database of water transitions
from experiment and theory). In addition, this work has received partial
support from the UK Natural Environment Research Council, ERC Advanced
Investigator Project 267219, the Royal Society, the Scientific Research
Fund of Hungary (Grant OTKA NK83583), the Russian Foundation for Basic
Research, the Belgian Federal Science Policy Office (contracts EV/35/3A,
SD/AT/01A, PRODEX 1514901NLSFe(IC)), the Belgian National Fund for
Scientific Research (FRFC contracts), the Communaute de Belgique (Action
de Recherche Concertees), the COST Action CoDECS (CM1002), and the NASA
AURA mission, under the grant NNX11AF91G. Part of the research described
in this paper was performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contracts and grants with NASA. Alain
Campargue and Ludovic Daumont are grateful for the financial support
provided by the Programme National LEFE (CHAT) of CNRS (INSU). Semen
Mikhailenko is thanked for providing part of the
D216O dataset used during this study. We thank
Christina Puzzarini for help deperturbing the published frequencies
given in 13CaPu.
NR 161
TC 28
Z9 33
U1 11
U2 66
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
EI 1879-1352
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD JUL
PY 2014
VL 142
BP 93
EP 108
DI 10.1016/j.jqsrt.2014.03.019
PG 16
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA AI2RR
UT WOS:000336706300010
ER
PT J
AU Zapata, S
Cardona, A
Montes, C
Valencia, V
Vervoort, J
Reiners, P
AF Zapata, S.
Cardona, A.
Montes, C.
Valencia, V.
Vervoort, J.
Reiners, P.
TI Provenance of the Eocene Soebi Blanco formation, Bonaire, Leeward
Antilles: Correlations with post-Eocene tectonic evolution of northern
South America
SO JOURNAL OF SOUTH AMERICAN EARTH SCIENCES
LA English
DT Article
DE Provenance; Caribbean plate; Conglomerates; Leeward Antilles;
Paleogeography
ID OCEANIC PLATEAU; CARIBBEAN PLATE; ZIRCON GEOCHRONOLOGY;
BRITISH-COLUMBIA; SANTA-MARTA; COLOMBIA; VENEZUELA; ANDES; ARC;
CONSTRAINTS
AB Middle to upper Eocene fluvial strata in the island of Bonaire contain detrital components that were tracked to Precambrian to Triassic massifs in northern Colombia and Venezuela. These detrital components confirm previous hypothesis suggesting that Bonaire and the Leeward Antilles were attached to South American basement massifs (SABM). These are composed of different fragmented South American blocks (Paraguana, Falcon, Maracaibo, Guajira, Perija, and Santa Marta) representing an Eocene, rightlaterally displaced tectonic piercing point along the southern Caribbean plate margin. U-Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian peaks ages (1000-1200 Ma), while detrital zircons recovered from the sandy matrix of the conglomerates contain populations with peaks of 1000 Ma-1200 Ma, 750-950 Ma, and 200-300 Ma. These populations match with geochronological data reported for the northern South American massifs. Thermochronological results from the metamorphic clasts yield Paleocene middle Eocene ages (65-50 Ma) that confirm a regional-scale cooling event in this time. These data imply a land connection between the SABM and the Leeward Antilles in late Eocene times, followed by a significant strike slip right-lateral displacement and transtensional basin opening starting in latest Eocene times. The succession of Eocene tectonic events recorded by the Soebi Blanco Formation and adjacent basins is a major tracer of the oblique convergence of the Caribbean plate against the South American margin. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Zapata, S.] Comorac Geolog Ares, Bogota, Colombia.
[Cardona, A.] Univ Nacl Colombia Sede Medellin, Dept Proc & Energia, Medellin, Colombia.
[Montes, C.] Univ Los Andes, Dept Geociencias, Bogota, Colombia.
[Valencia, V.; Vervoort, J.] Washington State Univ, Sch Earth & Environm Sci, Pullman, WA 99164 USA.
[Reiners, P.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA.
[Zapata, S.] Smithsonian Trop Res Inst, Bogota, Colombia.
RP Zapata, S (reprint author), Comorac Geolog Ares, Calle 44a 53-96, Bogota, Colombia.
EM szapatah@gmail.com
OI Montes, Camilo/0000-0002-3553-0787
FU COLCIENCIAS; Smithsonian Tropical Research Institute (STRI);
environmental authorities of Bonaire
FX We thank the Smithsonian Tropical Research Institute (STRI) and the
environmental authorities of Bonaire for their support during several
phases of the project. C. Jaramillo, Bayona, G., N. Hoyos, Londono, L
and C. Echeverri are acknowledged for their discussions and continuous
support. S. Zapata thanks COLCIENCIAS for its support as a young
researchers fellowship. U. Ukchowdh, E. Abdel and G. Canizalez helped
with sample preparations and lab analyses. Finally we also thank the
environmental authorities of Bonaire for their support and guidance.
NR 80
TC 2
Z9 3
U1 0
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0895-9811
J9 J S AM EARTH SCI
JI J. South Am. Earth Sci.
PD JUL
PY 2014
VL 52
BP 179
EP 193
DI 10.1016/j.jsames.2014.02.009
PG 15
WC Geosciences, Multidisciplinary
SC Geology
GA AH9LU
UT WOS:000336464700012
ER
PT J
AU Schuh, MA
Banda, JM
Bernasconi, PN
Angryk, RA
Martens, PCH
AF Schuh, M. A.
Banda, J. M.
Bernasconi, P. N.
Angryk, R. A.
Martens, P. C. H.
TI A Comparative Evaluation of Automated Solar Filament Detection
SO SOLAR PHYSICS
LA English
DT Article
DE Automated feature finding; Filaments; Quantitative comparative
evaluation
AB We present a comparative evaluation for automated filament detection in H alpha solar images. By using metadata produced by the Advanced Automated Filament Detection and Characterization Code (AAFDCC) module, we adapted our trainable feature recognition (TFR) module to accurately detect regions in solar images containing filaments. We first analyze the AAFDCC module's metadata and then transform it into labeled datasets for machine-learning classification. Visualizations of data transformations and classification results are presented and accompanied by statistical findings. Our results confirm the reliable event reporting of the AAFDCC module and establishes our TFR module's ability to effectively detect solar filaments in H alpha solar images.
C1 [Schuh, M. A.; Banda, J. M.; Angryk, R. A.] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA.
[Bernasconi, P. N.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Martens, P. C. H.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA.
[Martens, P. C. H.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Schuh, MA (reprint author), Montana State Univ, Dept Comp Sci, 357 EPS, Bozeman, MT 59717 USA.
EM michael.schuh@cs.montana.edu; juan.banda@cs.montana.edu;
pietro.bernasconi@jhuapl.edu; angryk@cs.montana.edu;
martens@physics.montana.edu
RI Bernasconi, Pietro/H-2224-2016;
OI Bernasconi, Pietro/0000-0002-0787-8954; Banda, Juan/0000-0001-8499-824X
FU NASA [NNX09AB03G]; [NNH08ZDA001N-SDOSC solicitation]; [NNX11AM13A];
[NNH11ZHA003C solicitation]
FX This research and development project was supported by two NASA Grant
Awards: No. NNX09AB03G, funded from the NNH08ZDA001N-SDOSC solicitation,
and No. NNX11AM13A, funded from the NNH11ZHA003C solicitation. We would
also like to thank our internal reviewers as well as the Big Bear Solar
Observatory/New Jersey Institute of Technology and the Global High
Resolution Ha Network for providing and maintaining the ftp image data
archive.
NR 27
TC 9
Z9 9
U1 0
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-0938
EI 1573-093X
J9 SOL PHYS
JI Sol. Phys.
PD JUL
PY 2014
VL 289
IS 7
BP 2503
EP 2524
DI 10.1007/s11207-014-0495-9
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AE7TI
UT WOS:000334201400007
ER
PT J
AU Kobelski, AR
Saar, SH
Weber, MA
McKenzie, DE
Reeves, KK
AF Kobelski, Adam R.
Saar, Steven H.
Weber, Mark A.
McKenzie, David E.
Reeves, Katharine K.
TI Calibrating Data from the Hinode/X-Ray Telescope and Associated
Uncertainties
SO SOLAR PHYSICS
LA English
DT Article
DE Corona; Instrumentation and data management
ID MISSION; XRT
AB The X-Ray Telescope (XRT) onboard the Hinode satellite, launched 23 September 2006 by the Japan Aerospace Exploration Agency (JAXA), is a joint mission of Japan, the United States, and the United Kingdom to study the solar corona. In particular, XRT was designed to study solar plasmas with temperatures between 1 and 10 MK with a parts per thousand aEuro parts per thousand 1aEuro(3) pixels (a parts per thousand aEuro parts per thousand 2aEuro(3) resolution). Prior to analysis, the data product from this instrument must be properly calibrated and data values quantified to accurately assess the information contained within. We present here the standard methods of calibration for these data. The calibration was performed on an empirical basis that uses the least complicated correction that accurately describes the data while suppressing spurious features. By analyzing the uncertainties remaining in the data after calibration, we conclude that the procedure is successful, because the remaining uncertainty after calibration is dominated by photon noise. This calibration software is available in the SolarSoft software library.
C1 [Kobelski, Adam R.; McKenzie, David E.] Montana State Univ, Bozeman, MT 59717 USA.
[Saar, Steven H.; Weber, Mark A.; Reeves, Katharine K.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
RP Kobelski, AR (reprint author), Montana State Univ, POB 173840, Bozeman, MT 59717 USA.
EM kobelski@solar.physics.montana.edu
RI Reeves, Katharine/P-9163-2014
FU NASA [NNM07AB07C]; Smithsonian Astrophysical Observatory; JAXA; NAOJ
(Japan); STFC (U.K.); NASA (Norway); ESA (Norway); NSC (Norway)
FX Hinode is a Japanese mission developed and launched by ISAS/JAXA,
collaborating with NAOJ as a domestic partner, and with NASA and STFC
(UK) as international partners. Scientific operation of the Hinode
mission is conducted by the Hinode science team organized at ISAS/JAXA.
This team mainly consists of scientists from institutes in the partner
countries. Support for the post-launch operation is provided by JAXA and
NAOJ (Japan), STFC (U.K.), NASA, ESA, and NSC (Norway). This work was
supported by NASA under contract NNM07AB07C with the Smithsonian
Astrophysical Observatory.
NR 7
TC 10
Z9 10
U1 0
U2 0
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-0938
EI 1573-093X
J9 SOL PHYS
JI Sol. Phys.
PD JUL
PY 2014
VL 289
IS 7
BP 2781
EP 2802
DI 10.1007/s11207-014-0487-9
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AE7TI
UT WOS:000334201400021
ER
PT J
AU Kenworthy, WJ
Gallegos, CL
Costello, C
Field, D
di Carlo, G
AF Kenworthy, W. J.
Gallegos, C. L.
Costello, Charles
Field, Donald
di Carlo, Giuseppe
TI Dependence of eelgrass (Zostera marina) light requirements on sediment
organic matter in Massachusetts coastal bays: Implications for
remediation and restoration
SO MARINE POLLUTION BULLETIN
LA English
DT Article
DE Eelgrass; Zostera marina; Light requirements; Water quality; Nitrogen
loading; USA; Massachusetts
ID SUBMERSED AQUATIC VEGETATION; OPTICAL WATER-QUALITY; SEAGRASS DEPTH
LIMITS; ABSORPTION-COEFFICIENTS; SPECTRAL ABSORPTION; NUTRIENT
ENRICHMENT; WAQUOIT BAY; HABITAT REQUIREMENTS; MESOCOSM EXPERIMENTS;
POSITIVE FEEDBACKS
AB Using a calibrated bio-optical model we determined that the optical water quality conditions in several nitrogen-impaired embayments and in one unimpaired system were within the range of values known to support eelgrass growth. We also used the model to identify a range of light requirements for eelgrass (Zostera marina). Higher eelgrass light requirements, expressed as a percentage of surface-incident irradiance, corresponded with higher sediment organic matter content. These results corroborated findings by previous studies which indicate a generalized relationship: seagrasses growing in turbid conditions with poorer water and sediment quality have higher light requirements than those growing in less degraded conditions. The mechanistic reason for the variation in light requirements is still not completely explained and cannot be attributed to a single independent variable. Varying light requirement have important implications for eelgrass protection and should be considered when setting restoration targets for eelgrass in water quality and nitrogen remediation programs. Published by Elsevier Ltd.
C1 [Kenworthy, W. J.; Field, Donald; di Carlo, Giuseppe] NOAA, Ctr Coastal Fisheries & Habitat Res, NCCOS, NOS, Beaufort, NC 28516 USA.
[Gallegos, C. L.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
[Costello, Charles] Massachusetts Dept Environm Protect, Div Watershed Management, Boston, MA 02108 USA.
RP Gallegos, CL (reprint author), Smithsonian Environm Res Ctr, POB 28, Edgewater, MD 21037 USA.
EM jud.kenworthy@gmail.com; gallegosc@si.edu; charles.costello@state.ma.us;
don.fleld@noaa.gov; Giuseppe.dicarlo@gmail.com
OI Gallegos, Charles/0000-0001-5112-0166
FU Massachusetts Department of Environmental Protection [2007-03/CAP];
Center for Coastal Fisheries and Habitat Research; NCCOS; NOS; NOAA
FX Funding for this work was provided by contract 2007-03/CAP from the
Massachusetts Department of Environmental Protection to the Smithsonian
Institution. Additional funding for W.J. Kenworthy, G. Di Carlo and D.
Field was provided by the Center for Coastal Fisheries and Habitat
Research, NCCOS, NOS, NOAA. We thank S. L. Benson and E. A. L. Milton
for assistance with field and laboratory work, and Mary Kay Fox of the
Waquoit Bay National Estuarine Research Reserve for access to laboratory
space. We thank Jessie Jarvis for assistance with sediment organic
matter and grain size analysis. We also thank Amit Malhotra of the
Center for Coastal Fisheries and Habitat Research for assistance in
collecting and processing Kinematic Global Positioning System data.
NR 86
TC 8
Z9 8
U1 6
U2 42
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0025-326X
EI 1879-3363
J9 MAR POLLUT BULL
JI Mar. Pollut. Bull.
PD JUN 30
PY 2014
VL 83
IS 2
BP 446
EP 457
DI 10.1016/j.marpolbul.2013.11.006
PG 12
WC Environmental Sciences; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA AK4PH
UT WOS:000338406100009
PM 24308994
ER
PT J
AU Schmidt, LK
Zimmermann, A
Elsenbeer, H
AF Schmidt, Lena Katharina
Zimmermann, Alexander
Elsenbeer, Helmut
TI Ant mounds as a source of sediment in a tropical rainforest?
SO HYDROLOGICAL PROCESSES
LA English
DT Article
DE ant mounds; soil erosion; sediment output; zoogeomorphology
ID OVERLAND-FLOW; EASTERN SPAIN; SOIL; CATCHMENT; COMMUNITY; TRANSPORT;
EROSION; LOSSES; WATER
AB In Lutzito catchment on Barro Colorado Island, Panama, extraordinarily high suspended-sediment yields of 1-2Mgha-1year-1 were generated despite the dense forest cover coinciding with erosion-resistant soils. We hypothesized that ant mounding activity is an important zoogeomorphological mechanism in this area, providing relevant quantities of easily transportable material at the soil surface. To test this hypothesis, all ant mound material was collected collected for dry mass determination from thirty 4m2 plots installed in the study area every 1-3days during the 39-day sampling period. Additionally, three ground-nesting ant species responsible for mounds in the study area, Ectatomma ruidum, Trachymyrmex cornetzi and Strumigenys marginiventris, were identified. On the basis of the total of 1.38kg of material collected in the wet season of 2011, the estimate for the whole 8months wet season amounts to 725kgha-1. As this value is in the same order of magnitude as sediment output, it shows that ants may act as important ecosystem engineers and contribute to sediment production here by providing large quantities of fine-grained, readily erodible material at the soil surface for subsequent transport to the streambed. Copyright (c) 2014 John Wiley & Sons, Ltd.
C1 [Schmidt, Lena Katharina; Zimmermann, Alexander; Elsenbeer, Helmut] Univ Potsdam, Inst Earth & Environm Sci, D-14476 Potsdam, Germany.
[Elsenbeer, Helmut] Smithsonian Trop Res Inst, Panama City, Panama.
RP Schmidt, LK (reprint author), Univ Potsdam, Inst Earth & Environm Sci, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany.
EM leschmid@uni-potsdam.de
RI Zimmermann, Alexander/B-6831-2011
FU Smithsonian Tropical Research Institute, Panama
FX This research was funded by Smithsonian Tropical Research Institute,
Panama, with a short-term fellowship awarded to Katharina Schmidt. We
thank Joe Wright for his help and advice and Steven Yanoviak for his
help with species identification. H. E. acknowledges STRI's support
during his sabbaticals on BCI. Finally, we thank Artemi Cerda and an
anonymous reviewer for their constructive comments on an earlier version
of this manuscript.
NR 27
TC 0
Z9 0
U1 1
U2 19
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0885-6087
EI 1099-1085
J9 HYDROL PROCESS
JI Hydrol. Process.
PD JUN 30
PY 2014
VL 28
IS 13
BP 4156
EP 4160
DI 10.1002/hyp.10222
PG 5
WC Water Resources
SC Water Resources
GA AJ8SG
UT WOS:000337977100014
ER
PT J
AU Touchon, JC
Wojdak, JM
AF Touchon, Justin C.
Wojdak, Jeremy M.
TI Plastic Hatching Timing by Red-Eyed Treefrog Embryos Interacts with
Larval Predator Identity and Sublethal Predation to Affect Prey
Morphology but Not Performance
SO PLOS ONE
LA English
DT Article
ID SWIMMING PERFORMANCE; TRADE-OFFS; BEHAVIORAL PLASTICITY; PHENOTYPIC
PLASTICITY; AGALYCHNIS-CALLIDRYAS; HABITAT COMPLEXITY; MULTIPLE
PREDATORS; DRAGONFLY STRIKES; NONLETHAL INJURY; OPPOSITE SHIFTS
AB Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles' tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation.
C1 [Touchon, Justin C.] Boston Univ, Dept Biol, Boston, MA 02215 USA.
[Touchon, Justin C.] Smithsonian Trop Res Inst, Balboa, Panama.
[Wojdak, Jeremy M.] Radford Univ, Dept Biol, Radford, VA 24142 USA.
RP Touchon, JC (reprint author), Boston Univ, Dept Biol, 5 Cummington St, Boston, MA 02215 USA.
EM justintouchon@gmail.com
FU Research Opportunity Award from the National Science Foundation; NSF
[DEB-0717220, DEB-0716923]; Radford University; Smithsonian Tropical
Research Institute; [IIA-1064566]
FX JMW was supported by a Research Opportunity Award from the National
Science Foundation, stemming from NSF grant DEB-0717220 to James Vonesh.
JCT was partially supported by NSF grant DEB-0716923 to Karen Warkentin
and by IIA-1064566 to JCT. Radford University and the Smithsonian
Tropical Research Institute also provided funding or support.
NR 61
TC 4
Z9 4
U1 0
U2 25
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 26
PY 2014
VL 9
IS 6
AR e100623
DI 10.1371/journal.pone.0100623
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK2WP
UT WOS:000338280800048
PM 24967896
ER
PT J
AU Launius, RD
AF Launius, Roger D.
TI Neil Armstrong: A Life of Flight
SO NATURE
LA English
DT Book Review
C1 [Launius, Roger D.] Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA.
RP Launius, RD (reprint author), Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA.
EM launiusr@si.edu
NR 1
TC 0
Z9 0
U1 0
U2 4
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD JUN 26
PY 2014
VL 510
IS 7506
BP 472
EP 472
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AJ6LK
UT WOS:000337806300024
ER
PT J
AU Norrbom, AL
Neder, LE
AF Norrbom, Allen L.
Estela Neder, Lilia
TI New neotropical species of Trupanea (Diptera: Tephritidae) with unusual
wing patterns
SO ZOOTAXA
LA English
DT Article
DE Diptera; Tephritidae; Tephritinae; taxonomy; host plant; Asteraceae
AB Four species of Trupanea Shrank (Diptera: Tephritidae) with unusual wing patterns are described from the Neotropical Region: T. dimorphica (Argentina), T. fasciata (Argentina), T. polita (Argentina and Bolivia), and T. trivittata (Argentina). Celidosphenella Hendel, 1914 and Melanotrypana Hering, 1944 are considered new synonyms of Trupanea, and the following species are transferred from Celidosphenella to Trupanea: Acinia bella Blanchard, 1852; Acanthiophilus benoisti Seguy, 1933; Tephritis diespasmena Schiner, 1868; Celidosphenella maculata Hendel, 1914; Sphenella poecila Schiner, 1868; Trypanea simulata Malloch, 1933; Trupanea stonei Stuardo, 1946; and Trypanea vidua Hering, 1942. Aphyllocladus spartioides Wedd. (Asteraceae: Mutisieae) is reported as a probable host plant for Trupanea dimorphica.
C1 [Norrbom, Allen L.] USDA ARS, Systemat Entomol Lab, Smithsonian Inst, Washington, DC 20013 USA.
[Estela Neder, Lilia] Univ Nacl Jujuy, CONICET, Inst Biol Altura, RA-4600 San Salvador De Jujuy, Jujuy, Argentina.
RP Norrbom, AL (reprint author), USDA ARS, Systemat Entomol Lab, Smithsonian Inst, POB 37012,MRC 168, Washington, DC 20013 USA.
EM allen.norrbom@ars.usda.gov; leneder@inbial.unju.edu.ar
NR 21
TC 1
Z9 1
U1 0
U2 2
PU MAGNOLIA PRESS
PI AUCKLAND
PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND
SN 1175-5326
EI 1175-5334
J9 ZOOTAXA
JI Zootaxa
PD JUN 24
PY 2014
VL 3821
IS 4
BP 443
EP 456
PG 14
WC Zoology
SC Zoology
GA AJ5AH
UT WOS:000337692000003
PM 24989757
ER
PT J
AU Vazquez-Bader, AR
Gracia, A
Lemaitre, R
AF Vazquez-Bader, Ana Rosa
Gracia, Adolfo
Lemaitre, Rafael
TI A new species of Munidopsis Whiteaves, 1874 (Crustacea: Anomura:
Galatheoidea: Munidopsidae) from the Gulf of Mexico and Caribbean Sea
SO ZOOTAXA
LA English
DT Article
DE Crustacea; Decapoda; Anomura; Galatheoidea; Munidopsidae; squat lobster;
Munidopsis; new species; Anoplonotus group; Gulf of Mexico; western
Caribbean
ID DECAPODA ANOMURA; SQUAT LOBSTERS; GALATHEIDAE
AB A new species of squat lobster, Munidopsis shulerae sp. nov., from the Gulf of Mexico and western Caribbean, is fully described and illustrated. This new species is named in honor of the late Barbara Shuler Mayo (1945-1988), who first recognized this new taxon in her 1974 unpublished doctoral dissertation, but never formalized it. This new species is placed in the Anoplonotus group based on the presence of simple, narrow rostrum, spineless eyes, fused sternites 3 and 4, well-marked carapace regions, unarmed pleonal tergites, and smooth dactyls of pereopods 2-4. Among western Atlantic congeners, M. shulerae sp. nov. is most similar to M. polita (Smith, 1883), from which it can be distinguished by the straight shape of the rostrum with a tuberculate dorsal carina extending to the epigastric region, coarse ornamentation of the carapace, and a conspicuous submarginal protuberance on each side of the carapace between the antennal and ocular peduncles.
C1 [Vazquez-Bader, Ana Rosa; Gracia, Adolfo] Univ Nacl Autonoma Mexico, Inst Ciencias Mar & Limnol, Lab Ecol Pesquera Crustaceos, UNAM,CU, Mexico City 04510, DF, Mexico.
[Lemaitre, Rafael] Smithsonian Inst, Dept Invertebrate Zool, Natl Museum Nat Hist, Suitland, MD 20746 USA.
RP Vazquez-Bader, AR (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Mar & Limnol, Lab Ecol Pesquera Crustaceos, UNAM,CU, Univ 3000, Mexico City 04510, DF, Mexico.
EM ana-rosav@hotmail.com; gracia@unam.mx; lemaitrr@si.edu
FU Direccion General de Asuntos del Personal Academico, UNAM [IN223109-3]
FX At UMML we thank Drs. Nancy Voss and Julio Garcia-Gomez for help in
attempting to locate specimens used by Barbara Shuler Mayo. The help of
Mary K. Wicksten in locating specimens of this new species is gratefully
acknowledged. Rose Gulledge assisted in the electronic preparation of
the figures. We are grateful to Magaly Galvan Palmerin for her
assistance in taking photos. This study was partially supported by a
grant (IN223109-3) of the Direccion General de Asuntos del Personal
Academico, UNAM. We also thank the crew of the R/V Justo Sierra that
participated in research cruises.
NR 33
TC 4
Z9 5
U1 0
U2 2
PU MAGNOLIA PRESS
PI AUCKLAND
PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND
SN 1175-5326
EI 1175-5334
J9 ZOOTAXA
JI Zootaxa
PD JUN 23
PY 2014
VL 3821
IS 3
BP 354
EP 362
PG 9
WC Zoology
SC Zoology
GA AJ5AE
UT WOS:000337691600004
PM 24989749
ER
PT J
AU Glowska, E
Milensky, CM
AF Glowska, Eliza
Milensky, Christopher M.
TI New species of the genus Picobia (Cheyletoidea: Syringophilidae)
parasitizing tyrannid birds (Passeriformes: Tyrannidae)
SO ZOOTAXA
LA English
DT Article
DE Quill mites; Syringophilidae; tyrannid birds; systematics; ectoparasites
ID QUILL MITES; ACARI SYRINGOPHILIDAE
AB Three new quill mite species of the genus Picobia Haller (Cheyletoidea: Syringophilidae) are described from 6 host species of the family Tyrannidae (Passeriformes), P. ochoi sp. nov. from Tolmomyias sulphurescens (Spix) (Guyana), P. schmidti sp. nov. from Lophotriccus pileatus (Tschudi) (type host) (Peru) and Hemitriccus margaritaceiventer (Orbigny & Lafresnaye) (Guyana), and P. myiopagi sp. nov. from Myiopagis gaimardii (Orbigny) (type host) (Guyana), M. sub-placens (Sclater) (Peru) and Elaenia ruficeps Pelzeln (Guyana).
C1 [Glowska, Eliza] Adam Mickiewicz Univ, Fac Biol, Dept Anim Morphol, PL-61614 Poznan, Poland.
[Milensky, Christopher M.] Smithsonian Inst, Div Birds, Washington, DC 20013 USA.
RP Glowska, E (reprint author), Adam Mickiewicz Univ, Fac Biol, Dept Anim Morphol, Umultowska 89, PL-61614 Poznan, Poland.
EM glowska@amu.edu.pl
NR 11
TC 4
Z9 4
U1 1
U2 4
PU MAGNOLIA PRESS
PI AUCKLAND
PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND
SN 1175-5326
EI 1175-5334
J9 ZOOTAXA
JI Zootaxa
PD JUN 23
PY 2014
VL 3821
IS 3
BP 373
EP 383
PG 11
WC Zoology
SC Zoology
GA AJ5AE
UT WOS:000337691600006
PM 24989751
ER
PT J
AU Harasewych, MG
AF Harasewych, M. G.
TI Attenuiconus marileeae, a new species of cone (Gastropoda: Conidae:
Puncticulinae) from Curacao
SO NAUTILUS
LA English
DT Article
DE Deep Reef; Curasub; bottles; predation
AB Attenuiconus marileeae new species is described from deep reefs off southeastern Curacao. It resembles A. attenuatus, A. honkeri, and A. aureonimbosus in size and general proportion of the shell, but is readily distinguished on the basis of its distinctive color pattern, which consists of a vivid orange-red base color with three bands of irregular, white flammules. Attenuiconus marileeae was collected at substantially greater depths than any of its Caribbean congeners. Only A. aureonimbosus, from the northeastern Gulf of Mexico, inhabits comparable depths. Like all species of Attenuiconus, nearly all specimens A. marileeae have one or more major repaired breaks indicative of unsuccessful attacks by crustaceans.
C1 Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, Washington, DC 20013 USA.
RP Harasewych, MG (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, POB 37012, Washington, DC 20013 USA.
EM Harasewych@si.edu
NR 14
TC 1
Z9 1
U1 0
U2 1
PU BAILEY-MATTHEWS SHELL MUSEUM
PI SANIBEL
PA C/O DR JOSE H LEAL, ASSOCIATE/MANAGING EDITOR, 3075 SANIBEL-CAPTIVA RD,
SANIBEL, FL 33957 USA
SN 0028-1344
J9 NAUTILUS
JI Nautilus
PD JUN 20
PY 2014
VL 128
IS 2
BP 55
EP 58
PG 4
WC Marine & Freshwater Biology; Zoology
SC Marine & Freshwater Biology; Zoology
GA AQ9PV
UT WOS:000343188700004
ER
PT J
AU Walters-Conte, KB
Le Johnson, D
Johnson, WE
O'Brien, SJ
Pecon-Slattery, J
AF Walters-Conte, Kathryn B.
Le Johnson, Diana
Johnson, Warren E.
O'Brien, Stephen J.
Pecon-Slattery, Jill
TI The dynamic proliferation of CanSINEs mirrors the complex evolution of
Feliforms
SO BMC EVOLUTIONARY BIOLOGY
LA English
DT Article
DE Incomplete lineage sorting; SINEs; Carnivora; Speciation; transposable
elements; Adaptation; Feliformia; Felidae
ID LINKED MYOTUBULAR MYOPATHY; RNA-DERIVED RETROPOSONS; ORDER CARNIVORA;
REPETITIVE ELEMENTS; SINE INSERTION; ALU REPEATS; GENOMIC DIVERSITY;
DOMESTIC DOG; DNA-SEQUENCE; FAMILY
AB Background: Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed.
Results: We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays.
Conclusions: We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement.
C1 [Walters-Conte, Kathryn B.] Amer Univ, Dept Biol, Washington, DC 20016 USA.
[Le Johnson, Diana] George Washington Univ, Dept Biol Sci, Washington, DC 20009 USA.
[Johnson, Warren E.; Pecon-Slattery, Jill] Natl Zool Pk, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.
[O'Brien, Stephen J.] St Petersburg State Univ, Dobzhansky Ctr Genome Bioinformat, St Petersburg 199034, Russia.
RP Walters-Conte, KB (reprint author), Amer Univ, Dept Biol, 101 Hurst Hall 4440 Massachusetts Ave, Washington, DC 20016 USA.
EM kwalt@american.edu
RI Johnson, Warren/D-4149-2016;
OI Johnson, Warren/0000-0002-5954-186X; O'Brien, Stephen
J./0000-0001-7353-8301
FU National Science Foundation Doctoral Dissertation Improvement Grant
[DEB-0909922]; National Institutes of Health [N01-CO-12400]; Intramural
Research Program of the NIH; NCI; Center for Cancer Research; National
Cancer Institute; The George Washington University Facilitation Fund
FX The authors thank Joan Pontius, Marc Allard, Carrie McCracken, Victor
David and Nicole Crumpler for technical assistance and expertise. This
project was funded through the National Science Foundation Doctoral
Dissertation Improvement Grant (DEB-0909922) and The George Washington
University Facilitation Fund. This project was also supported with
federal funds from the National Cancer Institute, National Institutes of
Health, under contract N01-CO-12400. This research was supported (in
part) by the Intramural Research Program of the NIH, NCI, Center for
Cancer Research. The content of this publication does not necessarily
reflect the views or policies of the Department of Health and Human
Services, nor does its mention of trade names, commercial products, or
organizations imply endorsement by the U.S. Government. The funders had
no role in study design, data collection and analysis, decision to
publish, or preparation of manuscript. This work was completed in the
Department of Biology at The George Washington University and in the
Laboratory of Genomic Diversity at National Cancer Institute, USA.
NR 101
TC 2
Z9 2
U1 0
U2 21
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2148
J9 BMC EVOL BIOL
JI BMC Evol. Biol.
PD JUN 20
PY 2014
VL 14
AR 137
DI 10.1186/1471-2148-14-137
PG 15
WC Evolutionary Biology; Genetics & Heredity
SC Evolutionary Biology; Genetics & Heredity
GA AK5HG
UT WOS:000338454700001
PM 24947429
ER
PT J
AU Archambault, S
Arlen, T
Aune, T
Beilicke, M
Benbow, W
Bird, R
Bottcher, M
Bouvier, A
Buckley, JH
Bugaev, V
Ciupik, L
Collins-Hughes, E
Connolly, MP
Cui, W
Dickherber, R
Dumm, J
Errando, M
Falcone, A
Federici, S
Feng, Q
Finley, JP
Fortson, L
Furniss, A
Galante, N
Gall, D
Garson, AI
Gillanders, GH
Griffin, S
Grube, J
Gusbar, C
Gyuk, G
Hanna, D
Holder, J
Hughes, G
Kaaret, P
Kertzman, M
Khassen, Y
Kieda, D
Krawczynski, H
Lamerato, A
Lang, MJ
Li, K
Madhavan, AS
Maier, G
Majumdar, P
McArthur, S
McCann, A
Millis, J
Moriarty, P
Mukherjee, R
Nieto, D
De Bhroithe, AO
Ong, RA
Orr, M
Otte, AN
Park, N
Perkins, JS
Pohl, M
Popkow, A
Prokoph, H
Quinn, J
Ragan, K
Reynolds, PT
Richards, GT
Roache, E
Roustazadeh, P
Saxon, DB
Sembroski, GH
Senturk, GD
Skole, C
Staszak, D
Telezhinsky, I
Tesic, G
Theiling, M
Varlotta, A
Vassiliev, VV
Vincent, S
Wakely, SP
Weinstein, A
Welsing, R
Williams, DA
Zitzer, B
AF Archambault, S.
Arlen, T.
Aune, T.
Beilicke, M.
Benbow, W.
Bird, R.
Boettcher, M.
Bouvier, A.
Buckley, J. H.
Bugaev, V.
Ciupik, L.
Collins-Hughes, E.
Connolly, M. P.
Cui, W.
Dickherber, R.
Dumm, J.
Errando, M.
Falcone, A.
Federici, S.
Feng, Q.
Finley, J. P.
Fortson, L.
Furniss, A.
Galante, N.
Gall, D.
Garson, A. III.
Gillanders, G. H.
Griffin, S.
Grube, J.
Gusbar, C.
Gyuk, G.
Hanna, D.
Holder, J.
Hughes, G.
Kaaret, P.
Kertzman, M.
Khassen, Y.
Kieda, D.
Krawczynski, H.
Lamerato, A.
Lang, M. J.
Li, K.
Madhavan, A. S.
Maier, G.
Majumdar, P.
McArthur, S.
McCann, A.
Millis, J.
Moriarty, P.
Mukherjee, R.
Nieto, D.
De Bhroithe, A. O'Faolain
Ong, R. A.
Orr, M.
Otte, A. N.
Park, N.
Perkins, J. S.
Pohl, M.
Popkow, A.
Prokoph, H.
Quinn, J.
Ragan, K.
Reynolds, P. T.
Richards, G. T.
Roache, E.
Roustazadeh, P.
Saxon, D. B.
Sembroski, G. H.
Senturk, G. D.
Skole, C.
Staszak, D.
Telezhinsky, I.
Tesic, G.
Theiling, M.
Varlotta, A.
Vassiliev, V. V.
Vincent, S.
Wakely, S. P.
Weinstein, A.
Welsing, R.
Williams, D. A.
Zitzer, B.
TI TEST OF MODELS OF THE COSMIC INFRARED BACKGROUND WITH MULTIWAVELENGTH
OBSERVATIONS OF THE BLAZAR 1ES 1218+30.4 IN 2009
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE BL Lacertae objects: general; BL Lacertae objects: individual
(1ES1218+30.4); cosmic background radiation; diffuse radiation;
galaxies: jets; gamma rays: galaxies
ID GAMMA-RAY OBSERVATIONS; EXTRAGALACTIC MAGNETIC-FIELDS; ACTIVE GALACTIC
NUCLEI; LARGE-AREA TELESCOPE; X-RAY; TEV BLAZARS; PARTICLE-ACCELERATION;
VERITAS OBSERVATIONS; TIMING EXPLORER; STRONG FLARES
AB We present the results of a multi-wavelength campaign targeting the blazar 1ES 1218+30.4 with observations with the 1.3 m McGraw-Hill optical telescope, the Rossi X-ray Timing Explorer (RXTE), the Fermi Gamma-Ray Space Telescope, and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The RXTE and VERITAS observations were spread over a 13 day period and revealed clear evidence for flux variability, and a strong X-ray and gamma-ray flare on 2009 February 26 (MJD 54888). The campaign delivered a well-sampled broadband energy spectrum with simultaneous RXTE and VERITAS very high energy (VHE, > 100 GeV) observations, as well as contemporaneous optical and Fermi observations. The 1ES 1218+30.4 broadband energy spectrum-the first with simultaneous X-ray and VHE gamma-ray energy spectra-is of particular interest as the source is located at a high cosmological redshift for a VHE source (z = 0.182), leading to strong absorption of VHE gamma rays by photons from the optical/infrared extragalactic background light (EBL) via gamma VHE +gamma EBL -> e(+) e(-)pair-creation processes. We model the data with a one-zone synchrotron self-Compton (SSC) emission model and with the extragalactic absorption predicted by several recent EBL models. We find that the observations are consistent with the SSC scenario and all the EBL models considered in this work. We discuss observational and theoretical avenues to improve on the EBL constraints.
C1 [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Staszak, D.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Arlen, T.; Aune, T.; Ong, R. A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Garson, A. III.; Krawczynski, H.; Li, K.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Benbow, W.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Bird, R.; Collins-Hughes, E.; Khassen, Y.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Boettcher, M.; Gusbar, C.; Gyuk, G.; Lamerato, A.; Roustazadeh, P.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA.
[Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Ciupik, L.; Grube, J.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Connolly, M. P.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland.
[Cui, W.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Dumm, J.; Fortson, L.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Errando, M.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Federici, S.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Skole, C.; Telezhinsky, I.; Vincent, S.; Welsing, R.] DESY, D-15738 Zeuthen, Germany.
[Federici, S.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam Golm, Germany.
[Gall, D.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Holder, J.; Saxon, D. B.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Holder, J.; Saxon, D. B.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA.
[Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Madhavan, A. S.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Majumdar, P.] Saha Inst Nucl Phys, Kolkata 700064, India.
[McArthur, S.; Park, N.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA.
[Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland.
[Nieto, D.; Senturk, G. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Perkins, J. S.] NASA, GSFC, CRESST, Greenbelt, MD 20771 USA.
[Perkins, J. S.] NASA, GSFC, Astroparticle Phys Lab, Greenbelt, MD 20771 USA.
[Perkins, J. S.] Univ Maryland, Baltimore, MD 21250 USA.
[Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland.
[Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Archambault, S (reprint author), McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
RI Khassen, Yerbol/I-3806-2015; Nieto, Daniel/J-7250-2015;
OI Khassen, Yerbol/0000-0002-7296-3100; Nieto, Daniel/0000-0003-3343-0755;
Cui, Wei/0000-0002-6324-5772; Lang, Mark/0000-0003-4641-4201; Bird,
Ralph/0000-0002-4596-8563
FU U.S. Department of Energy Office of Science; U.S. National Science
Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation
Ireland [SFI 10/RFP/AST2748]; STFC in the U.K
FX This research is supported by grants from the U.S. Department of Energy
Office of Science, the U.S. National Science Foundation, and the
Smithsonian Institution, by NSERC in Canada, by Science Foundation
Ireland (SFI 10/RFP/AST2748), and by STFC in the U.K. We acknowledge the
excellent work of the technical support staff at the Fred Lawrence
Whipple Observatory and at the collaborating institutions in the
construction and operation of the instrument.
NR 72
TC 1
Z9 1
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 158
DI 10.1088/0004-637X/788/2/158
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200061
ER
PT J
AU Barnacka, A
Geller, MJ
Dell'antonio, IP
Benbow, W
AF Barnacka, Anna
Geller, Margaret J.
Dell'antonio, Ian P.
Benbow, Wystan
TI STRONG GRAVITATIONAL LENSING AS A TOOL TO INVESTIGATE THE STRUCTURE OF
JETS AT HIGH ENERGIES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: jets; galaxies: structure; gamma rays:
general; gravitational lensing: strong
ID GAMMA-RAY FLARE; ACTIVE GALACTIC NUCLEI; SPACE-TELESCOPE OBSERVATIONS;
SYNCHROTRON-PROTON BLAZAR; DARK-MATTER SUBSTRUCTURE; M87 JET;
TIME-DELAY; RADIO-SOURCES; EMISSION; VARIABILITY
AB The components of blazar jets that emit radiation span a factor of 1010 in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of gamma-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.
C1 [Barnacka, Anna; Geller, Margaret J.; Benbow, Wystan] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Barnacka, Anna] Jagiellonian Univ, Astron Observ, Krakow, Poland.
[Dell'antonio, Ian P.] Brown Univ, Dept Phys, Providence, RI 02912 USA.
RP Barnacka, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS-20, Cambridge, MA 02138 USA.
EM abarnacka@cfa.harvard.edu
OI Barnacka, Anna/0000-0001-5655-4158
NR 80
TC 7
Z9 7
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 139
DI 10.1088/0004-637X/788/2/139
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200042
ER
PT J
AU Caputi, KI
Michalowski, MJ
Krips, M
Geach, JE
Ashby, MLN
Huang, JS
Fazio, GG
Koekemoer, AM
Popping, G
Spaans, M
Castellano, M
Dunlop, JS
Fontana, A
Santini, P
AF Caputi, K. I.
Michalowski, M. J.
Krips, M.
Geach, J. E.
Ashby, M. L. N.
Huang, J. -S.
Fazio, G. G.
Koekemoer, A. M.
Popping, G.
Spaans, M.
Castellano, M.
Dunlop, J. S.
Fontana, A.
Santini, P.
TI PdBI COLD DUST IMAGING OF TWO EXTREMELY RED H - [4.5] > 4 GALAXIES
DISCOVERED WITH SEDS AND CANDELS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: high-redshift; infrared: galaxies;
submillimeter: galaxies
ID DEEP-FIELD-SOUTH; EXTRAGALACTIC LEGACY SURVEY; SPITZER-SPACE-TELESCOPE;
SQUARE DEGREE SURVEY; S-SELECTED GALAXIES; GREATER-THAN 4; SUBMILLIMETER
GALAXIES; SOURCE COUNTS; STELLAR MASS; K-S
AB We report Plateau de Bure Interferometer (PdBI) 1.1mmcontinuum imaging toward two extremely redH-[ 4.5] > 4 (AB) galaxies at z > 3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope CANDELS ultra-deep images of the Ultra Deep Survey field. One of our objects is detected on the PdBI map with a 4.3s significance, corresponding to S. (1.1 mm) = 0.78 +/- 0.18 mJy. By combining this detection with the Spitzer 8 and 24 mu m photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galactic nucleus/star-forming system. The infrared (IR)-derived star formation rate is SFR approximate to 200 +/- 100M circle dot yr(-1), which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies more commonly found at z similar to 2-3. In the field of the other target, we find a tentative 3.1 sigma detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3 sigma detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the submillimeter source GN10. We conclude that the analysis of ultra-deep near-and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.
C1 [Caputi, K. I.; Popping, G.; Spaans, M.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands.
[Michalowski, M. J.; Dunlop, J. S.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Krips, M.] IRAM, F-38406 St Martin Dheres, France.
[Geach, J. E.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Ashby, M. L. N.; Huang, J. -S.; Fazio, G. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Castellano, M.; Fontana, A.; Santini, P.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy.
RP Caputi, KI (reprint author), Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands.
EM karina@astro.rug.nl
OI Castellano, Marco/0000-0001-9875-8263; Popping,
Gergo/0000-0003-1151-4659; Santini, Paola/0000-0002-9334-8705;
Koekemoer, Anton/0000-0002-6610-2048
NR 45
TC 3
Z9 3
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 126
DI 10.1088/0004-637X/788/2/126
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200029
ER
PT J
AU Hada, K
Giroletti, M
Kino, M
Giovannini, G
D'Ammando, F
Cheung, CC
Beilicke, M
Nagai, H
Doi, A
Akiyama, K
Honma, M
Niinuma, K
Casadio, C
Orienti, M
Krawczynski, H
Gomez, JL
Sawada-Satoh, S
Koyama, S
Cesarini, A
Nakahara, S
Gurwell, MA
AF Hada, K.
Giroletti, M.
Kino, M.
Giovannini, G.
D'Ammando, F.
Cheung, C. C.
Beilicke, M.
Nagai, H.
Doi, A.
Akiyama, K.
Honma, M.
Niinuma, K.
Casadio, C.
Orienti, M.
Krawczynski, H.
Gomez, J. L.
Sawada-Satoh, S.
Koyama, S.
Cesarini, A.
Nakahara, S.
Gurwell, M. A.
TI A STRONG RADIO BRIGHTENING AT THE JET BASE OF M 87 DURING THE ELEVATED
VERY HIGH ENERGY GAMMA-RAY STATE IN 2012
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: individual (M 87); galaxies: jets; gamma
rays: galaxies; radio continuum: galaxies
ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; SUPERMASSIVE BLACK-HOLE;
M87 JET; TEV EMISSION; GALAXY M87; SCHWARZSCHILD RADII; RELATIVISTIC
JETS; VLBI OBSERVATIONS; UNIFIED SCHEMES
AB We report our intensive, high angular resolution radio monitoring observations of the jet in M 87 with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from 2011 February to 2012 October, together with contemporaneous high-energy (100 MeV< E < 100 GeV)gamma-ray light curves obtained by the Fermi Large Area Telescope. During this period (specifically from 2012 February to 2012 March), an elevated level of the M 87 flux is reported at very high energy (VHE; E > 100 GeV). rays by VERITAS. We detected a remarkable (up to similar to 70%) increase of the radio flux density from the unresolved jet base (radio core) with VERA at 22 and 43 GHz coincident with the VHE activity. Meanwhile, we confirmed with EVN at 5 GHz that the peculiar knot, HST-1, which is an alternative favored gamma-ray production site located at greater than or similar to 120 pc from the nucleus, remained quiescent in terms of its flux density and structure. These results in the radio bands strongly suggest that the VHE gamma-ray activity in 2012 originates in the jet base within 0.03 pc or 56 Schwarzschild radii (the VERA spatial resolution of 0.4 mas at 43 GHz) from the central supermassive black hole. We further conducted VERA astrometry for the M 87 core at six epochs during the flaring period, and detected core shifts between 22 and 43 GHz, a mean value of which is similar to that measured in the previous astrometric measurements. We also discovered a clear frequency-dependent evolution of the radio core flare at 43, 22, and 5 GHz; the radio flux density increased more rapidly at higher frequencies with a larger amplitude, and the light curves clearly showed a time-lag between the peaks at 22 and 43 GHz, the value of which is constrained to be within similar to 35-124 days. This indicates that a new radio-emitting component was created near the black hole in the period of the VHE event, and then propagated outward with progressively decreasing synchrotron opacity. By combining the obtained core shift and time-lag, we estimated an apparent speed of the newborn component propagating through the opaque region between the cores at 22 and 43 GHz. We derived a sub-luminal speed (less than similar to 0.2c) for this component. This value is significantly slower than the super-luminal (similar to 1.1c) features that appeared from the core during the prominent VHE flaring event in 2008, suggesting that stronger VHE activity can be associated with the production of a higher Lorentz factor jet in M 87.
C1 [Hada, K.; Giroletti, M.; Giovannini, G.; D'Ammando, F.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Hada, K.; Akiyama, K.; Honma, M.; Sawada-Satoh, S.; Koyama, S.] Natl Astron Observ Japan, Mizusawa VLBI Observ, Tokyo 1818588, Japan.
[Kino, M.] Korea Astron & Space Sci Inst KASI, Taejon 305348, South Korea.
[Kino, M.; Koyama, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan.
[Giovannini, G.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy.
[Cheung, C. C.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Beilicke, M.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Beilicke, M.; Krawczynski, H.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA.
[Nagai, H.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan.
[Akiyama, K.; Koyama, S.] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan.
[Honma, M.; Niinuma, K.] Grad Univ Adv Studies SOKENDAI, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan.
[Casadio, C.; Gomez, J. L.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain.
[Cesarini, A.] Univ Trent, Dept Phys, I-38050 Trento, Italy.
[Nakahara, S.] Kagoshima Univ, Fac Sci, Kagoshima, Kagoshima 8900065, Japan.
[Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
Yamaguchi Univ, Grad Sch Sci & Engn, Yamaguchi 7538512, Japan.
RP Hada, K (reprint author), INAF Ist Radioastron, Via Gobetti 101, I-40129 Bologna, Italy.
OI Giovannini, Gabriele/0000-0003-4916-6362; Cesarini,
Andrea/0000-0002-8611-8610; Akiyama, Kazunori/0000-0002-9475-4254;
orienti, monica/0000-0003-4470-7094; Giroletti,
Marcello/0000-0002-8657-8852; D'Ammando, Filippo/0000-0001-7618-7527
FU Japan Society for the Promotion of Science (JSPS); KAKENHI [24340042,
24540240, 24540242, 25120007, 26800109]; European Union [RI-261525
NEXPReS]; Smithsonian Institution; Academia Sinica; Istituto Nazionale
di Astrofisica in Italy; Centre National d'Etudes Spatiales in France
FX We thank the anonymous referee for the review and suggestions for
improving the paper. We are grateful to E. Torresi for reading and
helpful comments on the manuscript. The VERA is operated by Mizusawa
VLBI Observatory, a branch of National Astronomical Observatory of
Japan. K. H. thanks K. M. Shibata, T. Jike, and all of the rest of the
staff who helped with operations of the VERA observations presented in
this paper. K. H. is supported by the Japan Society for the Promotion of
Science (JSPS) Research Fellowship Program for Young Scientists. Part of
this work was done with the contribution of the Italian Ministry of
Foreign Affairs and University and Research for the collaboration
project between Italy and Japan. This work was partially supported by
KAKENHI (24340042, 24540240, 24540242, 25120007, and 26800109). e-VLBI
research infrastructure in Europe is supported by the European Union's
Seventh Framework Programme (FP7/2007-2013) under grant agreement No.
RI-261525 NEXPReS. The European VLBI Network is a joint facility of
European, Chinese, South African, and other radio astronomy institutes
funded by their national research councils. The Submillimeter Array is a
joint project between the Smithsonian Astrophysical Observatory and the
Academia Sinica Institute of Astronomy and Astrophysics and is funded by
the Smithsonian Institution and the Academia Sinica.; Additional support
for science analysis during the operations phase is gratefully
acknowledged from the Istituto Nazionale di Astrofisica in Italy and the
Centre National d'Etudes Spatiales in France.
NR 68
TC 13
Z9 13
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 165
DI 10.1088/0004-637X/788/2/165
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200068
ER
PT J
AU Hunter, TR
Brogan, CL
Cyganowski, CJ
Young, KH
AF Hunter, T. R.
Brogan, C. L.
Cyganowski, C. J.
Young, K. H.
TI SUBARCSECOND IMAGING OF THE NGC 6334 I(N) PROTOCLUSTER: TWO DOZEN
COMPACT SOURCES AND A MASSIVE DISK CANDIDATE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; H II regions; ISM: individual objects (NGC
6334 I(N)); ISM: kinematics and dynamics; stars: formation; stars:
protostars
ID STAR-FORMING REGIONS; HYPERCOMPACT HII-REGIONS; H-II REGIONS;
SPATIALLY-RESOLVED CHEMISTRY; EXTENDED GREEN OBJECTS; METHANOL MASER
SURVEY; YOUNG STELLAR OBJECT; HIGH-RESOLUTION; RADIO-CONTINUUM; WATER
MASER
AB Using the Submillimeter Array (SMA) and Karl G. Jansky Very Large Array, we have imaged the massive protocluster NGC 6334 I(N) at high angular resolution (0".5 similar to 650 AU) from 6 cm to 0.87 mm, detecting 18 new compact continuum sources. Three of the new sources are coincident with previously identified H2O masers. Together with the previously known sources, these data bring the number of likely protocluster members to 25 for a protostellar density of similar to 700 pc(-3). Our preliminary measurement of the Q-parameter of the minimum spanning tree is 0.82-close to the value for a uniform volume distribution. All of the (nine) sources with detections at multiple frequencies have spectral energy distributions consistent with dust emission, and two (SMA 1b and SMA 4) also have long wavelength emission consistent with a central hypercompact H II region. Thermal spectral line emission, including CH3CN, is detected in six sources: LTE model fitting of CH3CN (J = 12-11) yields temperatures of 72-373 K, confirming the presence of multiple hot cores. The fitted LSR velocities range from -3.3 to -7.0 kms(-1), with an unbiased mean square deviation of 2.05 km s(-1), implying a protocluster dynamical mass of 410 +/- 260M circle dot. From analysis of a wide range of hot core molecules, the kinematics of SMA 1b are consistent with a rotating, infalling Keplerian disk of diameter 800 AU and enclosed mass of 10-30 M circle dot that is perpendicular (within 1 degrees) to the large-scale bipolar outflow axis. A companion to SMA 1b at a projected separation of (0".45 (590 AU; SMA 1d), which shows no evidence of spectral line emission, is also confirmed. Finally, we detect one 218.4400 GHz and several 229.7588 GHz Class-I CH3OH masers.
C1 [Hunter, T. R.; Brogan, C. L.] NRAO, Charlottesville, VA 22903 USA.
[Cyganowski, C. J.; Young, K. H.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Cyganowski, C. J.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland.
RP Hunter, TR (reprint author), NRAO, 520 Edgemont Rd, Charlottesville, VA 22903 USA.
EM thunter@nrao.edu
OI Hunter, Todd/0000-0001-6492-0090
NR 136
TC 17
Z9 17
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 187
DI 10.1088/0004-637X/788/2/187
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200090
ER
PT J
AU Jian, HY
Lin, LW
Chiueh, T
Lin, KY
Liu, HB
Merson, A
Baugh, C
Huang, JS
Chen, CW
Foucaud, S
Murphy, DNA
Cole, S
Burgett, W
Kaiser, N
AF Jian, Hung-Yu
Lin, Lihwai
Chiueh, Tzihong
Lin, Kai-Yang
Liu, Hauyu Baobab
Merson, Alex
Baugh, Carlton
Huang, Jia-Sheng
Chen, Chin-Wei
Foucaud, Sebastien
Murphy, David N. A.
Cole, Shaun
Burgett, William
Kaiser, Nick
TI PROBABILITY FRIENDS-OF-FRIENDS (PFOF) GROUP FINDER: PERFORMANCE STUDY
AND OBSERVATIONAL DATA APPLICATIONS ON PHOTOMETRIC SURVEYS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: clusters: general; galaxies: groups: general; large-scale
structure of universe; methods: data analysis
ID GALAXY REDSHIFT SURVEY; GROUP-FINDING ALGORITHM; LARGE-SCALE STRUCTURE;
DIGITAL SKY SURVEY; MEDIUM-DEEP SURVEY; COLD DARK MATTER; PAN-STARRS;
CLUSTER SURVEY; RED-SEQUENCE; GROUP CATALOG
AB In tandem with observational data sets, we utilize realistic mock catalogs, based on a semi-analytic galaxy formation model, constructed specifically for Pan-STARRS1 Medium Deep Surveys to assess the performance of the Probability Friends-of-Friends (PFOF) group finder, and aim to develop a grouping optimization method applicable to surveys like Pan-STARRS1. Producing mock PFOF group catalogs under a variety of photometric redshift accuracies (s.z/(1+ zs)), we find that catalog purities and completenesses from " good" (s.z/(1+ zs) +/- 0.01) to " poor" (s.z/(1+ zs) +/- 0.07) photo-zs gradually degrade from 77% and 70% to 52% and 47%, respectively. A " subset optimization" approach is developed by using spectroscopic-redshift group data from the target field to train the group finder for application to that field and demonstrated using zCOSMOS groups for PFOF searches within PS1 Medium Deep Field04 (PS1MD04) and DEEP2 EGS groups in PS1MD07. With four data sets spanning the photo-z accuracy range from 0.01 to 0.06, we find purities and completenesses agree with their mock analogs. Further tests are performed via matches to X-ray clusters. We find PFOF groups match +/- 85% of X-ray clusters identified in COSMOS and PS1MD04, lending additional support to the reliability of the detection algorithm. In the end, we demonstrate, by separating red and blue group galaxies in the EGS and PS1MD07 group catalogs, that the algorithm is not biased with respect to specifically recovering galaxies by color. The analyses suggest the PFOF algorithm shows great promise as a reliable group finder for photometric galaxy surveys of varying depth and coverage.
C1 [Jian, Hung-Yu; Chiueh, Tzihong] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan.
[Lin, Lihwai; Lin, Kai-Yang; Liu, Hauyu Baobab; Chen, Chin-Wei; Foucaud, Sebastien] Acad Sin, Inst Astron & Astrophys, Taipei 106, Taiwan.
[Chiueh, Tzihong] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 106, Taiwan.
[Chiueh, Tzihong] Natl Taiwan Univ, LeCosPa, Taipei 106, Taiwan.
[Merson, Alex] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Merson, Alex; Baugh, Carlton; Cole, Shaun] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England.
[Huang, Jia-Sheng] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
[Huang, Jia-Sheng] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Foucaud, Sebastien] Natl Taiwan Normal Univ, Dept Earth Sci, Taipei 11677, Taiwan.
[Murphy, David N. A.] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago 7820436, Chile.
[Burgett, William; Kaiser, Nick] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
RP Jian, HY (reprint author), Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan.
EM hyj@phys.ntu.edu.tw
RI Baugh, Carlton/A-8482-2012;
OI Baugh, Carlton/0000-0002-9935-9755; CHIUEH, TZI-HONG/0000-0003-2654-8763
FU National Science Council of Taiwan [NSC101-2811-M-002-075, NSC992112-
M-001-003-MY3, NSC101-2112-M-001-011-MY2, NSC101-2628-M-008-002]; NSF
[AST-95-09298, AST-0071048, AST-0507428, AST-0507483]; NASA LTSA grant
[NNG04GC89G]
FX We thank R. Bower, M. Takada, and M. Oguri for helpful discussions on
our algorithm and PFOF applications, and P. Price for the valuable
comments. We also thank Brian F. Gerke for providing us with the DEEP2
group catalogs for the PFOF training. The work is supported in part by
the National Science Council of Taiwan under the grants
NSC101-2811-M-002-075, NSC992112- M-001-003-MY3,
NSC101-2112-M-001-011-MY2, and NSC101-2628-M-008-002. This research is
Based on zCOSMOS observations carried out using the Very Large Telescope
at the ESO Paranal Observatory under Programme ID LP175. A0839. Funding
for the DEEP2 Galaxy Redshift Survey has been provided by NSF grants
AST-95-09298, AST-0071048, AST-0507428, and AST-0507483 as well as NASA
LTSA grant NNG04GC89G. The Pan-STARRS1 Surveys (PS1) have been made
possible through contributions of the Institute for Astronomy, the
University of Hawaii, the Pan-STARRS Project Office, the Max-Planck
Society and its participating institutes, theMax Planck Institute
forAstronomyHeidelberg and theMax Planck Institute for Extraterrestrial
Physics Garching, The Johns Hopkins University, Durham University, the
University of Edinburgh, Queen's University Belfast, the
Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory
Global Telescope Network Incorporated, the National Central University
of Taiwan, the Space Telescope Science Institute, the National
Aeronautics and Space Administration under grant No. NNX08AR22G issued
through the Planetary Science Division of the NASA Science Mission
Directorate, the National Science Foundation under grant No.
AST-1238877, and theUniversity of Maryland, and Eotvos Lorand University
(ELTE). PS1 images and catalogs will be made available through a
Pan-STARRS PS1 data release by STScI. We close with thanks to the
Hawaiian people for the use of their sacred mountain.
NR 77
TC 9
Z9 9
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 109
DI 10.1088/0004-637X/788/2/109
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200012
ER
PT J
AU Lu, RS
Broderick, AE
Baron, F
Monnier, JD
Fish, VL
Doeleman, SS
Pankratius, V
AF Lu, Ru-Sen
Broderick, Avery E.
Baron, Fabien
Monnier, John D.
Fish, Vincent L.
Doeleman, Sheperd S.
Pankratius, Victor
TI IMAGING THE SUPERMASSIVE BLACK HOLE SHADOW AND JET BASE OF M87 WITH THE
EVENT HORIZON TELESCOPE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE black hole physics; galaxies: active; galaxies: jets; submillimeter:
galaxies; techniques: high angular resolution; techniques:
interferometric
ID SAGITTARIUS A-ASTERISK; HIGH-FREQUENCY VLBI; S ACCRETION FLOW;
GALACTIC-CENTER; OPTICAL INTERFEROMETRY; STRUCTURAL SIMILARITY;
SCHWARZSCHILD RADII; LINE INTERFEROMETRY; RELATIVISTIC JETS;
MILLIMETER-VLBI
AB The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of millimeter wavelength dishes that can resolve strong field general relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole "shadow," a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine the detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30 mu as resolution (similar to 2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by very high-energy flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, the array is generally robust against loss of a station.
C1 [Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.; Pankratius, Victor] MIT, Haystack Observ, Westford, MA 01886 USA.
[Broderick, Avery E.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada.
[Broderick, Avery E.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada.
[Baron, Fabien] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA.
[Monnier, John D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Doeleman, Sheperd S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Lu, RS (reprint author), MIT, Haystack Observ, Route 40, Westford, MA 01886 USA.
EM rslu@haystack.mit.edu
FU National Science Foundation; NSF [AST-1310896, AST-1211539]; Gordon &
Betty Moore Foundation [GMBF-3561]; Perimeter Institute for Theoretical
Physics; Natural Sciences and Engineering Research Council of Canada
through a Discovery Grant; Government of Canada through Industry Canada;
Province of Ontario through the Ministry of Research and Innovation
FX We thank the anonymous referee for suggestions that improved the quality
of the paper. High frequency VLBI work at MIT Haystack Observatory is
supported by grants from the National Science Foundation. This work is
also supported through NSF grants AST-1310896, AST-1211539. We
acknowledge support from the Gordon & Betty Moore Foundation through
award GMBF-3561. A.E.B. receives financial support from Perimeter
Institute for Theoretical Physics and the Natural Sciences and
Engineering Research Council of Canada through a Discovery Grant.
Research at Perimeter Institute is supported by the Government of Canada
through Industry Canada and by the Province of Ontario through the
Ministry of Research and Innovation. We thank Dr. Keiichi Asada for
providing information for the Greenland Telescope and Dr. Michael
Johnson for useful comments.
NR 64
TC 35
Z9 35
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 120
DI 10.1088/0004-637X/788/2/120
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200023
ER
PT J
AU Raymond, JC
McCauley, PI
Cranmer, SR
Downs, C
AF Raymond, J. C.
McCauley, P. I.
Cranmer, S. R.
Downs, C.
TI THE SOLAR CORONA AS PROBED BY COMET LOVEJOY (C/2011 W3)
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE comets: individual (C/2011 W3); plasmas; solar wind; Sun: corona; waves
ID MAGNETIC-FIELD; ALFVEN WAVES; DENSITY-FLUCTUATIONS; EXTREME-ULTRAVIOLET;
SUNGRAZING COMETS; ATOMIC DATABASE; POLAR PLUMES; MHD WAVES; WIND;
HELIOSPHERE
AB Extreme-ultraviolet images of Comet Lovejoy (C/2011 W3) from the Atmospheric Imaging Assembly show striations related to the magnetic field structure in both open and closed magnetic regions. The brightness contrast implies coronal density contrasts of at least a factor of six between neighboring flux tubes over scales of a few thousand kilometers. These density structures imply variations in the Alfven speed on a similar scale. They will drastically affect the propagation and dissipation of Alfven waves, and that should be taken into account in models of coronal heating and solar wind acceleration. In each striation, the cometary emission moves along the magnetic field and broadens with time. The speed and the rate of broadening are related to the parallel and perpendicular components of the velocities of the cometary neutrals when they become ionized. We use a magnetohydrodynamic model of the coronal magnetic field and the theory of pickup ions to compare the measurements with theoretical predictions, in particular with the energy lost to Alfven waves as the cometary ions isotropize.
C1 [Raymond, J. C.; McCauley, P. I.; Cranmer, S. R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Downs, C.] Predict Sci Inc, San Diego, CA 92121 USA.
RP Raymond, JC (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
RI McCauley, Patrick/P-7747-2015;
OI McCauley, Patrick/0000-0002-1450-7350; Cranmer,
Steven/0000-0002-3699-3134
FU NSF SHINE [AGS-1259519]; NASA [SPH02H1701R]; Lockheed Martin for NASA
[NNG04EA00]; NASA Heliophysics Theory Program
FX Patrick McCauley was supported by NSF SHINE grant AGS-1259519 and NASA
grant SPH02H1701R for SDO/AIA to the Smithsonian Astrophysical
Observatory. SDO is a NASA satellite and the AIA instrument team is led
by Lockheed Martin, with SAO as a major subcontractor. Cooper Downs was
supported by a subcontract from Lockheed Martin for NASA contract
NNG04EA00, and by NASA Heliophysics Theory Program. MHD simulations were
conducted on the NASA Pleiades and NSF Ranger supercomputers. This work
benefitted from discussions at the workshop on the Science of Near-Sun
Comets at the International Space Sciences Institute.
NR 67
TC 11
Z9 11
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 152
DI 10.1088/0004-637X/788/2/152
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200055
ER
PT J
AU Sliski, DH
Kipping, DM
AF Sliski, David H.
Kipping, David M.
TI A HIGH FALSE POSITIVE RATE FOR KEPLER PLANETARY CANDIDATES OF GIANT
STARS USING ASTERODENSITY PROFILING
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE eclipses; methods: data analysis; planetary systems; planets and
satellites: general; techniques: photometric
ID LIGHT-CURVE; TRANSIT DETECTION; II. ANALYSIS; ASTEROSEISMOLOGY;
VALIDATION; EFFICIENT; ECCENTRICITIES; AMPLITUDES; PARAMETERS;
EXOPLANETS
AB Asterodensity profiling (AP) is a relatively new technique for studying transit light curves. By comparing the mean stellar density derived from the transit light curve to that found through an independent method, AP provides information on several useful properties such as orbital eccentricity and blended light. We present an AP survey of 41 Kepler Objects of Interest (KOIs), with a single transiting candidate, for which the target star's mean stellar density has been measured using asteroseismology. The ensemble distribution of the AP measurements for the 31 dwarf stars in our sample shows excellent agreement with the spread expected if the KOIs were genuine and have realistic eccentricities. In contrast, the same test for the 10 giants in our sample reveals significant incompatibility at > 4 sigma confidence. While extreme eccentricities could be invoked, this hypothesis requires four of the KOIs to contact their host star at periastron passage, including the recently claimed confirmation of Kepler-91b. After carefully examining several hypotheses, we conclude that the most plausible explanation is that the transiting objects orbit a different star to that measured with asteroseismology-cases we define as false-positives. Based on the AP distribution, we estimate a false-positive rate (FPR) for Kepler's giant stars with a single transiting object of FPR similar or equal to 70% +/- 30%.
C1 [Sliski, David H.; Kipping, David M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Sliski, DH (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM dsliski@cfa.harvard.edu
NR 54
TC 25
Z9 25
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2014
VL 788
IS 2
AR 148
DI 10.1088/0004-637X/788/2/148
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AJ2DT
UT WOS:000337466200051
ER
PT J
AU Kubiczek, K
Renner, SC
Bohm, SM
Kalko, EKV
Wells, K
AF Kubiczek, Katrin
Renner, Swen C.
Boehm, Stefan M.
Kalko, Elisabeth K. V.
Wells, Konstans
TI Movement and ranging patterns of the Common Chaffinch in heterogeneous
forest landscapes
SO PEERJ
LA English
DT Article
DE Animal tracking; Bird movement capacity; Habitat use; Landscape
heterogeneity; Hierarchical habitat selection; Multilevel hierarchical
regression
ID YELLOWSTONE-NATIONAL-PARK; FRINGILLA-COELEBS; HABITAT SELECTION; ANIMAL
MOVEMENT; HOME RANGES; BEHAVIOR; BIRDS; MODELS; TERRITORIES; SCALE
AB The partitioning of production forests into discretely managed forest stands confronts animals with diversity in forest attributes at scales from point-level tree assemblages to distinct forest patches and range-level forest cover. We have investigated the movement and ranging patterns of male Common Chaffinches, Fringilla coelebs, in heterogeneous forest production landscapes during spring and summer in south-western Germany. We radio-tracked a total of 15 adult males, each for up to six days, recording locations at 10-min intervals. We then performed point-level tree surveys at all tracking locations and classified forest stand attributes for the areal covering of birds' ranges. Movement distances were shortest in beech forest stands and longer in spruce-mixed and non-spruce conifer stands. Movement distances increased with stand age in beech stands but not in others, an effect that was only detectable in a multilevel hierarchical model. We found negligible effects of point-level tree assemblages and temperature on movement distances. Daily range estimates were from 0.01 to 8.0 hectare (median of 0.86 ha) with no evident impact of forest attributes on ranging patterns but considerable intra-individual variation in range sizes over consecutive days. Most daily ranges covered more than one forest stand type. Our results show that forest management impacts the movement behaviour of chaffinches in heterogeneous production forest. Although point-level effects of movement distances are weak compared with stand-level effects in this study, the hierarchical organization of forest is an important aspect to consider when analysing fine-scale movement and might exert more differentiated effects on bird species that are more sensitive to habitat changes than the chaffinch.
C1 [Kubiczek, Katrin; Renner, Swen C.; Boehm, Stefan M.; Kalko, Elisabeth K. V.; Wells, Konstans] Univ Ulm, Inst Expt Ecol, D-89069 Ulm, Germany.
[Renner, Swen C.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Front Royal, VA USA.
[Wells, Konstans] Univ Adelaide, Sch Earth & Environm Sci, Inst Environm, Adelaide, SA, Australia.
RP Renner, SC (reprint author), Univ Ulm, Inst Expt Ecol, D-89069 Ulm, Germany.
EM swen.renner@uni-ulm.de
RI Wells, Konstans/A-7232-2010;
OI Wells, Konstans/0000-0003-0377-2463; Renner, Swen/0000-0002-6893-4219
FU DFG priority programme 'Biodiversity Exploratories' [1374, KA 1241/15-1]
FX This study benefited from the infrastructure of the DFG priority
programme 1374 'Biodiversity Exploratories' (KA 1241/15-1). The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 50
TC 1
Z9 1
U1 1
U2 15
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
SN 2167-8359
J9 PEERJ
JI PeerJ
PD JUN 19
PY 2014
VL 2
AR e368
DI 10.7717/peerj.368
PG 18
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AY5KI
UT WOS:000347610600001
PM 25024900
ER
PT J
AU Ade, PAR
Aikin, RW
Barkats, D
Benton, SJ
Bischoff, CA
Bock, JJ
Brevik, JA
Buder, I
Bullock, E
Dowell, CD
Duband, L
Filippini, JP
Fliescher, S
Golwala, SR
Halpern, M
Hasselfield, M
Hildebrandt, SR
Hilton, GC
Hristov, VV
Irwin, KD
Karkare, KS
Kaufman, JP
Keating, BG
Kernasovskiy, SA
Kovac, JM
Kuo, CL
Leitch, EM
Lueker, M
Mason, P
Netterfield, CB
Nguyen, HT
O'Brient, R
Ogburn, RW
Orlando, A
Pryke, C
Reintsema, CD
Richter, S
Schwarz, R
Sheehy, CD
Staniszewski, ZK
Sudiwala, RV
Teply, GP
Tolan, JE
Turner, AD
Vieregg, AG
Wong, CL
Yoon, KW
AF Ade, P. A. R.
Aikin, R. W.
Barkats, D.
Benton, S. J.
Bischoff, C. A.
Bock, J. J.
Brevik, J. A.
Buder, I.
Bullock, E.
Dowell, C. D.
Duband, L.
Filippini, J. P.
Fliescher, S.
Golwala, S. R.
Halpern, M.
Hasselfield, M.
Hildebrandt, S. R.
Hilton, G. C.
Hristov, V. V.
Irwin, K. D.
Karkare, K. S.
Kaufman, J. P.
Keating, B. G.
Kernasovskiy, S. A.
Kovac, J. M.
Kuo, C. L.
Leitch, E. M.
Lueker, M.
Mason, P.
Netterfield, C. B.
Nguyen, H. T.
O'Brient, R.
Ogburn, R. W.
Orlando, A.
Pryke, C.
Reintsema, C. D.
Richter, S.
Schwarz, R.
Sheehy, C. D.
Staniszewski, Z. K.
Sudiwala, R. V.
Teply, G. P.
Tolan, J. E.
Turner, A. D.
Vieregg, A. G.
Wong, C. L.
Yoon, K. W.
CA BICEP2 Collaboration
TI Detection of B-Mode Polarization at Degree Angular Scales by BICEP2
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MICROWAVE BACKGROUND POLARIZATION; PROBE WMAP OBSERVATIONS; INFLATIONARY
UNIVERSE SCENARIO; SPT-SZ SURVEY; POWER SPECTRA; SYMMETRY-BREAKING;
PHASE-TRANSITION; CMB POLARIMETRY; GRAVITY-WAVES; ANISOTROPY
AB We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around l similar to 80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of approximate to 300 mu K-CMB root s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ACDM expectation in the range 30 < l < 150, inconsistent with the null hypothesis at a significance of > 5 sigma. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power similar to(5-10)x smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3 sigma significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7 sigma. The observed B-mode power spectrum is well fit by a lensed-ACDM + tensor theoretical model with tensor-to-scalar ratio r = 0.20(-0.05)(+0.07), with r = 0 disfavored at 7.0 sigma. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets.
C1 [Ade, P. A. R.; Sudiwala, R. V.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Hristov, V. V.; Lueker, M.; Mason, P.; Staniszewski, Z. K.; Teply, G. P.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Barkats, D.] Joint ALMA Observ, Santiago, Chile.
[Benton, S. J.; Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Bischoff, C. A.; Buder, I.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Vieregg, A. G.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bock, J. J.; Dowell, C. D.; Hildebrandt, S. R.; Nguyen, H. T.; O'Brient, R.; Staniszewski, Z. K.; Turner, A. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Bullock, E.; Pryke, C.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA.
[Duband, L.] CEA, Serv Basses Temp, F-38054 Grenoble, France.
[Fliescher, S.; Pryke, C.; Schwarz, R.; Sheehy, C. D.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA.
[Halpern, M.; Hasselfield, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Hilton, G. C.; Irwin, K. D.; Reintsema, C. D.] NIST, Boulder, CO 80305 USA.
[Irwin, K. D.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Irwin, K. D.; Kuo, C. L.; Ogburn, R. W.; Yoon, K. W.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA.
[Kaufman, J. P.; Keating, B. G.; Orlando, A.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Leitch, E. M.; Orlando, A.; Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Chicago, IL 60637 USA.
[Netterfield, C. B.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada.
RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
EM jmkovac@cfa.harvard.edu; pryke@physics.umn.edu
OI Orlando, Angiola/0000-0001-8004-5054; Karkare,
Kirit/0000-0002-5215-6993; Barkats, Denis/0000-0002-8971-1954
FU U.S. National Science Foundation [ANT-0742818, ANT-1044978, ANT-0742592,
ANT-1110087]; NASA APRA [06-ARPA206-0040, 10-SAT10-0017]; SAT programs;
Gordon and Betty Moore Foundation at Caltech; Canada Foundation for
Innovation grant; W. M. Keck Foundation; FAS Science Division Research
Computing Group at Harvard University; U.S. Department of Energy Office
of Science
FX BICEP2 was supported by the U.S. National Science Foundation under
Grants No. ANT-0742818 and No. ANT-1044978 (Caltech and Harvard) and
ANT-0742592 and ANT-1110087 (Chicago and Minnesota). The development of
antenna-coupled detector technology was supported by the JPL Research
and Technology Development Fund and Grants No. 06-ARPA206-0040 and No.
10-SAT10-0017 from the NASA APRA and SAT programs. The development and
testing of focal planes were supported by the Gordon and Betty Moore
Foundation at Caltech. Readout electronics were supported by a Canada
Foundation for Innovation grant to UBC. The receiver development was
supported in part by a grant from the W. M. Keck Foundation. The
computations in this paper were run on the Odyssey cluster supported by
the FAS Science Division Research Computing Group at Harvard University.
The analysis effort at Stanford and SLAC is partially supported by the
U.S. Department of Energy Office of Science. Tireless administrative
support was provided by Irene Coyle and Kathy Deniston. We thank the
staff of the U.S. Antarctic Program and in particular the South Pole
Station without whose help this research would not have been possible.
We thank all those who have contributed past efforts to the BICEP-Keck
Array series of experiments, including the BICEP1 and Keck Array teams.
We thank all those in the astrophysics community who have contributed
feedback on the public preprint of this paper, and particularly two
anonymous referees for their detailed and constructive recommendations.
This work would not have been possible without the late Andrew Lange,
whom we sorely miss.
NR 103
TC 793
Z9 794
U1 11
U2 82
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 19
PY 2014
VL 112
IS 24
AR 241101
DI 10.1103/PhysRevLett.112.241101
PG 25
WC Physics, Multidisciplinary
SC Physics
GA AO0MN
UT WOS:000341003800002
PM 24996078
ER
PT J
AU Fortenberry, RC
Huang, XC
McCarthy, MC
Crawford, TD
Lee, TJ
AF Fortenberry, Ryan C.
Huang, Xinchuan
McCarthy, Michael C.
Crawford, T. Daniel
Lee, Timothy J.
TI Fundamental Vibrational Frequencies and Spectroscopic Constants of cis-
and trans-HOCS, HSCO, and Isotopologues via Quartic Force Fields
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID SHELL HARTREE-FOCK; CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS
SETS; ELECTRON-AFFINITIES; WAVE-FUNCTIONS; CHEMISTRY; ENERGIES;
INTERMEDIATE; GRADIENTS; HYDROGEN
AB Highly accurate, coupled-cluster-based quartic force fields (QFFs) have been employed recently to provide spectroscopic reference for a myriad of molecules. Here, we are extending the same approach to provide vibrational and rotational spectroscopic reference data for the sulfur analogues of HOCO, HSCO, and HOCS, in both the cis and trans conformations as well as the D and S-34 isotopologues of each system. The resulting energies corroborate previous computations showing that trans-HSCO is the lowest-energy isomer for this system. The vibrational frequencies are computed with both second-order vibrational perturbation theory (VPT2) and vibrational configuration interaction (VCI) methods. The VPT2 and VCI QFF frequencies largely agree with one another to better than 5.0 cm(-1) (often better than 1.0 cm(-1)) and are also consistent with the type of behavior exhibited in previous studies. As such, the reference data provided here should assist in analysis of environments in which these sulfur systems may be found, including the interstellar medium, combustion flames, or laboratory simulations of either.
C1 [Fortenberry, Ryan C.] Georgia So Univ, Dept Chem, Statesboro, GA 30460 USA.
[Huang, Xinchuan] SETI Inst, Mountain View, CA 94043 USA.
[McCarthy, Michael C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Crawford, T. Daniel] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA.
[Fortenberry, Ryan C.; Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Fortenberry, RC (reprint author), Georgia So Univ, Dept Chem, Statesboro, GA 30460 USA.
EM rfortenberry@georgiasouthern.edu; Timothy.J.Lee@nasa.gov
RI Lee, Timothy/K-2838-2012; HUANG, XINCHUAN/A-3266-2013; Crawford,
Thomas/A-9271-2017;
OI Crawford, Thomas/0000-0002-7961-7016; McCarthy,
Michael/0000-0001-9142-0008
FU RCF; NASA; Georgia Southern University; NASA [NNX13AE59G,
10-APRA10-0167]; NSF [CHE-1058420]; NASA/SETI Institute [NNX12AG96A];
NSF Multi-User Chemistry Research Instrumentation and Facility (CRIF:MU)
Award [CHE-0741927]; NASA's Laboratory Astrophysics 'Carbon in the
Galaxy' Consortium Grant [NNH10ZDA001N]
FX The authors would like to acknowledge the following sources of funding:
RCF, the NASA Postdoctoral Program administered by Oak Ridge Associated
Universities, as well as Georgia Southern University for start-up funds;
M.C.M., NASA Award NNX13AE59G; T.D.C., NSF Award CHE-1058420; XI I.,
NASA/SETI Institute Cooperative Agreement NNX12AG96A; T.J.L., NASA Grant
10-APRA10-0167; R.C.F. and T.D.C., NSF Multi-User Chemistry Research
Instrumentation and Facility (CRIF:MU) Award CHE-0741927; and R.C.F.,
X.H., and T.J.L., NASA's Laboratory Astrophysics 'Carbon in the Galaxy'
Consortium Grant (NNH10ZDA001N).
NR 52
TC 5
Z9 5
U1 3
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUN 19
PY 2014
VL 118
IS 24
SI SI
BP 6498
EP 6510
DI 10.1021/jp412362h
PG 13
WC Chemistry, Physical
SC Chemistry
GA AJ6FC
UT WOS:000337784100017
PM 24635494
ER
PT J
AU Fang, W
Tu, H
Li, Y
Huang, JS
Shu, CG
AF Fang, Wei
Tu, Hong
Li, Ying
Huang, Jiasheng
Shu, Chenggang
TI Full investigation on the dynamics of power-law kinetic quintessence
SO PHYSICAL REVIEW D
LA English
DT Article
ID ACCELERATING UNIVERSE; COSMOLOGICAL CONSTANT; SUPERNOVAE
AB We give a full investigation on the dynamics of power-law kinetic quintessence LdX;._Vd._d- X _ X2 by considering the potential related parameter Gd VV00 V02 _ as a function of another potential parameter.d V0.V3= 2, which correspondingly extends the analysis of the dynamical system of our Universe from two dimensional to three dimensional. In addition to the critical points found in previous papers, we find a new de Sitter- like dominant attractor ( cp6) and give its stable condition using the center manifold theorem. For the dark energy dominant solution ( cp6 and cp7), it could be distinguished from canonical quintessence and tachyon models since the sound speed c2s 0 or c2s 1. For the scaling solution ( cp8), it is very interesting that the sound speed c2s 1= 5, while it behaves as ordinary matter. We therefore point out that the power- law kinetic quintessence should have different signatures on the cold dark matter power spectrum and the cosmic microwave background both at early time, when this scalar field is an early dark energy with O. being non- negligible at high redshift, and at late time, when it drives the accelerating expansion. We still do not know whether there are any degeneracies of the impacts between these two epoches. They are expected to be investigated in future.
C1 [Fang, Wei; Tu, Hong] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China.
[Fang, Wei; Tu, Hong; Shu, Chenggang] Shanghai Key Lab Astrophys, Shanghai 200234, Peoples R China.
[Fang, Wei; Huang, Jiasheng] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Li, Ying] Shanghai Ocean Univ, Coll Informat Technol, Shanghai 201306, Peoples R China.
RP Fang, W (reprint author), Shanghai Normal Univ, Dept Phys, 100 Guilin Rd, Shanghai 200234, Peoples R China.
EM wfang@shnu.edu.cn
NR 48
TC 1
Z9 1
U1 2
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD JUN 18
PY 2014
VL 89
IS 12
AR 123514
DI 10.1103/PhysRevD.89.123514
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AK6IS
UT WOS:000338531900003
ER
PT J
AU Cook-Patton, SC
Maynard, L
Lemoine, NP
Shue, J
Parker, JD
AF Cook-Patton, Susan C.
Maynard, Lauren
Lemoine, Nathan P.
Shue, Jessica
Parker, John D.
TI Cascading effects of a highly specialized beech-aphid-fungus interaction
on forest regeneration
SO PEERJ
LA English
DT Article
DE Seedling survival; Grylloprociphilus imbricator; Scorias spongiosa;
Forest regeneration; Fagus grandifolia; Specialist herbivore; Indirect
interactions
ID TROPICAL FORESTS; COEXISTENCE; INVASIONS; HERBIVORY; ECOLOGY; HISTORY
AB Specialist herbivores are thought to often enhance or maintain plant diversity within ecosystems, because they prevent their host species from becoming competitively dominant. In contrast, specialist herbivores are not generally expected to have negative impacts on non-hosts. However, we describe a cascade of indirect interactions whereby a specialist sooty mold (Scorias spongiosa) colonizes the honeydew from a specialist beech aphid (Grylloprociphilus imbricator), ultimately decreasing the survival of seedlings beneath American beech trees (Fagus grandifolia). A common garden experiment indicated that this mortality resulted from moldy honeydew impairing leaf function rather than from chemical or microbial changes to the soil. In addition, aphids consistently and repeatedly colonized the same large beech trees, suggesting that seedling-depauperate islands may form beneath these trees. Thus this highly specialized three-way beech-aphid-fungus interaction has the potential to negatively impact local forest regeneration via a cascade of indirect effects.
C1 [Cook-Patton, Susan C.; Maynard, Lauren; Shue, Jessica; Parker, John D.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
[Lemoine, Nathan P.] Florida Int Univ, Miami, FL 33199 USA.
RP Cook-Patton, SC (reprint author), Smithsonian Environm Res Ctr, POB 28, Edgewater, MD 21037 USA.
EM cook-pattons@si.edu
RI Parker, John/F-9761-2010
OI Parker, John/0000-0002-3632-7625
FU Washington Biologists Field Club; NSF-REU [DBI 156799]
FX A grant from the Washington Biologists Field Club to SCC and JDP, and an
NSF-REU grant to JDP (DBI 156799) supported this research. The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 27
TC 0
Z9 0
U1 2
U2 6
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
SN 2167-8359
J9 PEERJ
JI PeerJ
PD JUN 17
PY 2014
VL 2
AR e442
DI 10.7717/peerj.442
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AY5KG
UT WOS:000347610300008
PM 25024911
ER
PT J
AU Meyer, JL
Paul, VJ
Teplitski, M
AF Meyer, Julie L.
Paul, Valerie J.
Teplitski, Max
TI Community Shifts in the Surface Microbiomes of the Coral Porites
astreoides with Unusual Lesions
SO PLOS ONE
LA English
DT Article
ID WHITE PLAGUE DISEASE; REEF-BUILDING CORAL; BACTERIAL COMMUNITIES;
MONTASTRAEA-FAVEOLATA; CLIMATE-CHANGE; SP NOV.; INFECTIOUS-DISEASES;
PHAGE THERAPY; RED-SEA; ENDOZOICOMONAS
AB Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.
C1 [Meyer, Julie L.; Teplitski, Max] Univ Florida, Inst Food & Agr Sci, Dept Soil & Water Sci, Gainesville, FL 32611 USA.
[Paul, Valerie J.; Teplitski, Max] Smithsonian Marine Stn, Ft Pierce, FL USA.
RP Teplitski, M (reprint author), Univ Florida, Inst Food & Agr Sci, Dept Soil & Water Sci, Gainesville, FL 32611 USA.
EM maxtep@ufl.edu
RI Meyer, Julie/D-1021-2010
OI Meyer, Julie/0000-0003-3382-3321
FU George E. Burch Fellowship in Theoretical Medicine and Affiliated
Sciences at the Smithsonian Institution; National Geographic Society
Committee for Research Exploration grant [9184-12]
FX Support for this research was provided by the George E. Burch Fellowship
in Theoretical Medicine and Affiliated Sciences at the Smithsonian
Institution; M.T. was a 2012 recipient of this fellowship. Funding for
sample collection was provided by the National Geographic Society
Committee for Research Exploration grant # 9184-12. The funders had no
role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.
NR 76
TC 19
Z9 19
U1 1
U2 34
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 17
PY 2014
VL 9
IS 6
AR e100316
DI 10.1371/journal.pone.0100316
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK5YM
UT WOS:000338503400104
PM 24937478
ER
PT J
AU Heinze, CR
Freeman, LM
Martin, CR
Power, ML
Fascetti, AJ
AF Heinze, Cailin R.
Freeman, Lisa M.
Martin, Camilia R.
Power, Michael L.
Fascetti, Andrea J.
TI Comparison of the nutrient composition of commercial dog milk replacers
with that of dog milk
SO JAVMA-JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION
LA English
DT Article
ID POLYUNSATURATED FATTY-ACIDS; ALPHA-LINOLENIC ACID; DOCOSAHEXAENOIC ACID;
NEURAL DEVELOPMENT; RETINAL FUNCTIONS; LACTATION; PUPPIES; GESTATION;
KITTENS; INFANTS
AB Objective-To compare the nutrient composition of commercially available dog milk replacers with that of dog milk.
Design-Prospective, cross-sectional study.
Sample-5 dog milk samples and 15 samples of commercial dog milk replacers.
Procedures-Dog milk and milk replacers were analyzed for concentrations of total protein, essential amino acids, sugars, total fat, essential fatty acids, calcium, and phosphorus. Energy density was calculated. Results from milk replacers were compared with the range of the concentration of each nutrient in milk samples from mature dogs as well as the National Research Council (NRC) recommendations for puppy growth.
Results-Milk replacers varied widely in caloric density and concentration of nutrients such as calcium, protein, and fat. Calcium concentration was lower in 14 of 15 milk replacers than in the dog milk samples. Docosahexaenoic acid was undetectable in 12 of 15 milk replacers but present in all dog milk samples. All milk replacers had numerous essential nutrients outside of the range of the dog milk samples, and many had concentrations of amino acids, essential fatty acids, calcium, and phosphorus less than the NRC minimal requirement or recommended allowance. Compared with NRC recommendations, some dog milk samples had concentrations of total protein, linoleic acid, calcium, or phosphorus less than the recommended allowance.
Conclusions and Clinical Relevance-Results suggested that there was substantial variation in nutrient composition of 15 dog milk replacers and that some products were closer approximations of dog milk than others. Nearly all products would benefit from more appropriate calcium, amino acids, and essential fatty acids concentrations and better feeding directions.
C1 [Heinze, Cailin R.; Freeman, Lisa M.] Tufts Univ, Cummings Sch Vet Med, Dept Clin Sci, North Grafton, MA 01536 USA.
[Martin, Camilia R.] Beth Israel Deaconess Med Ctr, Dept Neonatol, Boston, MA 02215 USA.
[Power, Michael L.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Conservat Ecol Ctr, Washington, DC USA.
[Fascetti, Andrea J.] Univ Calif Davis, Sch Vet Med, Dept Mol Biosci, Davis, CA 95616 USA.
RP Heinze, CR (reprint author), Tufts Univ, Cummings Sch Vet Med, Dept Clin Sci, North Grafton, MA 01536 USA.
EM cailin.heinze@tufts.edu
FU Nestle Purina PetCare
FX Supported by a grant from Nestle Purina PetCare.
NR 38
TC 1
Z9 1
U1 2
U2 16
PU AMER VETERINARY MEDICAL ASSOC
PI SCHAUMBURG
PA 1931 N MEACHAM RD SUITE 100, SCHAUMBURG, IL 60173-4360 USA
SN 0003-1488
EI 1943-569X
J9 JAVMA-J AM VET MED A
JI JAVMA-J. Am. Vet. Med. Assoc.
PD JUN 15
PY 2014
VL 244
IS 12
BP 1413
EP 1422
PG 10
WC Veterinary Sciences
SC Veterinary Sciences
GA CA6CK
UT WOS:000348995800023
PM 24871064
ER
PT J
AU Verhoeven, JTA
Laanbroek, HJ
Rains, MC
Whigham, DF
AF Verhoeven, Jos T. A.
Laanbroek, Hendrikus J.
Rains, Mark C.
Whigham, Dennis F.
TI Effects of increased summer flooding on nitrogen dynamics in impounded
mangroves
SO JOURNAL OF ENVIRONMENTAL MANAGEMENT
LA English
DT Article
DE Mangrove; Nitrogen cycling; Hydroperiod; Water management; Mosquito
control; Avicennia
ID INDIAN RIVER LAGOON; AVICENNIA-GERMINANS; SALT-MARSH; FLORIDA; FOREST;
ECOSYSTEMS; DENITRIFICATION; LIMITATION; SEDIMENTS; SALINITY
AB Mangroves are important for coastal protection, carbon sequestration and habitat provision for plants and animals in the tropics and subtropics. Mangroves are threatened by habitat destruction and sea level rise, but management activities such as impounding for mosquito control can also have negative effects. We studied the effects of Rotational Impoundment Management (RIM) on nitrogen dynamics in impoundments dominated by three types of Black mangrove (Avicennia germinans) stands along the Indian River Lagoon (Florida). RIM, designed for noxious insect control, involves pumping estuarine water into impoundments in this area during spring and summer to raise water levels by 30 cm. We compared aspects of the nitrogen cycle before and after the start of the RIM and measured the same variables in an impoundment without RIM management.
RIM led to the accumulation of ammonium in the substrate which coincided with a lowering of nitrification rates and decreased denitrification rates. Salt pan habitats dominated by dwarf mangroves became less saline following RIM initiation. Shoot growth of mangroves increased in response to higher nitrogen availability and lower pore water salinity. Mangrove responses were greatest in areas with dwarf and sparse mangrove cover. Overall, RIM resulted in lower nitrification and denitrification leading to lower nitrogen losses and increased Black mangrove growth, all benefits of RIM beyond those associated with noxious insect control. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Verhoeven, Jos T. A.; Laanbroek, Hendrikus J.] Univ Utrecht, Inst Environm Biol, NL-3584 CH Utrecht, Netherlands.
[Verhoeven, Jos T. A.; Laanbroek, Hendrikus J.; Whigham, Dennis F.] Smithsonian Environm Res Ctr, Edgewater, MA 21037 USA.
[Laanbroek, Hendrikus J.] Netherlands Inst Ecol NIOO KNAW, Dept Microbial Ecol, NL-6700 AB Wageningen, Netherlands.
[Rains, Mark C.] Univ S Florida, Sch Geosci, Tampa, FL 33620 USA.
RP Verhoeven, JTA (reprint author), Univ Utrecht, Inst Environm Biol, Padualaan 8, NL-3584 CH Utrecht, Netherlands.
EM j.t.a.verhoeven@uu.nl; r.laanbroek@nioo.knaw.nl; mrains@usf.edu;
whighamd@si.edu
RI Library, Library/A-4320-2012; Laanbroek, Hendrikus J./C-3830-2008;
OI Library, Library/0000-0002-3835-159X; Laanbroek, Hendrikus
J./0000-0003-2400-3399; Whigham, Dennis/0000-0003-1488-820X
FU Smithsonian Marine Science Network (Smithsonian Marine Station at Fort
Pierce, Florida) [945]; Smithsonian Environmental Research Center,
Utrecht University; Netherlands Institute of Ecology and the University
of South Florida
FX The research was supported by grants from the Smithsonian Marine Science
Network (Smithsonian Marine Station at Fort Pierce, Florida,
Contribution No. 945.) and by resources of the Smithsonian Environmental
Research Center, Utrecht University, The Netherlands, the Netherlands
Institute of Ecology and the University of South Florida. We thank
Gerrit Rouwenhorst, Paul van der Ven, Christina Stinger and Jay O'Neill
for assistance with the field work and analytical processing of samples.
Special thanks to Dr. Valerie Paul, Woody Lee and other staff at the
Smithsonian Marine Station at Fort Pierce for their great help and
support. This is publication number 5592 of the Netherlands Institute of
Ecology (NIOO-KNAW) and publication number yyyy of the Smithsonian
Marine Station at Fort Pierce.
NR 41
TC 3
Z9 3
U1 2
U2 37
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0301-4797
EI 1095-8630
J9 J ENVIRON MANAGE
JI J. Environ. Manage.
PD JUN 15
PY 2014
VL 139
BP 217
EP 226
DI 10.1016/j.jenvman.2014.02.035
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA AJ7HG
UT WOS:000337867200023
PM 24751377
ER
PT J
AU Hong, T
AF Hong, Terry
TI Colorless Tsukuru Tazaki and His Years of Pilgrimage
SO LIBRARY JOURNAL
LA English
DT Book Review
C1 [Hong, Terry] Smithsonian BookDragon, Washington, DC 20013 USA.
RP Hong, T (reprint author), Smithsonian BookDragon, Washington, DC 20013 USA.
NR 1
TC 0
Z9 0
U1 0
U2 1
PU REED BUSINESS INFORMATION
PI NEW YORK
PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA
SN 0363-0277
J9 LIBR J
JI Libr. J.
PD JUN 15
PY 2014
VL 139
IS 11
BP 87
EP 87
PG 1
WC Information Science & Library Science
SC Information Science & Library Science
GA AI7MD
UT WOS:000337074000110
ER
PT J
AU Riley, SM
AF Riley, Sheila M.
TI Dirty Work
SO LIBRARY JOURNAL
LA English
DT Book Review
C1 [Riley, Sheila M.] Smithsonian Inst Libs, Washington, DC 20560 USA.
RP Riley, SM (reprint author), Smithsonian Inst Libs, Washington, DC 20560 USA.
NR 1
TC 0
Z9 0
U1 0
U2 2
PU REED BUSINESS INFORMATION
PI NEW YORK
PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA
SN 0363-0277
J9 LIBR J
JI Libr. J.
PD JUN 15
PY 2014
VL 139
IS 11
BP 89
EP 89
PG 1
WC Information Science & Library Science
SC Information Science & Library Science
GA AI7MD
UT WOS:000337074000119
ER
PT J
AU Buzas-Stephens, P
Livsey, DN
Simms, AR
Buzas, MA
AF Buzas-Stephens, Pamela
Livsey, Daniel N.
Simms, Alexander R.
Buzas, Martin A.
TI Estuarine foraminifera record Holocene stratigraphic changes and
Holocene climate changes in ENSO and the North American monsoon: Baffin
Bay, Texas
SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY
LA English
DT Article
DE Holocene climate change; Foraminifera; El Nino-Southern Oscillation;
North American monsoon; Baffin Bay,Texas
ID SEA-LEVEL; EL-NINO; LATE QUATERNARY; VARIABILITY; LAKE; OSCILLATION;
AGE; USA; UK
AB During the last Quaternary sea level fall (120- ka), Baffin Bay was formed by the down-cutting of the Los Olmos, San Fernando, and Petronila Creeks of south Texas. When sea level rose, this incised valley was then filled with mixed siliciclastic/carbonate sediments that record coastal environmental change over the past 10 Icy. Previous sedimentological and seismic analysis shows that Baffin Bay contains atypical depositional environments as a result of its semi-arid climate setting and isolation from the Gulf of Mexico. Three prominent stratigraphic surfaces can be recognized within the bay deposits, and are chronostratigraphically constrained using radiocarbon dates. The purpose of the present study is to use foraminifera to create a separate account of change and to determine if foraminiferal data corroborate sedimentological evidence for sea level and climate fluctuations. Foraminifera were sampled at 20 cm intervals from a 14.4 m dated core and from surface and subsurface sediments of five cores along a dip transect. Multiple discriminate analysis was used to compare sections of the core by species proportions, and clearly delineates three different foraminiferal communities: deltaic, open-bay, and hypersaline. Breaks between these communities coincide with two of the surfaces observed in the core, one at about 8.0 Icy and the other around 5.5 ky. Rapid sea level rise at the 8.0 ky flooding surface corresponds with a shift from a deltaic to an open-bay foraminiferal assemblage, while faunal change across the 5.5 ky surface is due to the formation of a large barrier island (Padre Island) and the onset of more arid climate conditions. Prior to the isolation of Baffin Bay at 55 Icy, foraminiferal assemblages do not correspond to climate change records, perhaps because open circulation with the Gulf of Mexico tempered regional climate effects on bay salinity. After 5.5 ky, changes in foraminiferal assemblages correspond to independently derived records of the El Niflo-Southern Oscillation and North American monsoon. Foraminiferal analysis supports sedimentological interpretations in that assemblages and sediments track climate change. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Buzas-Stephens, Pamela] Midwestern State Univ, Dept Geosci, Wichita Falls, TX 76308 USA.
[Livsey, Daniel N.; Simms, Alexander R.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA.
[Buzas, Martin A.] Smithsonian Inst, Dept Paleobiol, Washington, DC 20560 USA.
RP Buzas-Stephens, P (reprint author), Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA.
EM pamela.stephens@colorado.edu; dnl@umail.ucsb.edu; asimms@geol.ucsb.edu;
BUZASM@si.edu
FU Petroleum Research Fund of the American Chemical Society [44868-GB8];
NSF [EAR-0921963]; NSF Graduate Research Fellowship [DGE-1144085]
FX This work was made possible by a supplemental summer grant from the
Petroleum Research Fund of the American Chemical Society (grant number
44868-GB8), and was also partially supported by an NSF grant EAR-0921963
and an NSF Graduate Research Fellowship grant DGE-1144085. The authors
also wish to thank the editor and reviewers for their constructive
comments which have served to strengthen this paper.
NR 60
TC 4
Z9 4
U1 1
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0031-0182
EI 1872-616X
J9 PALAEOGEOGR PALAEOCL
JI Paleogeogr. Paleoclimatol. Paleoecol.
PD JUN 15
PY 2014
VL 404
BP 44
EP 56
DI 10.1016/j.palaeo.2014.03.031
PG 13
WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology
SC Physical Geography; Geology; Paleontology
GA AH7ZP
UT WOS:000336354200005
ER
PT J
AU McLaughlin, BM
Bizau, JM
Cubaynes, D
Al Shorman, MM
Guilbaud, S
Sakho, I
Blancard, C
Gharaibeh, MF
AF McLaughlin, B. M.
Bizau, J. M.
Cubaynes, D.
Al Shorman, M. M.
Guilbaud, S.
Sakho, I.
Blancard, C.
Gharaibeh, M. F.
TI K-shell photoionization of B-like oxygen (O3+) ions: experiment and
theory
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
DE photoionization; K-shell; oxygen ions; experiment; theory
ID BORON ISOELECTRONIC SEQUENCE; X-RAY-ABSORPTION; R-MATRIX THEORY;
AUTOIONIZATION RATES; ATOMIC OXYGEN; CROSS-SECTIONS;
CONFIGURATION-INTERACTION; OSCILLATOR-STRENGTHS; 1S2P(4) STATES;
AUGER-SPECTRA
AB Absolute cross sections for the K-shell photoionization of boron-like (B-like) O3+ ions were measured by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/Delta E approximate to 5000 (approximate to 110 meV, full width half maximum) was achieved with photon energy from 540 up to 600 eV. Several theoretical approaches, including R-matrix, multi-configuration Dirac-Fock and screening constant by unit nuclear charge were used to identify and characterize the strong 1s -> 2p and the weaker 1s -> 3p resonances observed in the K-shell spectra of this ion. The trend of the integrated oscillator strength and autoionization width (natural line width) of the strong 1s -> 2p resonances along the first few ions of the B-like sequence is discussed.
C1 [McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, Ctr Theoret Atom Mol & Opt Phys, Belfast BT7 1NN, Antrim, North Ireland.
[McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA.
[Bizau, J. M.; Cubaynes, D.; Al Shorman, M. M.; Guilbaud, S.] Univ Paris 11, CNRS UMR 8214, Inst Sci Mol Orsay, F-91405 Orsay, France.
[Bizau, J. M.; Cubaynes, D.] Synchrotron SOLEIL LOrme Merisiers, F-91192 Gif Sur Yvette, France.
[Sakho, I.] Univ Assane Seck Ziguinchor, UFR Sci & Technol, Dept Phys, Ziguinchor, Senegal.
[Blancard, C.] CEA DAM DIF, F-91297 Arpajon, France.
[Gharaibeh, M. F.] Jordan Univ Sci & Technol, Dept Phys, Irbid 22110, Jordan.
RP McLaughlin, BM (reprint author), Queens Univ Belfast, Sch Math & Phys, Ctr Theoret Atom Mol & Opt Phys, David Bates Bldg,7 Coll Pk, Belfast BT7 1NN, Antrim, North Ireland.
EM b.mclaughlin@qub.ac.uk; jean-marc.bizau@u-psud.fr
FU Scientific Research Support Fund, Jordan [Bas/2/02/2010]; US National
Science Foundation; Queen's University Belfast; National Science
Foundation [OCI-1053575]; Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory - Office of Science of the US Department
of Energy [DE-AC05-00OR22725]
FX The experimental measurements were performed on the PLEIADES beam line,
at the SOLEIL Synchrotron radiation facility in Saint-Aubin, France. The
authors would like to thank the SOLEIL staff and, in particular C Miron
the local contact of the PLEIADES beam line during the experiment for
their helpful assistance. MFG acknowledges funding from the Scientific
Research Support Fund, Jordan, for supporting a research visit to
SOLEIL, under contract number Bas/2/02/2010. BMM acknowledges support
from the US National Science Foundation through a grant to ITAMP at the
Harvard-Smithsonian Center for Astrophysics, the RTRA network Triangle
de la Physique and a visiting research fellowship from Queen's
University Belfast. We thank John C Raymond and Randall K Smith at the
Harvard-Smithsonian Center for Astrophysics for discussions on the
astrophysical applications. The computational work was carried out at
the National Energy Research Scientific Computing Center in Oakland, CA,
USA, the Kraken XT5 facility at the National Institute for Computational
Science (NICS) in Knoxville, TN, USA and at the High Performance
Computing Center Stuttgart (HLRS) of the University of Stuttgart,
Stuttgart, Germany. Stefan Andersson from Cray Research is acknowledged
for his advice and assistance with the implementation of the parallel
R-matrix codes on the Cray-XE6 at HLRS. The Kraken XT5 facility is a
resource of the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant number
OCI-1053575. This research also used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the US Department of
Energy under Contract No. DE-AC05-00OR22725.
NR 73
TC 8
Z9 8
U1 0
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
EI 1361-6455
J9 J PHYS B-AT MOL OPT
JI J. Phys. B-At. Mol. Opt. Phys.
PD JUN 14
PY 2014
VL 47
IS 11
AR 115201
DI 10.1088/0953-4075/47/11/115201
PG 13
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA AI1NZ
UT WOS:000336619100008
ER
PT J
AU Tiansawat, P
Davis, AS
Berhow, MA
Zalamea, PC
Dalling, JW
AF Tiansawat, Pimonrat
Davis, Adam S.
Berhow, Mark A.
Zalamea, Paul-Camilo
Dalling, James W.
TI Investment in Seed Physical Defence Is Associated with Species' Light
Requirement for Regeneration and Seed Persistence: Evidence from
Macaranga Species in Borneo
SO PLOS ONE
LA English
DT Article
ID TROPICAL RAIN-FOREST; CHEMICAL DEFENSE; MECHANICAL DEFENSE; SOIL;
DISPERSAL; PREDATION; PLANTS; TREE; RESISTANCE; HERBIVORY
AB The seed stage is often critical in determining the regeneration success of plants. Seeds must survive an array of seed predators and pathogens and germinate under conditions favourable for seedling establishment. To maximise recruitment success plants protect seeds using a diverse set of chemical and physical defences. However, the relationship between these defence classes, and their association with other life history traits, is not well understood. Data on seed coat thickness and fracture resistance, and the abundance and diversity of potential defensive compounds were collected for 10 tree species of Macaranga from Borneo. The data were used to test whether there is a trade-off in physical versus chemical defence investment, and to determine how investment varies with seed mass, and light requirement for regeneration. Across species there was no correlation between seed coat thickness and abundance of potential defensive compounds, indicating the absence of a direct trade-off between defence classes. While chemical defences were not correlated to other traits, physical defences were positively correlated with light requirement for regeneration. For a subset of five Macaranga species we evaluated the relative investment in chemical and physical defence to seed persistence in the soil, measured as the time to half initial seed viability (seed half-life). Half-life was negatively related to the ratio of potential defensive compound abundance to seed coat thickness, suggesting that species with long persistence invested in physical defence more than stored chemical defences. These results indicate that investment in seed defences are associated with species' light requirements for regeneration, rather than scaling positively with seed mass. Furthermore, chemical defences, although highly variable among species, do not appear to be critical to long term persistence of Macaranga seeds, and may be important in defending seeds from natural enemies distinct from those found in the soil.
C1 [Tiansawat, Pimonrat; Dalling, James W.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA.
[Davis, Adam S.] ARS, Global Change & Photosynthesis Res Unit, United Dept Agr, Urbana, IL USA.
[Berhow, Mark A.] ARS, Natl Ctr Agr Utilizat Res, United Dept Agr, Peoria, IL USA.
[Zalamea, Paul-Camilo; Dalling, James W.] Smithsonian Trop Res Inst, Ancon, Panama.
RP Tiansawat, P (reprint author), Chiang Mai Univ, Dept Biol, Chiang Mai 50000, Thailand.
EM tiansawat@yahoo.co.th
OI Tiansawat, Pimonrat/0000-0003-1354-1247
FU Center of Tropical Forest Science; Royal Thai Government; National
Science Foundation [1120205]
FX The funding for this work was provided by the Center of Tropical Forest
Science (2010 Research Grant) to PT, the Royal Thai Government to PT and
The National Science Foundation Grant 1120205 to JWD and ASD. The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
NR 64
TC 4
Z9 4
U1 2
U2 22
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 13
PY 2014
VL 9
IS 6
AR e99691
DI 10.1371/journal.pone.0099691
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK2VQ
UT WOS:000338278100067
PM 24927025
ER
PT J
AU Sterrenburg, FAS
De Haan, M
Herwig, WE
Hargraves, PE
AF Sterrenburg, Frithjof A. S.
De Haan, Myriam
Herwig, Wulf E.
Hargraves, Paul E.
TI Typification and taxonomy of Gyrosigma tenuissimum (W. Sm.) JW Griffith
& Henfr., comparison with Gyrosigma coelophilum N. Okamoto & Nagumo and
description of two new taxa: Gyrosigma tenuissimum var. gundulae var.
nov and Gyrosigma baculum sp nov (Pleurosigmataceae, Bacillariophyta)
SO PHYTOTAXA
LA English
DT Article
DE Gyrosigma tenuissimum; Gyrosigma coelophilum; Gyrosigma tenuissimum var.
gundulae; Gyrosigma baculum; typification
ID GENERA GYROSIGMA
AB Gyrosigma tenuissimum (W.Sm.) J.W. Griffith & Henfr. was examined in the original material and an emended description is presented. Its protologue contains an error of taxonomic significance: in the type material, the valve and raphe sternum do not show the considerable flexure described and illustrated in Smith (1853). A comparison with Gyrosigma coelophilum N. Okamoto & Nagumo revealed that the latter, although similar in several characters, differs sufficiently in others to warrant separate specific status. Descriptions of two new taxa are given: Gyrosigma tenuissimum var. gundulae var. nov. and Gyrosigma baculum sp. nov. Both show very fine longitudinal striae at or beyond the limit of ordinary light microscopy and are practically non-sigmoid.
C1 [De Haan, Myriam] Bot Garden, Dept Bryophytes Thallophytes, BE-1860 Meise, Belgium.
[Hargraves, Paul E.] Florida Atlantic Univ, Harbor Branch Oceanog Inst, Ft Pierce, FL USA.
[Hargraves, Paul E.] Smithsonian Inst Marine Stn, Ft Pierce, FL USA.
RP Sterrenburg, FAS (reprint author), Stn Weg 158, Heiloo, Netherlands.
EM fass@wxs.nl; myriam.dehaan@br.fgov.be; WEHerwig@arcor.de;
Dr.Pharg@gmail.com
FU Florida Fish and Wildlife Conservation Commission via the Fish and
Wildlife Research Institute (FWC ) [06135]; State of Florida's Save Our
Seas specialty license plate program
FX David Williams, NHM London and reviewers are thanked for helpful
suggestions. Manfred Ruppel, Goethe Universitat, Frankfurt am Main,
Germany, kindly made SEM photomicrographs of G. tenuissimum in our own
samples. Wulf Herwig thanks Rosa Trobajo for the sample from Alfacs Bay.
Personal discussion with Noriko Okamoto led to a consensus regarding the
taxonomic status of Gyrosigma coelophilum vs. Gyrosigma tenuissimum.
Paul Hargraves acknowledges the following assistance: The Florida field
work was done by Kristen S. Davis and Patrick Monaghan. Julie Piraino
provided excellent assistance with SEM photomicrographs of G.
tenuissimum var. gundulae. Financial support was provided by Florida
Fish and Wildlife Conservation Commission via the Fish and Wildlife
Research Institute (FWC Agreement No., 06135), and the State of
Florida's Save Our Seas specialty license plate program. This paper is
contribution 1922 of Harbor Branch Oceanographic Institute at Florida
Atlantic University, and contribution 952 of the Smithsonian Marine
Station, Fort Pierce.
NR 22
TC 2
Z9 2
U1 2
U2 3
PU MAGNOLIA PRESS
PI AUCKLAND
PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND
SN 1179-3155
EI 1179-3163
J9 PHYTOTAXA
JI Phytotaxa
PD JUN 13
PY 2014
VL 172
IS 2
BP 71
EP 80
PG 10
WC Plant Sciences
SC Plant Sciences
GA AJ2OR
UT WOS:000337497800002
ER
PT J
AU Gonzalez, DAC
Ibanez, A
AF Gonzalez, Daniel Adolfo Caceres
Ibanez, Alicia
TI Pitcairnia albifolia (Bromeliaceae), a new species from the Talamanca
Mountains in Veraguas Province, Panama
SO PHYTOTAXA
LA English
DT Article
C1 [Gonzalez, Daniel Adolfo Caceres] Univ Autonoma Chiriqui, UCH Herbarium, Chiriqui, Panama.
[Gonzalez, Daniel Adolfo Caceres] Herbarium Senckenbergianum, Frankfurt, Germany.
[Ibanez, Alicia] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
RP Gonzalez, DAC (reprint author), Univ Autonoma Chiriqui, UCH Herbarium, Chiriqui, Panama.
EM consultoria.caceres@gmail.com; ibaneza@si.edu
FU US National Institutes of Health through the International Cooperative
Biodiversity Groups (ICBG) program
FX The authors wish to thank the curators of the herbaria B, CR, FR, INB,
MO, NY, PMA, SCZ, SEL, UCH, USJ, and WU for allowing access to their
collections; the Autoridad Nacional del Ambiente (ANAM) for facilitating
this research through issuing the collecting permit (SE/P-19-09); the
Smithsonian Tropical Research Institute (STRI) for supporting all
logistical aspects of this work; and the US National Institutes of
Health for funding the fieldwork through the International Cooperative
Biodiversity Groups (ICBG) program.
NR 12
TC 0
Z9 0
U1 0
U2 1
PU MAGNOLIA PRESS
PI AUCKLAND
PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND
SN 1179-3155
EI 1179-3163
J9 PHYTOTAXA
JI Phytotaxa
PD JUN 11
PY 2014
VL 172
IS 1
BP 46
EP 50
PG 5
WC Plant Sciences
SC Plant Sciences
GA AJ2OQ
UT WOS:000337497600006
ER
PT J
AU Connolly, SR
MacNeil, MA
Caley, J
Knowlton, N
Cripps, E
Hisano, M
Thibaut, LM
Bhattacharya, BD
Benedetti-Cecchi, L
Brainard, RE
Brandt, A
Bulleri, F
Ellingsen, KE
Kaiser, S
Kroncke, I
Linse, K
Maggi, E
O'Hara, TD
Plaisance, L
Poore, GCB
Sarkar, SK
Satpathy, KK
Schuckel, U
Williams, A
Wilson, RS
AF Connolly, Sean R.
MacNeil, M. Aaron
Caley, Julian
Knowlton, Nancy
Cripps, Ed
Hisano, Mizue
Thibaut, Loic M.
Bhattacharya, Bhaskar D.
Benedetti-Cecchi, Lisandro
Brainard, Russell E.
Brandt, Angelika
Bulleri, Fabio
Ellingsen, Kari E.
Kaiser, Stefanie
Kroencke, Ingrid
Linse, Katrin
Maggi, Elena
O'Hara, Timothy D.
Plaisance, Laetitia
Poore, Gary C. B.
Sarkar, Santosh K.
Satpathy, Kamala K.
Schueckel, Ulrike
Williams, Alan
Wilson, Robin S.
TI Commonness and rarity in the marine biosphere
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE metacommunities; marine macroecology; species coexistence;
Poisson-lognormal distribution
ID SPECIES-ABUNDANCE DISTRIBUTIONS; NEUTRAL THEORY; COMMUNITY STRUCTURE;
GLOBAL CORRELATIONS; REJECT NEUTRALITY; MULTIPLE SCALES; CORAL-REEFS;
DIVERSITY; MODELS; BIODIVERSITY
AB Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of "neutral" biodiversity models-which assume ecological equivalence of species-to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities' most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.
C1 [Connolly, Sean R.; Hisano, Mizue; Thibaut, Loic M.] James Cook Univ, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia.
[Connolly, Sean R.; Hisano, Mizue; Thibaut, Loic M.] James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia.
[MacNeil, M. Aaron; Caley, Julian] Australian Inst Marine Sci, Townsville, Qld 4810, Australia.
[Knowlton, Nancy; Plaisance, Laetitia] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20013 USA.
[Cripps, Ed] Univ Western Australia, Sch Math & Stat, Perth, WA 6009, Australia.
[Bhattacharya, Bhaskar D.; Sarkar, Santosh K.] Univ Calcutta, Dept Marine Sci, Kolkata 700019, W Bengal, India.
[Benedetti-Cecchi, Lisandro; Bulleri, Fabio; Maggi, Elena] Univ Pisa, Dipartimento Biol, I-56126 Pisa, Italy.
[Brainard, Russell E.] NOAA, Coral Reef Ecosyst Div, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96818 USA.
[Brandt, Angelika] Univ Hamburg, Bioctr Grindel, D-20146 Hamburg, Germany.
[Brandt, Angelika] Univ Hamburg, Zool Museum, D-20146 Hamburg, Germany.
[Ellingsen, Kari E.] Norwegian Inst Nat Res, FRAM High North Res Ctr Climate & Environm, N-9296 Tromso, Norway.
[Kaiser, Stefanie] German Ctr Marine Biodivers Res, D-26382 Wilhelmshaven, Germany.
[Kroencke, Ingrid; Schueckel, Ulrike] Marine Res Dept, D-26382 Wilhelmshaven, Germany.
[Linse, Katrin] British Antarctic Survey, Cambridge CB3 0ET, England.
[O'Hara, Timothy D.; Poore, Gary C. B.; Wilson, Robin S.] Museum Victoria, Melbourne, Vic 3001, Australia.
[Satpathy, Kamala K.] Indira Gandhi Ctr Atom Res, Environm & Safety Div, Kalpakkam 603102, Tamil Nadu, India.
[Williams, Alan] Commonwealth Sci & Ind Res Org, Marine & Atmospher Res, Marine Labs, Hobart, Tas 7001, Australia.
RP Connolly, SR (reprint author), James Cook Univ, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia.
EM Sean.connolly@jcu.edu.au; knowlton@si.edu
RI Williams, Alan/C-6999-2012; MacNeil, M. Aaron/E-8196-2017;
OI MacNeil, M. Aaron/0000-0001-8406-325X; Connolly,
Sean/0000-0003-1537-0859
FU Ministry for Science and Technology; German Research Foundation
(Deutsche Forschungsgemeinschaft); Australian Research Council
FX U.S. acknowledges S. Ehrich and A. Sell for providing ship time. The
authors thank all participants in the Census of Marine Life project,
particularly S. Campana, M. Sogin, K. Stocks, and L. A. Zettler. They
also thank R. Etienne for providing advice for obtaining numerical
solutions of the fission speciation neutral model, and J. Rosindell and
S. Cornell for sharing simulated neutral community data from their
spatially explicit neutral model. The authors thank T. Hughes for
comments on an early version of the manuscript. K. E. E. acknowledges
The Norwegian Oil and Gas Association for permitting use of data. A. B.
acknowledges the support of the Ministry for Science and Technology and
the German Research Foundation (Deutsche Forschungsgemeinschaft) for
support of the Antarctic benthic deep-sea biodiversity (ANDEEP) and
ANDEEP-System Coupling (SYSTCO) expeditions, as well as five PhD
positions. A. B. also thanks the Alfred-Wegener-Institute for Polar and
Marine Research for logistic help, as well as the crew of the vessel and
all pickers, sorters and identifiers of the extensive deep-sea material.
The Census of Marine Life funded the assembly of the metadataset.
Analysis of the data was made possible by funding from the Australian
Research Council (to S.R.C.).
NR 42
TC 29
Z9 29
U1 5
U2 86
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 10
PY 2014
VL 111
IS 23
BP 8524
EP 8529
DI 10.1073/pnas.1406664111
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AI6IJ
UT WOS:000336976000060
PM 24912168
ER
PT J
AU Aliu, E
Aune, T
Behera, B
Beilicke, M
Benbow, W
Berger, K
Bird, R
Bouvier, A
Buckley, JH
Bugaev, V
Cerruti, M
Chen, X
Ciupik, L
Connolly, MP
Cui, W
Dumm, J
Dwarkadas, VV
Errando, M
Falcone, A
Federici, S
Feng, Q
Finley, JP
Fleischhack, H
Fortin, P
Fortson, L
Furniss, A
Galante, N
Gillanders, GH
Gotthelf, EV
Griffin, S
Griffiths, ST
Grube, J
Gyuk, G
Hanna, D
Holder, J
Hughes, G
Humensky, TB
Johnson, CA
Kaaret, P
Kargaltsev, O
Kertzman, M
Khassen, Y
Kieda, D
Krennrich, F
Lang, MJ
Madhavan, AS
Maier, G
McArthur, S
McCann, A
Millis, J
Moriarty, P
Mukherjee, R
Nieto, D
de Bhroithe, AO
Ong, RA
Otte, AN
Pandel, D
Park, N
Pohl, M
Popkow, A
Prokoph, H
Quinn, J
Ragan, K
Rajotte, J
Reyes, LC
Reynolds, PT
Richards, GT
Roache, E
Roberts, M
Sembroski, GH
Shahinyan, K
Smith, AW
Staszak, D
Telezhinsky, I
Tucci, JV
Tyler, J
Vincent, S
Wakely, SP
Weinstein, A
Welsing, R
Wilhelm, A
Williams, DA
Zitzer, B
AF Aliu, E.
Aune, T.
Behera, B.
Beilicke, M.
Benbow, W.
Berger, K.
Bird, R.
Bouvier, A.
Buckley, J. H.
Bugaev, V.
Cerruti, M.
Chen, X.
Ciupik, L.
Connolly, M. P.
Cui, W.
Dumm, J.
Dwarkadas, V. V.
Errando, M.
Falcone, A.
Federici, S.
Feng, Q.
Finley, J. P.
Fleischhack, H.
Fortin, P.
Fortson, L.
Furniss, A.
Galante, N.
Gillanders, G. H.
Gotthelf, E. V.
Griffin, S.
Griffiths, S. T.
Grube, J.
Gyuk, G.
Hanna, D.
Holder, J.
Hughes, G.
Humensky, T. B.
Johnson, C. A.
Kaaret, P.
Kargaltsev, O.
Kertzman, M.
Khassen, Y.
Kieda, D.
Krennrich, F.
Lang, M. J.
Madhavan, A. S.
Maier, G.
McArthur, S.
McCann, A.
Millis, J.
Moriarty, P.
Mukherjee, R.
Nieto, D.
de Bhroithe, A. O'Faolain
Ong, R. A.
Otte, A. N.
Pandel, D.
Park, N.
Pohl, M.
Popkow, A.
Prokoph, H.
Quinn, J.
Ragan, K.
Rajotte, J.
Reyes, L. C.
Reynolds, P. T.
Richards, G. T.
Roache, E.
Roberts, M.
Sembroski, G. H.
Shahinyan, K.
Smith, A. W.
Staszak, D.
Telezhinsky, I.
Tucci, J. V.
Tyler, J.
Vincent, S.
Wakely, S. P.
Weinstein, A.
Welsing, R.
Wilhelm, A.
Williams, D. A.
Zitzer, B.
TI SPATIALLY RESOLVING THE VERY HIGH ENERGY EMISSION FROM MGRO J2019+37
WITH VERITAS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma rays : stars; pulsars : individual (PSR J2021+3651); supernovae :
individual (CTB 87)
ID GAMMA-RAY EMISSION; PULSAR WIND NEBULA; GALACTIC PLANE; PSR J2021+3651;
CYGNUS REGION; DISCOVERY; MILAGRO; STARS; HESS; ASSOCIATIONS
AB We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (similar to 2 degrees) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 +/- 0.4. VER J2019+378 is a bright extended (similar to 1 degrees) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2-104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 +/- 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.
C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Aune, T.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Behera, B.; Chen, X.; Federici, S.; Fleischhack, H.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Telezhinsky, I.; Vincent, S.; Welsing, R.] DESY, D-15738 Zeuthen, Germany.
[Beilicke, M.; Buckley, J. H.; Bugaev, V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Benbow, W.; Cerruti, M.; Fortin, P.; Galante, N.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Berger, K.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Berger, K.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Bird, R.; Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Bouvier, A.; Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Bouvier, A.; Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Chen, X.; Federici, S.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Connolly, M. P.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Univ Coll Galway, Sch Phys, Galway, Ireland.
[Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Dumm, J.; Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Dwarkadas, V. V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Griffin, S.; Hanna, D.; Ragan, K.; Rajotte, J.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Griffiths, S. T.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Humensky, T. B.; Nieto, D.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Kargaltsev, O.] George Washington Univ, Dept Phys, Washington, DC 20052 USA.
[Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA.
[Kieda, D.; Smith, A. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Krennrich, F.; Madhavan, A. S.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA.
[Millis, J.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland.
[Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Pandel, D.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA.
[Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA.
[Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland.
[Roberts, M.] Eureka Sci Inc, Oakland, CA 94602 USA.
[Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Aliu, E (reprint author), Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
EM ealiu@astro.columbia.edu; nahee@uchicago.edu
RI Khassen, Yerbol/I-3806-2015; Nieto, Daniel/J-7250-2015;
OI Khassen, Yerbol/0000-0002-7296-3100; Nieto, Daniel/0000-0003-3343-0755;
Cui, Wei/0000-0002-6324-5772; Roberts, Mallory/0000-0002-9396-9720;
Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201; Bird,
Ralph/0000-0002-4596-8563
FU U.S. Department of Energy Office of Science; U.S. National Science
Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation
Ireland [SFI 10/RFP/AST2748]; STFC in the U. K; ESA Member States and
NASA; Natural Sciences and Engineering Research Council
FX The authors would like to thank Jules Halpern for many useful
discussions and help in obtaining and interpreting the Swift data. This
research is supported by grants from the U.S. Department of Energy
Office of Science, the U.S. National Science Foundation, and the
Smithsonian Institution, by NSERC in Canada, by Science Foundation
Ireland (SFI 10/RFP/AST2748), and by STFC in the U. K. We acknowledge
the excellent work of the technical support staff at the Fred Lawrence
Whipple Observatory and at the collaborating institutions in the
construction and operation of the instrument. Based on observations
obtained with XMM-Newton, an ESA science mission with instruments and
contributions directly funded by ESA Member States and NASA. This
research has made use of data and/or software provided by the High
Energy Astrophysics Science Archive Research Center (HEASARC), which is
a service of the Astrophysics Science Division at NASA/GSFC and the High
Energy Astrophysics Division of the Smithsonian Astrophysical
Observatory. The research presented in this paper has used data from the
Canadian Galactic Plane Survey, a Canadian project with international
partners, supported by the Natural Sciences and Engineering Research
Council.
NR 56
TC 13
Z9 14
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 78
DI 10.1088/0004-637X/788/1/78
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200078
ER
PT J
AU Bartschat, K
Sadeghpour, HR
AF Bartschat, Klaus
Sadeghpour, H. R.
TI HYPERFINE-CHANGING TRANSITIONS IN He-3 II AND OTHER ONE-ELECTRON IONS BY
ELECTRON SCATTERING
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE atomic data; atomic processes; dark ages, reionization, first stars;
early universe; radio lines : general
ID HYDROGEN; COLLISIONS
AB We consider the spin-exchange (SE) cross-section in electron scattering from He-3 II, which drives the hyperfine-changing 3.46 cm (8.665 GHz) line transition. Both the analytical quantum defect method-applicable at very low energies-and accurate R-matrix techniques for electron-He+ scattering are employed to obtain SE cross-sections. The quantum defect theory is also applied to electron collisions with other one-electron ions in order to demonstrate the utility of the method and derive scaling relations. At very low energies, the hyperfine-changing cross-sections due to e-He+ scattering are much larger in magnitude than for electron collisions with neutral hydrogen, hinting at large rate constants for equilibration. Specifically, we obtain rate coefficients of K(10K) = 1.10 x 10(-6) cm(3) s(-1) and K(100 K) = 3.49 x 10(-7) cm(3) s(-1).
C1 [Bartschat, Klaus] Drake Univ, Dept Phys & Astron, Des Moines, IA 50311 USA.
[Sadeghpour, H. R.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA.
RP Bartschat, K (reprint author), Drake Univ, Dept Phys & Astron, Des Moines, IA 50311 USA.
EM klaus.bartschat@drake.edu; hrs@cfa.harvard.edu
FU United States National Science Foundation [PHY-1068140]; Harvard
University; Harvard-Smithsonian Center for Astrophysics
FX This work was supported by the United States National Science Foundation
under grant No. PHY-1068140 (K. B.) and through a grant to the Institute
for Theoretical Atomic,Molecular, and Optical Physics at Harvard
University and the Harvard-Smithsonian Center for Astrophysics.
NR 19
TC 1
Z9 1
U1 1
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 69
DI 10.1088/0004-637X/788/1/69
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200069
ER
PT J
AU Bechter, EB
Crepp, JR
Ngo, H
Knutson, HA
Batygin, K
Hinkley, S
Muirhead, PS
Johnson, JA
Howard, AW
Montet, BT
Matthews, CT
Morton, TD
AF Bechter, Eric B.
Crepp, Justin R.
Ngo, Henry
Knutson, Heather A.
Batygin, Konstantin
Hinkley, Sasha
Muirhead, Philip S.
Johnson, John Asher
Howard, Andrew W.
Montet, Benjamin T.
Matthews, Christopher T.
Morton, Timothy D.
TI WASP-12b AND HAT-P-8b ARE MEMBERS OF TRIPLE STAR SYSTEMS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astrometry; stars: individual (WASP-12, HAT-P-8); techniques: high
angular resolution; techniques: photometric
ID EXOPLANET HOST STARS; ROSSITER-MCLAUGHLIN OBSERVATIONS; TRANSITING
EXTRASOLAR PLANET; SPIN-ORBIT ALIGNMENT; LOW-MASS STELLAR; HOT JUPITERS;
GIANT PLANETS; ADAPTIVE OPTICS; C/O RATIO; M DWARFS
AB We present high spatial resolution images that demonstrate that WASP-12b and HAT-P-8b orbit the primary stars of hierarchical triple star systems. In each case, two distant companions with colors and brightnesses consistent with Mdwarfs co-orbit the hot Jupiter planet host as well as one another. Our adaptive optics images spatially resolve the secondary around WASP-12, previously identified by Bergfors et al. and Crossfield et al. into two distinct sources separated by 84.3 +/- 0.6 mas (21 +/- 3 AU). We find that the secondary to HAT-P-8, also identified by Bergfors et al., is in fact composed of two stars separated by 65.3 +/- 0.5 mas (15 +/- 1 AU). Our follow-up observations demonstrate physical association through common proper motion. HAT-P-8 C has a particularly low mass, which we estimate to be 0.18 +/- 0.02 M-circle dot using photometry. Due to their hierarchy, WASP-12 BC and HAT-P-8 BC will enable the first dynamical mass determination for hot Jupiter stellar companions. These previously well studied planet hosts now represent higher-order multi-star systems with potentially complex dynamics, underscoring the importance of diffraction-limited imaging and providing additional context for understanding the migrant population of transiting hot Jupiters.
C1 [Bechter, Eric B.; Crepp, Justin R.; Matthews, Christopher T.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Ngo, Henry; Knutson, Heather A.; Batygin, Konstantin; Johnson, John Asher] CALTECH, Dept Planetary Sci, Pasadena, CA 91125 USA.
[Hinkley, Sasha; Muirhead, Philip S.; Montet, Benjamin T.; Morton, Timothy D.] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
[Muirhead, Philip S.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA.
[Johnson, John Asher] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Howard, Andrew W.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
RP Bechter, EB (reprint author), Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA.
EM ebechter@nd.edu
RI Howard, Andrew/D-4148-2015; Muirhead, Philip/H-2273-2014;
OI Howard, Andrew/0000-0001-8638-0320; Muirhead,
Philip/0000-0002-0638-8822; Montet, Benjamin/0000-0001-7516-8308; Ngo,
Henry/0000-0001-5172-4859
FU W.M. Keck Foundation; David and Lucile Packard Foundation; Alfred P.
Sloan Foundation; National Science Foundation [DGE1144469]
FX This research has made use of the SIMBAD database, operated at CDS,
Strasbourg, France. Data presented herein were obtained at the W.M. Keck
Observatory, which is operated as a scientific partnership among the
California Institute of Technology, the University of California, and
the National Aeronautics and Space Administration. The Observatory was
made possible by the generous financial support of the W.M. Keck
Foundation. J.A.J. is supported by generous grants from the David and
Lucile Packard Foundation and the Alfred P. Sloan Foundation. B. T. M.
is supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE1144469.
NR 56
TC 16
Z9 16
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 2
DI 10.1088/0004-637X/788/1/2
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200002
ER
PT J
AU Beiersdorfer, P
Trabert, E
Lepson, JK
Brickhouse, NS
Golub, L
AF Beiersdorfer, Peter
Traebert, Elmar
Lepson, Jaan K.
Brickhouse, Nancy S.
Golub, Leon
TI HIGH-RESOLUTION LABORATORY MEASUREMENTS OF CORONAL LINES IN THE 198-218
angstrom REGION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE atomic data; line&COLFAML identification; stars&COLFAML coronae;
Sun&COLFAML corona; X-rays&COLFAML stars
ID BEAM ION-TRAP; SOFT-X-RAY; EXTREME-ULTRAVIOLET REGION; AN ATOMIC
DATABASE; ELECTRON-BEAM; EMISSION-LINES; CHARGED IONS; FE-XIII;
WAVELENGTH MEASUREMENTS; ACTIVE-REGION
AB We present high-resolution laboratory measurements of the emission from various ions of C, N, O, F, Ne, S, Ar, Fe, and Ni in the extreme ultraviolet wavelength band centered around the lambda 211 Fe XIV channel of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. While all of the strong iron lines in this region are well known, we note many weaker lines of iron that are not yet identified. The high resolution of our measurements also allows us to resolve several lines in Fe XI, Fe XII, and Fe XIII between 200 and 205 angstrom, whose identities were in question based on a disagreement between different databases. The spectra of the elements other than iron are much less known, and we find a multitude of lines that are not yet in the databases. For example, the CHIANTI database clearly disagrees with the NIST data listings on several of the argon lines we observe and also it contains only about half of the observed sulfur lines.
C1 [Beiersdorfer, Peter; Traebert, Elmar] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
[Traebert, Elmar] Ruhr Univ Bochum, Astron Inst, D-44801 Bochum, Germany.
[Lepson, Jaan K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Brickhouse, Nancy S.; Golub, Leon] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Solar and
Heliospherical Physics Program of the National Aeronautics and Space
Administration [NNH10AN31I]; German Research Association (DFG)
[Tr171/18, Tr171/19]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344 and was supported by the Solar and Heliospherical
Physics Program of the National Aeronautics and Space Administration
under award NNH10AN31I. E.T. acknowledges support from the German
Research Association (DFG; grants Tr171/18 and Tr171/19).
NR 57
TC 11
Z9 12
U1 1
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 25
DI 10.1088/0004-637X/788/1/25
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200025
ER
PT J
AU Beky, B
Holman, MJ
Kipping, DM
Noyes, RW
AF Beky, Bence
Holman, Matthew J.
Kipping, David M.
Noyes, Robert W.
TI STELLAR ROTATION-PLANETARY ORBIT PERIOD COMMENSURABILITY IN THE HAT-P-11
SYSTEM
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE stars: activity; stars: individual (HAT-P-11, Kepler-17); stars:
rotation
ID SUPER-NEPTUNE HAT-P-11B; COROT SPACE MISSION; TRANSITING EXOPLANETS;
MAGNETIC ACTIVITY; HOT JUPITERS; TAU-BOOTIS; STAR; STARSPOTS; KEPLER;
FIELD
AB A number of planet host stars have been observed to rotate with a period equal to an integer multiple of the orbital period of their close planet. We expand this list by analyzing Kepler data of HAT-P-11 and finding a period ratio of 6:1. In particular, we present evidence for a long-lived spot on the stellar surface that is eclipsed by the planet in the same position four times, every sixth transit. We also identify minima in the out-of-transit light curve and confirm that their phase with respect to the stellar rotation is mostly stationary for the 48 month time frame of the observations, confirming the proposed rotation period. For comparison, we apply our methods to Kepler-17 and confirm the findings of Bonomo & Lanza that the period ratio is not exactly 8:1 in that system. Finally, we provide a hypothesis on how interactions between a star and its planet could possibly result in an observed commensurability for systems where the stellar differential rotation profile happens to include a period at some latitude that is commensurable to the planetary orbit.
C1 [Beky, Bence; Holman, Matthew J.; Kipping, David M.; Noyes, Robert W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Beky, B (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM bbeky@cfa.harvard.edu
FU NASA [NNX09AB28G]; Origins program [NNX09AB33G, NNX13A124G]; NASA Carl
Sagan Fellowships; FAS Science Division Research Computing Group at
Harvard University
FX Work by B.B. and M.J.H. was supported by NASA under grant NNX09AB28G
from the Kepler Participating Scientist Program and grants NNX09AB33G
and NNX13A124G under the Origins program. D.M.K. is funded by the NASA
Carl Sagan Fellowships. This paper includes data collected by the Kepler
mission. Funding for the Kepler mission is provided by the NASA Science
Mission directorate. The MCMC computations in this paper were run on the
Odyssey 2.0 cluster supported by the FAS Science Division Research
Computing Group at Harvard University. B.B. is grateful for discussions
with John A. Johnson, Ruth Murray-Clay, Claire Moutou, and Joshua N.
Winn.
NR 45
TC 12
Z9 12
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 1
DI 10.1088/0004-637X/788/1/1
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200001
ER
PT J
AU Carr, JS
Najita, JR
AF Carr, John S.
Najita, Joan R.
TI THE OH ROTATIONAL POPULATION AND PHOTODISSOCIATION OF H2O IN DG Tauri
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; infrared : stars; circumstellar matter;
protoplanetary disks; stars : pre-main sequence
ID MOLECULAR SPECTROSCOPIC DATABASE; FAR-ULTRAVIOLET CONTINUUM; YOUNG
CIRCUMSTELLAR DISKS; 4TH POSITIVE EMISSION; PROTOPLANETARY DISKS;
ORGANIC-MOLECULES; DISSOCIATION DYNAMICS; LINEAR-MOLECULES; PROMPT
EMISSION; LAMBDA-DOUBLETS
AB We analyze the OH rotational emission in the Spitzer Space Telescope mid- infrared spectrum of the T Tauri star DG Tau. OH is observed in emission from upper level energies of 1900 K to 28,000 K. The rotational diagram cannot be fit with any single combination of temperature and column density and has slopes that correspond to excitation temperatures ranging from 200 K to 6000 K. The relative A-doublet population within each rotational level is not equal, showing that the OH population is not in thermal equilibrium. The symmetric A-doublet state is preferred in all rotational states, with an average of 0.5 for the population ratio of the anti-symmetric to symmetric state. We show that the population distribution of the high rotational lines and the A-doublet ratio are consistent with the formation of OH following the photo- dissociation of H2O by FUV photons in the second absorption band of water (similar to 1150-1400 angstrom), which includes Ly alpha. Other processes, OH formation from either photo-dissociation of water in the first absorption band (1450-1900 angstrom) or the reaction O(D-1) + H-2, or collisional excitation, cannot explain the observed emission in the high rotational states but could potentially contribute to the population of lower rotational levels. These results demonstrate that the photo-dissociation of water is active in DG Tau and support the idea that the hot rotational OH emission commonly observed in Classical T Tauri stars is due to the dissociation of H2O by FUV radiation.
C1 [Carr, John S.] Naval Res Lab, Washington, DC 20375 USA.
[Najita, Joan R.] Natl Opt Astron Observ, Tucson, AZ 85716 USA.
[Najita, Joan R.] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA.
RP Carr, JS (reprint author), Naval Res Lab, Code 7211, Washington, DC 20375 USA.
FU NASA; Naval Research Laboratory; Institute for Theory and Computation at
the Harvard-Smithsonian Center for Astrophysics
FX This work is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. Support
for this work was provided by NASA. Basic research in infrared
astrophysics at the Naval Research Laboratory is supported by 6.1 base
funding. J.N. gratefully acknowledges support from the Institute for
Theory and Computation at the Harvard-Smithsonian Center for
Astrophysics.
NR 72
TC 1
Z9 1
U1 1
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 66
DI 10.1088/0004-637X/788/1/66
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200066
ER
PT J
AU Dittmann, JA
Soderberg, AM
Chomiuk, L
Margutti, R
Goss, WM
Milisavljevic, D
Chevalier, RA
AF Dittmann, J. A.
Soderberg, A. M.
Chomiuk, L.
Margutti, R.
Goss, W. M.
Milisavljevic, D.
Chevalier, R. A.
TI A MID-LIFE CRISIS? SUDDEN CHANGES IN RADIO AND X-RAY EMISSION FROM
SUPERNOVA 1970G
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE stars: evolution; stars: low-mass; supernovae: individual (1970G)
ID LUMINOUS BLUE VARIABLES; MASS-LOSS; IBC SUPERNOVA; SN 1970G; EVOLUTION;
PROGENITORS; M101; MODULATIONS; RECOVERY; REMNANTS
AB Supernovae (SNe) provide a backdrop from which we can probe the end state of stellar evolution in the final years before the progenitor star explodes. As the shock from the SN expands, the timespan of mass-loss history we are able to probe also extends, providing insight to rapid timescale processes that govern the end state of massive stars. While SNe transition into remnants on timescales of decades to centuries, observations of this phase are currently limited. Here, we present observations of SN 1970G, serendipitously observed during the monitoring campaign of SN 2011fe, which shares the same host galaxy. Utilizing the new Jansky Very Large Array (VLA) upgrade and a deep X-ray exposure taken by Chandra, we are able to recover this middle-aged SN and distinctly resolve it from the H II cloud with which it is associated. We find that the flux density of SN 1970G has changed significantly since it was last observed-the X-ray luminosity has increased by a factor of similar to 3, while we observe a significantly lower radio flux of only 27.5 mu Jy at 6.75 GHz, a level only detectable through the upgrades now in operation at the Jansky VLA. These changes suggest that SN 1970G has entered a new stage of evolution toward an SN remnant, and we may be detecting the turn-on of the pulsar wind nebula. Deep radio observations of additional middle-aged SNe with the improved radio facilities will provide a statistical census of the delicate transition period between SN and remnant.
C1 [Dittmann, J. A.; Soderberg, A. M.; Margutti, R.; Milisavljevic, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Chomiuk, L.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Goss, W. M.] Natl Radio Astron Observ, Domenici Sci Operat Ctr, Socorro, NM 87801 USA.
[Chevalier, R. A.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
RP Dittmann, JA (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM jdittmann@cfa.harvard.edu
OI Dittmann, Jason/0000-0001-7730-2240
NR 43
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 38
DI 10.1088/0004-637X/788/1/38
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200038
ER
PT J
AU Kelly, BC
Becker, AC
Sobolewska, M
Siemiginowska, A
Uttley, P
AF Kelly, Brandon C.
Becker, Andrew C.
Sobolewska, Malgosia
Siemiginowska, Aneta
Uttley, Phil
TI FLEXIBLE AND SCALABLE METHODS FOR QUANTIFYING STOCHASTIC VARIABILITY IN
THE ERA OF MASSIVE TIME-DOMAIN ASTRONOMICAL DATA SETS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE methods : statistical
ID ACTIVE GALACTIC NUCLEI; MULTIVARIATE CARMA PROCESSES; REVERBERATION
MAPPING DATA; DAMPED RANDOM-WALK; X-RAY VARIABILITY; OPTICAL
VARIABILITY; QUASAR VARIABILITY; LIGHT CURVES; BLACK-HOLE;
AUTOREGRESSIVE MODELS
AB We present the use of continuous-time autoregressive moving average (CARMA) models as a method for estimating the variability features of a light curve, and in particular its power spectral density (PSD). CARMA models fully account for irregular sampling and measurement errors, making them valuable for quantifying variability, forecasting and interpolating light curves, and variability-based classification. We show that the PSD of a CARMA model can be expressed as a sum of Lorentzian functions, which makes them extremely flexible and able to model a broad range of PSDs. We present the likelihood function for light curves sampled from CARMA processes, placing them on a statistically rigorous foundation, and we present a Bayesian method to infer the probability distribution of the PSD given the measured light curve. Because calculation of the likelihood function scales linearly with the number of data points, CARMA modeling scales to current and future massive time-domain data sets. We conclude by applying our CARMA modeling approach to light curves for an X-ray binary, two active galactic nuclei, a long-period variable star, and an RR Lyrae star in order to illustrate their use, applicability, and interpretation.
C1 [Kelly, Brandon C.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Becker, Andrew C.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Sobolewska, Malgosia] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland.
[Siemiginowska, Aneta] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Uttley, Phil] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands.
RP Kelly, BC (reprint author), Univ Calif Santa Barbara, Dept Phys, Broida Hall, Santa Barbara, CA 93106 USA.
NR 65
TC 24
Z9 24
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 33
DI 10.1088/0004-637X/788/1/33
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200033
ER
PT J
AU Lopez, LA
Castro, D
Slane, PO
Ramirez-Ruiz, E
Badenes, C
AF Lopez, Laura A.
Castro, Daniel
Slane, Patrick O.
Ramirez-Ruiz, Enrico
Badenes, Carles
TI IDENTIFICATION OF A JET-DRIVEN SUPERNOVA REMNANT IN THE SMALL MAGELLANIC
CLOUD: POSSIBLE EVIDENCE FOR THE ENHANCEMENT OF BIPOLAR EXPLOSIONS AT
LOW METALLICITY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE ISM: abundances; ISM: supernova remnants; Magellanic Clouds; X-rays: ISM
ID GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; STAR-FORMATION HISTORY; IA
SUPERNOVA; IBC SUPERNOVA; H I; PROGENITORS; EMISSION; BINARIES; W49B
AB Recent evidence has suggested that the supernova remnant (SNR) 0104-72.3 in the Small Magellanic Cloud (SMC) may be the result of a "prompt" Type Ia SN on the basis of enhanced iron abundances and its association with a star-forming region. In this paper, we present evidence that SNR 0104-72.3 arose from a jet-driven bipolar core-collapse (CC) SN. Specifically, we use serendipitous Chandra data of SNR 0104-72.3 taken because of its proximity to the calibration source SNR E0102-72.3. We analyze 56 Advanced CCD Imaging Spectrometer (ACIS) observations of SNR 0104-72.3 to produce imaging and spectra with an effective exposure of 528.6 ks. We demonstrate that SNR 0104-72.3 is highly elliptical relative to other nearby young SNRs, suggesting a CC SN origin. Furthermore, we compare ejecta abundances derived from spectral fits to nucleosynthetic yields of Type Ia and CC SNe, and we find that the iron, neon, and silicon abundances are consistent with either a spherical CC SN of a 18-20 M-circle dot progenitor or an aspherical CC SN of a 25 M-circle dot progenitor. We show that the star formation history at the site of SNR 0104-72.3 is also consistent with a CC origin. Given the bipolar morphology of the SNR, we favor the aspherical CC SN scenario. This result may suggest jet-driven SNe occur frequently in the low-metallicity environment of the SMC, consistent with the observational and theoretical work on broad-line Type Ic SNe and long-duration gamma-ray bursts.
C1 [Lopez, Laura A.; Castro, Daniel] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Slane, Patrick O.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA.
[Badenes, Carles] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Badenes, Carles] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA.
RP Lopez, LA (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave,37-664H, Cambridge, MA 02139 USA.
EM lopez@space.mit.edu
OI Badenes, Carles/0000-0003-3494-343X
FU NASA through the Einstein Fellowship Program [PF1-120085]; MIT
Pappalardo Fellowship in Physics; David and Lucile Packard Foundation;
NSF [AST-0847563]; NASA through the Smithsonian Astrophysical
Observatory [SV3-73016]; NASA [NAS8-03060]
FX We acknowledge helpful discussions with J.-J. Lee in writing this paper.
Support for L.A.L. was provided by NASA through the Einstein Fellowship
Program, grant PF1-120085, and the MIT Pappalardo Fellowship in Physics.
E.R.R. acknowledges support from the David and Lucile Packard Foundation
and NSF grant AST-0847563. D.C. and P.O.S. acknowledge support for this
work provided by NASA through the Smithsonian Astrophysical Observatory
contract SV3-73016 to MIT for support of the Chandra X-ray Center, which
is operated by the Smithsonian Astrophysical Observatory for and on
behalf of NASA under contract NAS8-03060.
NR 61
TC 1
Z9 1
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 5
DI 10.1088/0004-637X/788/1/5
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200005
ER
PT J
AU Miller, JM
Raymond, J
Kallman, TR
Maitra, D
Fabian, AC
Proga, D
Reynolds, CS
Reynolds, MT
Degenaar, N
King, AL
Cackett, EM
Kennea, JA
Beardmore, A
AF Miller, J. M.
Raymond, J.
Kallman, T. R.
Maitra, D.
Fabian, A. C.
Proga, D.
Reynolds, C. S.
Reynolds, M. T.
Degenaar, N.
King, A. L.
Cackett, E. M.
Kennea, J. A.
Beardmore, A.
TI CHANDRA SPECTROSCOPY OF MAXI J1305-704: DETECTION OF AN INFALLING BLACK
HOLE DISK WIND?
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; black hole physics
ID X-RAY BINARIES; LY-ALPHA LINE; ACCRETION DISK; INTERSTELLAR-MEDIUM; GRO
J1655-40; ABSORPTION; RADIATION; DRIVEN; JETS; SUPPRESSION
AB We report on a high-resolution Chandra/HETG X-ray spectrum of the transient X-ray binary MAXI J1305-704. A rich absorption complex is detected in the Fe L band, including density-sensitive lines from Fe XX, Fe XXI, and Fe XXII. Spectral analysis over three wavelength bands with a large grid of XSTAR photoionization models generally requires a gas density of n >= 10(17) cm(-3). Assuming a luminosity of L = 10(37) erg s(-1), fits to the 10-14 angstrom band constrain the absorbing gas to lie within r = (3.9 +/- 0.7) x 10(3) km from the central engine, or about r = 520 +/- 90 (M/5M(circle dot)) r(g), where r(g) = GM/c(2). At this small distance from the compact object, gas in stable orbits should have a gravitational redshift of z = v/c similar or equal to (3 +/- 1) x 10(-3) (M/5M(circle dot)), and any tenuous inflowing gas should have a free-fall velocity of v/c similar or equal to (6 +/- 1) x 10(-2) (M/5M(circle dot))(1/2). The best-fit single-zone photoionization models measure a redshift of v/c = (2.6-3.2) x 10(-3.) Models with two absorbing zones provide significantly improved fits, and the additional zone is measured to have a redshift of v/c = (4.6-4.9) x 10(-2) (models including two zones suggest slightly different radii and may point to lower densities). Thus, the observed shifts are broadly consistent with those expected at the photoionization radius. The absorption spectrum revealed in MAXI J1305-704 may be best explained in terms of a "failed wind" like those predicted in some recent numerical simulations of black hole accretion flows. The robustness of the velocity shifts was explored through detailed simulations with the Chandra/MARX ray-tracing package and analysis of the zeroth-order ACIS-S3 spectrum. These tests are particularly important given the anomalously large angle between the source and the optical axis in this observation. The simulations and ACIS spectrum suggest that the shifts are not instrumental; however, strong caution is warranted. We discuss our results in the context of accretion flows in stellar-mass black holes and active galactic nuclei, as well as the potential role of failed winds in emerging connections between disk outflows and black hole state transitions.
C1 [Miller, J. M.; Maitra, D.; Reynolds, M. T.; Degenaar, N.; King, A. L.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Raymond, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Kallman, T. R.] NASA, Goddard Space Flight Ctr, Greedbelt, MD 20771 USA.
[Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England.
[Proga, D.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA.
[Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Cackett, E. M.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA.
[Kennea, J. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Beardmore, A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
RP Miller, JM (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA.
EM jonmm@umich.edu
FU Chandra Guest Observer Program; Swift; NASA through Hubble Postdoctoral
Fellowship grant from the Space Telescope Science Institute
[HST-HF-51287.01-A]; Swift at the University of Leicester; UK Space
Agency
FX We gratefully acknowledge comments from the anonymous referee that
improved the clarity and content of this paper. We thank Harvey
Tananbaum and Chandra for executing this observation. We are indebted to
Mateusz Ruszkowski for lending computing cluster clock cycles to this
project. We acknowledge Mike Nowak, David Huenemoerder, John Davis, John
Houck, Norbert Schulz, and Jonathan McDowell for helpful discussions.
J.M.M. gratefully acknowledges support from the Chandra Guest Observer
Program and Swift. N.D. is supported by NASA through Hubble Postdoctoral
Fellowship grant number HST-HF-51287.01-A from the Space Telescope
Science Institute. A.P.B. acknowledges funding for Swift at the
University of Leicester by the UK Space Agency.
NR 57
TC 5
Z9 5
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 53
DI 10.1088/0004-637X/788/1/53
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200053
ER
PT J
AU Oberg, KI
Lauck, T
Graninger, D
AF Oeberg, Karin I.
Lauck, Trish
Graninger, Dawn
TI COMPLEX ORGANIC MOLECULES DURING LOW-MASS STAR FORMATION: PILOT SURVEY
RESULTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astrobiology; astrochemistry; circumstellar matter; ISM : molecules;
molecular processes; stars : formation; stars : protostars
ID SPITZER SPECTROSCOPIC SURVEY; YOUNG STELLAR OBJECTS; HOT-CORE; PROTOSTAR
IRAS-16293-2422; CHEMISTRY; ICES; GRAIN; GAS; ENVELOPE; SPECTRA
AB Complex organic molecules (COMs) are known to be abundant toward some low-mass young stellar objects (YSOs), but how these detections relate to typical COM abundance are not yet understood. We aim to constrain the frequency distribution of COMs during low-mass star formation, beginning with this pilot survey of COM lines toward six embedded YSOs using the IRAM 30m Telescope. The sample was selected from the Spitzer c2d ice sample and covers a range of ice abundances. We detect multiple COMs, including CH3CN, toward two of the YSOs, and tentatively toward a third. Abundances with respect to CH3OH vary between 0.7% and 10%. This sample is combined with previous COM observations and upper limits to obtain a frequency distributions of CH3CN, HCOOCH3, CH3OCH3, and CH3CHO. We find that for all molecules more than 50% of the sample have detections or upper limits of 1%-10% with respect to CH3OH. Moderate abundances of COMs thus appear common during the early stages of low-mass star formation. A larger sample is required, however, to quantify the COM distributions, as well as to constrain the origins of observed variations across the sample.
C1 [Oeberg, Karin I.; Graninger, Dawn] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Lauck, Trish] Univ Virginia, Charlottesville, VA 22904 USA.
RP Oberg, KI (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM koberg@cfa.harvard.edu
NR 37
TC 8
Z9 8
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 68
DI 10.1088/0004-637X/788/1/68
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200068
ER
PT J
AU Walton, DJ
Risaliti, G
Harrison, FA
Fabian, AC
Miller, JM
Arevalo, P
Ballantyne, DR
Boggs, SE
Brenneman, LW
Christensen, FE
Craig, WW
Elvis, M
Fuerst, F
Gandhi, P
Grefenstette, BW
Hailey, CJ
Kara, E
Luo, B
Madsen, KK
Marinucci, A
Matt, G
Parker, ML
Reynolds, CS
Rivers, E
Ross, RR
Stern, D
Zhang, WW
AF Walton, D. J.
Risaliti, G.
Harrison, F. A.
Fabian, A. C.
Miller, J. M.
Arevalo, P.
Ballantyne, D. R.
Boggs, S. E.
Brenneman, L. W.
Christensen, F. E.
Craig, W. W.
Elvis, M.
Fuerst, F.
Gandhi, P.
Grefenstette, B. W.
Hailey, C. J.
Kara, E.
Luo, B.
Madsen, K. K.
Marinucci, A.
Matt, G.
Parker, M. L.
Reynolds, C. S.
Rivers, E.
Ross, R. R.
Stern, D.
Zhang, W. W.
TI NuSTAR AND XMM-NEWTON OBSERVATIONS OF NGC 1365: EXTREME ABSORPTION
VARIABILITY AND A CONSTANT INNER ACCRETION DISK
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE black hole physics; galaxies : active; X-rays : individual (NGC 1365)
ID ACTIVE GALACTIC NUCLEI; BLACK-HOLE SPIN; X-RAY REVERBERATION; GALAXY
SWIFT J2127.4+5654; PHOTON IMAGING CAMERA; SPECTRAL VARIABILITY; IRON-K;
SEYFERT-GALAXIES; BEPPOSAX OBSERVATIONS; COMPTON REFLECTION
AB We present a spectral analysis of four coordinated NuSTAR+ XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection hump relative to the intrinsic continuum are well correlated, which is expected if they are two aspects of the same broadband reflection spectrum. We apply self-consistent disk reflection models to these time-resolved spectra in order to constrain the inner disk parameters, allowing for variable, partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better).
C1 [Walton, D. J.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Rivers, E.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Risaliti, G.] INAF, Osservatorio Astrofis Arcetri, I-50125 Florence, Italy.
[Risaliti, G.; Brenneman, L. W.; Elvis, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Fabian, A. C.; Elvis, M.; Parker, M. L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Miller, J. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Arevalo, P.] Pontificia Univ Catolica Chile, Inst Astrfis, Santiago 22, Chile.
[Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Gandhi, P.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Luo, B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Luo, B.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Marinucci, A.; Matt, G.] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy.
[Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Reynolds, C. S.] Univ Maryland, Joint Space Sci Inst JSI, College Pk, MD 20742 USA.
[Ross, R. R.] Coll Holy Cross, Dept Phys, Worcester, MA 01610 USA.
[Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Walton, DJ (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
RI Boggs, Steven/E-4170-2015;
OI Boggs, Steven/0000-0001-9567-4224; Risaliti, Guido/0000-0002-3556-977X
FU NASA [NNG08FD60C]; XMM-Newton; ESA Member States; Conicyt [ACT 1101];
STFC [ST/J00369711]
FX The authors would like to thank the referee for providing useful
feedback, which helped improve the manuscript. This research has made
use of data obtained with the NuSTAR mission, a project led by the
California Institute of Technology (Caltech), managed by the Jet
Propulsion Laboratory (JPL) and funded by NASA, and XMM-Newton, an ESA
science mission with instruments and contributions directly funded by
ESA Member States and NASA. We thank both the XMM-Newton and the NuSTAR
Operations, Software, and Calibration teams for support with the
execution and analysis of these coordinated observations. This research
was supported under NASA grant No. NNG08FD60C and has made use of the
NuSTAR Data Analysis Software (NUSTARDAS) jointly developed by the ASI
Science Data Center (ASDC, Italy) and Caltech (USA). P.A. acknowledges
financial support from Conicyt ACT 1101, and P.G. acknowledges support
from STFC (grant reference ST/J00369711).
NR 102
TC 32
Z9 32
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 10
PY 2014
VL 788
IS 1
AR 76
DI 10.1088/0004-637X/788/1/76
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI7RY
UT WOS:000337095200076
ER
PT J
AU Usman, SM
Murray, SS
Hickox, RC
Brodwin, M
AF Usman, S. M.
Murray, S. S.
Hickox, R. C.
Brodwin, M.
TI OBSCURATION BY GAS AND DUST IN LUMINOUS QUASARS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE galaxies: active; galaxies: evolution; galaxies: nuclei; infrared:
galaxies; quasars: general; X-rays: galaxies
ID ACTIVE GALACTIC NUCLEI; DIGITAL-SKY-SURVEY; DEEP FIELD-SOUTH;
ULTRALUMINOUS INFRARED GALAXIES; IRAC SHALLOW SURVEY; APPROXIMATE-TO 2;
X-RAY; TYPE-2 QUASARS; II QUASARS; RADIO GALAXIES
AB We explore the connection between absorption by neutral gas and extinction by dust in mid-infrared (IR) selected luminous quasars. We use a sample of 33 quasars at redshifts 0.7 < z less than or similar to 3 in the 9 deg(2) Bootes multiwavelength survey field that are selected using Spitzer Space Telescope Infrared Array Camera colors and are well-detected as luminous X-ray sources (with > 150 counts) in Chandra observations. We divide the quasars into dust-obscured and unobscured samples based on their optical to mid-IR color, and measure the neutral hydrogen column density N-H through fitting of the X-ray spectra. We find that all subsets of quasars have consistent power law photon indices G approximate to 1.9 that are uncorrelated with N-H. We classify the quasars as gas-absorbed or gas-unabsorbed if NH > 1022 cm(-2) or N-H < 1022 cm-2, respectively. Of 24 dust-unobscured quasars in the sample, only one shows clear evidence for significant intrinsic N-H, while 22 have column densities consistent with N-H < 1022 cm(-2). In contrast, of the nine dust-obscured quasars, six show evidence for intrinsic gas absorption, and three are consistent with N-H < 1022 cm(-2). We conclude that dust extinction in IR-selected quasars is strongly correlatedwith significant gas absorption as determined through X-ray spectral fitting. These results suggest that obscuring gas and dust in quasars are generally co-spatial, and confirm the reliability of simple mid-IR and optical photometric techniques for separating quasars based on obscuration.
C1 [Usman, S. M.; Murray, S. S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Murray, S. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Hickox, R. C.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA.
[Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA.
RP Usman, SM (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
EM Shawn.Usman@jhu.edu
FU NASA through ADAP award [NNX12AE38G]; National Science Foundation
[1211096]; NASA [NAS8-03060]
FX This work was supported by NASA through ADAP award NNX12AE38G and by the
National Science Foundation through grant number 1211096. This work is
based on observations made with the Spitzer Space Telescope, which is
operated by the Jet Propulsion Laboratory, California Institute of
Technology under a contract with NASA. This work is based on
observations with the Chandra X-Ray Telescope, which is operated by SAO
under a contract with NASA NAS8-03060.
NR 41
TC 1
Z9 1
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 10
PY 2014
VL 788
IS 1
AR L3
DI 10.1088/2041-8205/788/1/L3
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AI8CV
UT WOS:000337134100013
ER
PT J
AU Yang, Q
Wang, YJ
Labandeira, CC
Shih, CK
Ren, D
AF Yang, Qiang
Wang, Yongjie
Labandeira, Conrad C.
Shih, Chungkun
Ren, Dong
TI Mesozoic lacewings from China provide phylogenetic insight into
evolution of the Kalligrammatidae (Neuroptera)
SO BMC EVOLUTIONARY BIOLOGY
LA English
DT Article
DE Jiulongshan formation; Yixian formation; Mouthparts; Wing eyespots;
Phylogenetic analysis; Classification
ID INNER-MONGOLIA; INSECTA; FAMILY; DAOHUGOU; GENERA; RECORD
AB Background: The Kalligrammatidae are distinctive, large, conspicuous, lacewings found in Eurasia from the Middle Jurassic to mid Early Cretaceous. Because of incomplete and often inadequate fossil preservation, an absence of detailed morphology, unclear relationships, and unknown evolutionary trends, the Kalligrammatidae are poorly understood.
Results: We describe three new subfamilies, four new genera, twelve new species and four unassigned species from the late Middle Jurassic Jiulongshan and mid Early Cretaceous Yixian Formations of China. These kalligrammatid taxa exhibit diverse morphological characters, such as mandibulate mouthparts in one major clade and siphonate mouthparts in the remaining four major clades, the presence or absence of a variety of distinctive wing markings such as stripes, wing spots and eyespots, as well as multiple major wing shapes. Based on phylogenetic analyses, the Kalligrammatidae are divided into five principal clades: Kalligrammatinae Handlirsch, 1906, Kallihemerobiinae Ren & Engel, 2008, Meioneurinae subfam. nov., Oregrammatinae subfam. nov. and Sophogrammatinae subfam. nov., each of which is accorded subfamily-level status. Our results show significant morphological and evolutionary differentiation of the Kalligrammatidae family during a 40 million-year-interval of the mid Mesozoic.
Conclusion: A new phylogeny and classification of five subfamilies and their constituent genera is proposed for the Kalligrammatidae. These diverse, yet highly specialized taxa from northeastern China suggest that eastern Eurasia likely was an important diversification center for the Kalligrammatidae. Kalligrammatids possess an extraordinary morphological breadth and panoply of adaptations during the mid-Mesozoic that highlight our conclusion that their evolutionary biology is much more complex than heretofore realized.
C1 [Yang, Qiang; Wang, Yongjie; Labandeira, Conrad C.; Shih, Chungkun; Ren, Dong] Capital Normal Univ, Coll Life Sci, Beijing 100048, Peoples R China.
[Labandeira, Conrad C.] Smithsonian Inst, Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20013 USA.
[Labandeira, Conrad C.] Univ Maryland, Dept Entomol, College Pk, MD 20742 USA.
[Yang, Qiang] Shijiazhuang Univ Econ, Geosci Museum, Shijiazhuang 050031, Peoples R China.
RP Wang, YJ (reprint author), Capital Normal Univ, Coll Life Sci, Beijing 100048, Peoples R China.
EM wangyjosmy@gmail.com; rendong@mail.cnu.edu.cn
FU National Basic Research Program of China (973 Program) [2012CB821906)];
National Natural Science Foundation of China [31230065, 31272352,
31301905, 41372013, 41272006]; Great Wall Scholar and KEY project of
Beijing Municipal Commission of Education [KZ201310028033]; Program for
Changjiang Scholars and Innovative Research Team in University
[IRT13081]; China Postdoctoral Science Foundation [2012T50113]; Ph.D.
Programs Foundation of Ministry of Education of China [20131108120005];
Beijing Municipal Natural Science Foundation [5132008]; Doctoral
Scientific Research Foundation of Shijiazhuang University of Economics
[BQ201326]
FX We sincerely thank Prof. Michael S. Engel (Kansas University, Kansas,
USA), the editor, and two anonymous reviewers for their helpful comments
and suggestions. We also express our thanks to Ms. Wenying Wu for the
preparation of a previous version of photo for the specimen
(CNU-NEU-NN2009-033). This research is supported by the National Basic
Research Program of China (973 Program) (grant 2012CB821906), the
National Natural Science Foundation of China (grants 31230065, 31272352,
31301905, 41372013 and 41272006), Great Wall Scholar and KEY project of
Beijing Municipal Commission of Education (grant KZ201310028033),
Program for Changjiang Scholars and Innovative Research Team in
University (IRT13081), China Postdoctoral Science Foundation (grant
2012T50113), Ph.D. Programs Foundation of Ministry of Education of China
(grant 20131108120005), the Beijing Municipal Natural Science Foundation
(grant 5132008), and the Doctoral Scientific Research Foundation of
Shijiazhuang University of Economics (BQ201326). Finnegan Marsh assisted
in the placement and formatting of the figures. This is contribution 258
from the Evolution of Terrestrial Ecosystems Consortium of the National
Museum of Natural History, in Washington, D. C.
NR 44
TC 13
Z9 13
U1 0
U2 5
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2148
J9 BMC EVOL BIOL
JI BMC Evol. Biol.
PD JUN 9
PY 2014
VL 14
AR 126
DI 10.1186/1471-2148-14-126
PG 30
WC Evolutionary Biology; Genetics & Heredity
SC Evolutionary Biology; Genetics & Heredity
GA AM0DE
UT WOS:000339512700001
PM 24912379
ER
PT J
AU Thomas, DB
Nascimbene, PC
Dove, CJ
Grimaldi, DA
James, HF
AF Thomas, Daniel B.
Nascimbene, Paul C.
Dove, Carla J.
Grimaldi, David A.
James, Helen F.
TI Seeking carotenoid pigments in amber-preserved fossil feathers
SO SCIENTIFIC REPORTS
LA English
DT Article
ID RAMAN; PLUMAGE; DOMINICAN
AB Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.
C1 [Thomas, Daniel B.; Dove, Carla J.; James, Helen F.] Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, Washington, DC 20013 USA.
[Nascimbene, Paul C.; Grimaldi, David A.] Amer Museum Nat Hist, Div Invertebrate Zool, New York, NY 10024 USA.
RP Thomas, DB (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, Washington, DC 20013 USA.
EM d.b.thomas@massey.ac.nz
FU Peter Buck Postdoctoral Fellowship
FX We thank James Zigras and Jim Kane for loaning amber specimens to AMNH,
Matthew Carrano (NMNH) for helpful comments, Scott Whittaker (NMNH) for
SEM training, Finnegan Marsh and Mark Florence (NMNH) for access to
fossil feathers. DBT was funded by a Peter Buck Postdoctoral Fellowship,
administered by NMNH.
NR 19
TC 10
Z9 10
U1 2
U2 33
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD JUN 9
PY 2014
VL 4
AR 5226
DI 10.1038/srep05226
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AI5JB
UT WOS:000336900900001
PM 24909554
ER
PT J
AU Britz, R
Ruber, L
Johnson, GD
AF Britz, R.
Rueber, L.
Johnson, G. D.
TI Reinventing the disc: a reminder to give credit to past giants
SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
LA English
DT Article
C1 [Britz, R.] Nat Hist Museum, Dept Life Sci, London SW7 5BD, England.
[Rueber, L.] Nat Hist Museum Burgergemeinde Bern, CH-3005 Bern, Switzerland.
[Johnson, G. D.] Smithsonian Inst, Natl Museum Nat Hist, Div Fishes, Washington, DC 20560 USA.
RP Britz, R (reprint author), Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England.
EM r.britz@nhm.ac.uk
OI Ruber, Lukas/0000-0003-0125-008X
NR 6
TC 1
Z9 1
U1 1
U2 6
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 0962-8452
EI 1471-2954
J9 P ROY SOC B-BIOL SCI
JI Proc. R. Soc. B-Biol. Sci.
PD JUN 7
PY 2014
VL 281
IS 1784
AR 20132920
DI 10.1098/rspb.2013.2920
PG 3
WC Biology; Ecology; Evolutionary Biology
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Evolutionary Biology
GA AG4IJ
UT WOS:000335382700004
PM 24759853
ER
PT J
AU Saarinen, JJ
Boyer, AG
Brown, JH
Costa, DP
Ernest, SKM
Evans, AR
Fortelius, M
Gittleman, JL
Hamilton, MJ
Harding, LE
Lintulaakso, K
Lyons, SK
Okie, JG
Sibly, RM
Stephens, PR
Theodor, J
Uhen, MD
Smith, FA
AF Saarinen, Juha J.
Boyer, Alison G.
Brown, James H.
Costa, Daniel P.
Ernest, S. K. Morgan
Evans, Alistair R.
Fortelius, Mikael
Gittleman, John L.
Hamilton, Marcus J.
Harding, Larisa E.
Lintulaakso, Kari
Lyons, S. Kathleen
Okie, Jordan G.
Sibly, Richard M.
Stephens, Patrick R.
Theodor, Jessica
Uhen, Mark D.
Smith, Felisa A.
TI Patterns of maximum body size evolution in Cenozoic land mammals:
eco-evolutionary processes and abiotic forcing
SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
LA English
DT Article
DE body size; maximum size frequency; mammals; Cenozoic; evolution;
macroecology
ID COPES RULE; FOSSIL MAMMALS; TRENDS
AB There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing.
C1 [Saarinen, Juha J.; Fortelius, Mikael; Lintulaakso, Kari] Univ Helsinki, Dept Geosci & Geog, Helsinki, Finland.
[Boyer, Alison G.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA.
[Brown, James H.; Hamilton, Marcus J.; Harding, Larisa E.; Okie, Jordan G.; Smith, Felisa A.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA.
[Hamilton, Marcus J.] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA.
[Costa, Daniel P.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA.
[Ernest, S. K. Morgan] Utah State Univ, Dept Biol, Logan, UT 84322 USA.
[Ernest, S. K. Morgan] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA.
[Evans, Alistair R.] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia.
[Gittleman, John L.; Stephens, Patrick R.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA.
[Hamilton, Marcus J.] Santa Fe Inst, Santa Fe, NM 87501 USA.
[Lyons, S. Kathleen] Smithsonian Inst, Dept Paleobiol, Washington, DC 20560 USA.
[Okie, Jordan G.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA.
[Sibly, Richard M.] Univ Reading, Sch Biol Sci, Reading, Berks, England.
[Theodor, Jessica] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada.
[Uhen, Mark D.] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA.
RP Saarinen, JJ (reprint author), Univ Helsinki, Dept Geosci & Geog, Helsinki, Finland.
EM juha.saarinen@helsinki.fi
RI Evans, Alistair/D-4239-2011; Ernest, SK Morgan/O-2532-2015;
OI Evans, Alistair/0000-0002-4078-4693; Ernest, SK
Morgan/0000-0002-6026-8530; Sibly, Richard/0000-0001-6828-3543
FU National Science Foundation Grant Integrating Macroecological Pattern
and Processes across Scales, Research Coordination Network [DEB
0541625]; Finnish Graduate School of Geology
FX This study was supported by National Science Foundation Grant
Integrating Macroecological Pattern and Processes across Scales,
Research Coordination Network DEB 0541625 (to F. A. S., S. K. L. and S.
K. M. E., principal investigators). The work of J.S. was funded by the
Finnish Graduate School of Geology.
NR 28
TC 3
Z9 3
U1 3
U2 31
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 0962-8452
EI 1471-2954
J9 P ROY SOC B-BIOL SCI
JI Proc. R. Soc. B-Biol. Sci.
PD JUN 7
PY 2014
VL 281
IS 1784
AR 20132049
DI 10.1098/rspb.2013.2049
PG 10
WC Biology; Ecology; Evolutionary Biology
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Evolutionary Biology
GA AG4IJ
UT WOS:000335382700001
PM 24741007
ER
PT J
AU Chang, D
Duda, TF
AF Chang, Dan
Duda, Thomas F., Jr.
TI Application of community phylogenetic approaches to understand gene
expression: differential exploration of venom gene space in predatory
marine gastropods
SO BMC EVOLUTIONARY BIOLOGY
LA English
DT Article
ID DUPLICATE GENES; RAPID EVOLUTION; CIS-ELEMENTS; CONUS; DIVERGENCE;
PATTERNS; SNAILS; DIVERSIFICATION; TRANSCRIPTOME; FAMILIES
AB Background: Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components ('conotoxins'), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species' 'venom gene space'. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization.
Results: Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci ('under-dispersed' expression of available genes) while others express sets of more disparate genes ('over-dispersed' expression). In addition, expressed genes show higher d(N)/d(S) values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication.
Conclusions: Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.
C1 [Chang, Dan; Duda, Thomas F., Jr.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA.
[Chang, Dan; Duda, Thomas F., Jr.] Univ Michigan, Museum Zool, Ann Arbor, MI 48109 USA.
[Chang, Dan] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA.
[Duda, Thomas F., Jr.] Smithsonian Trop Res Inst, Balboa, Panama.
RP Chang, D (reprint author), 1156 High Str Mail Stop EEBiol, Santa Cruz, CA 95064 USA.
EM changdan@umich.edu
FU EEB Block Grants from Rackham Graduate School of University of Michigan;
NSF [IOS-0718379]
FX We thank J-P Bingham from the University of Hawaii for providing venom
duct samples of C. quercinus. We acknowledge colleagues at the
University of Michigan, including Jianzhi Zhang, Taehwan Lee, Earl
Werner, Lori Isom and Wenfeng Qian, and Gang Chen at the University of
Rhode Island, as well as the editor and two anonymous reviewers for
their valuable comments on our manuscript. This study is supported by
EEB Block Grants from Rackham Graduate School of University of Michigan
awarded to DC and an NSF research grant (IOS-0718379) awarded to TFD.
NR 54
TC 3
Z9 3
U1 0
U2 8
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2148
J9 BMC EVOL BIOL
JI BMC Evol. Biol.
PD JUN 5
PY 2014
VL 14
AR 123
DI 10.1186/1471-2148-14-123
PG 12
WC Evolutionary Biology; Genetics & Heredity
SC Evolutionary Biology; Genetics & Heredity
GA AK3HF
UT WOS:000338313400001
PM 24903151
ER
PT J
AU Darnell, AM
Graf, JA
Somers, MJ
Slotow, R
Gunther, MS
AF Darnell, Angela M.
Graf, Jan A.
Somers, Michael J.
Slotow, Rob
Gunther, Micaela Szykman
TI Space Use of African Wild Dogs in Relation to Other Large Carnivores
SO PLOS ONE
LA English
DT Article
ID HLUHLUWE-UMFOLOZI PARK; KRUGER-NATIONAL-PARK; LYCAON-PICTUS;
SOUTH-AFRICA; INTERSPECIFIC COMPETITION; HUNTING BEHAVIOR; SPOTTED
HYAENAS; IMFOLOZI-PARK; PANTHERA-LEO; PACK SIZE
AB Interaction among species through competition is a principle process structuring ecological communities, affecting behavior, distribution, and ultimately the population dynamics of species. High competition among large African carnivores, associated with extensive diet overlap, manifests in interactions between subordinate African wild dogs (Lycaon pictus) and dominant lions (Panthera leo) and spotted hyenas (Crocuta crocuta). Using locations of large carnivores in Hluhluwe-iMfolozi Park, South Africa, we found different responses from wild dogs to their two main competitors. Wild dogs avoided lions, particularly during denning, through a combination of spatial and temporal avoidance. However, wild dogs did not exhibit spatial or temporal avoidance of spotted hyenas, likely because wild dog pack sizes were large enough to adequately defend their kills. Understanding that larger carnivores affect the movements and space use of other carnivores is important for managing current small and fragmented carnivore populations, especially as reintroductions and translocations are essential tools used for the survival of endangered species, as with African wild dogs.
C1 [Darnell, Angela M.; Gunther, Micaela Szykman] Humboldt State Univ, Dept Wildlife, Arcata, CA 95521 USA.
[Graf, Jan A.; Slotow, Rob] Univ KwaZulu Natal, Sch Life Sci, Durban, South Africa.
[Somers, Michael J.] Univ Pretoria, Ctr Wildlife Management, Ctr Invas Biol, ZA-0002 Pretoria, South Africa.
[Gunther, Micaela Szykman] Smithsonian Conservat Biol Inst, Front Royal, VA USA.
RP Darnell, AM (reprint author), Humboldt State Univ, Dept Wildlife, Arcata, CA 95521 USA.
EM ange.darnell@gmail.com
RI Somers, Michael/A-1523-2008;
OI /0000-0002-5836-8823
FU Smithsonian Institution Undersecretary for Science Endowment Funds;
American Zoo and Aquarium Association Conservation Endowment Fund;
Humboldt State University Sponsored Program Foundation; University of
Pretoria, Green Trust; Bateleurs and Wildlife Conservation Trust; NRF,
NSF; University of KwaZulu-Natal; Walt Disney Foundation and MGM; Wild
about Cats; Hluhluwe Tourism Association; THRIP; Grand Hotel grants
FX Funding for this project was provided by the Smithsonian Institution
Undersecretary for Science Endowment Funds, the American Zoo and
Aquarium Association Conservation Endowment Fund, and Humboldt State
University Sponsored Program Foundation (MSG); University of Pretoria,
The Green Trust (WWF-SA), and Bateleurs and Wildlife Conservation Trust
(KZN) (MS); NRF, NSF, University of KwaZulu-Natal, Walt Disney
Foundation and MGM, Wild about Cats, and Hluhluwe Tourism Association
(RS); and THRIP (N. Ferguson) and Grand Hotel grants (C. Packer). The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
NR 78
TC 6
Z9 6
U1 11
U2 83
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 4
PY 2014
VL 9
IS 6
AR e98846
DI 10.1371/journal.pone.0098846
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK4YO
UT WOS:000338430700086
PM 24896638
ER
PT J
AU Kuntner, M
Naparus, M
Li, DQ
Coddington, JA
AF Kuntner, Matjaz
Naparus, Magdalena
Li, Daiqin
Coddington, Jonathan A.
TI Phylogeny Predicts Future Habitat Shifts Due to Climate Change
SO PLOS ONE
LA English
DT Article
ID RANGE EXPANSION; BIODIVERSITY; IMPACTS; DRIVEN; DISTRIBUTIONS;
POPULATIONS; EXTINCTIONS; DIVERSITY; EVOLUTION; PATTERNS
AB Background: Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change.
Methodology: We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes.
Conclusions: Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.
C1 [Kuntner, Matjaz] Slovenian Acad Sci & Arts, Inst Biol, Ctr Sci Res, Ljubljana, Slovenia.
[Kuntner, Matjaz; Li, Daiqin] Hubei Univ, Coll Life Sci, Ctr Behav Ecol & Evolut, Wuhan, Hubei, Peoples R China.
[Kuntner, Matjaz; Coddington, Jonathan A.] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20560 USA.
[Naparus, Magdalena] Univ Bucharest, Ctr Landscape Terr Informat Syst CeLTIS, Bucharest, Romania.
[Naparus, Magdalena] Tular Cave Lab, Kranj, Slovenia.
[Li, Daiqin] Natl Univ Singapore, Dept Biol Sci, Singapore 117548, Singapore.
RP Kuntner, M (reprint author), Slovenian Acad Sci & Arts, Inst Biol, Ctr Sci Res, Ljubljana, Slovenia.
EM kuntner@gmail.com
RI Aljancic, Magdalena/O-4801-2014; Li, Daiqin/D-6922-2013
OI Li, Daiqin/0000-0001-8269-7734
FU Raffles Museum for Biodiversity Research (RMBR); Slovenian Research
Agency [P10236, BI-US/09-12-016, MU-PROM/12-001]; NSFC [31272324];
Singapore Ministry of Education (MOE) AcRF [R-154-000-476-112]
FX This research was supported in part by a Raffles Museum for Biodiversity
Research (RMBR) Short-term Fellowship and the grants P10236,
BI-US/09-12-016 and MU-PROM/12-001 from the Slovenian Research Agency to
M. K. and by the NSFC grant (31272324) and Singapore Ministry of
Education (MOE) AcRF grant (R-154-000-476-112) to D. L. The funders had
no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 52
TC 4
Z9 4
U1 7
U2 41
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 3
PY 2014
VL 9
IS 6
AR e98907
DI 10.1371/journal.pone.0098907
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AI5ML
UT WOS:000336911400109
PM 24892737
ER
PT J
AU Adamski, D
Landry, JF
Nazari, V
AF Adamski, David
Landry, Jean-Francois
Nazari, Vazrick
TI THREE NEW SPECIES OF LEAF-MINING GELECHIIDAE (LEPIDOPTERA) FROM CANADA
AND NORTHEASTERN UNITED STATES
SO JOURNAL OF THE LEPIDOPTERISTS SOCIETY
LA English
DT Article
DE chaetotaxy; DNA barcode; Gelechiidae; leaf-miners; taxonomy
ID HOLARCTIC TELEIODINI LEPIDOPTERA
AB Three new species of leaf-mining Gelechiidae are described: Xenolechia ceanothiae Priest, whose larvae feed on Ceanothus americanus L. (Rhamnaceae); Gnorimoschema shepherdiae Priest, on Shepherdia canadensis (L.) Nutt. (Elaeagnaceae); and Scrobipalpula manierreorum Priest, on Eurybia (Aster) macrophylla (L.) Cassini (Asteraceae). Their leaf mines were initially discovered in the understory in Michigan forests. Barcoding revealed additional records for two of these species from several regions of Canada. Photographs of the imagos and illustrations of the male and female genitalia, larval and pupal chaetotaxal maps are provided. Scanning electron micrographs of selected features of the larva for each species supplement illustrations. Comparative diagnoses of adult morphological characters are presented to distinguish the new species from other North American congeners. Photographs of the leaf-mines for each species are also included. DNA barcodes for each species are shown to be distinct from related North American congeners. The first occurrence of Gnorimosthema vibei Wolff in North America is confirmed by barcoded specimens from Kuujjuarapik in northern Quebec, Canada.
C1 [Adamski, David] Smithsonian Inst, Natl Museum Nat Hist, Dept Entomol, Washington, DC 20013 USA.
[Landry, Jean-Francois; Nazari, Vazrick] Agr & Agri Food Canada, CEF, Ottawa, ON K1A 0C6, Canada.
RP Adamski, D (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Entomol, POB 37012,NHB E526,MRC 168, Washington, DC 20013 USA.
EM adamskid@si.edu; landryjf@agr.gc.ca; nazariv@agr.gc.ca
FU Huron Mountains Wildlife Foundation; Government of Canada through Genome
Canada; Ontario Genomics Institute; NSERC; Canada Foundation for
Innovation; Ontario Ministry of Research and Innovation; AAFC (Science
and Innovation Branch)
FX RJP is most grateful to David Gosling, former, and Kerry Woods, Research
Director, Huron Mountains Wildlife Foundation for support of this
research; William and Anne Manierre for sharing their vast knowledge of
the Huron Mountain holdings, guidance to various habitats, personal
friendship, encouragement, and hospitality during his visits; and to
Wayne Thorpe for his sharing of the historical knowledge of the Huron
Mountain Club and his assistance with logistics.; We thank Peter Huemer,
Tyroler Landesmuseen, Innsbruck, Austria, Marko Mutanen, University of
Oulu, Finland, Helena Wirta, University of Helsinki, Finland, Jeremy
deWaard, Alex Smith, and Paul Hebert for granting us permission to use
BOLD sequences based on specimens from their collection or under their
care. We thank Ole Karsholt, Zoological Museum, University of
Copenhagen, for unpublished information about Gnorimoschema vibei. Paul
Hebert generously agreed that BIO specimens designated as paratypes be
deposited in the CNC. DNA barcoding was enabled, in part, by funding
from the Government of Canada through Genome Canada, and the Ontario
Genomics Institute in support of the International Barcode of Life
Project. NSERC, the Canada Foundation for Innovation, the Ontario
Ministry of Research and Innovation, and AAFC (Science and Innovation
Branch) also provided support.
NR 28
TC 1
Z9 1
U1 1
U2 3
PU LEPIDOPTERISTS SOC
PI LOS ANGELES
PA 900 EXPOSITION BLVD, LOS ANGELES, CA 90007-4057 USA
SN 0024-0966
J9 J LEPID SOC
JI J. Lepid. Soc.
PD JUN 2
PY 2014
VL 68
IS 2
BP 101
EP 123
PG 23
WC Entomology
SC Entomology
GA AI4XZ
UT WOS:000336871200004
ER
PT J
AU Long, KS
Kuntz, KD
Blair, WP
Godfrey, L
Plucinsky, PP
Soria, R
Stockdale, C
Winkler, PF
AF Long, Knox S.
Kuntz, Kip D.
Blair, William P.
Godfrey, Leith
Plucinsky, Paul P.
Soria, Roberto
Stockdale, Christopher
Winkler, P. Frank
TI A DEEP CHANDRA ACIS SURVEY OF M83
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE galaxies: individual (M83); galaxies: ISM; ISM: supernova remnants;
supernovae: individual (SN1923A); X-rays: binaries; X-rays: general;
X-rays: individual (M83)
ID X-RAY BINARIES; HUBBLE-SPACE-TELESCOPE; BLACK-HOLE; CENTRAL REGION;
STAR-FORMATION; INTERSTELLAR-MEDIUM; SUPERNOVA-REMNANTS; SOURCE
POPULATION; SPIRAL-GALAXIES; SOURCE CATALOG
AB We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D-25 contour of the galaxy. We find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 x 10(35) erg s(-1). Despite M83's relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs.
C1 [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Kuntz, Kip D.; Blair, William P.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA.
[Godfrey, Leith; Soria, Roberto] Curtin Univ Technol, Curtin Inst Radio Astron, Bentley, WA 6102, Australia.
[Godfrey, Leith] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands.
[Plucinsky, Paul P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Stockdale, Christopher] Marquette Univ, Dept Phys, Milwaukee, WI 53201 USA.
[Winkler, P. Frank] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA.
RP Long, KS (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
EM long@stsci.edu; kuntz@pha.jhu.edu; wpb@pha.jhu.edu;
leith.godfrey@icrar.org; plucinsky@cfa.harvard.edu;
roberto.soria@icrar.org; christopher.stockdale@marquette.edu;
winkler@middlebury.edu
OI Long, Knox/0000-0002-4134-864X; Blair, William/0000-0003-2379-6518
FU National Aeronautics and Space Administration [GO1-12115]; NASA
[NAS8-03060]; National Science Foundation [AST-0908566]; [GO1-12115C]
FX Support for this work was provided by the National Aeronautics and Space
Administration through Chandra grant No. GO1-12115, issued by the
Chandra X-Ray Observatory Center, which is operated by the Smithsonian
Astrophysical Observatory for and on behalf of NASA under contract
NAS8-03060. W.P.B. and K.K. acknowledge Chandra grant No. GO1-12115C to
Johns Hopkins University. P.F.W. also acknowledges financial support
from the National Science Foundation through grant AST-0908566, and the
hospitality of the Research School of Astronomy and Astrophysics,
Australian National University, during a portion of the work presented
here.
NR 84
TC 8
Z9 8
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD JUN
PY 2014
VL 212
IS 2
AR 21
DI 10.1088/0067-0049/212/2/21
PG 29
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CD3PZ
UT WOS:000350993000004
ER
PT J
AU Robison, HW
McAllister, CT
Breinholt, JW
Crandall, KA
AF Robison, Henry W.
McAllister, Chris T.
Breinholt, Jesse W.
Crandall, Keith A.
TI STATUS, DISTRIBUTION, AND GENETICS OF BLAIR'S FENCING CRAYFISH,
FAXONELLA BLAIRI (DECAPODA: CAMBARIDAE)
SO SOUTHWESTERN NATURALIST
LA English
DT Article
ID OSAGE BURROWING CRAYFISH; OKLAHOMA; ARKANSAS; RECORDS; HISTORY
AB During a multi-year study of the rare Blair's fencing crayfish (Faxonella blairi Hayes and Reimer), we made 87 collections in 10 counties throughout the West Gulf Coastal Plain of southwestern Arkansas. Intensive searches throughout these counties revealed the presence of 36 new populations of F. blairi in Little River, Miller, and Sevier counties. In each of these counties, F. blairi was found to be a locally abundant crayfish. New county records from museum collections were documented for Columbia and Howard counties, Arkansas, and Cass County, Texas. Additionally, we surveyed genetic variation in F. blairi and found them to be a monophyletic group with a sister relationship to Faxonella clypeata but with clear genetic distinctiveness from this sister taxon. There was modest genetic variation within Arkansas, and this genetic variation was greater than that across Arkansas, Oklahoma, and Texas for F. blairi. Faxonella blairi should be considered as currently stable due to its more widespread distribution than previously believed and general abundance throughout its range in southwestern Arkansas.
C1 [Robison, Henry W.] Southern Arkansas Univ, Dept Biol, Magnolia, AR 71754 USA.
[McAllister, Chris T.] Eastern Oklahoma State Coll, Div Sci & Math, Idabel, OK 74745 USA.
[Breinholt, Jesse W.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA.
[Crandall, Keith A.] George Washington Univ, Computat Biol Inst, Ashburn, VA 20147 USA.
[Crandall, Keith A.] Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, Washington, DC 20013 USA.
RP McAllister, CT (reprint author), Eastern Oklahoma State Coll, Div Sci & Math, Idabel, OK 74745 USA.
EM cmcallister@se.edu
OI Crandall, Keith/0000-0002-0836-3389
NR 19
TC 0
Z9 0
U1 0
U2 2
PU SOUTHWESTERN ASSOC NATURALISTS
PI SAN MARCOS
PA SOUTHWEST TEXAS STATE UNIV, DEPT BIOLOGY, 601 UNIVERSITY DR, SAN MARCOS,
TX 78666 USA
SN 0038-4909
EI 1943-6262
J9 SOUTHWEST NAT
JI Southw. Natural.
PD JUN
PY 2014
VL 59
IS 2
BP 244
EP 250
DI 10.1894/F12-JHK-09.1
PG 7
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA CC8YX
UT WOS:000350655600012
ER
PT J
AU Matson, JO
Ordonez-Garza, N
Woodman, N
Bulmer, W
Eckerlin, RP
Hanson, JD
AF Matson, John O.
Ordonez-Garza, Nicte
Woodman, Neal
Bulmer, Walter
Eckerlin, Ralph P.
Hanson, J. Delton
TI SMALL MAMMALS FROM THE CHELEMHA CLOUD FOREST RESERVE, ALTA VERAPAZ,
GUATEMALA
SO SOUTHWESTERN NATURALIST
LA English
DT Article
ID HIGHLANDS; SORICIDAE; SHREWS; SORICOMORPHA; POPULATIONS
AB We surveyed the small mammals of remnant mixed hardwood-coniferous cloud forest at elevations ranging from 2,100-2,300 m in the Chelemha Cloud Forest Reserve, Alta Verapaz, Guatemala. Removal-trapping using a combination of live traps, snap traps, and pitfall traps for 6 days in January 2007 resulted in 175 captures of 15 species of marsupials, shrews, and rodents. This diversity of small mammals is the highest that we have recorded from a single locality of the 10 visited during eight field seasons in the highlands of Guatemala. Based on captures, the most abundant species in the community of small mammals is Peromyscus grandis (n = 50), followed by Handleyomys rhabdops (n = 27), Heteromys desmarestianus (n = 18), Reithrodontomys mexicanus (n = 17), Handleyomys saturatior (n = 16), Sorex veraepacis (n = 15), and Scotinomys teguina (n = 13). The remaining eight species were represented by one to five individuals.
C1 [Matson, John O.] San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA.
[Ordonez-Garza, Nicte] Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA.
[Woodman, Neal] Smithsonian Inst, Natl Museum Nat Hist, US Geol Survey, Patuxent Wildlife Res Ctr, Washington, DC 20013 USA.
[Bulmer, Walter; Eckerlin, Ralph P.] No Virginia Community Coll, Div Nat Sci, Annandale, VA 22003 USA.
[Hanson, J. Delton] Res & Testing Lab, Lubbock, TX 79416 USA.
RP Matson, JO (reprint author), San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA.
EM johnomatson@gmail.com
OI Woodman, Neal/0000-0003-2689-7373
FU Virginia Community College System Professional Development Grant;
Northern Virginia Community College Educational Foundation; Department
of Biological Sciences, San Jose State University, California; United
States Geological Survey Patuxent Wildlife Research Center, Maryland; R.
Baker of the Natural Sciences Research Laboratory at The Museum of Texas
Tech University, Lubbock; NIH
FX We thank the personnel of Reserva Privada Chelemha-Union para Proteger
el Bosque Nuboso for allowing us to sample small mammals on their
reserve. We thank F. Herrera of Consejo Nacional de Areas Protegidas,
Guatemala, for providing collecting permits and other valuable
assistance during the 2007 field season. We thank A. Gardner for his
suggestions and comments on the manuscript. Partial funding was provided
by the Virginia Community College System Professional Development Grant
and Northern Virginia Community College Educational Foundation to WB and
RPE, the Department of Biological Sciences, San Jose State University,
California to JOM, and the United States Geological Survey Patuxent
Wildlife Research Center, Maryland, to NW. Additional funds were
provided to JDH by R. Baker of the Natural Sciences Research Laboratory
at The Museum of Texas Tech University, Lubbock, and an NIH grant to C.
Fulhorst at the University of Texas Medical Branch, Galveston.
NR 25
TC 2
Z9 2
U1 0
U2 3
PU SOUTHWESTERN ASSOC NATURALISTS
PI SAN MARCOS
PA SOUTHWEST TEXAS STATE UNIV, DEPT BIOLOGY, 601 UNIVERSITY DR, SAN MARCOS,
TX 78666 USA
SN 0038-4909
EI 1943-6262
J9 SOUTHWEST NAT
JI Southw. Natural.
PD JUN
PY 2014
VL 59
IS 2
BP 258
EP 262
DI 10.1894/F14-TAL-60.1
PG 5
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA CC8YX
UT WOS:000350655600014
ER
PT J
AU Torres, JM
Curet, LA
Rice-Snow, S
Castor, MJ
Castor, AK
AF Torres, Joshua M.
Curet, L. Antonio
Rice-Snow, Scott
Castor, Melissa J.
Castor, Andrew K.
TI OF FLESH AND STONE: LABOR INVESTMENT AND REGIONAL SOCIOPOLITICAL
IMPLICATIONS OF PLAZA/BATEY CONSTRUCTION AT THE CEREMONIAL CENTER OF
TIBES (A.D. 600-A.D. 1200), PUERTO RICO
SO LATIN AMERICAN ANTIQUITY
LA English
DT Article
ID ORGANIZATION; ARCHAEOLOGY; COMMUNITY; MONUMENTALITY; MESOAMERICA;
ENERGETICS; IDEOLOGY; HAWAII; POWER; PERU
AB Ceremonial architecture of late precontact (A.D. 600-1500) societies of Puerto Rico consists of stone-lined plazas and ball courts (bateys). Archaeologists use these structures to signify the onset of hierarchical "chiefly" polities and to interpret their regional organization. Problematically, little consideration is given to the costs of their physical construction and the associated organizational implications at local and regional scales. In this paper, we use data gathered through geoarchaelogical field investigations to develop labor estimates for the plaza and bateys at the site of Tibes one of the largest precolumbian ceremonial centers in Puerto Rico. The estimates provide a basis for addressing how these features were constructed at the site and are considered within the broader organizational contexts of incipient polities in the island's south-central region between A.D. 600 and A.D. 1200.
C1 [Torres, Joshua M.] Natl Pk Serv, St Croix, VI 00820 USA.
[Curet, L. Antonio] Smithsonian Inst, Natl Museum Amer Indian, Cultural Ctr, Suitland, MD 20746 USA.
[Rice-Snow, Scott; Castor, Melissa J.; Castor, Andrew K.] Ball State Univ, Dept Geol Sci, Muncie, IN 47306 USA.
RP Torres, JM (reprint author), Natl Pk Serv, 2100 Church St 100 Christiansted, St Croix, VI 00820 USA.
EM joshua_torres@nps.gov; CuretA@si.edu; ricesnow@bsu.edu
NR 110
TC 1
Z9 1
U1 0
U2 0
PU SOC AMER ARCHAEOLOGY
PI WASHINGTON
PA 900 SECOND ST., NE STE 12, WASHINGTON, DC 20002-3557 USA
SN 1045-6635
J9 LAT AM ANTIQ
JI Lat. Am. Antiq.
PD JUN
PY 2014
VL 25
IS 2
BP 125
EP 151
PG 27
WC Archaeology
SC Archaeology
GA CA4QZ
UT WOS:000348890900003
ER
PT J
AU Kanzaki, N
Giblin-Davis, RM
Ye, W
Herre, EA
Center, BJ
AF Kanzaki, N.
Giblin-Davis, R. M.
Ye, W.
Herre, E. A.
Center, B. J.
TI PARASITODIPLOGASTER SPECIES ASSOCIATED WITH PHARMACOSYCEA FIGS IN PANAMA
SO JOURNAL OF NEMATOLOGY
LA English
DT Meeting Abstract
C1 [Kanzaki, N.; Giblin-Davis, R. M.; Ye, W.; Center, B. J.] Univ Florida, Ft Lauderdale Res & Educ Ctr, Davie, FL 33314 USA.
[Kanzaki, N.] Forestry & Forest Prod Res Inst, Forest Pathol Lab, Tsukuba, Ibaraki 3058687, Japan.
Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
NR 0
TC 0
Z9 0
U1 1
U2 4
PU SOC NEMATOLOGISTS
PI MARCELINE
PA PO BOX 311, MARCELINE, MO 64658 USA
SN 0022-300X
J9 J NEMATOL
JI J. Nematol.
PD JUN
PY 2014
VL 46
IS 2
BP 184
EP 184
PG 1
WC Zoology
SC Zoology
GA AW5EW
UT WOS:000346299700180
ER
PT J
AU Touwaide, A
AF Touwaide, Alain
TI Communities of Learned Experience: Epistolary Medicine in the
Renaissance.
SO RENAISSANCE QUARTERLY
LA English
DT Book Review
C1 [Touwaide, Alain] Inst Preservat Med Tradit, Washington, DC 20560 USA.
[Touwaide, Alain] Smithsonian Inst, Washington, DC 20560 USA.
RP Touwaide, A (reprint author), Inst Preservat Med Tradit, Washington, DC 20560 USA.
NR 1
TC 0
Z9 0
U1 1
U2 2
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA
SN 0034-4338
EI 1935-0236
J9 RENAISSANCE QUART
JI Renaiss. Q.
PD SUM
PY 2014
VL 67
IS 2
BP 575
EP U528
DI 10.1086/677425
PG 2
WC Medieval & Renaissance Studies
SC Arts & Humanities - Other Topics
GA AU5CM
UT WOS:000345624700021
ER
PT J
AU Zuckerman, MK
Garofalo, EM
Frohlich, B
Ortner, DJ
AF Zuckerman, Molly K.
Garofalo, Evan M.
Frohlich, Bruno
Ortner, Donald J.
TI Anemia or scurvy: A pilot study on differential diagnosis of porous and
hyperostotic lesions using differential cranial vault thickness in
subadult humans
SO INTERNATIONAL JOURNAL OF PALEOPATHOLOGY
LA English
DT Article
DE Scurvy; Anemia; Cribra orbitalia; Porotic hyperostosis; Cranial vault
thickness; Fuzzy landmarks
ID ARCHAEOLOGICAL SITES; BONE-GROWTH; POPULATION; DEFICIENCY; BRITAIN
AB Metabolic disorders, such as scurvy, manifested in human skeletal remains provide insight into health, nutrition, and environmental quality in past populations. Porous cranial vault lesions are often used to diagnose metabolic conditions in subadult remains, but overlapping gross lesion expressions have led to over-diagnosis of anemia and under-diagnosis of scurvy. Studies by Ortner and colleagues have suggested that specific porous cranial lesions are pathognomonic of scurvy, but additional diagnostic tools are necessary. In this technical report, we offer a preliminary assessment of cranial vault thickness (CVT) at the site of porous lesions ( sensu lato porotic hyperostosis, cribra orbitalia) as a method for distinguishing between scurvy and anemia in subadult crania. Computed Tomography (CT) was used to measure CVT at various landmarks associated with porotic hyperostosis and cribra orbitalia, complemented by lesion scores, from scorbutic (N = 11), anemic (N = 3), and non-pathological (N = 28) subadult crania used as a control group. Results indicate that CVT consistently distinguishes scorbutic from non-pathological individuals, while anemic individuals overlap with both - likely a function of small sample size in this study. Despite current limitations, CVT has the potential to be an objective diagnostic tool for distinguishing scurvy and expanding reconstructions of nutritional adequacy over the life course in past populations. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Zuckerman, Molly K.] Mississippi State Univ, Cobb Inst Archaeol, Dept Anthropol & Middle Eastern Cultures, Mississippi State, MS 39762 USA.
[Garofalo, Evan M.] Univ Maryland, Sch Med, Dept Anat & Neurobiol, Baltimore, MD 21201 USA.
[Frohlich, Bruno; Ortner, Donald J.] Natl Museum Nat Hist, Smithsonian Inst, Dept Phys Anthropol, Washington, DC 20560 USA.
RP Zuckerman, MK (reprint author), Mississippi State Univ, Cobb Inst Archaeol, Dept Anthropol & Middle Eastern Cultures, POB AR, Mississippi State, MS 39762 USA.
EM mkz12@msstate.edu; egarofalo@stapa.umm.edu; frohlich@si.edu
OI Garofalo, Evan/0000-0002-5792-2239; Zuckerman, Molly/0000-0001-8967-3321
NR 24
TC 5
Z9 5
U1 2
U2 7
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1879-9817
EI 1879-9825
J9 INT J PALEOPATHOL
JI Int. J. Paleopathol.
PD JUN
PY 2014
VL 5
BP 27
EP 33
DI 10.1016/j.ijpp.2014.02.001
PG 7
WC Paleontology; Pathology
SC Paleontology; Pathology
GA AT2PO
UT WOS:000344776900004
ER
PT J
AU Gingerich, O
AF Gingerich, Owen
TI INFINITESIMAL How a Dangerous Mathematical Theory Shaped the Modern
World
SO AMERICAN SCHOLAR
LA English
DT Book Review
C1 [Gingerich, Owen] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Gingerich, O (reprint author), Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
NR 1
TC 0
Z9 0
U1 0
U2 0
PU PHI BETA KAPPA SOC
PI WASHINGTON
PA 1785 MASSACHUSETTS AVENUE, N W FOURTH FL,, WASHINGTON, DC 20036 USA
SN 0003-0937
EI 2162-2892
J9 AM SCHOLAR
JI Am. Sch.
PD SUM
PY 2014
VL 83
IS 3
BP 109
EP 111
PG 3
WC Humanities, Multidisciplinary
SC Arts & Humanities - Other Topics
GA AS3ZS
UT WOS:000344214100040
ER
PT J
AU Hintz, ES
AF Hintz, Eric S.
TI Tesla: Inventor of the Electrical Age.
SO BUSINESS HISTORY REVIEW
LA English
DT Book Review
C1 [Hintz, Eric S.] Smithsonian Inst, Lemelson Ctr, Washington, DC 20560 USA.
RP Hintz, ES (reprint author), Smithsonian Inst, Lemelson Ctr, Washington, DC 20560 USA.
NR 1
TC 0
Z9 0
U1 0
U2 0
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0007-6805
EI 2044-768X
J9 BUS HIST REV
JI Bus. Hist. Rev.
PD SUM
PY 2014
VL 88
IS 2
BP 394
EP 396
DI 10.1017/S0007680514000129
PG 4
WC Business; History Of Social Sciences
SC Business & Economics; Social Sciences - Other Topics
GA AS4CR
UT WOS:000344221500014
ER
PT J
AU Kaeppler, AL
AF Kaeppler, Adrienne L.
TI SISTER MALIA TU'IFUA DESCENDANT OF CHIEFS, DAUGHTER OF GOD
SO JOURNAL OF THE POLYNESIAN SOCIETY
LA English
DT Article
DE Tonga; Marist sisters; Second World War; women's development; dance
AB This portrait of Sister Tu'ifua (1924-2007), explores the life of high-ranking Halakihe'umata Tu'ifua from her inauspicious birth in Lapaha, Tonga, to her profession in becoming a Roman Catholic nun and her subsequent work for the church. The account details several features of her early life: her love of dancing and performing, her interaction with American servicemen during the Second World War, and her reason for becoming a nun. It then follows Sister Tu'ifua's career: teaching children, development work with Tongan women and, latterly, her international role and work for the betterment of the poorest of Tongan people.
C1 [Kaeppler, Adrienne L.] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20560 USA.
RP Kaeppler, AL (reprint author), Smithsonian Inst, Dept Anthropol, Natl Museum Nat Hist, MRC 112,10th & Constitut Ave NW, Washington, DC 20560 USA.
EM KAEPPLEA@si.edu
NR 0
TC 0
Z9 0
U1 0
U2 0
PU POLYNESIAN SOC INC
PI AUCKLAND
PA C/O MAORI STUDIES, UNIV AUCKLAND, PRIVATE BAG, AUCKLAND 92019, NEW
ZEALAND
SN 0032-4000
EI 2230-5955
J9 J POLYNESIAN SOC
JI J. Polyn. Soc.
PD JUN
PY 2014
VL 123
IS 2
SI SI
BP 169
EP 183
PG 15
WC Anthropology
SC Anthropology
GA AR6JH
UT WOS:000343689400005
ER
PT J
AU Stassun, KG
Feiden, GA
Torres, G
AF Stassun, Keivan G.
Feiden, Gregory A.
Torres, Guillermo
TI Empirical tests of pre-main-sequence stellar evolution models with
eclipsing binaries
SO NEW ASTRONOMY REVIEWS
LA English
DT Article
ID LOW-MASS STARS; ORION NEBULA CLUSTER; EQUATION-OF-STATE; HIGH-RESOLUTION
SPECTROSCOPY; OBSERVED LUMINOSITY SPREAD; MULTICOLOR OPTICAL SURVEY;
UPPER CENTAURUS-LUPUS; TY CORONAE AUSTRALIS; M-DWARF STARS; BROWN DWARFS
AB We examine the performance of standard pre-main-sequence (PMS) stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 eclipsing binary (EB) systems having masses 0.04-4.0 M-circle dot and nominal ages approximate to 1-20 Myr. We provide a definitive compilation of all fundamental properties for the EBs, with a careful and consistent reassessment of observational uncertainties. We also provide a definitive compilation of the various PMS model sets, including physical ingredients and limits of applicability. No set of model isochrones is able to successfully reproduce all of the measured properties of all of the EBs. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% at >= 1 M-circle dot, but below 1 M-circle dot they are discrepant by 50-100%. Adjusting the observed radii and temperatures using empirical relations for the effects of magnetic activity helps to resolve the discrepancies in a few cases, but fails as a general solution. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than similar to 10% in the H-R diagram, down to 0.5 M-circle dot, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies of the tertiary orbits are comparable to that needed to potentially explain the scatter in the EB properties through injection of heat, perhaps involving tidal interaction. It seems from the evidence at hand that this mechanism, however it operates in detail, has more influence on the surface properties of the stars than on their internal structure, as the lithium abundances are broadly in good agreement with model predictions. The EBs that are members of young clusters appear individually coeval to within 20%, but collectively show an apparent age spread of similar to 50%, suggesting true age spreads in young clusters. However, this apparent spread in the EB ages may also be the result of scatter in the EB properties induced by tertiaries. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA.
[Feiden, Gregory A.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden.
[Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Stassun, KG (reprint author), Vanderbilt Univ, Dept Phys & Astron, 1807 Stn B, Nashville, TN 37235 USA.
EM keivan.stassun@vanderbilt.edu; gregory.a.feiden@gmail.com;
gtorres@cfa.harvard.edu
RI Feiden, Gregory/F-1505-2015
OI Feiden, Gregory/0000-0002-2012-7215
FU NSF grants [AST-1009810, AST-0849736, AST-1007992, AST-0908345]
FX KGS acknowledges NSF grants AST-1009810 and AST-0849736. GT acknowledges
partial support from NSF grant AST-1007992. GAF acknowledges NSF grant
AST-0908345 and the William H. Neukom 1964 Institute for Computational
Science at Dartmouth College, which both supported the development of
the magnetic Dartmouth stellar evolution code. This research has made
use of NASA's Astrophysics Data System, the SIMBAD database and the
VizieR catalog access tool, both operated at CDS, Strasbourg, France,
and the ROSAT data archive tools hosted by the High Energy Astrophysics
Science Archive Research Center (HEASARC) at NASA's Goddard Space Flight
Center. The research has also made use of data obtained from the Chandra
Data Archive and the Chandra Source Catalog, and software provided by
the Chandra X-ray Center (CXC) in the application packages CIAO, ChIPS,
and Sherpa. We thank Scott Wolk for his assistance in the use of those
tools.
NR 148
TC 23
Z9 23
U1 2
U2 3
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1387-6473
EI 1872-9630
J9 NEW ASTRON REV
JI New Astron. Rev.
PD JUN-AUG
PY 2014
VL 60-61
BP 1
EP 28
DI 10.1016/j.newar.2014.06.001
PG 28
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AR1SN
UT WOS:000343365000001
ER
PT J
AU Ernst, CH
Creque, TR
Orr, JM
Hartsell, TD
Laemmerzahl, AF
AF Ernst, Carl H.
Creque, Terry R.
Orr, John M.
Hartsell, Traci D.
Laemmerzahl, Arndt F.
TI Operating Body Temperatures in a Snake Community of Northern Virginia
SO NORTHEASTERN NATURALIST
LA English
DT Article
ID EASTERN WORM SNAKE; CARPHOPHIS-AMOENUS; GARTER SNAKES; THAMNOPHIS
AB Thermal data were collected from 15 of 16 species of snakes found at the Mason Neck National Wildlife Refuge, Fairfax County, VA. Data recorded at each capture included the date, 24-hour military time, body temperature (BT), air temperature (AT), ground-surface temperature (ST), water temperature (WT) if in water, and the snake's activity (under cover, moving on land, basking, foraging, climbing, swimming, courting/mating). The purpose of this study was to determine the potential range of operating body temperature (OBT) of the individual species. The range of OBT is interpreted as the snake's operating temperature at its current environmental temperatures (ET), which can be used in comparisons with similar data from other North American regions, and represents the first such report from the Mid-Atlantic Region. The mean and ranges of BT, AT, ST, and WT are presented for the eight snakes with 20 or more records: Carphophis amoenus (n = 238), Coluber constrictor (204), Nerodia sipedon (67), Thamnophis sirtalis (55), Diadophis punctatus (54), Pantherophis alleghaniensis (43), Thamnophis sauritus (26), and Agkistrodon contortrix (24). New thermal records are reported for several of these species. The ranges of BT during activities are also reported. New temperature records are also reported for Virginia valeriae (n = 16 encounters), Storeria dekayi (12), Opheodrys aestivus (6), Lampropeltis calligaster (6), and Regina septemvittata (2).
C1 [Ernst, Carl H.] Smithsonian Inst, Div Amphibians & Reptiles, Washington, DC 20013 USA.
[Creque, Terry R.; Orr, John M.] George Mason Univ, Dept Environm Sci & Publ Policy, Fairfax, VA 22030 USA.
[Hartsell, Traci D.] Homeland Secur Invest, Lorton, VA 20598 USA.
[Laemmerzahl, Arndt F.] George Mason Univ, Biol Program, Fairfax, VA 22030 USA.
RP Ernst, CH (reprint author), Smithsonian Inst, Div Amphibians & Reptiles, Mrc 162,POB 37012, Washington, DC 20013 USA.
EM chernst@frontiernet.net
NR 41
TC 2
Z9 3
U1 7
U2 25
PU HUMBOLDT FIELD RESEARCH INST
PI STEUBEN
PA PO BOX 9, STEUBEN, ME 04680-0009 USA
SN 1092-6194
EI 1938-5307
J9 NORTHEAST NAT
JI Northeast. Nat
PD JUN
PY 2014
VL 21
IS 2
BP 247
EP 258
DI 10.1656/045.021.0205
PG 12
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA AQ0QP
UT WOS:000342488100007
ER
PT J
AU Curet, LA
AF Curet, L. Antonio
TI The Taino: Phenomena, Concepts, and Terms
SO ETHNOHISTORY
LA English
DT Article
ID HISTORY; CHIEFDOMS
AB The Taino term and concept has traditionally been used as a designation of some form of cultural identity for the groups that occupied the Greater Antilles at the time of contact. This perspective assumes that these groups shared a cultural background because of a common ancestry. However, this position has been questioned in recent years, and many problems with the concept have been brought to light. This article presents the history of the concept and discusses three recent studies that have proposed new ways to approach the problem. It ends by presenting the implications of this new perspective for future research, their limitations, how they may be misapplied, and to what extent they are applicable in different situations.
C1 Smithsonian Inst, Natl Museum Amer Indian, Washington, DC 20560 USA.
RP Curet, LA (reprint author), Smithsonian Inst, Natl Museum Amer Indian, Washington, DC 20560 USA.
NR 82
TC 0
Z9 0
U1 1
U2 5
PU DUKE UNIV PRESS
PI DURHAM
PA 905 W MAIN ST, STE 18-B, DURHAM, NC 27701 USA
SN 0014-1801
EI 1527-5477
J9 ETHNOHISTORY
JI Ethnohistory
PD SUM
PY 2014
VL 61
IS 3
BP 467
EP 495
DI 10.1215/00141801-2681759
PG 29
WC Anthropology; History
SC Anthropology; History
GA AN4ST
UT WOS:000340579500004
ER
PT J
AU Bouley, S
Craddock, RA
AF Bouley, Sylvain
Craddock, Robert A.
TI Age dates of valley network drainage basins and subbasins within Sabae
and Arabia Terrae, Mars
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID DIGITAL ELEVATION MODELS; MARTIAN HIGHLANDS; EVOLUTION; PRECIPITATION;
CHRONOLOGY; LANDSCAPE; MARINERIS; INCISION; DEPOSITS; SURFACE
AB The precise timing of valley network drainage basin formation is critical to understanding the history of water and climate on Mars. To determine whether there are any variations in ages within separate drainage basins and subbasins that may reflect local or regional variations in climate or resetting from resurfacing (e.g., impact ejecta or lava flows), we dated 27 basins and subbasins in Sabaea and Arabia Terrae. The age-dating basin technique we employed allowed sufficient precision to give accurate ages and shows that fluvial activity within the basins and subbasins ceased at approximately the same time around the Early Hesperian/Late Hesperian transition. Our results support the hypothesis that valley networks formed during a unique "fluvial optimum" that may have shut off gradually because of a global climate change that affected all areas simultaneously on Mars.
C1 [Bouley, Sylvain] GEOPS Geosci Paris Sud, UMR 8148, Orsay, France.
[Craddock, Robert A.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA.
RP Craddock, RA (reprint author), Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA.
EM craddockb@si.edu
FU NASA's Mars Data Analysis Program [NNX09AI40G]
FX Ross Irwin provided the shapefiles from his previous study that became
the basis for the study proposed here. This research was supported by
NASA's Mars Data Analysis Program, grant NNX09AI40G.
NR 45
TC 1
Z9 1
U1 1
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JUN
PY 2014
VL 119
IS 6
BP 1302
EP 1310
DI 10.1002/2013JE004571
PG 9
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AN4CK
UT WOS:000340535000010
ER
PT J
AU Arvidson, RE
Bellutta, P
Calef, F
Fraeman, AA
Garvin, JB
Gasnault, O
Grant, JA
Grotzinger, JP
Hamilton, VE
Heverly, M
Iagnemma, KA
Johnson, JR
Lanza, N
Le Mouelic, S
Mangold, N
Ming, DW
Mehta, M
Morris, RV
Newsom, HE
Renno, N
Rubin, D
Schieber, J
Sletten, R
Stein, NT
Thuillier, F
Vasavada, AR
Vizcaino, J
Wiens, RC
AF Arvidson, R. E.
Bellutta, P.
Calef, F.
Fraeman, A. A.
Garvin, J. B.
Gasnault, O.
Grant, J. A.
Grotzinger, J. P.
Hamilton, V. E.
Heverly, M.
Iagnemma, K. A.
Johnson, J. R.
Lanza, N.
Le Mouelic, S.
Mangold, N.
Ming, D. W.
Mehta, M.
Morris, R. V.
Newsom, H. E.
Renno, N.
Rubin, D.
Schieber, J.
Sletten, R.
Stein, N. T.
Thuillier, F.
Vasavada, A. R.
Vizcaino, J.
Wiens, R. C.
TI Terrain physical properties derived from orbital data and the first 360
sols of Mars Science Laboratory Curiosity rover observations in Gale
Crater
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID CHEMCAM INSTRUMENT SUITE; SURFACE-PROPERTIES; LASER-ABLATION; MISSION;
UNIT
AB Physical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover-based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity-based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist of moderately to well-consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard-packed basaltic sand and dust, with both embedded and surface-strewn rock clasts. Rock clasts have been added through local bedrock weathering and impact ejecta emplacement and form a pavement-like surface in which only small clasts (<5 to 10 cm wide) have been pressed into the soil during wheel passages. The bedded fractured (BF) unit, site of Curiosity's first drilling activity, exposes several alluvial-lacustrine bedrock units with little to no soil cover and varying degrees of lithification. Small wheel sinkage values (<1 cm) for both HP and BF surfaces demonstrate that compaction resistance countering driven-wheel thrust has been minimal and that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill, have been dominated by terrain tilts and wheel-surface material shear modulus values.
C1 [Arvidson, R. E.; Fraeman, A. A.; Stein, N. T.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA.
[Bellutta, P.; Calef, F.; Heverly, M.; Vasavada, A. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Garvin, J. B.] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA.
[Gasnault, O.] Univ Toulouse UPS OMP, CNRS, IRAP, Toulouse, France.
[Grant, J. A.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA.
[Grotzinger, J. P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Hamilton, V. E.] SW Res Inst, Boulder, CO USA.
[Iagnemma, K. A.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
[Johnson, J. R.] Johns Hopkins Appl Phys Lab, Laurel, MD USA.
[Lanza, N.; Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Le Mouelic, S.; Mangold, N.; Thuillier, F.] CNRS, UMR6112, LPGN, Nantes, France.
[Le Mouelic, S.; Mangold, N.; Thuillier, F.] Univ Nantes, Nantes, France.
[Ming, D. W.; Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Mehta, M.; Vizcaino, J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Newsom, H. E.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA.
[Renno, N.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Rubin, D.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[Schieber, J.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA.
[Sletten, R.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
RP Arvidson, RE (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA.
EM arvidson@wunder.wustl.edu
RI Johnson, Jeffrey/F-3972-2015;
OI Gasnault, Olivier/0000-0002-6979-9012
FU NASA
FX We thank NASA for support for our work on MSL and CRISM, and we thank
the science and engineering teams associated with the Mars Science
Laboratory, HiRISE, CRISM, and THEMIS for planning and acquisition of
the data used in this paper. Data are available from the NASA Planetary
Data System Geosciences Node (http://pds-geosciences.wustl.edu/).
NR 50
TC 11
Z9 11
U1 0
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JUN
PY 2014
VL 119
IS 6
BP 1322
EP 1344
DI 10.1002/2013JE004605
PG 23
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AN4CK
UT WOS:000340535000012
ER
PT J
AU Weller, DE
Baker, ME
AF Weller, Donald E.
Baker, Matthew E.
TI CROPLAND RIPARIAN BUFFERS THROUGHOUT CHESAPEAKE BAY WATERSHED: SPATIAL
PATTERNS AND EFFECTS ON NITRATE LOADS DELIVERED TO STREAMS
SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION
LA English
DT Article
DE watersheds; geospatial analysis; nonpoint source pollution; watershed
management; nitrate nitrogen; riparian buffer; cropland; flow-path
analysis; Chesapeake Bay
ID LAND-COVER; COASTAL-PLAIN; DISCHARGES; NITROGEN; MODELS; QUALITY;
AGRICULTURE; RESTORATION; PHOSPHORUS; CHALLENGES
AB We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay-wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency.
C1 [Weller, Donald E.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
[Baker, Matthew E.] Univ Maryland Baltimore Cty, Dept Geog & Environm Syst, Baltimore, MD 21250 USA.
RP Weller, DE (reprint author), Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21037 USA.
EM wellerd@si.edu
RI Baker, Matthew/I-2839-2014;
OI Baker, Matthew/0000-0001-5069-0204; Weller, Donald/0000-0002-7629-5437
FU U.S. Environmental Protection Agency [R-82868401]; Watershed
Classification Program (USEPA) [R-831369]; CICEET, the Cooperative
Institute for Coastal and Estuarine Environmental Technology
FX Support for this research was provided in part by grants from the U.S.
Environmental Protection Agency's Science to Achieve Results (STAR)
Estuarine and Great Lakes (EaGLes) Program to the Atlantic Slope
Consortium (USEPA Agreement #R-82868401) and the Watershed
Classification Program (USEPA Agreement #R-831369). Although the
research described in this article has been funded by the U.S.
Environmental Protection Agency, it has not been subjected to the
Agency's required peer and policy review and therefore does not
necessarily reflect the views of the Agency, and no official endorsement
should be inferred. Further support was provided by CICEET, the
Cooperative Institute for Coastal and Estuarine Environmental
Technology. The stream data were collected with support from NSF
(BSR-89-05219, DEB-92-06811, and DEB-93-17968), NOAA (NA66RG0129), the
Governor's Research Council of Maryland, the government of Charles
County Maryland, and the Smithsonian Institution Environmental Sciences
Program. David L. Correll and Thomas E. Jordan led the stream sampling
program. Tom Jordan, Meghan Williams, and three anonymous reviewers
provided helpful comments on the manuscript. Molly Van Appledorn helped
develop the ArcGIS Toolbox and calculated land cover metrics for the
Chesapeake Watershed. Richard Vogel and Ian Wilson provided the data
underlying their 1998 regional discharge model, and Gary Shenk provided
results from the Chesapeake Bay Program watershed model.
NR 52
TC 7
Z9 8
U1 6
U2 28
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1093-474X
EI 1752-1688
J9 J AM WATER RESOUR AS
JI J. Am. Water Resour. Assoc.
PD JUN
PY 2014
VL 50
IS 3
BP 696
EP 712
DI 10.1111/jawr.12207
PG 17
WC Engineering, Environmental; Geosciences, Multidisciplinary; Water
Resources
SC Engineering; Geology; Water Resources
GA AN3CQ
UT WOS:000340462900012
ER
PT J
AU Escovar, JE
Gonzalez, R
Quinones, ML
Wilkerson, RC
Ruiz, F
Harrison, BA
AF Eduardo Escovar, Jesus
Gonzalez, Ranulfo
Quinones, Martha L.
Wilkerson, Richard C.
Ruiz, Fredy
Harrison, Bruce A.
TI Morphology of the larvae, male genitalia and DNA sequences of Anopheles
(Kerteszia) pholidotus (Diptera: Culicidae) from Colombia
SO MEMORIAS DO INSTITUTO OSWALDO CRUZ
LA English
DT Article
DE Kerteszia; Anopheles pholidotus; male genitalia; DNA sequences
ID MALARIA VECTOR; SOUTHEASTERN BRAZIL; SUBGENUS KERTESZIA; CHARACTERS;
PACIFIC
AB Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.
C1 [Eduardo Escovar, Jesus; Quinones, Martha L.] Univ Nacl Colombia, Bogota, Cundinamarca, Colombia.
[Eduardo Escovar, Jesus] Univ Salle, Bogota, Cundinamarca, Colombia.
[Gonzalez, Ranulfo] Univ Valle, Fac Nat & Exact Sci, Valle, Colombia.
[Wilkerson, Richard C.; Ruiz, Fredy] Smithsonian Inst, Museum Support Ctr, Walter Reed Biosystemat Unit, Suitland, MD USA.
[Harrison, Bruce A.] Western Carolina Univ, Coll Hlth & Human Sci, Clemmons, NC USA.
RP Escovar, JE (reprint author), Univ Nacl Colombia, Bogota, Cundinamarca, Colombia.
EM jeescobar@unisalle.edu.co
FU COLCIENCIAS [110145921478]
FX COLCIENCIAS (110145921478)
NR 28
TC 4
Z9 4
U1 0
U2 3
PU FUNDACO OSWALDO CRUZ
PI RIO DE JANEIRO, RJ
PA AV BRASIL 4365, 21045-900 RIO DE JANEIRO, RJ, BRAZIL
SN 0074-0276
EI 1678-8060
J9 MEM I OSWALDO CRUZ
JI Mem. Inst. Oswaldo Cruz
PD JUN
PY 2014
VL 109
IS 4
BP 473
EP 479
DI 10.1590/0074-0276130596
PG 7
WC Parasitology; Tropical Medicine
SC Parasitology; Tropical Medicine
GA AN3LE
UT WOS:000340488700012
PM 25075785
ER
PT J
AU Rooney, TO
Bastow, ID
Keir, D
Mazzarini, F
Movsesian, E
Grosfils, EB
Zimbelman, JR
Ramsey, MS
Ayalew, D
Yirgu, G
AF Rooney, Tyrone O.
Bastow, Ian D.
Keir, Derek
Mazzarini, Francesco
Movsesian, Emily
Grosfils, Eric B.
Zimbelman, James R.
Ramsey, Michael S.
Ayalew, Dereje
Yirgu, Gezahegn
TI The protracted development of focused magmatic intrusion during
continental rifting
SO TECTONICS
LA English
DT Article
ID MAIN-ETHIOPIAN-RIFT; EAST-AFRICAN RIFT; GEOCHEMICAL EVIDENCE; EXTENSION
DIRECTION; VELOCITY STRUCTURE; CRUSTAL STRUCTURE; MAGNETIC-ANOMALIES;
VOLCANIC PROVINCE; BASIN DEVELOPMENT; OCEAN TRANSITION
AB The transition from mechanical thinning toward focused magmatic intrusion during continental rifting is poorly constrained; the tectonically active Main Ethiopian Rift (MER) provides an ideal study locale to address this issue. The presence of linear magmatic-tectonic belts in the relatively immature central MER may indicate that the transition from mechanical to magmatic rifting is more spatially distributed and temporally protracted than has previously been assumed. Here we examine lava geochemistry and vent distribution of a Pliocene-Quaternary linearmagmatic chain along the western margin of the central MER-the Akaki Magmatic Zone. Our results show limited variability in parental magma that evolve in a complex polybaric fractionation system that has not changed significantly over the past 3 Ma. Our results suggest the following: (1) channeling of plume material and the localization of shear-or topography-induced porosity modulates melt intrusion into the continental lithosphere. (2) Pre-existing lithospheric structures may act as catalysts for intrusion of magmas into the lithospheric mantle. (3) The midcrustal to upper crustal strain regime dictates the surface orientation of volcanic vents. Therefore, although linear magmatic belts like those in the central MER may young progressively toward the rift axis and superficially resemble oceanic style magmatism, they actually represent prebreakup magmatism on continental crust. The oldest linear magmatic belts observed seismically and magnetically at the edge of the ocean basins thus may not, as is often assumed, actually mark the onset of seafloor spreading.
C1 [Rooney, Tyrone O.; Movsesian, Emily] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA.
[Bastow, Ian D.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England.
[Keir, Derek] Univ Southampton, Natl Oceanog Ctr Southampton, Southampton, Hants, England.
[Mazzarini, Francesco] Ist Nazl Geofis & Vulcanol, Pisa, Italy.
[Grosfils, Eric B.] Pomona Coll, Dept Geol, Claremont, CA 91711 USA.
[Zimbelman, James R.] Smithsonian Inst, Ctr Earth & Planetary Studies, MRC 315, Washington, DC 20560 USA.
[Ramsey, Michael S.] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15260 USA.
[Ayalew, Dereje] Univ Addis Ababa, Sch Earth Sci, Addis Ababa, Ethiopia.
RP Rooney, TO (reprint author), Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA.
EM rooneyt@MSU.EDU
RI Rooney, Tyrone/B-4594-2010; Mazzarini, Francesco/L-1369-2015;
OI Mazzarini, Francesco/0000-0002-3864-6558; Keir,
Derek/0000-0001-8787-8446
FU NASA Planetary Geology and Geophysics grant [NNX11AQ82G]
FX This work was supported by NASA Planetary Geology and Geophysics grant
NNX11AQ82G. W. Nelson and A. Mekonnen assisted with the field sample
collection. We thank Giacomo Corti and an anonymous reviewer for
comments that improved the manuscript. T.O.R. thanks Tanya Furman for
many fruitful discussions on the nature of magmatism in the Ethiopian
Rift. Brandon Chiasera, Kaitlyn Trestrail, Paul Mohr, and Susan Krans
are thanked for proof-reading. We thank Margaret Rusmore for careful
editorial handling.
NR 112
TC 12
Z9 12
U1 3
U2 21
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0278-7407
EI 1944-9194
J9 TECTONICS
JI Tectonics
PD JUN
PY 2014
VL 33
IS 6
BP 875
EP 897
DI 10.1002/2013TC003514
PG 23
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AN0CD
UT WOS:000340248700001
ER
PT J
AU Marrow, JC
Padilla, LR
Hayek, LAC
Bush, M
Murray, S
AF Marrow, Judilee C.
Padilla, Luis R.
Hayek, Lee-Ann C.
Bush, Mitch
Murray, Suzan
TI COMPARISON OF ANTIBODY RESPONSE TO A NON-ADJUVANTED, LIVE
CANARYPOX-VECTORED RECOMBINANT RABIES VACCINE AND A KILLED, ADJUVANTED
RABIES VACCINE IN ELD'S DEER (RUCERVUS ELDI THAMIN)
SO JOURNAL OF ZOO AND WILDLIFE MEDICINE
LA English
DT Article
DE Cervid; Eld's deer; rabies; Rucervus eldi thamin; vaccination
ID MATERNAL ANTIBODIES; VIRUS
AB Captive Eld's deer (Rucervus eldi thamin) were evaluated for the presence of rabies virus-neutralizing antibodies using a rapid fluorescent focus inhibition after vaccination with either a live canarypox-vectored recombinant rabies vaccine or a killed monovalent rabies vaccine. Twelve deer were vaccinated with 1.0 ml of killed, adjuvanted, monovalent rabies vaccine at 5-33 mo of age then annually thereafter, and 14 deer were vaccinated with 1.0 ml nonadjuvanted, live canarypox-vectored rabies vaccine at 3-15 mo of age then annually thereafter. Banked serum was available or collected prospectively from deer at 6 mo and 1 yr after initial vaccination, then collected annually. Rabies virus-neutralizing antibodies considered adequate (>0.5 IU/ml) were present in 20/34 samples vaccinated with canarypox-vectored rabies vaccine and in 12/14 samples vaccinated with killed adjuvanted rabies vaccine. Poor seroconversion was noted in deer less than 6 mo of age vaccinated with the canarypox-vectored rabies vaccine.
C1 [Marrow, Judilee C.; Padilla, Luis R.; Bush, Mitch] Species Survival Ctr, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.
[Marrow, Judilee C.; Murray, Suzan] Smithsonian Conservat Biol Inst, Smithsonian Inst Natl Zool Pk, Washington, DC 20008 USA.
[Hayek, Lee-Ann C.] Smithsonian Inst, Washington, DC 20013 USA.
RP Marrow, JC (reprint author), Binder Pk Zoo, 7400 Div Dr, Battle Creek, MI 49014 USA.
EM judileemarrowdvm@gmail.com
NR 18
TC 0
Z9 0
U1 0
U2 8
PU AMER ASSOC ZOO VETERINARIANS
PI YULEE
PA 581705 WHITE OAK ROAD, YULEE, FL 32097 USA
SN 1042-7260
EI 1937-2825
J9 J ZOO WILDLIFE MED
JI J. Zoo Wildl. Med.
PD JUN
PY 2014
VL 45
IS 2
BP 315
EP 320
PG 6
WC Veterinary Sciences
SC Veterinary Sciences
GA AM2AF
UT WOS:000339649800013
PM 25000692
ER
PT J
AU Najera, F
Brown, J
Kaufman, K
Schwartz, R
Goodrowe, K
Asaithanmakul, W
Aitken-Palmer, C
Kongprom, U
Wildt, DE
Bush, M
AF Najera, Fernando
Brown, Janine
Kaufman, Krystle
Schwartz, Rick
Goodrowe, Karen
Asaithanmakul, Wisit
Aitken-Palmer, Copper
Kongprom, Urarikha
Wildt, David E.
Bush, Mitchell
TI SWIMMER SYNDROME IN A CLOUDED LEOPARD (NEOFELIS NEBULOSA) CUB
SO JOURNAL OF ZOO AND WILDLIFE MEDICINE
LA English
DT Article
DE Clouded leopard; cub; felid; Neofelis nebulosa; swimmer syndrome
ID PECTUS EXCAVATUM; CATS; DOGS
AB A 32-day-old, hand-reared, captive-born female clouded leopard (Neofelis nebulosa) cub presented as being unable to stand, ambulate, or adduct both hind limbs. The cub exhibited hyperextension of both tarsal joints and a flattened thorax, which limited mobility to "swimmer-like'' movements. Neither congenital defects nor neurologic deficits were observed during the medical examination. Radiographic examination showed the thorax was compressed dorsoventrally, but no other skeletal abnormalities were detected. Based on clinical signs, the condition was more consistent with swimmer syndrome, which has been described in young offspring of several domestic species. Over the course of 3 wk, affected limbs were treated by intensive physiotherapy, corrective bandages were applied, and thermotherapy was used to improve circulation, which resulted in a complete recovery and development of subsequent normal ambulation. It is concluded that early diagnosis and treatment of this condition led to the resolution of clinical signs, resulting in normal development of the clouded leopard cub reported here.
C1 [Najera, Fernando; Kaufman, Krystle; Asaithanmakul, Wisit; Kongprom, Urarikha] Khao Kheow Open Zoo, Thailand Clouded Leopard Consortium, Sriracha 20110, Chonburi, Thailand.
[Najera, Fernando; Brown, Janine; Aitken-Palmer, Copper; Wildt, David E.; Bush, Mitchell] Smithsonian Conservat Biol Inst, Ctr Species Survival, Dept Reprod Sci, Front Royal, VA 22630 USA.
[Najera, Fernando; Goodrowe, Karen] Point Defiance Zoo & Aquarium, Tacoma, WA 98407 USA.
[Najera, Fernando; Schwartz, Rick] Nashville Zoo Grassmere, Nashville, TN 37211 USA.
RP Najera, F (reprint author), Thailand Clouded Leopard Consortium, POB 2311, Gig Harbor, WA 98335 USA.
EM borneanwildcatvet@gmail.com
NR 12
TC 0
Z9 0
U1 1
U2 9
PU AMER ASSOC ZOO VETERINARIANS
PI YULEE
PA 581705 WHITE OAK ROAD, YULEE, FL 32097 USA
SN 1042-7260
EI 1937-2825
J9 J ZOO WILDLIFE MED
JI J. Zoo Wildl. Med.
PD JUN
PY 2014
VL 45
IS 2
BP 386
EP 388
DI 10.1638/2012-0289R2.1
PG 3
WC Veterinary Sciences
SC Veterinary Sciences
GA AM2AF
UT WOS:000339649800024
PM 25000703
ER
PT J
AU Steeil, JC
Schumacher, J
George, RH
Bulman, F
Baine, K
Cox, S
AF Steeil, James C.
Schumacher, Juergen
George, Robert H.
Bulman, Frank
Baine, Katherine
Cox, Sherry
TI PHARMACOKINETICS OF CEFOVECIN (CONVENIA (R)) IN WHITE BAMBOO SHARKS
(CHILOSCYLLIUM PLAGIOSUM) AND ATLANTIC HORSESHOE CRABS (LIMULUS
POLYPHEMUS)
SO JOURNAL OF ZOO AND WILDLIFE MEDICINE
LA English
DT Article
DE Cefovecin; Chiloscyllium plagiosum; horseshoe crab; Limulus polyphemus;
pharmacokinetics; white bamboo shark
ID CEPHALOSPORIN; SPECTRUM; CATS; DOGS
AB Cefovecin was administered to six healthy adult white bamboo sharks (Chiloscyllium plagiosum) and six healthy adult Atlantic horseshoe crabs (Limulus polyphemus) to determine its pharmacokinetics in these species. A single dose of cefovecin at 8 mg/kg was administered subcutaneously in the epaxial region of the bamboo sharks and in the proximal articulation of the lateral leg of the horseshoe crabs. Blood and hemolymph samples were collected at various time points from bamboo sharks and Atlantic horseshoe crabs. High performance liquid chromatography was performed to determine plasma levels of cefovecin. The terminal half-life of cefovecin in Atlantic horseshoe crabs was 37.70 +/- 9.04 hr and in white bamboo sharks was 2.02 +/- 4.62 hr. Cefovecin concentrations were detected for 4 days in white bamboo sharks and for 14 days in Atlantic horseshoe crabs. No adverse effects associated with cefovecin administration were seen in either species.
C1 [Steeil, James C.; Schumacher, Juergen; Baine, Katherine] Univ Tennessee, Coll Vet Med, Dept Small Anim Clin Sci, Knoxville, TN 37996 USA.
[Cox, Sherry] Univ Tennessee, Coll Vet Med, Dept Biomed & Diagnost Sci, Knoxville, TN 37996 USA.
[George, Robert H.; Bulman, Frank] Ripleys Aquarium Smokies, Gatlinburg, TN 37738 USA.
RP Steeil, JC (reprint author), Smithsonian Natl Zool Pk, Dept Anim Hlth, 3001 Connecticut Ave, Washington, DC 20013 USA.
EM jamste7@gmail.com
OI Schumacher, Juergen/0000-0003-3973-7248; Cox, Sherry/0000-0002-5184-900X
FU Faculty Education Advancement and Research Fund, College of Veterinary
Medicine, The University of Tennessee
FX The authors thank Ms. Amanda Gudgel and the aquarists at Ripley's
Aquarium of the Smokies for their technical assistance and Pfizer Animal
Health for providing the Convenia (cefovecin) used in this study. This
study was funded by the Faculty Education Advancement and Research Fund,
College of Veterinary Medicine, The University of Tennessee.
NR 10
TC 3
Z9 3
U1 1
U2 15
PU AMER ASSOC ZOO VETERINARIANS
PI YULEE
PA 581705 WHITE OAK ROAD, YULEE, FL 32097 USA
SN 1042-7260
EI 1937-2825
J9 J ZOO WILDLIFE MED
JI J. Zoo Wildl. Med.
PD JUN
PY 2014
VL 45
IS 2
BP 389
EP 392
DI 10.1638/2013-0061R2.1
PG 4
WC Veterinary Sciences
SC Veterinary Sciences
GA AM2AF
UT WOS:000339649800025
PM 25000704
ER
PT J
AU Martinez-Melendez, N
Martinez-Camilo, R
Perez-Farrera, MA
Skog, LE
Barrie, F
AF Martinez-Melendez, Nayely
Martinez-Camilo, Ruben
Angel Perez-Farrera, Miguel
Skog, Laurence E.
Barrie, Fred
TI A new species of Alsobia (Gesneriaceae) from Chiapas, Mexico
SO REVISTA MEXICANA DE BIODIVERSIDAD
LA Spanish
DT Article
DE Episcia; Episcieae; endemic species; Selva El Ocote biosphere reserve
ID EPISCIEAE GESNERIACEAE; NDHF SEQUENCES
AB Alsobia chiapensis, a new species from Chiapas, Mexico is described and illustrated. It differs from its 2 congeners by a relatively larger corolla and shorter limb; linear-lanceolate calyx lobes; and petiole less than a third of the length of the leaf blade. The new species shares characteristics found in other species of Alsobia such as fimbriate margins on the corolla lobes, and stolons.
C1 [Martinez-Melendez, Nayely; Martinez-Camilo, Ruben; Angel Perez-Farrera, Miguel] Univ Ciencias & Artes Chiapas, Fac Ciencias Biol, Herbario Eizi Matuda, Tuxtla Gutierrez 29039, Chiapas, Mexico.
[Skog, Laurence E.] Smithsonian Inst, Dept Bot, Washington, DC 20013 USA.
[Barrie, Fred] Missouri Bot Garden, St Louis, MO 63166 USA.
[Martinez-Camilo, Ruben] Colegio La Frontera Sur, Unidad San Cristobal de Las Casas, San Cristobal Las Casas 29290, Chiapas, Mexico.
RP Martinez-Melendez, N (reprint author), Univ Ciencias & Artes Chiapas, Fac Ciencias Biol, Herbario Eizi Matuda, Libramiento Norte Poniente 1150, Tuxtla Gutierrez 29039, Chiapas, Mexico.
EM nayely.martinez@unicach.mx
NR 14
TC 1
Z9 1
U1 1
U2 4
PU INST BIOLOGIA, UNIV NACIONAL AUTONOMA MEXICO
PI MEXICO
PA APARTADO POSTAL 70-233, MEXICO, D F 00000, MEXICO
SN 1870-3453
J9 REV MEX BIODIVERS
JI Rev. Mex. Biodivers.
PD JUN
PY 2014
VL 85
IS 2
BP 343
EP 348
DI 10.7550/rmb.32633
PG 6
WC Biodiversity Conservation
SC Biodiversity & Conservation
GA AM3UX
UT WOS:000339779400001
ER
PT J
AU Miller, MJ
AF Miller, Matthew J.
TI A distinctive avian assemblage (Aves: Passeriformes) in Western Darien,
Panama is uncovered through a disease surveillance program
SO REVISTA DE BIOLOGIA TROPICAL
LA English
DT Article
DE community composition; Darien; rare birds; beta-diversity
ID WHITE-SAND FORESTS; BETA-DIVERSITY; BIRDS; TREE; PHYLOGEOGRAPHY;
SIMILARITY; AMERICA
AB Basic knowledge about the distribution of flora and fauna is lacking for most tropical areas. Improving our knowledge of the tropical biota will help address contemporary global problems, including emerging tropical diseases. Less appreciated is the role that applied studies can have in improving our understanding of basic biological patterns and processes in the tropics. Here, I describe a novel avifauna assemblage uncovered in Western Darien province in the Republic of Panama that was uncovered during a vector-borne disease surveillance program. I compared the passerine bird species composition at 16 sites using records from recent ornithological expeditions sponsored by the Smithsonian Tropical Research Institute in Central and Eastern Panama. Based on the results of a Mantel test, geographic distance did not correlate with pairwise distinctiveness of sites. Instead, based on an index of distinctiveness modified from the Chao-Jaccard index, most sites were more or less similarly distinctive, with one site, Aruza Abajo, significantly more distinctive than the rest. I found that the distinctiveness of this site was due not only to the presence of several rare and range-restricted taxa, but also to the absence of taxa that are common elsewhere. This finding provides more evidence of high species composition turnover (beta-diversity) in the Panamanian biota, which appears to be driven by a combination of soil and climate differences over narrow distances.
C1 Smithsonian Trop Res Inst, Panama City, Panama.
RP Miller, MJ (reprint author), Smithsonian Trop Res Inst, Apartado Postal 0843-03092, Panama City, Panama.
EM millerma@si.edu
OI Miller, Matthew/0000-0002-2939-0239
FU NIH/NSF "Ecology and Evolution of Infectious Diseases" award from the
Fogarty International Center [3R01-TW005869-05S1]; inter-agency award
from the US Centers for Disease Control
FX I would like to thank Panama's Environmental Ministry (ANAM) for over 10
years of consistent support of scientific collecting in Panama. More
than a dozen Latin American students and interns have dedicated their
time to helping the STRI Bird Collection grow, and I am indebted to
them. The STRI Bird Collection received supported from an NIH/NSF
"Ecology and Evolution of Infectious Diseases" award from the Fogarty
International Center 3R01-TW005869-05S1 and an inter-agency award from
the US Centers for Disease Control ("Effect of Anthropogenic Climate
Change on the Ecology of Zoonotic and Vector-borne Diseases"). Prior to
2007, the LSU Museum of Vertebrate Zoology, UNLV Marjorie Barrick
Museum, University of Alaska Museum, and the US National Museum
sponsored collecting trips in concert with STRI that form the basis of
some of the data analyzed here. S. Weaver, University of Texas Medical
Branch, provided information regarding his team's ongoing research on
equine encephalitic virus in Eastern Panama. J. Touchon, J. Loaiza, A.
Crawford, and two anonymous reviewers, provided helpful comments on the
manuscript.
NR 22
TC 0
Z9 0
U1 1
U2 2
PU REVISTA DE BIOLOGIA TROPICAL
PI SAN JOSE
PA UNIVERSIDAD DE COSTA RICA CIUDAD UNIVERSITARIA, SAN JOSE, 00000, COSTA
RICA
SN 0034-7744
EI 2215-2075
J9 REV BIOL TROP
JI Rev. Biol. Trop.
PD JUN
PY 2014
VL 62
IS 2
BP 711
EP 717
PG 7
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA AL7GJ
UT WOS:000339301800025
PM 25102652
ER
PT J
AU Schwadron, NA
Gorby, M
Torok, T
Downs, C
Linker, J
Lionello, R
Mikic, Z
Riley, P
Giacalone, J
Chandran, B
Germaschewski, K
Isenberg, PA
Lee, MA
Lugaz, N
Smith, S
Spence, HE
Desai, M
Kasper, J
Kozarev, K
Korreck, K
Stevens, M
Cooper, J
MacNeice, P
AF Schwadron, Nathan A.
Gorby, Matt
Torok, Tibor
Downs, Cooper
Linker, Jon
Lionello, Roberto
Mikic, Zoran
Riley, Pete
Giacalone, Joe
Chandran, Ben
Germaschewski, Kai
Isenberg, Phil A.
Lee, Martin A.
Lugaz, Noe
Smith, Sonya
Spence, Harlan E.
Desai, Mihir
Kasper, Justin
Kozarev, Kamen
Korreck, Kelly
Stevens, Mike
Cooper, John
MacNeice, Peter
TI Synthesis of 3-D Coronal-Solar Wind Energetic Particle Acceleration
Modules
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
ID WHOLE SUN MONTH; MAGNETIC-FIELD; MASS EJECTION; 1 AU; FLARES
C1 [Schwadron, Nathan A.; Chandran, Ben; Germaschewski, Kai; Isenberg, Phil A.; Lee, Martin A.; Lugaz, Noe; Smith, Sonya; Spence, Harlan E.] Univ New Hampshire, Durham, NH 03824 USA.
[Gorby, Matt] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Torok, Tibor; Downs, Cooper; Lionello, Roberto; Mikic, Zoran] Predict Sci Inc, San Diego, CA USA.
[Linker, Jon; Riley, Pete] Predict Sci Inc, Morristown, NJ USA.
[Giacalone, Joe] Univ Arizona, Tucson, AZ 85721 USA.
[Spence, Harlan E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[Desai, Mihir] Southwest Res Inst, San Antonio, TX USA.
[Kasper, Justin] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
[Kozarev, Kamen; Korreck, Kelly; Stevens, Mike] Smithsonian Astrophys Observ, Washington, DC USA.
[Cooper, John] NASA, Space Phys Data Facil, Washington, DC USA.
[Cooper, John] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Heliophys Sci Div, Washington, DC USA.
[MacNeice, Peter] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Washington, DC USA.
RP Schwadron, NA (reprint author), Univ New Hampshire, Durham, NH 03824 USA.
RI Lugaz, Noe/C-1284-2008; Kasper, Justin/D-1152-2010;
OI Lugaz, Noe/0000-0002-1890-6156; Kasper, Justin/0000-0002-7077-930X;
Riley, Pete/0000-0002-1859-456X
FU C-SWEPA (NASA) [NNX13AI75G]; EMMREM [NNX07AC14G]; Sun-2-Ice (NSF)
projects [AGS1135432]; DREAM (NASA) [NNX10AB17A]; DREAM2 (NASA)
[NNX14AG13A]
FX We thank all those who made C-SWEPA (NASA grant NNX13AI75G) possible.
This work was also funded EMMREM (grant NNX07AC14G), Sun-2-Ice (NSF
grant AGS1135432) projects, DREAM (NASA grant NNX10AB17A), and DREAM2
(NASA grant NNX14AG13A).
NR 27
TC 3
Z9 3
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD JUN
PY 2014
VL 12
IS 6
BP 323
EP 328
DI 10.1002/2014SW001086
PG 6
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA AM0CG
UT WOS:000339509900001
ER
PT J
AU Porter, JA
Townsend, LW
Spence, H
Golightly, M
Schwadron, N
Kasper, J
Case, AW
Blake, JB
Zeitlin, C
AF Porter, Jamie A.
Townsend, Lawrence W.
Spence, Harlan
Golightly, Michael
Schwadron, Nathan
Kasper, Justin
Case, Anthony W.
Blake, John B.
Zeitlin, Cary
TI Radiation environment at the Moon: Comparisons of transport code
modeling and measurements from the CRaTER instrument
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
ID NUCLEAR FRAGMENTATION MODEL; SPECTRUM; SPACE
AB The Cosmic Ray Telescope for the Effects of Radiation (CRaTER), an instrument carried on the Lunar Reconnaissance Orbiter spacecraft, directly measures the energy depositions by solar and galactic cosmic radiations in its silicon wafer detectors. These energy depositions are converted to linear energy transfer (LET) spectra. High LET particles, which are mainly high-energy heavy ions found in the incident cosmic ray spectrum, or target fragments and recoils produced by protons and heavier ions, are of particular importance because of their potential to cause significant damage to human tissue and electronic components. Aside from providing LET data useful for space radiation risk analyses for lunar missions, the observed LET spectra can also be used to help validate space radiation transport codes, used for shielding design and risk assessment applications, which is a major thrust of this work. In this work the Monte Carlo transport code HETC-HEDS (High-Energy Transport Code-Human Exploration and Development in Space) is used to estimate LET contributions from the incident primary ions and their charged secondaries produced by nuclear collisions as they pass through the three pairs of silicon detectors. Also in this work, the contributions to the LET of the primary ions and their charged secondaries are analyzed and compared with estimates obtained using the deterministic space radiation code HZETRN 2010, developed at NASA Langley Research Center. LET estimates obtained from the two transport codes are compared with measurements of LET from the CRaTER instrument during the mission. Overall, a comparison of the LET predictions of the HETC-HEDS code to the predictions of the HZETRN code displays good agreement. The code predictions are also in good agreement with the CRaTER LET measurements above 15 keV/mu m but differ from the measurements for smaller values of LET. A possible reason for this disagreement between measured and calculated spectra below 15 keV/mu m is an inadequate representation of the light ion spectra in HETC-HEDS and HZETRN code calculations. It is also clear from the results of this work that Vavilov distributions need to be incorporated into the HETC-HJEDS code before it will be able to recreate the observed LET spectra measured by the CRaTER instrument.
C1 [Porter, Jamie A.; Townsend, Lawrence W.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
[Spence, Harlan; Golightly, Michael; Schwadron, Nathan] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[Kasper, Justin] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
[Case, Anthony W.] Harvard Smithsonian Ctr Astrophys, Div High Energy Astrophys, Cambridge, MA 02138 USA.
[Blake, John B.] Aerosp Corp, El Segundo, CA 90245 USA.
[Zeitlin, Cary] Southwest Res Inst, Space & Engn Div, Boulder, CO USA.
RP Porter, JA (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
EM jander40@utk.edu
RI Kasper, Justin/D-1152-2010
OI Kasper, Justin/0000-0002-7077-930X
FU University of Tennessee [11-107]; University of New Hampshire;
University of New Hampshire under the NASA CRaTER [NNG11PA03C]
FX The CRaTER data for this paper are available for download at http://geo.
pds.nasa.gov/missions/lro/. The HETCHEDS and HZETRN data are available
upon request from the first author. This work was supported at
University of Tennessee under agreement 11-107 with the University of
New Hampshire and at the University of New Hampshire under the NASA
CRaTER contract NNG11PA03C. The authors wish to thank Joe Mazur of the
Aerospace Corporation for his contributions to the early analytical
phases of this work.
NR 27
TC 0
Z9 0
U1 0
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD JUN
PY 2014
VL 12
IS 6
BP 329
EP 336
DI 10.1002/2013SW000994
PG 8
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA AM0CG
UT WOS:000339509900002
ER
PT J
AU Giorgi, JA
Lima, MS
Vandenberg, NJ
AF Giorgi, Jose Adriano
Lima, Mauricio Silva
Vandenberg, Natalia J.
TI THE FIRST RECORD OF BRUMOIDES FOUDRASII (MULSANT) (COLEOPTERA:
COCCINELLIDAE: CHILOCORINI) FROM SOUTH AMERICA, WITH NOTES ON ITS
BIOLOGY
SO COLEOPTERISTS BULLETIN
LA English
DT Editorial Material
ID PSEUDOCOCCIDAE
C1 [Giorgi, Jose Adriano] Fed Univ Para, Fac Ciencias Biol, BR-68372040 Altamira, PA, Brazil.
[Lima, Mauricio Silva] Univ Fed Rural Pernambuco, Dept Agron, BR-52171900 Recife, PE, Brazil.
[Vandenberg, Natalia J.] USDA, Systemat Entomol Lab, ARS, Natl Museum Nat Hist,Smithsonian Inst, Washington, DC 20013 USA.
RP Giorgi, JA (reprint author), Fed Univ Para, Fac Ciencias Biol, Rua Jose Porfirio 2515, BR-68372040 Altamira, PA, Brazil.
EM coccinellid@gmail.com; mauriciosilvadelima@gmail.com;
Natalia.Vandenberg@ars.usda.gov
NR 12
TC 1
Z9 1
U1 0
U2 0
PU COLEOPTERISTS SOC
PI ATHENS
PA UNIV GEORGIA, 413 BIOLOGICAL SCIENCES BUILDING, ATHENS, GA 30602-2603
USA
SN 0010-065X
EI 1938-4394
J9 COLEOPTS BULL
JI Coleopt. Bull.
PD JUN
PY 2014
VL 68
IS 2
BP 336
EP 338
PG 3
WC Entomology
SC Entomology
GA AL2UY
UT WOS:000338982200021
ER
PT J
AU Weichenthal, S
Villeneuve, PJ
Burnett, RT
van Donkelaar, A
Martin, RV
Jones, RR
DellaValle, CT
Sandler, DP
Ward, MH
Hoppin, JA
AF Weichenthal, Scott
Villeneuve, Paul J.
Burnett, Richard T.
van Donkelaar, Aaron
Martin, Randall V.
Jones, Rena R.
DellaValle, Curt T.
Sandler, Dale P.
Ward, Mary H.
Hoppin, Jane A.
TI Long-Term Exposure to Fine Particulate Matter: Association with
Nonaccidental and Cardiovascular Mortality in the Agricultural Health
Study Cohort
SO ENVIRONMENTAL HEALTH PERSPECTIVES
LA English
DT Article
ID EXTENDED FOLLOW-UP; HARVARD 6 CITIES; AIR-POLLUTION; DISEASE; RISK
AB Background: Few studies have examined the relationship between long-term exposure to ambient fine particulate matter (PM2.5) and nonaccidental mortality in rural populations.
Objective: We examined the relationship between PM2.5 and nonaccidental and cardiovascular mortality in the U.S. Agricultural Health Study cohort.
Methods: The cohort (n = 83,378) included farmers, their spouses, and commercial pesticide applicators residing primarily in Iowa and North Carolina. Deaths occurring between enrollment (1993-1997) and 30 December 2009 were identified by record linkage. Six-year average (2001-2006) remote-sensing derived estimates of PM2.5 were assigned to participants' residences at enrollment, and Cox proportional hazards models were used to estimate hazard ratios (HR) in relation to a 10-mu g/m(3) increase in PM2.5 adjusted for individual-level covariates.
Results: In total, 5,931 nonaccidental and 1,967 cardiovascular deaths occurred over a median follow-up time of 13.9 years. PM2.5 was not associated with nonaccidental mortality in the cohort as a whole (HR = 0.95; 95% CI: 0.76, 1.20), but consistent inverse relationships were observed among women. Positive associations were observed between ambient PM2.5 and cardiovascular mortality among men, and these associations were strongest among men who did not move from their enrollment address (HR = 1.63; 95% 0.94, 2.84). In particular, cardiovascular mortality risk in men was significantly increased when analyses were limited to nonmoving participants with the most precise exposure geocoding (HR = 1.87; 95% CI: 1.04, 3.36).
Conclusions: Rural PM2.5 may be associated with cardiovascular mortality in men; however, similar associations were not observed among women. Further evaluation is required to explore these sex differences.
C1 [Weichenthal, Scott] Hlth Canada, Air Hlth Sci Div, Ottawa, ON K1A 0K9, Canada.
[Weichenthal, Scott] Univ Montreal, Dept Occupat & Environm Hlth, Montreal, PQ, Canada.
[Villeneuve, Paul J.; Burnett, Richard T.] Hlth Canada, Populat Studies Div, Ottawa, ON K1A 0K9, Canada.
[Villeneuve, Paul J.] Carleton Univ, Inst Hlth Sci Technol & Policy, Ottawa, ON K1S 5B6, Canada.
[van Donkelaar, Aaron; Martin, Randall V.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.
[Martin, Randall V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Jones, Rena R.; DellaValle, Curt T.; Ward, Mary H.] NCI, Occupat & Environm Epidemiol Branch, Div Canc Epidemiol & Genet, NIH, Bethesda, MD 20892 USA.
[Sandler, Dale P.; Hoppin, Jane A.] NIEHS, Epidemiol Branch, NIH, US Dept HHS, Res Triangle Pk, NC 27709 USA.
RP Weichenthal, S (reprint author), Hlth Canada, 269 Laurier Ave West,AL 4903C, Ottawa, ON K1A 0K9, Canada.
EM scott.weichenthal@hc-sc.gc.ca
RI Martin, Randall/C-1205-2014;
OI Martin, Randall/0000-0003-2632-8402; Sandler, Dale/0000-0002-6776-0018
FU Health Canada; Intramural Research Program of the National Institutes of
Health; National Institute of Environmental Health Sciences
[Z01-ES025041]; National Cancer Institute [Z01-CP010119]; Natural
Sciences and Engineering Research Council (NSERC)
FX This work was supported by Health Canada and the Intramural Research
Program of the National Institutes of Health, National Institute of
Environmental Health Sciences (Z01-ES025041) and National Cancer
Institute (Z01-CP010119). R.M. and A.v.D. were supported by Health
Canada and the Natural Sciences and Engineering Research Council
(NSERC).
NR 30
TC 23
Z9 26
U1 4
U2 35
PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
PI RES TRIANGLE PK
PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233,
RES TRIANGLE PK, NC 27709-2233 USA
SN 0091-6765
EI 1552-9924
J9 ENVIRON HEALTH PERSP
JI Environ. Health Perspect.
PD JUN
PY 2014
VL 122
IS 6
BP 609
EP 615
DI 10.1289/ehp.1307277
PG 7
WC Environmental Sciences; Public, Environmental & Occupational Health;
Toxicology
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Toxicology
GA AL1ZW
UT WOS:000338926500024
PM 24633320
ER
PT J
AU Schwartz, DA
AF Schwartz, Daniel A.
TI Invited Review Article: The Chandra X-ray Observatory
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Review
ID CCD IMAGING SPECTROMETER; HIGH-RESOLUTION CAMERA; TRANSMISSION GRATING
SPECTROMETER; FLIGHT CONTAMINATION MONITOR; CHARGE-TRANSFER
INEFFICIENCY; ASTROPHYSICS FACILITY AXAF; IRIDIUM OPTICAL-CONSTANTS;
ACTIVE GALACTIC NUCLEI; REFLECTANCE MEASUREMENTS; SUPERNOVA REMNANT
AB The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 angstrom) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights. (C) 2014 AIP Publishing LLC.
C1 Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
RP Schwartz, DA (reprint author), Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA.
EM das@cfa.harvard.edu
FU NASA MSFC [NAS8-03060]
FX The Chandra Observatory is the result of Riccardo Giacconi's vision for
x-ray astronomy. The director of the Chandra X-ray Center, Harvey
Tananbaum, and the MSFC Project Scientist, Martin Weisskopf, are most
responsible for uniting the scientific community, NASA, and the
principle contractors into the team supporting and implementing this
mission. The exquisite quality of the Chandra images is due largely to
the telescope scientist, the late Leon VanSpeybroeck. The astronomical
community owes a great debt to more than a thousand people at NASA,
Northrop Grumman and its subcontractors, and SAO, and to the instrument
developers at SAO, MIT, PSU, the Max-Planck Institut fur
extraterrestrische Physik (MPE), and the Space Research Institute of the
Netherlands (SRON) who worked on the AXAF (now Chandra) project. This
review has benefited from information and material originally prepared
by the NASA/MSFC Project Science team, the SAO mission support team, the
Chandra X-ray Observatory Center, and the Northrop Grumman development
and flight operations teams. This research has made use of NASA's
Astrophysics Data System Bibliographic Services. The Chandra X-ray
Observatory is operated by SAO under Contract No. NAS8-03060 from the
NASA MSFC. Reference herein to any specific commercial product, process,
or service by trade name, trademark, or manufacturer, or otherwise does
not constitute or imply its endorsement by NASA or SAO.
NR 132
TC 4
Z9 4
U1 1
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD JUN
PY 2014
VL 85
IS 6
AR 061101
DI 10.1063/1.4881695
PG 40
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA AL3FB
UT WOS:000339010500001
PM 24985792
ER
PT J
AU Hershler, R
Landye, JJ
Liu, HP
De la Maza-Benignos, M
Ornelas, P
Carson, EW
AF Hershler, Robert
Landye, J. Jerry
Liu, Hsiu-Ping
De la Maza-Benignos, Mauricio
Ornelas, Pavel
Carson, Evan W.
TI NEW SPECIES AND RECORDS OF CHIHUAHUAN DESERT SPRINGSNAILS, WITH A NEW
COMBINATION FOR TRYONIA BRUNEI
SO WESTERN NORTH AMERICAN NATURALIST
LA English
DT Article
ID NORTH-AMERICAN SOUTHWEST; PHYLOGENETIC-RELATIONSHIPS; GASTROPODS
RISSOOIDEA; BIOGEOGRAPHY; HYDROBIIDAE; MEXICO; GENUS
AB This is the last in a series of papers clarifying the taxonomy of a critically imperiled assemblage of Cochliopid gastropods (Tryonia sensu lato) that inhibit thermal springs in the Chihuahuan Desert (Mexico and United States). We describe 2 new narrowly endemic species of Tryonia from Chihuahua, both of which appear to have been recently,extirpated, and we provide new records for 4 congeners (also from Chihuahua) and for a species of Pseudotryonia (from Durango). The 2 new species of Tryonia differ from closely similar regional congeners in shell and penial characters. On the basis of new anatomical data, we also transfer T brunet Taylor, 1987 to the genus Juttamia and provide evidence that this species, which was endemic to the Phantom Lake spring complex in west Texas, became extinct sometime after 1984. Our findings provide additional insight into the complex biogeographic history of the Chihuahuan Desert cochliopids and further document the recent decline of regional spring-dwelling biota as a result of groundwater mining.
C1 [Hershler, Robert] Smithsonian Inst, Dept Invertebrate Zool, Washington, DC 20013 USA.
[Liu, Hsiu-Ping] Metropolitan State Univ Denver, Dept Biol, Denver, CO 80217 USA.
[De la Maza-Benignos, Mauricio; Ornelas, Pavel] Pronatuia Noreste AC, Monterrey 64710, NL, Mexico.
[Carson, Evan W.] Univ New Mexico, Dept Biol & Museum Southwestern Biol, Albuquerque, NM 87131 USA.
RP Hershler, R (reprint author), Smithsonian Inst, Dept Invertebrate Zool, Box 37012,NHB W-305,MRC 163, Washington, DC 20013 USA.
EM hershlerr@si.edu
FU National Science Foundation [GB-6477x]; Secretaria de Industria y
Cornercio [5803]
FX JJEs early collections were made under the auspices of a National
Science Foundation grant to W.L. Minckley (GB-6477x) and a collecting
permit from the Secretaria de Industria y Cornercio (#5803). More recent
fieldwork was supported by awards (to RH) from the Smithsonian
Biodiversity Program; collecting permits were provided by La Secretaria
de Relaciones Exteriores (DAN 01874, 03358) and facilitated by Angelica
Narvaez (U.S. Embassy Mexico City, Office of Environment, Science and
Technology Affairs) We thank Andrew Simons and Jonathan Slaght (BellMNH)
and Artie L. Metcalf (UTEP) for loans of material under their care, and
Douglas Nelson (UMMZ) for providing copies of Robert Rush Miller's field
notes. Various individuals assisted with fieldwork, including Phil
Hines, William G. Kepner, Sandra Tyler Landye, Charles 0. Minckley,
Saundra King Mincldey, W.L. Minckley, Donna Portz, Dwight W. Taylor,
Sandra Willoughby, and Darrell Wong. Yolanda Villacampa measured shells
and prepared scanning electron micrographs, and Karolyn Darrow inked the
anatomical drawings. The DigitalGlobe satellite image of the Julimes
area was purchased from Digital Data Services, Inc. (Lakewood, CO).
NR 29
TC 2
Z9 2
U1 0
U2 6
PU BRIGHAM YOUNG UNIV
PI PROVO
PA 290 LIFE SCIENCE MUSEUM, PROVO, UT 84602 USA
SN 1527-0904
EI 1944-8341
J9 WEST N AM NATURALIST
JI West. North Am. Naturalist
PD JUN
PY 2014
VL 74
IS 1
BP 47
EP 65
PG 19
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA AL2QO
UT WOS:000338970400004
ER
PT J
AU Ims, JJ
Sofaer, HR
Sillett, TS
Ghalambor, CK
AF Ims, Jessica J.
Sofaer, Helen R.
Sillett, T. Scott
Ghalambor, Cameron K.
TI TEMPERATURE DOES NOT AFFECT THE TIMING OF FIRST NEST DEPARTURE IN
ORANGE-CROWNED WARBLERS
SO WESTERN NORTH AMERICAN NATURALIST
LA English
DT Article
ID DAILY ROOSTING TIMES; INCUBATION BEHAVIOR; LATITUDINAL VARIATION;
AMBIENT-TEMPERATURE; STURNUS-VULGARIS; BREEDING-SEASON; EGG TEMPERATURE;
PREDATION RISK; ENERGETIC COST; TREE SWALLOWS
AB Acr. Organisms often respond to variation in temperature by altering their behavior, but the sensitivity of each behavioral trait depends on the degree to which temperature affects its costs and benefits. Here, we tested whether a little-studied trait, the timing of the first nest departure in the morning, varied in response to ambient temperature at sunrise, sunrise time, and nesting stage (incubation vs. nestling) in female Orange-crowned Warblers breeding on Santa Catalina Island, California. We found that the time of first nest departure was significantly correlated with sunrise time but was not affected by ambient temperature at sunrise. Compared with the nestling period, first nest departure times tended to be later and more variable during incubation, but the causes of these patterns remain to be explored in future studies of avian early-morning behavior
C1 [Ims, Jessica J.; Sofaer, Helen R.; Ghalambor, Cameron K.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA.
[Sofaer, Helen R.; Ghalambor, Cameron K.] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA.
[Sillett, T. Scott] Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20013 USA.
RP Sofaer, HR (reprint author), Colorado State Univ, Dept Fish Wildlife & Conservat Biol, 1474 Campus Delivery, Ft Collins, CO 80523 USA.
FU Nature Conservancy, the Smithsonian Institution; American
Ornithologists' Union Graduate Research Award; Frank M. Chapman Memorial
Grant from the American Museum of Natural History
FX This work was supported by The Nature Conservancy, the Smithsonian
Institution, an American Ornithologists' Union Graduate Research Award
(HRS), and a Frank M. Chapman Memorial Grant from the American Museum of
Natural History (HRS). Logistical support was provided by the Catalina
Island Conservancy. We appreciate the field assistants who assisted with
data collection and the undergraduate students who transcribed our nest
videos. Comments from 2 anonymotth reviewers improved this manuscript.
NR 41
TC 0
Z9 0
U1 2
U2 6
PU BRIGHAM YOUNG UNIV
PI PROVO
PA 290 LIFE SCIENCE MUSEUM, PROVO, UT 84602 USA
SN 1527-0904
EI 1944-8341
J9 WEST N AM NATURALIST
JI West. North Am. Naturalist
PD JUN
PY 2014
VL 74
IS 1
BP 66
EP 70
PG 5
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA AL2QO
UT WOS:000338970400005
ER
PT J
AU Hollister, LS
Bindi, L
Yao, N
Poirier, GR
Andronicos, CL
MacPherson, GJ
Lin, C
Distler, VV
Eddy, MP
Kostin, A
Kryachko, V
Steinhardt, WM
Yudovskaya, M
Eiler, JM
Guan, YB
Clarke, JJ
Steinhardt, PJ
AF Hollister, Lincoln S.
Bindi, Luca
Yao, Nan
Poirier, Gerald R.
Andronicos, Christopher L.
MacPherson, Glenn J.
Lin, Chaney
Distler, Vadim V.
Eddy, Michael P.
Kostin, Alexander
Kryachko, Valery
Steinhardt, William M.
Yudovskaya, Marina
Eiler, John M.
Guan, Yunbin
Clarke, Jamil J.
Steinhardt, Paul J.
TI Impact-induced shock and the formation of natural quasicrystals in the
early solar system
SO NATURE COMMUNICATIONS
LA English
DT Article
ID FORMING ALLOY SYSTEM; PHASE-EQUILIBRIA; ORDINARY CHONDRITES;
SOLIDIFICATION; METAMORPHISM; METEORITES; DIAGRAM; COPPER
AB The discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a CV3 chondrite, indicating that an impact shock generated a heterogeneous distribution of pressures and temperatures in which some portions reached at least 5GPa and 1,200 degrees C. The conditions were sufficient to melt Al-Cu-bearing minerals, which then rapidly solidified into icosahedrite and other Al-Cu metal phases. The meteorite also contains heretofore unobserved phases of iron-nickel and iron sulphide with substantial amounts of Al and Cu. The presence of these phases in Khatyrka provides further proof that the Al-Cu alloys are natural products of unusual processes that occurred in the early solar system.
C1 [Hollister, Lincoln S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA.
[Bindi, Luca] Univ Florence, Dipartimento Sci Terra, I-50121 Florence, Italy.
[Yao, Nan; Poirier, Gerald R.] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA.
[Andronicos, Christopher L.] Purdue Univ, Div Earth & Atmospher Sci, W Lafayette, IN 47907 USA.
[MacPherson, Glenn J.] Smithsonian Inst, Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20013 USA.
[Lin, Chaney; Steinhardt, Paul J.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Distler, Vadim V.; Kryachko, Valery; Yudovskaya, Marina] Russian Acad Sci, Inst Geol Ore Deposits Petrog Mineral & Geochem I, Moscow 119017, Russia.
[Eddy, Michael P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
[Kostin, Alexander] BHP Billiton, Geosci Technol, Houston, TX 77056 USA.
[Steinhardt, William M.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Eiler, John M.; Guan, Yunbin] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Clarke, Jamil J.] Hitachi High Technol Amer Inc, Gaithersburg, MD 20878 USA.
[Steinhardt, Paul J.] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA.
RP Steinhardt, PJ (reprint author), Princeton Univ, Dept Phys, Jadwin Hall, Princeton, NJ 08544 USA.
EM steinh@princeton.edu
RI Yudovskaya, Marina/K-3980-2013
FU National Science Foundation-MRSEC program through New York University
[DMR-0820341]; Princeton Center for Complex Materials [DMR-0819860];
NASA [NNX11AD43G]
FX L.B. thanks M.I.U.R., P.R.I.N. 2009 project 'Structure, microstructure
and properties of minerals', the 'MEMA', Centro di Microscopia
Elettronica e Microanalisi, Florence, Italy, and 'CRIST', Centro di
Cristallografia Strutturale, Sesto Fiorentino, Florence, Italy. This
work was supported in part by the National Science Foundation-MRSEC
program through New York University (DMR-0820341; P.J.S.), through the
Princeton Center for Complex Materials (DMR-0819860; N.Y.) and NASA
grant NNX11AD43G (G.J.M.). The expedition to Chukotka was supported by a
grant from an anonymous donor to Princeton University (P.J.S., Principal
Investigator).
NR 27
TC 7
Z9 7
U1 4
U2 36
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD JUN
PY 2014
VL 5
AR 4040
DI 10.1038/ncomms5040
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AL0SR
UT WOS:000338837600002
PM 24925481
ER
PT J
AU Mueller, T
Dressler, G
Tucker, CJ
Pinzon, JE
Leimgruber, P
Dubayah, RO
Hurtt, GC
Bohning-Gaese, K
Fagan, WF
AF Mueller, Thomas
Dressler, Gunnar
Tucker, Compton J.
Pinzon, Jorge E.
Leimgruber, Peter
Dubayah, Ralph O.
Hurtt, George C.
Boehning-Gaese, Katrin
Fagan, William F.
TI Human Land-Use Practices Lead to Global Long-Term Increases in
Photosynthetic Capacity
SO REMOTE SENSING
LA English
DT Article
DE NDVI; land-use; anthropogenic biomes; anthromes; global change; GIMMS3g
ID NDVI DATA SETS; TIME-SERIES; VEGETATION INDEX; SATELLITE DATA;
SOUTH-AMERICA; TRENDS; MODIS; CLIMATE; COVER; PRODUCTIVITY
AB Long-term trends in photosynthetic capacity measured with the satellite-derived Normalized Difference Vegetation Index (NDVI) are usually associated with climate change. Human impacts on the global land surface are typically not accounted for. Here, we provide the first global analysis quantifying the effect of the earth's human footprint on NDVI trends. Globally, more than 20% of the variability in NDVI trends was explained by anthropogenic factors such as land use, nitrogen fertilization, and irrigation. Intensely used land classes, such as villages, showed the greatest rates of increase in NDVI, more than twice than those of forests. These findings reveal that factors beyond climate influence global long-term trends in NDVI and suggest that global climate change models and analyses of primary productivity should incorporate land use effects.
C1 [Mueller, Thomas; Fagan, William F.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
[Mueller, Thomas; Boehning-Gaese, Katrin] Senckenberg Gesell Nat Forsch, Biodivers & Climate Res Ctr, D-60325 Frankfurt, Germany.
[Mueller, Thomas; Boehning-Gaese, Katrin] Goethe Univ Frankfurt, Dept Biol Sci, D-60438 Frankfurt, Germany.
[Mueller, Thomas; Leimgruber, Peter] Natl Zool Pk, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.
[Dressler, Gunnar] UFZ Helmholtz Ctr Environm Res, Dept Ecol Modeling, D-04318 Leipzig, Germany.
[Tucker, Compton J.; Pinzon, Jorge E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Dubayah, Ralph O.; Hurtt, George C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20771 USA.
[Hurtt, George C.; Fagan, William F.] Natl Socioenvironm Synth Ctr SESYNC, Annapolis, MD 21401 USA.
RP Mueller, T (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
EM muellert@gmail.com; gunnar.dressler@gmail.com;
compton.j.tucker@nasa.gov; jorge.e.pinzon@nasa.gov; leimgruberp@si.edu;
dubayah@umd.edu; gchurtt@umd.edu; katrin.boehning-gaese@senckenberg.de;
bfagan@umd.edu
RI Leimgruber, Peter/O-1304-2015
OI Leimgruber, Peter/0000-0002-3682-0153
FU NSF ABI [1062411]; Robert Bosch Foundation; National Socio-Environmental
Synthesis Center (SESYNC) - National Science Foundation [DBI-1052875]
FX WFF and TM were supported by NSF ABI award 1062411 and TM was supported
by the Robert Bosch Foundation. This work was also supported by the
National Socio-Environmental Synthesis Center (SESYNC) under funding
received from the National Science Foundation DBI-1052875.
NR 45
TC 8
Z9 8
U1 1
U2 13
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2072-4292
J9 REMOTE SENS-BASEL
JI Remote Sens.
PD JUN
PY 2014
VL 6
IS 6
BP 5717
EP 5731
DI 10.3390/rs6065717
PG 15
WC Remote Sensing
SC Remote Sensing
GA AK9RB
UT WOS:000338763300048
ER
PT J
AU Bartalucci, I
Mazzotta, P
Bourdin, H
Vikhlinin, A
AF Bartalucci, I.
Mazzotta, P.
Bourdin, H.
Vikhlinin, A.
TI Chandra ACIS-I particle background: an analytical model
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE methods: data analysis; instrumentation: detectors; X-rays: general
ID DEEP FIELD-SOUTH; X-RAY; XMM-NEWTON
AB Aims. Imaging and spectroscopy of X-ray extended sources require a proper characterisation of a spatially unresolved background signal. This background includes sky and instrumental components, each of which are characterised by its proper spatial and spectral behaviour. While the X-ray sky background has been extensively studied in previous work, here we analyse and model the instrumental background of the ACIS-I detector on board the Chandra X-ray observatory in very faint mode.
Methods. Caused by interaction of highly energetic particles with the detector, the ACIS-I instrumental background is spectrally characterised by the superimposition of several fluorescence emission lines onto a continuum. To isolate its flux from any sky component, we fitted an analytical model of the continuum to observations performed in very faint mode with the detector in the stowed position shielded from the sky, and gathered over the eight-year period starting in 2001. The remaining emission lines were fitted to blank-sky observations of the same period. We found 11 emission lines. Analysing the spatial variation of the amplitude, energy and width of these lines has further allowed us to infer that three lines of these are presumably due to an energy correction artefact produced in the frame store.
Results. We provide an analytical model that predicts the instrumental background with a precision of 2% in the continuum and 5% in the lines. We use this model to measure the flux of the unresolved cosmic X-ray background in the Chandra deep field south. We obtain a flux of 10.2(-0.4)(+0.5) x 10(-13) erg cm(-2) deg(-2) s(-1) for the [1-2] keV band and (3.8 +/- 0.2) x 10(-12) erg cm(-2) deg(-2) s(-1) for the [2-8] keV band.
C1 [Bartalucci, I.; Mazzotta, P.; Bourdin, H.] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy.
[Mazzotta, P.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Bartalucci, I (reprint author), Univ Roma Tor Vergata, Dept Phys, Via Ric Sci 1, I-00133 Rome, Italy.
EM bartalucci@roma2.infn.it
RI Mazzotta, Pasquale/B-1225-2016
OI Mazzotta, Pasquale/0000-0002-5411-1748
FU PRIN-INAF; ASI-INAF [I/009/10/0]; NASA [G02-13153X, MNX14AC22G]
FX We thank Maxim Markevitch and the anonymous referee for their comments
and suggestions, which significantly improved the quality of the paper.
I.B. thanks the Harvard-Smithsonian Centre for Astrophysics, where this
work was initiated, for its hospitality. I.B., P.M., and H.B.
acknowledge support by grants PRIN-INAF2013 and ASI-INAF I/009/10/0.
P.M. acknowledge support by NASA grants G02-13153X and MNX14AC22G.
NR 14
TC 12
Z9 12
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2014
VL 566
AR A25
DI 10.1051/0004-6361/201423443
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8MI
UT WOS:000338681500098
ER
PT J
AU Iacobelli, M
Burkhart, B
Haverkorn, M
Lazarian, A
Carretti, E
Staveley-Smith, L
Gaensler, BM
Bernardi, G
Kesteven, MJ
Poppi, S
AF Iacobelli, M.
Burkhart, B.
Haverkorn, M.
Lazarian, A.
Carretti, E.
Staveley-Smith, L.
Gaensler, B. M.
Bernardi, G.
Kesteven, M. J.
Poppi, S.
TI Galactic interstellar turbulence across the southern sky seen through
spatial gradients of the polarization vector
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE ISM: general; ISM: magnetic fields; ISM: structure; radio lines:
general; radio continuum: ISM
ID RADIO-CONTINUUM SURVEY; LINEAR-POLARIZATION; MILKY-WAY; VERTICAL
STRUCTURE; MAGNETIC-FIELDS; STAR-FORMATION; FREE-ELECTRONS; INNER
GALAXY; IONIZED-GAS; OUTER SCALE
AB Aims. Radio synchrotron polarization maps of the Galaxy can be used to infer the properties of interstellar turbulence in the diffuse magneto-ionic medium (MIM). In this paper, we investigate the normalized spatial gradient of linearly polarized synchrotron emission (vertical bar del P vertical bar/vertical bar P vertical bar) as a tracer of turbulence, the relationship of the gradient to the sonic Mach number of the MIM, and changes in morphology of the gradient as a function of Galactic position in the southern sky.
Methods. We used data from the S-band Polarization All Sky Survey (S-PASS) to image the normalized spatial gradient of the linearly polarized synchrotron emission (vertical bar del P vertical bar/vertical bar P vertical bar) in the entire southern sky at 2.3 GHz. The spatial gradient of linear polarization reveals rapid changes in the density and magnetic fluctuations in the MIM due to magnetic turbulence as a function of Galactic position. We made comparisons of these data to ideal MHD numerical simulations. To constrain the sonic Mach number (M-s), we applied a high-order moments analysis to the observations and to the simulated diffuse, isothermal ISM with ideal magneto-hydrodynamic turbulence.
Results. We find that polarization gradient maps reveal elongated structures, which we associate with turbulence in the MIM. Our analysis indicates that turbulent MIM is in a generally transonic regime. This result for the turbulent regime is more general than the ones deduced by the analysis of electron density variation data, because it is based on the stochastic imprints of the Faraday rotation effect, which is also sensitive to the magnetic field fluctuations. Filamentary structures are seen with typical widths down to the angular resolution, and the observed morphologies closely match numerical simulations and, in some cases, H alpha contours. The vertical bar del P vertical bar/vertical bar P vertical bar intensity is found to be approximately log-normal distributed. No systematic variations in the sonic Mach number are observed as a function of Galactic coordinates, which is consistent with turbulence in the WIM, as inferred by the analysis of H alpha data. We conclude that the sonic Mach number of the diffuse MIM appears to be spatially uniform towards the Galactic plane and the Sagittarius-Carina arm, but local variations induced by nearby extended objects are also found.
C1 [Iacobelli, M.; Haverkorn, M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Iacobelli, M.] ASTRON, NL-7990 AA Dwingeloo, Netherlands.
[Haverkorn, M.] Radboud Univ Nijmegen, NL-6525 AJ Nijmegen, Netherlands.
[Burkhart, B.; Lazarian, A.] Univ Wisconsin, Dept Astron, Madison, WI 53711 USA.
[Carretti, E.; Kesteven, M. J.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia.
[Staveley-Smith, L.] Univ Western Australia, Int Ctr Radio Astron Res, Crawley, WA 6009, Australia.
[Staveley-Smith, L.] CAASTRO ARC Ctr Excellence All Sky Astrophys, Sydney, NSW, Australia.
[Gaensler, B. M.] Univ Sydney, Sch Phys A29, Sydney Inst Astron, Sydney, NSW 2006, Australia.
[Bernardi, G.] SKA SA, ZA-7405 Pinelands, South Africa.
[Bernardi, G.] Rhodes Univ, Dept Phys & Elect, ZA-6140 Grahamstown, South Africa.
[Bernardi, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Poppi, S.] INAF Osservatorio Astron Cagliari, I-09047 Selargius, Italy.
RP Iacobelli, M (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands.
EM iacobelli@strw.leidenuniv.nl
RI Staveley-Smith, Lister/A-1683-2011;
OI Staveley-Smith, Lister/0000-0002-8057-0294; Carretti,
Ettore/0000-0002-3973-8403; Poppi, Sergio/0000-0002-4698-2607; Gaensler,
Bryan/0000-0002-3382-9558
FU European Union [239490]; Netherlands Organization for Scientific
Research (NWO) [639.042.915]; NSF [AST 1212096]; Center for Magnetic
Self-Organization in Laboratory and Astrophysical Plasmas (CMSO);
Australian Research Council Centre of Excellence for All-sky
Astrophysics (CAASTRO) [CE110001020]; Australian Research Council
through an Australian Laureate Fellowship [FL100100114]; Commonwealth of
Australia
FX The authors thank the referee, Steven Spangler, for providing detailed
comments and helpful suggestions in the preparation of the final
manuscript. This work has been carried out in the framework of the
S-band Polarisation All Sky Survey collaboration (S-PASS). The Parkes
Radio Telescope is part of the Australia Telescope National Facility,
which is funded by the Commonwealth of Australia for operation as a
National Facility managed by CSIRO. The research leading to these
results has received funding from the European Union's Seventh Framework
Programme (FP7/2007-2013) under grant agreement number 239490. This work
is part of the research programme 639.042.915; which is (partly)
financed by the Netherlands Organization for Scientific Research (NWO).
Support for B.B. and A.L. comes from the NSF grant AST 1212096, and the
Center for Magnetic Self-Organization in Laboratory and Astrophysical
Plasmas (CMSO). B.B. acknowledges Vilas Associate Awards and the
hospitality of the International Institute of Physics (Natal). Parts of
this research were conducted by the Australian Research Council Centre
of Excellence for All-sky Astrophysics (CAASTRO), through project number
CE110001020. B.M.G. acknowledges support from the Australian Research
Council through an Australian Laureate Fellowship (FL100100114).
NR 81
TC 11
Z9 11
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2014
VL 566
AR A5
DI 10.1051/0004-6361/201322982
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8MI
UT WOS:000338681500050
ER
PT J
AU Kim, DW
Protopapas, P
Bailer-Jones, CAL
Byun, YI
Chang, SW
Marquette, JB
Shin, MS
AF Kim, Dae-Won
Protopapas, Pavlos
Bailer-Jones, Coryn A. L.
Byun, Yong-Ik
Chang, Seo-Won
Marquette, Jean-Baptiste
Shin, Min-Su
TI The EPOCH Project I. Periodic variable stars in the EROS-2 LMC database
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE stars: variables: general; Magellanic Clouds; methods: data analysis
ID LARGE-MAGELLANIC-CLOUD; GRAVITATIONAL LENSING EXPERIMENT.; OGLE-III
CATALOG; HUBBLE-SPACE-TELESCOPE; R-CORONAE-BOREALIS; TIME-SERIES DATA;
DETECTING VARIABILITY; MACHO PROJECT; LYRAE STARS; CANDIDATES
AB The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable stars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only delta Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1906 delta Scuti stars, 6607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables.
C1 [Kim, Dae-Won; Bailer-Jones, Coryn A. L.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Protopapas, Pavlos] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Byun, Yong-Ik; Chang, Seo-Won] Yonsei Univ, Dept Astron, Seoul 120749, South Korea.
[Byun, Yong-Ik; Chang, Seo-Won] Yonsei Univ, Univ Observ, Seoul 120749, South Korea.
[Marquette, Jean-Baptiste] Inst Astrophys, UPMC CNRS, UMR7095, F-75014 Paris, France.
[Shin, Min-Su] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
RP Kim, DW (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
EM kim@mpia.de
FU CEA; CNRS through the IN2P3 institute; CNRS through the INSU institute;
"Programme National de Physique Stellaire" (PNPS) of the CNRS/INSU,
France; NRF [2012R1A1A2006924]
FX The EROS-2 project was funded by the CEA and the CNRS through the IN2P3
and INSU institutes. J.B.M. acknowledges financial support from
"Programme National de Physique Stellaire" (PNPS) of the CNRS/INSU,
France. Work at Yonsei was supported by NRF grant 2012R1A1A2006924. The
analysis in this paper has been performed using the Odyssey cluster
supported by the FAS Research Computing Group at Harvard.
NR 56
TC 13
Z9 13
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2014
VL 566
AR A43
DI 10.1051/0004-6361/201323252
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8MI
UT WOS:000338681500071
ER
PT J
AU Lombardi, M
Bouy, H
Alves, J
Lada, CJ
AF Lombardi, Marco
Bouy, Herve
Alves, Joao
Lada, Charles J.
TI Herschel-Planck dust optical-depth and column-density maps I. Method
description and results for Orion
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE ISM: clouds; dust, extinction; ISM: structure; ISM: individual objects:
Orion molecular cloud
ID FIELD EXTINCTION MAPS; NEAR-INFRARED OBSERVATIONS; MOLECULAR CLOUDS;
NEBULA CLUSTER; STAR-FORMATION; SUPERSONIC TURBULENCE; INTERSTELLAR
DUST; TRAPEZIUM CLUSTER; SIZE DISTRIBUTION; BURNING LIMIT
AB We present high-resolution, high dynamic range column-density and color-temperature maps of the Orion complex using a combination of Planck dust-emission maps, Herschel dust-emission maps, and 2MASS NIR dust-extinction maps. The column-density maps combine the robustness of the 2MASS NIR extinction maps with the resolution and coverage of the Herschel and Planck dust-emission maps and constitute the highest dynamic range column-density maps ever constructed for the entire Orion complex, covering 0.01 mag < A(K) < 30 mag, or 2 x 10(20) cm(-2) < N < 5 x 10(23) cm(-2). We determined the ratio of the 2.2 mu m extinction coefficient to the 850 mu m opacity and found that the values obtained for both Orion A and B are significantly lower than the predictions of standard dust models, but agree with newer models that incorporate icy silicate-graphite conglomerates for the grain population. We show that the cloud projected probability distribution function, over a large range of column densities, can be well fitted by a simple power law. Moreover, we considered the local Schmidt-law for star formation, and confirm earlier results, showing that the protostar surface density Sigma(*) follows a simple law Sigma(*) proportional to Sigma(beta)(gas), with beta similar to 2.
C1 [Lombardi, Marco] Univ Milan, Dept Phys, I-20133 Milan, Italy.
[Bouy, Herve] INTA CSIC, Ctr Astrobiol, Madrid 28691, Spain.
[Alves, Joao] Univ Vienna, A-1180 Vienna, Austria.
[Lombardi, Marco; Lada, Charles J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Lombardi, M (reprint author), Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy.
EM marco.lombardi@unimi.it
RI Bouy, Herve/H-2913-2012;
OI Bouy, Herve/0000-0002-7084-487X; LOMBARDI, MARCO/0000-0002-3336-4965;
Alves, Joao/0000-0002-4355-0921
FU ESA Member States; NASA; Ramon y Cajal fellowship program
[RYC-2009-04497]; Faculty of the European Space Astronomy Centre (ESAC)
FX Based on observations obtained with Planck (http://www.esa.int/Planck),
an ESA science mission with instruments and contributions directly
funded by ESA Member States, NASA, and Canada. We are grateful to H.
Roussel for her help with Scanamorphos. H. Bouy is funded by the Ramon y
Cajal fellowship program number RYC-2009-04497. J. Alves acknowledges
support from the Faculty of the European Space Astronomy Centre (ESAC).
NR 66
TC 39
Z9 39
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2014
VL 566
AR A45
DI 10.1051/0004-6361/201323293
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8MI
UT WOS:000338681500075
ER
PT J
AU Santos, NC
Mortier, A
Faria, JP
Dumusque, X
Adibekyan, VZ
Delgado-Mena, E
Figueira, P
Benamati, L
Boisse, I
Cunha, D
da Silva, JG
Lo Curto, G
Lovis, C
Martins, JHC
Mayor, M
Melo, C
Oshagh, M
Pepe, F
Queloz, D
Santerne, A
Segransan, D
Sozzetti, A
Sousa, SG
Udry, S
AF Santos, N. C.
Mortier, A.
Faria, J. P.
Dumusque, X.
Adibekyan, V. Zh.
Delgado-Mena, E.
Figueira, P.
Benamati, L.
Boisse, I.
Cunha, D.
da Silva, J. Gomes
Lo Curto, G.
Lovis, C.
Martins, J. H. C.
Mayor, M.
Melo, C.
Oshagh, M.
Pepe, F.
Queloz, D.
Santerne, A.
Segransan, D.
Sozzetti, A.
Sousa, S. G.
Udry, S.
TI The HARPS search for southern extra-solar planets XXXV. The interesting
case of HD 41248: stellar activity, no planets?
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE planetary systems; stars: individual: HD 41248; stars: solar-type;
stars: activity; stars: abundances surveys
ID METAL-POOR STARS; DIFFERENTIAL ROTATION; GIANT PLANETS; BOLOMETRIC
CORRECTIONS; MAGNETIC CYCLES; CORALIE SURVEY; HOT-JUPITER; MASS;
METALLICITY; EXOPLANETS
AB Context. The search for planets orbiting metal-poor stars is of utmost importance for our understanding of planet formation models. However, no dedicated searches have been conducted so far for very low mass planets orbiting such objects. Only a few cases of low-mass planets orbiting metal-poor stars are thus known. Amongst these, HD 41248 is a metal-poor, solar-type star on the orbit of which a resonant pair of super-Earth-like planets has been announced. This detection was based on 62 radial velocity measurements obtained with the HARPS spectrograph (public data).
Aims. We present a new planet search program that is using the HARPS spectrograph to search for Neptunes and super-Earths that orbit a sample of metal-poor FGK dwarfs. We then present a detailed analysis of 162 additional radial velocity measurements of HD 41248, obtained within this program, with the goal of confirming the existence of the proposed planetary system.
Methods. We analysed the precise radial velocities, obtained with the HARPS spectrograph, together with several stellar activity diagnostics and line profile indicators.
Results. A careful analysis shows no evidence for the planetary system. One of the signals, with a period of similar to 25 days, is shown to be related to the rotational period of the star, and is clearly seen in some of the activity proxies. We were unable to convincingly retrieve the remaining signal (P similar to 18 days) in the new dataset.
Conclusions. We discuss possible causes for the complex (evolving) signals observed in the data of HD 41248, proposing that they might be explained by the appearance and disappearance of active regions on the surface of a star with strong differential rotation, or by a combination of the sparse data sampling and active region evolution.
C1 [Santos, N. C.; Mortier, A.; Faria, J. P.; Adibekyan, V. Zh.; Delgado-Mena, E.; Figueira, P.; Benamati, L.; Cunha, D.; da Silva, J. Gomes; Martins, J. H. C.; Oshagh, M.; Santerne, A.; Sousa, S. G.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Santos, N. C.; Faria, J. P.; Benamati, L.; Cunha, D.; da Silva, J. Gomes; Martins, J. H. C.; Oshagh, M.; Sousa, S. G.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4169007 Oporto, Portugal.
[Dumusque, X.; Lovis, C.; Mayor, M.; Pepe, F.; Queloz, D.; Segransan, D.; Udry, S.] Univ Geneva, Observ Geneve, CH-1290 Sauverny, Switzerland.
[Dumusque, X.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Lo Curto, G.; Melo, C.] European So Observ, Santiago, Chile.
[Sousa, S. G.] Inst Astrofis Canarias, Tenerife 38200, Spain.
[Sozzetti, A.] INAF Osservatorio Astrofis Torino, I-10025 Pino Torinese, Italy.
[Boisse, I.] Aix Marseille Univ, CNRS, LAM Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France.
[Queloz, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
RP Santos, NC (reprint author), Univ Porto, Ctr Astrofis, Rua Estrelas, P-4150762 Oporto, Portugal.
EM nuno@astro.up.pt
RI Santos, Nuno/E-9957-2011; Cunha, Diana/B-1274-2011; Figueira,
Pedro/J-4916-2013; Sousa, Sergio/I-7466-2013; Delgado Mena,
Elisa/M-9178-2013; Melo, Claudio/O-2797-2013; Adibekyan,
Vardan/I-5026-2013;
OI Sozzetti, Alessandro/0000-0002-7504-365X; Santos,
Nuno/0000-0003-4422-2919; Santerne, Alexandre/0000-0002-3586-1316;
Mortier, Annelies/0000-0001-7254-4363; Cunha, Diana/0000-0002-6775-0493;
Figueira, Pedro/0000-0001-8504-283X; Sousa, Sergio/0000-0001-9047-2965;
Delgado Mena, Elisa/0000-0003-4434-2195; Oshagh,
Mahmoudreza/0000-0002-0715-8789; Faria, Joao/0000-0002-6728-244X;
Adibekyan, Vardan/0000-0002-0601-6199; Melo, Claudio/0000-0002-6090-8446
FU Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) through FEDER
[PTDC/CTE-AST/120251/2010 (COMPETE reference
FCOMP-01-0124-FEDER-019884), RECI/FIS-AST/0176/2012
(FCOMP-01-0124-FEDER-027493), RECI/FIS-AST/0163/2012
(FCOMP-01-0124-FEDER-027492)]; European Research Council/European
Community [239953]; FCT [IF/00169/2012, IF/01037/2013]; POPH/FSE (EC);
FEDER funding through the program Programa Operacional de Factores de
Competitividade - COMPETE; Swiss National Science Foundation
FX We would like to thank N. Lanza for fruitful discussions. We acknowledge
support from Fundacao para a Ciencia e a Tecnologia (FCT, Portugal)
through FEDER funds in program COMPETE, as well as through national
funds, in the form of grants reference PTDC/CTE-AST/120251/2010 (COMPETE
reference FCOMP-01-0124-FEDER-019884), RECI/FIS-AST/0176/2012
(FCOMP-01-0124-FEDER-027493), and RECI/FIS-AST/0163/2012
(FCOMP-01-0124-FEDER-027492). This work was supported by the European
Research Council/European Community under the FP7 through Starting Grant
agreement number 239953. N.C.S. and P.F. were supported by FCT through
the Investigador FCT contract references IF/00169/2012 and IF/01037/2013
and POPH/FSE (EC) by FEDER funding through the program Programa
Operacional de Factores de Competitividade - COMPETE. X. Dumusque was
supported by the Swiss National Science Foundation. This work made use
of the SIMBAD database.
NR 77
TC 27
Z9 27
U1 0
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2014
VL 566
AR A35
DI 10.1051/0004-6361/201423808
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8MI
UT WOS:000338681500141
ER
PT J
AU Schulze, S
Malesani, D
Cucchiara, A
Tanvir, NR
Kruhler, T
Postigo, AD
Leloudas, G
Lyman, J
Bersier, D
Wiersema, K
Perley, DA
Schady, P
Gorosabel, J
Anderson, JP
Castro-Tirado, AJ
Cenko, SB
De Cia, A
Ellerbroek, LE
Fynbo, JPU
Greiner, J
Hjorth, J
Kann, DA
Kaper, L
Klose, S
Levan, AJ
Martin, S
O'Brien, PT
Page, KL
Pignata, G
Rapaport, S
Sanchez-Ramirez, R
Sollerman, J
Smith, IA
Sparre, M
Thone, CC
Watson, DJ
Xu, D
Bauer, EE
Bayliss, M
Bjornsson, G
Bremer, M
Cano, Z
Covino, S
D'Elia, V
Frail, DA
Geier, S
Goldoni, P
Hartoog, OE
Jakobsson, P
Korhonen, H
Lee, KY
Milvang-Jensen, B
Nardini, M
Guelbenzu, AN
Oguri, M
Pandey, SB
Petitpas, G
Rossi, A
Sandberg, A
Schmidl, S
Tagliaferri, G
Tilanus, RPJ
Winters, JM
Wright, D
Wuyts, E
AF Schulze, S.
Malesani, D.
Cucchiara, A.
Tanvir, N. R.
Kruhler, T.
de Ugarte Postigo, A.
Leloudas, G.
Lyman, J.
Bersier, D.
Wiersema, K.
Perley, D. A.
Schady, P.
Gorosabel, J.
Anderson, J. P.
Castro-Tirado, A. J.
Cenko, S. B.
De Cia, A.
Ellerbroek, L. E.
Fynbo, J. P. U.
Greiner, J.
Hjorth, J.
Kann, D. A.
Kaper, L.
Klose, S.
Levan, A. J.
Martin, S.
O'Brien, P. T.
Page, K. L.
Pignata, G.
Rapaport, S.
Sanchez-Ramirez, R.
Sollerman, J.
Smith, I. A.
Sparre, M.
Thoene, C. C.
Watson, D. J.
Xu, D.
Bauer, E. E.
Bayliss, M.
Bjornsson, G.
Bremer, M.
Cano, Z.
Covino, S.
D'Elia, V.
Frail, D. A.
Geier, S.
Goldoni, P.
Hartoog, O. E.
Jakobsson, P.
Korhonen, H.
Lee, K. Y.
Milvang-Jensen, B.
Nardini, M.
Guelbenzu, A. Nicuesa
Oguri, M.
Pandey, S. B.
Petitpas, G.
Rossi, A.
Sandberg, A.
Schmidl, S.
Tagliaferri, G.
Tilanus, R. P. J.
Winters, J. M.
Wright, D.
Wuyts, E.
TI GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity
gamma-ray bursts
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE gamma-ray burst: individual: GRB 120422A; supernovae: individual: SN
2012bz; dust, extinction; galaxies: ISM; galaxies: individual: GRB
120422A
ID MASS-METALLICITY RELATION; CORE-COLLAPSE SUPERNOVAE; COSMIC
STAR-FORMATION; DIGITAL SKY SURVEY; 25 APRIL 1998; HOST GALAXIES; LIGHT
CURVES; 980425/SN 1998BW; LY-ALPHA; PHOTOMETRIC REDSHIFTS
AB Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (L-iso less than or similar to 10(48.5) erg s(-1)) than the average of more distant ones (L-iso greater than or similar to 10(49.5) erg s(-1)). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected.
Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a gamma-ray luminosity of L-iso similar to 10(49.6-49.9) erg s(-1) that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low-and high-L GRBs and the GRB-SN connection.
Methods. We carried out a spectroscopy campaign using medium-and low-resolution spectrographs with 6-10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of similar to 270 days. Furthermore, we used a tuneable filter that is centred at H alpha to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy.
Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Gamma(0) similar to 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of less than or similar to 2 x 10(30) erg s(-1) Hz(-1) in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of k(B)T similar to 16 eV and a radius of similar to 7 x 10(13) cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of M-V = -19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M-circle dot, ejecta mass of 5.87 M-circle dot, and kinetic energy of 4.10x10(52) erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy's nucleus.
Conclusions. While the prompt gamma-ray emission points to a high-L GRB, the weak afterglow and the low Gamma(0) were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate L-iso of similar to 10(49.6-49.9) erg s(-1). Therefore, we conclude that GRB 120422A was a transition object between low-and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets.
C1 [Schulze, S.; Bauer, E. E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago, Chile.
[Schulze, S.; Bjornsson, G.; Cano, Z.; Jakobsson, P.] Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland.
[Schulze, S.; Bjornsson, G.; Cano, Z.; Jakobsson, P.] Univ Iceland, IS-107 Reykjavik, Iceland.
[Malesani, D.; Kruhler, T.; de Ugarte Postigo, A.; Leloudas, G.; Fynbo, J. P. U.; Hjorth, J.; Sparre, M.; Watson, D. J.; Xu, D.; Geier, S.; Milvang-Jensen, B.] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Cucchiara, A.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA.
[Tanvir, N. R.; Wiersema, K.; O'Brien, P. T.; Page, K. L.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[de Ugarte Postigo, A.; Gorosabel, J.; Castro-Tirado, A. J.; Sanchez-Ramirez, R.; Thoene, C. C.] CSIC, IAA, E-18008 Granada, Spain.
[Leloudas, G.] Stockholm Univ, Oskar Klein Ctr, Dept Phys, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden.
[Lyman, J.; Bersier, D.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England.
[Perley, D. A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
[Schady, P.; Greiner, J.; Kann, D. A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Anderson, J. P.] Univ Chile, Dept Astron, Santiago, Chile.
[Cenko, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Cenko, S. B.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[De Cia, A.; Xu, D.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Fac Phys, IL-76100 Rehovot, Israel.
[Ellerbroek, L. E.; Kaper, L.; Hartoog, O. E.] Univ Amsterdam, NL-1098 XH Amsterdam, Netherlands.
[Kann, D. A.; Klose, S.; Guelbenzu, A. Nicuesa; Rossi, A.; Schmidl, S.] Thuringer Landessternwarte Tautenburg, Tautenburg, Germany.
[Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Kruhler, T.; Anderson, J. P.; Martin, S.] European So Observ, Santiago 19, Chile.
[Pignata, G.] Univ Andres Bello, Dept Ciencias Fis, Santiago, Chile.
[Rapaport, S.] Mt Stromlo & Siding Spring Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia.
[Sollerman, J.; Lee, K. Y.; Sandberg, A.] Stockholm Univ, Oskar Klein Ctr, Dept Astron, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden.
[Smith, I. A.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Bayliss, M.; Petitpas, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bayliss, M.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Covino, S.; Tagliaferri, G.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy.
[Bremer, M.; Winters, J. M.] Inst Radioastron Millimetr IRAM, F-38406 St Martin Dheres, France.
[D'Elia, V.] ASI Sci Data Ctr, I-00133 Rome, Italy.
[Frail, D. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA.
[Geier, S.] Nord Opt Telescope, Santa Cruz De La Palma 38700, Spain.
[Goldoni, P.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Irfu,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France.
[Korhonen, H.] Univ Turku, Finnish Ctr Astron ESO FINCA, Piikkio 21500, Finland.
[Nardini, M.] Univ Milano Bicocca, I-20126 Milan, Italy.
[Oguri, M.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan.
[Oguri, M.] Univ Tokyo, Kavli IPMU, WPI, Chiba 2778583, Japan.
[Pandey, S. B.] Aryabhatta Res & Observat Sci, Naini Tal 263129, India.
[Tilanus, R. P. J.] Joint Astron Ctr, James Clerk Maxwell Telescope, Hilo, HI 96720 USA.
[Tilanus, R. P. J.] Netherlands Org Sci Res, NL-2509 AC The Hague, Netherlands.
[Wright, D.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland.
[Wuyts, E.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Wuyts, E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Bauer, E. E.] Space Sci Inst, Boulder, CO 80301 USA.
[Gorosabel, J.] Univ Pais Vasco UPV EHU, Unidad Asociada Grp Ciencia Planetarias UPV EHU I, Dept Fis Aplicada 1, Bilbao 48013, Spain.
[Gorosabel, J.] Basque Fdn Sci, Ikerbasque, Bilbao 48008, Spain.
[D'Elia, V.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy.
RP Schulze, S (reprint author), Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Av Vicuna Mackenna 4860, Santiago, Chile.
EM sschulze@astro.puc.cl
RI Oguri, Masamune/C-6230-2011; Hjorth, Jens/M-5787-2014; Sparre,
Martin/C-2424-2015; Watson, Darach/E-4521-2015; Jakobsson,
Pall/L-9950-2015; Korhonen, Heidi/E-3065-2016; Rossi,
Andrea/N-4674-2015;
OI Schulze, Steve/0000-0001-6797-1889; de Ugarte Postigo,
Antonio/0000-0001-7717-5085; Covino, Stefano/0000-0001-9078-5507;
Sanchez-Ramirez, Ruben/0000-0002-7158-5099; Kruehler,
Thomas/0000-0002-8682-2384; Tagliaferri, Gianpiero/0000-0003-0121-0723;
D'Elia, Valerio/0000-0002-7320-5862; Sollerman,
Jesper/0000-0003-1546-6615; Castro-Tirado, A. J./0000-0003-2999-3563;
Hjorth, Jens/0000-0002-4571-2306; Sparre, Martin/0000-0002-9735-3851;
Watson, Darach/0000-0002-4465-8264; Jakobsson, Pall/0000-0002-9404-5650;
Korhonen, Heidi/0000-0003-0529-1161; Rossi, Andrea/0000-0002-8860-6538;
Thone, Christina/0000-0002-7978-7648
FU Icelandic Research Fund; University of Iceland Research Fund; Dark
Cosmology Centre; CONICYT through FONDECYT [3140534, 3110142];
Basal-CATA [PFB-06/2007]; Iniciativa Cientifica Milenio grant
(Millennium Center for Supernova Science) [P10-064-F]; "Millennium
Institute of Astrophysics (MAS)" of Iniciativa Cientifica Milenio del
Ministerio de Economia, Fomento y Turismo de Chile [IC120009]; "Fondo de
Innovacion para la Competitividad, del Ministerio de Economia, Foment y
Turismo de Chile"; CONICYT-Chile FONDECYT [1101024]; Instrument Center
for Danish Astrophysics; European Commission under the Marie Curie
Intra-European Fellowship Programme; ERC-StG [EGGS-278202]; UK Space
Agency; Swedish Research Council [623-2011-7117]; UK Science and
Technology Facilities Council; Spanish research project
[AYA2012-39362-C02-02, AYA2009-14000-C03-01, AYA2012-39727-C03-01];
European Commission under the Marie Curie Career Integration Grant
programme [FP7-PEOPLE-2012-CIG 322307]; DFG cluster of excellence
"Origin and Structure of the Universe" - Thuringer Landessternwarte
Tautenburg; Thuringer Landessternwarte Tautenburg; Alexander von
Humboldt Foundation of Germany; DFG [KL 766/16-1, HA 1850/28-1];
Thuringer Ministerium fur Bildung, Wissenschaft und Kultur [FKZ
12010-514]; Danish National Research Foundation; Spitzer/NASA grant RSA
[1287913]; NSF [GN-2012A-Q-9, GN-2012A-Q-39, GN-2012B-Q-5,
GS-2012A-Q-30, GS-2012A-Q-38]; Nordic Optical Telescope (NOT); Instituto
de Astrofisica de Canarias [P45-002, ITP10-04]; Gran Telescopio Canarias
(GTC) in the Spanish Observatorio del Roque de los Muchachos of the
Instituto de Astrofisica de Canarias in the island of La Palma; Magellan
[CN2012A-059]; TRAM Plateau de Bure Interferometer; James Clerk Maxwell
Telescope [M12AI12]; XMM-Newton, an ESA science mission; ESA Member
States; NASA; W.M. Keck Foundation; Science and Technology Facilities
Council of the United Kingdom; National Research Council of Canada;
Netherlands Organisation for Scientific Research; Canada Foundation for
Innovation; Smithsonian Institution; Academia Sinica; INSU/CNRS
(France); MPG (Germany); IGN (Spain); Gordon and Betty Moore Foundation;
Kenneth T. and Eileen L. Norris Foundation; James S. McDonnell
Foundation; Associates of the California Institute of Technology;
University of Chicago; state of California, Illinois; state of
California, Maryland; National Science Foundation; Alfred P. Sloan
Foundation; US Department of Energy Office of Science
FX We thank Shri Kulkarni (Caltech) for obtaining the Keck spectrum. S.S.
thanks Tsvi Piran (The Hebrew University, Israel), Nir Sapir, Eli Waxman
(Weizmann Institute of Science, Israel), Milena Butane (Universidad
Andres Bello, Chile), Maryam Modjaz (New York University, USA), and the
anonymous referee for many productive and valuable discussions. S.S.
acknowledges support by a Grant of Excellence from the Icelandic
Research Fund, from the University of Iceland Research Fund, from the
Dark Cosmology Centre, where part of this study was performed, and from
CONICYT through FONDECYT grant 3140534. We acknowledge support from
Basal-CATA PFB-06/2007 (FEB, SS), Iniciativa Cientifica Milenio grant
P10-064-F (Millennium Center for Supernova Science), by Project IC120009
"Millennium Institute of Astrophysics (MAS)" of Iniciativa Cientifica
Milenio del Ministerio de Economia, Fomento y Turismo de Chile, with
input from "Fondo de Innovacion para la Competitividad, del Ministerio
de Economia, Foment y Turismo de Chile" (F.E.B., G.P., J.A.R., S.S.),
CONICYT-Chile FONDECYT 1101024 (FEB). J.A.P. acknowledges support by
CONICYT through FONDECYT grant 3110142. D.M. acknowledges the Instrument
Center for Danish Astrophysics for support. T.K. and H.K. acknowledge
support by the European Commission under the Marie Curie Intra-European
Fellowship Programme in FP7. J.P.U.F., B.M.J., and D.X. acknowledge
support from the ERC-StG grant EGGS-278202. K.L.P. acknowledges
financial support by the UK Space Agency for the Swift project. G.L. is
supported by the Swedish Research Council through grant No.
623-2011-7117. J.L. acknowledges the UK Science and Technology
Facilities Council for research studentship support. The research
activity of AdUP, C.T., and J.G. is supported by Spanish research
project AYA2012-39362-C02-02. A.d.U.P. acknowledges support by the
European Commission under the Marie Curie Career Integration Grant
programme (FP7-PEOPLE-2012-CIG 322307). A.J.C.T. acknowledges support
front the Spanish research project AYA2009-14000-C03-01 and
AYA2012-39727-C03-01 D.A.K. acknowledges support by the DFG cluster of
excellence "Origin and Structure of the Universe" and funding by the
Thuringer Landessternwarte Tautenburg. A. R. acknowledges support by the
Thuringer Landessternwarte Tautenburg. P.S. acknowledges support through
the Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation
of Germany. A.N.G. and S.K. acknowledge support by DFG KL 766/16-1. S.
Schmidl acknowledges support by the Thuringer Ministerium fur Bildung,
Wissenschaft und Kultur under FKZ 12010-514. The Dark Cosmology Centre
is funded by the Danish National Research Foundation. This work made use
of data supplied by the UK Swift Science Data Centre at the University
of Leicester. This research has made use of the GHostS database
(www.grbhosts.org), which is partly funded by Spitzer/NASA grant RSA
Agreement No. 1287913. Based in part on observations collected at the
European Organisation for Astronomical Research in the Southern
Hemisphere, Chile, as part of the program 089.A-0067, the Gemini
Observatory, which is operated by the Association of Universities for
Research in Astronomy, Inc.; , under a co-operative agreement with the
NSF on behalf of the Gemini partnership, as part of the programs
GN-2012A-Q-9, GN-2012A-Q-39, GN-2012B-Q-5, GS-2012A-Q-30, GS-2012A-Q-38,
GS-2012A-Q-30, and GN-2012B-Q-5, the Nordic Optical Telescope (NOT),
operated by the Nordic Optical Telescope Scientific Association at the
Observatorio del Roque de los Muchachos, La Palma, Spain, of the
Instituto de Astrofisica de Canarias, as part of the program P45-002
(PI: Jakobsson) and ITP10-04 (PI: Kotak, QUB), the Gran Telescopio
Canarias (GTC), installed in the Spanish Observatorio del Roque de los
Muchachos of the Instituto de Astrofisica de Canarias, in the island of
La Palma, with Magellan as part of CN2012A-059, with the TRAM Plateau de
Bure Interferometer, the James Clerk Maxwell Telescope, as part of the
program M12AI12, with XMM-Newton, an ESA science mission with
instruments and contributions directly funded by ESA Member States and
NASA. Some of the data presented herein were obtained at the W.M. Keck
Observatory, which is operated as a scientific partnership among the
California Institute of Technology, the University of California and the
National Aeronautics and Space Administration. The observatory was made
possible by the generous financial support of the W.M. Keck Foundation,
The United Kingdom Infrared Telescope is operated by the Joint Astronomy
Centre on behalf of the Science and Technology Facilities Council of the
UK The lames Clerk Maxwell Telescope is operated by the Joint Astronomy
Centre on behalf of the Science and Technology Facilities Council of the
United Kingdom, the National Research Council of Canada, and the
Netherlands Organisation for Scientific Research. Additional funds for
the construction of SCUBA-2 were provided by the Canada Foundation for
Innovation. The Submillimeter Array is a joint project between the
Smithsonian Astrophysical Observatory and the Academia Sinica Institute
of Astronomy and Astrophysics and is funded by the Smithsonian
Institution and the Academia Sinica. IRAM is supported by INSU/CNRS
(France), MPG (Germany) and IGN (Spain). Support for CARMA construction
was derived from the Gordon and Betty Moore Foundation, the Kenneth T.
and Eileen L. Norris Foundation, the James S. McDonnell Foundation, the
Associates of the California Institute of Technology, the University of
Chicago, the states of California, Illinois, and Maryland, and the
National Science Foundation. Ongoing CARMA development and operations
are supported by the National Science Foundation under a cooperative
agreement, and by the CARMA partner universities. Part of the funding
for GROND (both hardware as well as personnel) was generously granted
from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1).
Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the US Department of Energy Office of Science. The
SDSS-III web site is http://www.sdss3org/.; SDSS-III is managed by the
Astrophysical Research Consortium for the Participating Institutions of
the SDSS-III Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Laboratory, Carnegie
Mellon University, University of Florida, the French Participation
Group, the German Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA
Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max Planck
Institute for Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State University,
University of Portsmouth, Princeton University, the Spanish
Participation Group, University of Tokyo. University of Utah, Vanderbilt
University, University of Virginia, University of Washington, and Yale
University.
NR 216
TC 23
Z9 23
U1 3
U2 15
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2014
VL 566
AR A102
DI 10.1051/0004-6361/201423387
PG 31
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8MI
UT WOS:000338681500092
ER
PT J
AU Wu, YW
Sato, M
Reid, MJ
Moscadelli, L
Zhang, B
Xu, Y
Brunthaler, A
Menten, KM
Dame, TM
Zheng, XW
AF Wu, Y. W.
Sato, M.
Reid, M. J.
Moscadelli, L.
Zhang, B.
Xu, Y.
Brunthaler, A.
Menten, K. M.
Dame, T. M.
Zheng, X. W.
TI Trigonometric parallaxes of star-forming regions in the Sagittarius
spiral arm
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE astrometry; Galaxy: structure; Galaxy: kinematics and dynamics; masers;
stars: formation
ID II METHANOL MASERS; GIANT MOLECULAR CLOUD; MILKY-WAY; WATER MASER;
FUNDAMENTAL PARAMETERS; GALACTIC ROTATION; VLBI ASTROMETRY; INFRARED
SURVEY; BESSEL SURVEY; IRAS SOURCES
AB We report measurements of parallaxes and proper motions of ten high-mass star-forming regions in the Sagittarius spiral arm of the Milky Way as part of the BeSSeL Survey with the VLBA. Combining these results with eight others from the literature, we investigated the structure and kinematics of the arm between Galactocentric azimuths beta approximate to -2 degrees. and 65 degrees. We found that the spiral pitch angle is 7 degrees.3 +/- 1 degrees.5; the arm's half-width, defined as the rms deviation from the fitted spiral, is approximate to 0.2 kpc; and the nearest portion of the Sagittarius arm is 1.4 +/- 0.2 kpc from the Sun. Unlike for adjacent spiral arms, we found no evidence for significant peculiar motions of sources in the Sagittarius arm opposite to Galactic rotation.
C1 [Wu, Y. W.; Xu, Y.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China.
[Wu, Y. W.; Sato, M.; Zhang, B.; Brunthaler, A.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Wu, Y. W.] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China.
[Reid, M. J.; Dame, T. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Moscadelli, L.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy.
[Zheng, X. W.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China.
RP Wu, YW (reprint author), Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China.
EM ywwu@pmo.ac.cn
OI Moscadelli, Luca/0000-0002-8517-8881
FU Chinese NSF [NSF 11133008, NSF 11073054, NSF 11203082, NSF 10921063, NSF
11233007, BK2012494]; Key Laboratory for Radio Astronomy, CAS; ERC
Advanced Investigator Grant GLOSTAR [247078]
FX This work was supported by the Chinese NSF through grants NSF 11133008,
NSF 11073054, NSF 11203082, NSF 10921063, NSF 11233007, BK2012494, and
the Key Laboratory for Radio Astronomy, CAS. This work was partially
funded by the ERC Advanced Investigator Grant GLOSTAR (247078). We are
grateful to James Urquhart for providing the ATLASGAL FITS files. We
also acknowledge John D. Hunter, the creator of the Python matplotlib,
which was used extensively for our figures. Facilities: VLBA.
NR 80
TC 27
Z9 27
U1 1
U2 4
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2014
VL 566
AR A17
DI 10.1051/0004-6361/201322765
PG 26
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK8MI
UT WOS:000338681500036
ER
PT J
AU O'Malley, RC
Power, ML
AF O'Malley, Robert C.
Power, Michael L.
TI The energetic and nutritional yields from insectivory for Kasekela
chimpanzees
SO JOURNAL OF HUMAN EVOLUTION
LA English
DT Article
DE Pan troglodytes; Faunivory; Tool use; Diet; Tanzania; Feeding rate;
Ants; Termites
ID PAN-TROGLODYTES-SCHWEINFURTHII; GOMBE NATIONAL-PARK; WILD CHIMPANZEES;
CULTURAL VARIATION; COMMON ANCESTOR; EDIBLE INSECTS; LAETOLIL BEDS;
PLANT FOODS; TOOL USE; ANTS
AB Insectivory is hypothesized to be an important source of macronutrients, minerals, and vitamins for chimpanzees (Pan troglodytes), yet nutritional data based on actual intake are lacking. Drawing on observations from 2008 to 2010 and recently published nutritional assays, we determined the energy, macronutrient and mineral yields for termite-fishing (Macrotermes), ant-dipping (Dorylus), and antfishing (Camponotus) by the Kasekela chimpanzees of Gombe National Park, Tanzania. We also estimated the yields from consumption of weaver ants (Oecophylla) and termite alates (Macrotermes and Pseudacanthotermes). On days when chimpanzees were observed to prey on insects, the time spent in insectivorous behavior ranged from <1 min to over 4 h. After excluding partial bouts and those of <1 min duration, ant-dipping bouts were of significantly shorter duration than the other two forms of tool-assisted insectivory but provided the highest mass intake rate. Termite-fishing bouts were of significantly longer duration than ant-dipping and had a lower mass intake rate, but provided higher mean and maximum mass yields. Ant-fishing bouts were comparable to termite-fishing bouts in duration but had significantly lower mass intake rates. Mean and maximum all-day yields from termite-fishing and antdipping contributed to or met estimated recommended intake (ERI) values for a broad array of minerals. The mean and maximum all-day yields of other insects consistently contributed to the ERI only for manganese. All forms of insectivory provided small but probably non-trivial amounts of fat and protein. We conclude that different forms of insectivoly have the potential to address different nutritional needs for Kasekela chimpanzees. Other than honeybees, insects have received little attention as potential foods for hominins. Our results suggest that ants and (on a seasonal basis) termites would have been viable sources of fat, high-quality protein and minerals for extinct hominins employing Pan-like subsistence technology in East African woodlands. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [O'Malley, Robert C.] George Washington Univ, Ctr Adv Study Hominid Paleobiol, Dept Anthropol, Washington, DC 20052 USA.
[Power, Michael L.] Smithsonian Conservat Biol Inst, Nutr Lab, Washington, DC 20008 USA.
[Power, Michael L.] Smithsonian Conservat Biol Inst, Conservat Ecol Ctr, Washington, DC 20008 USA.
RP O'Malley, RC (reprint author), George Washington Univ, Ctr Adv Study Hominid Paleobiol, Dept Anthropol, Washington, DC 20052 USA.
EM omalleyrc@gmail.com; PowerM@si.edu
OI Power, Michael/0000-0002-6120-3528
FU Tanzania Wildlife Research Institute; Tanzania National Parks, Gombe
National Park; Jane Goodall Institute-Tanzania; University of Southern
California; International Summer Field Research Award; Dissertation
Research and Writing Award; Jane Goodall Center Research Award;
Integrative and Evolutionary Biology Research Award; Gold Family
Fellowship
FX Samson Pindu provided invaluable assistance in the field. Dr. Craig
Stanford provided welcome mentoring and support during Robert O'Malley's
dissertation research. Michael Jakubasz provided training for the
nutritional assays. Dr. Francisco Hita Garcia, Dr. Caspar Schoning, and
Dr. Rudolf Scheffrahn shared their expertise in insect identification.
Three anonymous reviewers provided helpful comments and critiques that
greatly improved this manuscript. We thank the Tanzania Wildlife
Research Institute, the Tanzania National Parks, Gombe National Park and
the Jane Goodall Institute-Tanzania for their permission and support for
this research, conducted under COSTECH permit #2009-229-ER-2007-188.
Finally, we thank Dr. W.C. McGrew for co-chairing 'The Other Faunivory'
symposium held at the 2012 American Association of Physical
Anthropologists meeting in Portland, Oregon. Robert O'Malley's research
was funded by the University of Southern California through a Joint
Initiative Merit Fellowship, International Summer Field Research Award,
a Dissertation Research and Writing Award, a Jane Goodall Center
Research Award, an Integrative and Evolutionary Biology Research Award,
and a Gold Family Fellowship. This research complied with all US
institutional requirements and regulations of the Republic of Tanzania
regarding the ethical treatment of primate research subjects in the
field.
NR 98
TC 5
Z9 5
U1 3
U2 30
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0047-2484
J9 J HUM EVOL
JI J. Hum. Evol.
PD JUN
PY 2014
VL 71
SI SI
BP 46
EP 58
DI 10.1016/j.jhevol.2013.09.014
PG 13
WC Anthropology; Evolutionary Biology
SC Anthropology; Evolutionary Biology
GA AL0NZ
UT WOS:000338824900007
PM 24698197
ER
PT J
AU Zhou, SL
Dong, WP
Chen, XQ
Zhang, XC
Wen, J
Schneider, H
AF Zhou, Shiliang
Dong, Wenpan
Chen, Xiaoqing
Zhang, Xianchun
Wen, Jun
Schneider, Harald
TI How many species of bracken (Pteridium) are there? Assessing the Chinese
brackens using molecular evidence
SO TAXON
LA English
DT Article
DE chloroplast; microsatellite; phylogeny; phylogeography; Pteridium;
taxonomy
ID AQUILINUM L. KUHN; TAXONOMIC STATUS; MATING SYSTEM; CHLOROPLAST DNA;
FERNS PTERIDIUM; CAINOZOIC FERNS; NEW-ZEALAND; DENNSTAEDTIACEAE;
PHYLOGEOGRAPHY; DELIMITATION
AB Pteridium (the bracken) is a genus of common and widely distributed ferns throughout the world. The variation patterns of morphology in the genus are highly complex and no consensus has been reached among taxonomists regarding the number of species as well as subdivision of the variable species. To address the question of how many species and subspecies of Pteridium occur in Asia, 75 populations were sampled in Bolivia, China, Japan, Malaysia, Mexico and Peru. Sequence data of three chloroplast DNA regions, rps4-trnSGGA, rpl16 and trnSGCU-trnGUCC and the genotype data of three microsatellite loci were collected. The newly generated sequence data combined with the sequences already available from GenBank for samples from all over the world were subjected to several phylogenetic analyses and species delimitation tests. The results support recognition of two diploid species, P. aquilinum in the Northern Hemisphere and Africa and P. esculentum in South America and Australia. Evidence was found to recognize one Asian tetraploid species, P. semihastatum. The Eurasian occurrences of P. aquilinum can be further subdivided into subsp. aquilinum occurring in Africa, Europe and Asia Minor; subsp. japonicum occurring from East Asia to eastern Europe; subsp. wightianum occurring from central China to Malesia (Malay Peninsula, New Caledonia, New Zealand) and northern Australia. The North American subsp. latiusculum was also found in India. Some local "species" recorded in Flora of China likely represent hybrids between subsp. japonicum and subsp. wightianum.
C1 [Zhou, Shiliang; Dong, Wenpan; Chen, Xiaoqing; Zhang, Xianchun; Wen, Jun; Schneider, Harald] Chinese Acad Sci, Inst Bot, State Key Lab Systemat & Evolutionary Bot, Beijing 100093, Peoples R China.
[Wen, Jun] Smithsonian Inst, Natl Museum Nat Hist, Dept Bot, Washington, DC 20013 USA.
[Schneider, Harald] Nat Hist Museum, London SW7 BD, England.
RP Wen, J (reprint author), Chinese Acad Sci, Inst Bot, State Key Lab Systemat & Evolutionary Bot, Beijing 100093, Peoples R China.
EM wenj@si.edu; h.schneider@nhm.ac.uk
RI 董, 文攀/D-1297-2015; Dong, Wenpan/C-8167-2013; Schneider,
Harald/B-6681-2008
OI Schneider, Harald/0000-0002-4548-7268
FU Ministry of Science and Technology [2012BAC01B05-6, 2011FY120200,
2012AA021602]; National Natural Science Foundation of China [31270239,
31110103911]
FX We thank Gerry Moore, John A. Thomson and Ching-I Peng for help in
solving nomenclatural problems. This work was supported in part by the
Ministry of Science and Technology (2012BAC01B05-6, 2011FY120200 &
2012AA021602) and the National Natural Science Foundation of China
(31270239 & 31110103911).
NR 84
TC 5
Z9 5
U1 3
U2 21
PU INT ASSOC PLANT TAXONOMY-IAPT
PI BRATISLAVA
PA C/O INST BOTANY, SLOVAK ACAD SCIENCES DUBRAVSKA CESTA 9, SK-845 23
BRATISLAVA, SLOVAKIA
SN 0040-0262
EI 1996-8175
J9 TAXON
JI Taxon
PD JUN
PY 2014
VL 63
IS 3
BP 509
EP 521
PG 13
WC Plant Sciences; Evolutionary Biology
SC Plant Sciences; Evolutionary Biology
GA AK9OE
UT WOS:000338755600003
ER
PT J
AU Gonzalez-Astudillo, V
Aguirre, AA
AF Gonzalez-Astudillo, Viviana
Aguirre, A. Alonso
TI News from the IAEH
SO ECOHEALTH
LA English
DT News Item
C1 [Gonzalez-Astudillo, Viviana] Univ Queensland, Sch Vet Sci, Gatton, Qld, Australia.
[Aguirre, A. Alonso] Smithsonian Mason Sch Conservat, Front Royal, VA USA.
[Aguirre, A. Alonso] George Mason Univ, Dept Environm Sci & Policy, Fairfax, VA 22030 USA.
RP Gonzalez-Astudillo, V (reprint author), Univ Queensland, Sch Vet Sci, Gatton, Qld, Australia.
EM v.gonzalezastudillo@uq.edu.au
NR 0
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1612-9202
EI 1612-9210
J9 ECOHEALTH
JI EcoHealth
PD JUN
PY 2014
VL 11
IS 2
BP 152
EP 153
DI 10.1007/s10393-014-0932-0
PG 2
WC Biodiversity Conservation; Ecology; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA AK2EE
UT WOS:000338231100001
PM 24740800
ER
PT J
AU Zatsarinny, O
Bartschat, K
Babaeva, NY
Kushner, MJ
AF Zatsarinny, Oleg
Bartschat, Klaus
Babaeva, Natalia Yu
Kushner, Mark J.
TI Electron collisions with cesium atoms-benchmark calculations and
application to modeling an excimer-pumped alkali laser
SO PLASMA SOURCES SCIENCE & TECHNOLOGY
LA English
DT Article
DE electron-cesium collisions; cross section; elastic scattering;
excitation; ionization; momentum transfer; excimer-pumped alkali laser
ID TOTAL CROSS-SECTIONS; CS SCATTERING; POLARIZED ELECTRONS;
ELASTIC-SCATTERING; SHAPE RESONANCES; IONIZATION; POTASSIUM
AB The B-spline R-matrix (BSR) with pseudostates method is employed to describe electron collisions with cesium atoms. Over 300 states are kept in the close-coupling expansion, including a large number of pseudostates to model the effect of the Rydberg spectrum and, most importantly, the ionization continuum on the results for transitions between the discrete physical states of interest. Predictions for elastic scattering, momentum transfer, excitation and ionization are presented for incident energies up to 200 eV and compared with results from previous calculations and available experimental data. In a second step, the results are used to model plasma formation in an excimer-pumped alkali laser operating on the Cs (6(2)P(3/2),(1/2) -> 6(2)S(1/2)) (852 nm and 894 nm) transitions. At sufficiently high operating temperature of a Cs-Ar containing quartz cell, pump power, and repetition rate, plasma formation in excess of 10(14)-10(15)cm(-3) occurs. This may reduce laser output power by electron collisional mixing of the upper and lower laser levels.
C1 [Zatsarinny, Oleg; Bartschat, Klaus] Drake Univ, Dept Phys & Astron, Des Moines, IA 50311 USA.
[Bartschat, Klaus] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA.
[Babaeva, Natalia Yu; Kushner, Mark J.] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA.
RP Zatsarinny, O (reprint author), Drake Univ, Dept Phys & Astron, Des Moines, IA 50311 USA.
EM oleg.zatsarinny@drake.edu; klaus.bartschat@drake.edu;
nbabaeva@umich.edu; mjkush@umich.edu
RI Kushner, Mark/D-4547-2015
FU NSF [PHY-1068140, PHY-1212450]; XSEDE allocation [PHY-090031]; DoD High
Energy Laser Multidisciplinary Research Initiative (NYB, MJK)
FX This work was supported by the NSF under grants No PHY-1068140,
PHY-1212450, and the XSEDE allocation PHY-090031 (OZ, KB), and by the
DoD High Energy Laser Multidisciplinary Research Initiative (NYB, MJK).
NR 32
TC 3
Z9 3
U1 3
U2 10
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0963-0252
EI 1361-6595
J9 PLASMA SOURCES SCI T
JI Plasma Sources Sci. Technol.
PD JUN
PY 2014
VL 23
IS 3
AR 035011
DI 10.1088/0963-0252/23/3/035011
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA AJ7QS
UT WOS:000337891900013
ER
PT J
AU Stanford, D
Bradley, B
AF Stanford, Dennis
Bradley, Bruce
TI On thin ice: problems with Stanford and Bradley's proposed Solutrean
colonisation of North America Reply
SO ANTIQUITY
LA English
DT Editorial Material
ID RADIOCARBON-DATES; VARIABILITY
C1 [Stanford, Dennis] Smithsonian Inst, Natl Museum Nat Hist, Dept Anthropol, Washington, DC 20560 USA.
[Bradley, Bruce] Univ Exeter, Dept Archaeol, Exeter EX4 4QE, Devon, England.
RP Stanford, D (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Anthropol, 10th & Constitut Ave NW, Washington, DC 20560 USA.
NR 19
TC 1
Z9 1
U1 2
U2 7
PU ANTIQUITY
PI YORK
PA KINGS MANOR, YORK YO1 7EP, ENGLAND
SN 0003-598X
EI 1745-1744
J9 ANTIQUITY
JI Antiquity
PD JUN
PY 2014
VL 88
IS 340
BP 614
EP 621
PG 8
WC Anthropology; Archaeology
SC Anthropology; Archaeology
GA AJ4LE
UT WOS:000337647000019
ER
PT J
AU Sackett, LC
Seglund, A
Guralnick, RP
Mazzella, MN
Wagner, DM
Busch, JD
Martin, AP
AF Sackett, Loren C.
Seglund, Amy
Guralnick, Robert P.
Mazzella, Maxwell N.
Wagner, David M.
Busch, Joseph D.
Martin, Andrew P.
TI Evidence for two subspecies of Gunnison's prairie dogs (Cynomys
gunnisoni), and the general importance of the subspecies concept
SO BIOLOGICAL CONSERVATION
LA English
DT Article
DE Prairie dog; Genetic variation; Ecological differentiation;
lntraspecific taxonomy; Subspecies; Evolutionary divergence
ID ZAPUS-HUDSONIUS-PREBLEI; ENDANGERED SPECIES ACT; MITOCHONDRIAL-DNA;
POPULATION-STRUCTURE; CYTOCHROME-B; HYBRID ZONE; INTROGRESSIVE
HYBRIDIZATION; GENETIC DIFFERENTIATION; MAXIMUM-LIKELIHOOD;
MICROSATELLITE DNA
AB Accurate taxonomy is essential for conservation, but subspecies-level systematics can be hampered both by a lack of consensus on what constitutes a subspecies and by discordance among data types (e.g., genetics vs. morphology). Here we provide a framework for evaluating subspecies using multidimensional criteria, and suggest that taxa must satisfy multiple criteria to qualify as subspecies. As a case study, we use the Gunnison's prairie dog (Cynomys gunnisoni), a species for which there has been disagreement regarding the existence of subspecies due to inconsistent application of criteria for defining subspecies. To explicitly test the hypothesis that two subspecies exist, we generated five predictions that could be evaluated with genetic data, while also using morphological and ecological criteria. We sampled 838 Gunnison's prairie dogs from across the species range and performed a series of genetic analyses using 16 microsatellite and two mitochondrial loci (cytochrome b and the control region). We compared subspecies morphology and quantitatively evaluated whether abiotic and biotic habitat characteristics encountered by each subspecies differed. Genetic results from all five predictions supported the existence of two distinct subspecies within the confines of a proposed revision in the boundary between subspecies. The subspecies differed marginally in morphology and significantly in their habitats, suggesting ecological differentiation. Our results, which are in line with historical descriptions of morphologically distinct subspecies, suggest the subspecies should be recognized. This work provides support for the utility of integrating multiple data and analysis types to inform systematics and conservation. (c) 2014 Elsevier Ltd. All rights reserved.
C1 [Sackett, Loren C.; Guralnick, Robert P.; Mazzella, Maxwell N.; Martin, Andrew P.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA.
[Seglund, Amy] Colorado Pk & Wildlife, Montrose, CO 81401 USA.
[Guralnick, Robert P.] Univ Colorado, Museum Nat Hist, Boulder, CO 80309 USA.
[Wagner, David M.; Busch, Joseph D.] No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA.
RP Sackett, LC (reprint author), Smithsonian Inst, Ctr Conservat & Evolutionary Genet, Washington, DC 20013 USA.
EM Loren.Sackett@Colorado.edu
FU Colorado Parks and Wildlife [IA-SWG-1658-10]
FX We are grateful to Abbey Paulson for assisting in generation of GIS maps
in ArcMap and to Nic Kooyers for feedback on the mixed models. Many
field assistants were instrumental in completing this project,
especially Erin Arnold Pikcilingis and Sarah Hale. Colorado Parks and
Wildlife helped in the collection of samples from Colorado. We would
like to thank Colorado Parks and Wildlife, Dave Cagle and the AZDGF,
Andrea Chavez and the BLM, Jim Stuart and the NMDGF, Cel Gachupin and
the Zia DNR, Bob Salter and the Santo Domingo DNR, Stuart Perea and the
Jicarilla Apache Nation, Dave Mikesic and the Navajo Nation DFW, and the
National Park Service for permission to live-trap prairie dogs. Paula
Martin provided information about previous relocation sites in NM and
CO. Prairie Dog Pals allowed us to obtain samples from prairie dogs in
their holding facility, and Kenny Bader provided a sample from Petrified
Forest NP. Many anonymous private landowners graciously provided access
to their land for trapping. Funding for this project was provided by
Colorado Parks and Wildlife grant #IA-SWG-1658-10. We thank Alan
Templeton, Eliecer Gutierrez, Tony Apa, Dan Tripp, Patrik Nosil, John
Hoogland, Bryan Carstens and an anonymous reviewer for useful comments
that improved this manuscript.
NR 120
TC 9
Z9 9
U1 3
U2 35
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0006-3207
EI 1873-2917
J9 BIOL CONSERV
JI Biol. Conserv.
PD JUN
PY 2014
VL 174
BP 1
EP 11
DI 10.1016/j.biocon.2014.03.010
PG 11
WC Biodiversity Conservation; Ecology; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA AJ4MP
UT WOS:000337650800001
ER
PT J
AU Deutsch, JI
AF Deutsch, James I.
TI The Battle for the Bs: 1950s Hollywood and the rebirth of low-budget
cinema
SO HISTORICAL JOURNAL OF FILM RADIO AND TELEVISION
LA English
DT Book Review
C1 [Deutsch, James I.] Smithsonian Inst, Washington, DC 20560 USA.
RP Deutsch, JI (reprint author), Smithsonian Inst, Washington, DC 20560 USA.
NR 1
TC 0
Z9 0
U1 0
U2 0
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND
SN 0143-9685
EI 1465-3451
J9 HIST J FILM RADIO TV
JI Hist. J. Film Radio Telev.
PD JUN
PY 2014
VL 34
IS 2
BP 289
EP 290
DI 10.1080/01439685.2014.914664
PG 2
WC Film, Radio, Television
SC Film, Radio & Television
GA AJ4AY
UT WOS:000337612800014
ER
PT J
AU Ocampo, EH
Menone, ML
Iturburu, FG
Nunez, JD
Baeza, JA
AF Ocampo, Emiliano H.
Menone, Mirta L.
Iturburu, Fernando G.
Nunez, Jesus D.
Antonio Baeza, J.
TI Effect of the endosymbiotic pea crab Calyptraeotheres garthi on the
metabolic rate and oxidative status of the slipper limpet Crepidula
cachimilla
SO INVERTEBRATE BIOLOGY
LA English
DT Article
DE oxidative stress; oxygen consumption; Pinnotheridae
ID OXYGEN-CONSUMPTION; ANTIOXIDANT RESPONSES; ENERGY BUDGETS; STRESS;
PARASITISM; ARGENTINA; INFECTION; EXPOSURE; PINNOTHERIDAE; MITOCHONDRIA
AB Parasites may induce metabolic changes and imbalances in the redox status of hosts. This study tested the effect of parasites on the O2 consumption rate (O2-CR) of hosts, and explored the link between O2-CR and oxidative stress in parasitized hosts. We used the symbiotic pea crab Calyptraeotheres garthi and its slipper limpet host Crepidula cachimilla as models. The O2-CR of long-term (3months) infested limpets was 2.5 times greater than that of long-term uninfested limpets. Also, the O2-CR of limpets stripped of crabs 24h before measurements was intermediate between that of long-term infested and uninfested limpets. These results indicate a parasitic relationship between C. garthi and Cr. cachimilla, and suggest that the effect of the parasite on the metabolic rate of limpets is reversible. Lastly, the activity of two antioxidant enzymes (CAT and GST) as well as lipid peroxidation did not vary between infested and uninfested limpets. Thus, increased O2-CR is not necessarily coupled with oxidative stress in pea crab-parasitized slipper limpets.
C1 [Ocampo, Emiliano H.; Nunez, Jesus D.] Univ Nacl Mar del Plata, CONICET, Inst Invest Marinas & Costeras, Lab Invertebrados, RA-7600 Buenos Aires, DF, Argentina.
[Menone, Mirta L.; Iturburu, Fernando G.] Univ Nacl Mar del Plata, CONICET, Inst Invest Marinas & Costeras, Lab Ecotoxicol, RA-7600 Buenos Aires, DF, Argentina.
[Antonio Baeza, J.] Clemson Univ, Dept Biol Sci, Clemson, SC 29632 USA.
[Antonio Baeza, J.] Smithsonian Marine Stn Ft Pierce, Ft Pierce, FL 34949 USA.
[Antonio Baeza, J.] Univ Catolica Norte, Fac Ciencias Mar, Dept Biol Marina, Coquimbo 1780000, Chile.
RP Ocampo, EH (reprint author), Univ Nacl Mar del Plata, CONICET, Inst Invest Marinas & Costeras, Lab Invertebrados, RA-7600 Buenos Aires, DF, Argentina.
EM eocampo@mdp.edu.ar
FU CONICET [PIP 2008 112-384 200-801-02190]; Universidad Nacional de Mar
del Plata [EXA 515/10]
FX We are grateful to Juan Pablo Busalmen and Luciana Robuschi for their
assistance with the use of the O2-sensing system, Emiliano
Pisani for providing phytoplankton, Samuel Silva for help in collecting
limpets, and Nicolas Chiaradia for help in taking photographs. We are
indebted to Juan Timi and two anonymous reviewers for their suggestions,
which improved this manuscript. We also thank Enrique Morsan and
colleagues of the Instituto de Biologia Marina y Pesquera, Almirante
Storni for their hospitality during sampling. The present work was
partially supported by PIP 2008 112-384 200-801-02190 (CONICET) and EXA
515/10 (Universidad Nacional de Mar del Plata). E.O. received
scholarship support from CONICET. This is contribution number 942 of the
Smithsonian Marine Station at Fort Pierce, Smithsonian Institution.
NR 49
TC 2
Z9 2
U1 2
U2 10
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1077-8306
EI 1744-7410
J9 INVERTEBR BIOL
JI Invertebr. Biol.
PD JUN
PY 2014
VL 133
IS 2
BP 170
EP 179
DI 10.1111/ivb.12050
PG 10
WC Marine & Freshwater Biology; Zoology
SC Marine & Freshwater Biology; Zoology
GA AJ2ZA
UT WOS:000337532900007
ER
PT J
AU Hood, WR
Kessler, DS
Oftedal, OT
AF Hood, W. R.
Kessler, D. S.
Oftedal, O. T.
TI Milk composition and lactation strategy of a eusocial mammal, the naked
mole-rat
SO JOURNAL OF ZOOLOGY
LA English
DT Article
DE milk composition; naked mole-rat; proximate composition; mineral
composition; evaporative water loss; bone mineralization
ID HETEROCEPHALUS-GLABER; WATER-BALANCE; LITTER SIZE; AD-LIBITUM; RODENT;
CALCIUM; GROWTH; YOUNG; BATHYERGIDAE; TEMPERATURE
AB The reproductive female, or queen, in a eusocial colony must allocate sufficient nutrients to reproduction to maintain a high rate of reproductive output. In mammals, the energetic costs of lactation greatly exceed those of pregnancy, and thus, lactation should be exceptionally costly for a eusocial queen, such as the naked mole-rat Heterocephalus glaber. We predicted that naked mole-rat milk would be energy- and nutrient-dense. Naked mole-rat milk averaged 17.2% dry matter, 4.5% fat, 4.8% protein, 5.7% sugar and 1.1% ash; and per gram contained 3.0mg calcium, 1.1mg phosphorus, 0.44mg magnesium and 0.54mg potassium. Other than elevated protein and low sugar in colostrum, the composition of milk did not change over the course of lactation. Naked mole-rats not only had the lowest energy content of milk (3.9kJg-1) reported for any rodent but also appeared to be an outlier from a trend for milk dry matter, fat and energy concentrations to be inversely related to body mass in rodents. The dilute nature of naked mole-rat milk indicates that an unusually large amount of milk (equivalent to about half of body mass) must be produced daily to sustain the energy needs of an average litter (12 young). Sustaining high water throughput during lactation may be necessary to meet expected water needs of the offspring but may limit the queen to foods that are high in moisture. The concentrations of macrominerals in milk were within the range described for other rodents, except that the Ca:P ratio of milk (2.8:1) was unusually high. Given a lifespan that can exceed 30 years, large average litter size and several litters per year, the lifetime lactation output of a mole-rat queen must be phenomenal and warrants further study.
C1 [Hood, W. R.] Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA.
[Kessler, D. S.] Smithsonian Natl Zool Pk, Washington, DC USA.
[Oftedal, O. T.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
RP Hood, WR (reprint author), Auburn Univ, Dept Biol Sci, 101 Life Sci Bldg, Auburn, AL 36849 USA.
EM wrhood@auburn.edu
NR 59
TC 0
Z9 0
U1 2
U2 29
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0952-8369
EI 1469-7998
J9 J ZOOL
JI J. Zool.
PD JUN
PY 2014
VL 293
IS 2
BP 108
EP 118
DI 10.1111/jzo.12126
PG 11
WC Zoology
SC Zoology
GA AJ2WP
UT WOS:000337525500006
ER
PT J
AU Cushman, KC
Muller-Landau, HC
Condit, RS
Hubbell, SP
AF Cushman, K. C.
Muller-Landau, Helene C.
Condit, Richard S.
Hubbell, Stephen P.
TI Improving estimates of biomass change in buttressed trees using tree
taper models
SO METHODS IN ECOLOGY AND EVOLUTION
LA English
DT Article
DE above-ground biomass; Barro Colorado Island; forest dynamics; permanent
sample plot; tropical forest
ID TROPICAL FORESTS; CARBON SINK; BALANCE; PLOT
AB Repeat censuses of tree plots are key tools for investigating forest carbon fluxes. Current measurement procedures for trees with buttresses or trunk irregularities - trees that account for a large fraction of tropical forest biomass -introduce substantial systematic error in plot-level estimates of biomass change. The diameters of buttressed trees are measured above the standard height of 13m, and the measurement heights on individual trees are often moved upwards as buttresses grow. Because tree trunks taper (diameter decreases with height), biomass growth in buttressed individuals tends to be underestimated. Methods have been introduced to correct biomass growth estimates in individual trees for increases in measurement height; however, these methods change the distribution of effective measurement heights over time, introducing biases in plot-level estimates of biomass change. In this study, we developed and applied new methods to measure and model trunk taper, and to use taper models to correct estimates of AGB change for changing measurement heights. We measured trunk taper above buttresses in 190 stems on Barro Colorado Island, Panama (BCI), a site where more than half of forest biomass is in trees measured above standard height. We compared proposed taper models to see which best described our measured taper data, then used the best taper model to correct for changing measurement heights in the historical plot data. Specifically, for all diameter measurements taken above 13m, we calculated equivalent diameters at 13m and substituted these into allometric equations to examine biomass change over time. We found that measured taper was best fit by an exponential model with a rate parameter that varied with measured diameter (tree size), height of measurement (buttress height) and species. Whereas uncorrected data show a decrease in biomass of 021% year-1 between 1985 and 2010 on BCI, taper-corrected data show an increase of 018% year-1. The novel correction method presented here converts all measured diameters to one standard effective measurement height. This corrects for biases at the plot level and provides a stronger foundation for measuring biomass change in tropical forests.
C1 [Cushman, K. C.; Muller-Landau, Helene C.; Condit, Richard S.; Hubbell, Stephen P.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama.
[Hubbell, Stephen P.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
RP Cushman, KC (reprint author), Smithsonian Trop Res Inst, Roosevelt Ave, Balboa, Ancon, Panama.
EM cushman.kc@gmail.com
FU Smithsonian Institution internship; National Science Foundation
[DEB-1046113, DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874,
DEB-00753102, DEB-9909347, DEB-9615226, DEB-9405933, DEB-9221033,
DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197]; Center
for Tropical Forest Science; Smithsonian Tropical Research Institute;
John D. and Catherine T. MacArthur Foundation; Mellon Foundation; Small
World Institute Fund
FX We thank Pablo Ramos and Paulino Villareal for assistance with fieldwork
and gratefully acknowledge the financial support of a Smithsonian
Institution internship for KCC. This manuscript was advanced at a
workshop funded by the National Science Foundation (DEB-1046113). The
BCI forest dynamics research project was made possible by National
Science Foundation grants to Stephen P. Hubbell: DEB-0640386,
DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347,
DEB-9615226, DEB-9615226, DEB-9405933, DEB-9221033, DEB-9100058,
DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, support from the
Center for Tropical Forest Science, the Smithsonian Tropical Research
Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon
Foundation, the Small World Institute Fund, and numerous private
individuals, and through the hard work of over 100 people from 10
countries over the past three decades. The plot project is part of the
Center for Tropical Forest Science, a global network of large-scale
demographic tree plots. HCM designed the study, KCC collected the taper
data, RC and SPH contributed the forest plot data, KCC and HCM analysed
the data, KCC and HCM wrote the paper, and RC provided comments on a
draft.
NR 32
TC 9
Z9 9
U1 2
U2 29
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2041-210X
EI 2041-2096
J9 METHODS ECOL EVOL
JI Methods Ecol. Evol.
PD JUN
PY 2014
VL 5
IS 6
BP 573
EP 582
DI 10.1111/2041-210X.12187
PG 10
WC Ecology
SC Environmental Sciences & Ecology
GA AJ5UK
UT WOS:000337754500009
ER
PT J
AU Lambert, O
Bianucci, G
Beatty, BL
AF Lambert, Olivier
Bianucci, Giovanni
Beatty, Brian L.
TI Bony outgrowths on the jaws of an extinct sperm whale support
macroraptorial feeding in several stem physeteroids
SO NATURWISSENSCHAFTEN
LA English
DT Article
DE Cetacea; Physeteroidea; Buccal exostoses; Feeding; Macroraptorial
ID GARDNERS-SYNDROME; EXOSTOSES; CETACEA; MIOCENE; PREVALENCE; ODONTOCETI;
LESIONS; PERU
AB Several extinct sperm whales (stem Physeteroidea) were recently proposed to differ markedly in their feeding ecology from the suction-feeding modern sperm whales Kogia and Physeter. Based on cranial, mandibular, and dental morphology, these Miocene forms were tentatively identified as macroraptorial feeders, able to consume proportionally large prey using their massive teeth and robust jaws. However, until now, no corroborating evidence for the use of teeth during predation was available. We report on a new specimen of the stem physeteroid Acrophyseter, from the late middle to early late Miocene of Peru, displaying unusual bony outgrowths along some of the upper alveoli. Considering their position and outer shape, these are identified as buccal maxillary exostoses. More developed along posterior teeth and in tight contact with the high portion of the dental root outside the bony alveoli, the exostoses are hypothesized to have developed during powerful bites; they may have worked as buttresses, strengthening the teeth when facing intense occlusal forces. These buccal exostoses further support a raptorial feeding technique for Acrophyseter and, indirectly, for other extinct sperm whales with a similar oral apparatus (Brygmophyseter, Livyatan, Zygophyseter). With a wide size range, these Miocene stem physeteroids were major marine macropredators, occupying ecological niches nowadays mostly taken by killer whales.
C1 [Lambert, Olivier] Inst Royal Sci Nat Belgique, Direct Operat Terre & Hist Vie, B-1000 Brussels, Belgium.
[Bianucci, Giovanni] Univ Pisa, Dipartimento Sci Terra, I-56126 Pisa, Italy.
[Beatty, Brian L.] NYIT Coll Osteopath Med, Old Westbury, NY 11568 USA.
[Beatty, Brian L.] Smithsonian Inst, Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20560 USA.
[Beatty, Brian L.] Virginia Museum Nat Hist, Martinsville, VA 24112 USA.
RP Lambert, O (reprint author), Inst Royal Sci Nat Belgique, Direct Operat Terre & Hist Vie, 29 Rue Vautier, B-1000 Brussels, Belgium.
EM olivier.lambert@naturalsciences.be
OI Lambert, Olivier/0000-0003-0740-5791
FU MIUR [PRIN 2012YJSBM]; SYNT HESYS grant [BE-TAF-2842]; Belgian Federal
Science Policy Office
FX We thank W Aguirre, E Diaz, R Salas-Gismondi, and M Urbina for giving us
access to the specimen and for its final preparation. Constructive
comments from C de Muizon, ND Pyenson, and two anonymous reviewers
considerably enhanced the quality of the article. This work was
financially supported by MIUR grant (PRIN 2012YJSBM, resp. GB), SYNT
HESYS grant (BE-TAF-2842, GB), and Return Grant of the Belgian Federal
Science Policy Office (2012-April 2013, OL).
NR 22
TC 7
Z9 7
U1 1
U2 13
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0028-1042
EI 1432-1904
J9 NATURWISSENSCHAFTEN
JI Naturwissenschaften
PD JUN
PY 2014
VL 101
IS 6
BP 517
EP 521
DI 10.1007/s00114-014-1182-2
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AJ3WD
UT WOS:000337597700009
PM 24821119
ER
PT J
AU Tananbaum, H
Weisskopf, MC
Tucker, W
Wilkes, B
Edmonds, P
AF Tananbaum, H.
Weisskopf, M. C.
Tucker, W.
Wilkes, B.
Edmonds, P.
TI Highlights and discoveries from the Chandra X-ray Observatory
SO REPORTS ON PROGRESS IN PHYSICS
LA English
DT Review
DE X-ray Observatory; Chandra; NASA
ID ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; DEEP FIELD-SOUTH;
STAR-FORMATION RATE; SUPERNOVA REMNANT G292.0+1.8; GALAXY CLUSTER
1E-0657-56; INTERACTION CROSS-SECTION; CORE-COLLAPSE SUPERNOVAE;
ABSORPTION-LINE QUASARS; XMM-NEWTON OBSERVATIONS
AB Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08= 2 cm diameter) and measured its diameter at 1.3 m height, and then used these data to estimate liana aboveground biomass. An initial liana survey was completed in 1997-1999 and then repeated in 2012, using identical methods.
Liana abundance in the plots increased by an average of 1.00% +/- 0.88% per year, leading to a highly significant (t = 6.58, df = 35, P < 0.00001) increase in liana stem numbers. Liana biomass rose more slowly over time (0.32% +/- 1.37% per year) and the mean difference between the two sampling intervals was nonsignificant (t = 1.46, df = 35, P = 0.15; paired t tests). Liana size distributions shifted significantly (chi(2) = 191, df = 8, P < 0.0001; Chi-square test for independence) between censuses, mainly as a result of a nearly 40% increase in the number of smaller (2-3 cm diameter) lianas, suggesting that lianas recruited rapidly during the study.
We used long-term data on rainfall and forest dynamics from our study site to test hypotheses about potential drivers of change in liana communities. Lianas generally increase with rainfall seasonality, but we found no significant trends over time (1997-2012) in five rainfall parameters (total annual rainfall, dry-season rainfall, wet-season rainfall, number of very dry months, CV of monthly rainfall). However, rates of tree mortality and recruitment have increased significantly over time in our plots, and general linear mixed-effect models suggested that lianas were more abundant at sites with higher tree mortality and flatter topography. Rising concentrations of atmospheric CO2, which may stimulate liana growth, might also have promoted liana increases.
Our findings clearly support the view that lianas are increasing in abundance in old-growth tropical forests, possibly in response to accelerating forest dynamics and rising CO2 concentrations. The aboveground biomass of trees was lowest in plots with abundant lianas, suggesting that lianas could reduce forest carbon storage and potentially alter forest dynamics if they continue to proliferate.
C1 [Laurance, William F.; Magrach, Ainhoa; Campbell, Mason; Edwards, Will; Laurance, Susan G.] James Cook Univ, Ctr Trop Environm & Sustainabil Sci, Cairns, Qld 4878, Australia.
[Laurance, William F.; Magrach, Ainhoa; Campbell, Mason; Edwards, Will; Laurance, Susan G.] James Cook Univ, Sch Marine & Trop Biol, Cairns, Qld 4878, Australia.
[Andrade, Ana S.; Camargo, Jose L. C.; Valsko, Jefferson J.; Lovejoy, Thomas E.] Natl Inst Amazonian Res INPA, Biol Dynam Forest Fragments Project, BR-69060000 Manaus, Amazonas, Brazil.
[Andrade, Ana S.; Camargo, Jose L. C.; Valsko, Jefferson J.; Lovejoy, Thomas E.] Smithsonian Trop Res Inst, BR-69060000 Manaus, Amazonas, Brazil.
[Fearnside, Philip M.] Natl Inst Amazonian Res INPA, Dept Ecol, BR-69060000 Manaus, Amazonas, Brazil.
[Lovejoy, Thomas E.] George Mason Univ, Dept Environm Sci & Policy, Fairfax, VA 22030 USA.
RP Laurance, WF (reprint author), James Cook Univ, Ctr Trop Environm & Sustainabil Sci, Cairns, Qld 4878, Australia.
EM bill.laurance@jcu.edu.au
RI James Cook University, TESS/B-8171-2012; Research ID, CTBCC
/O-3564-2014; Camargo, Jose Luis/C-3137-2015; Laurance,
Susan/G-6021-2011; Magrach, Ainhoa/B-1038-2012;
OI Laurance, Susan/0000-0002-2831-2933; Magrach,
Ainhoa/0000-0003-2155-7556; Edwards, Will/0000-0001-8981-7479;
Fearnside, Philip/0000-0003-3672-9082
FU Conservation, Food and Health Foundation; Australian Research Council;
U.S. National Science Foundation; NASA Long-term Biosphere-Atmosphere
Experiment in the Amazon; A. W. Mellon Foundation; MacArthur Foundation;
World Wildlife Fund-US; National Institute for Amazonian Research;
Smithsonian Institution
FX We thank Stefan Schnitzer and two anonymous referees for commenting on
the manuscript. Support was provided by the Conservation, Food and
Health Foundation, Australian Research Council, U.S. National Science
Foundation, NASA Long-term Biosphere-Atmosphere Experiment in the
Amazon, A. W. Mellon Foundation, MacArthur Foundation, World Wildlife
Fund-US, National Institute for Amazonian Research, and Smithsonian
Institution. This is publication number 628 in the Biological Dynamics
of Forest Fragments Project (BDFFP) technical series.
NR 65
TC 23
Z9 24
U1 10
U2 83
PU ECOLOGICAL SOC AMER
PI WASHINGTON
PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA
SN 0012-9658
EI 1939-9170
J9 ECOLOGY
JI Ecology
PD JUN
PY 2014
VL 95
IS 6
BP 1604
EP 1611
PG 8
WC Ecology
SC Environmental Sciences & Ecology
GA AI9AQ
UT WOS:000337218500018
PM 25039224
ER
PT J
AU Cook-Patton, SC
Agrawal, AA
AF Cook-Patton, Susan C.
Agrawal, Anurag A.
TI Exotic plants contribute positively to biodiversity functions but reduce
native seed production and arthropod richness
SO ECOLOGY
LA English
DT Article
DE arthropod richness; biodiversity; biomass; Dryden, New York, USA; exotic
plants; invasion; mono- vs. polyculture; native plants; old-field
habitat; plant-insect interactions; seed production
ID VEGETATIONAL DIVERSITY; SPECIES-DIVERSITY; ENEMY RELEASE; COMMUNITIES;
INVASIONS; COMPLEMENTARITY; MAINTENANCE; MECHANISMS; IMPACTS; HYPOTHESIS
AB Although exotic plants comprise a substantial portion of floristic biodiversity, their contributions to community and ecosystem processes are not well understood. We manipulated plant species richness in old-field communities to compare the impacts of native vs. exotic species on plant biomass, seed production, and arthropod community structure. Plants within diverse communities, regardless of whether they were native or exotic, had higher biomass and seed production than in monocultures and displayed positive complementarity. Increasing native or exotic plant richness also enhanced the richness of arthropods on plants, but exotics attracted fewer arthropod species for a given arthropod abundance than did natives. Additionally, when exotic and native plants grew together, exotics suppressed seed production of native species. Thus, exotic plants appear to contribute positively to some biodiversity functions, but may impact native communities over longer time frames by reducing native seed production and recruiting fewer arthropod species.
C1 [Cook-Patton, Susan C.; Agrawal, Anurag A.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA.
RP Cook-Patton, SC (reprint author), Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21037 USA.
EM cook-pattons@si.edu
FU Cornell's IGERT in Biogeochemistry and Environmental Biocomplexity;
[NSF-DEB 1118783]
FX We thank A. C. Erwin, A. P. Hastings, L. Schunk, and S. H. McArt for
field assistance, P. Kotanen for Elymus seeds, J. Simonis for
statistical advice, and B. Blossey, L. J. Martin, S. H. McArt, J.
Sparks, and A. Agrawal's lab for invaluable discussion. We thank
reviewers for their comments on earlier versions of the manuscript. This
work was supported by a grant from Cornell's IGERT in Biogeochemistry
and Environmental Biocomplexity to S. C. Cook-Patton and NSF-DEB 1118783
to A. A. Agrawal.
NR 46
TC 5
Z9 5
U1 5
U2 43
PU ECOLOGICAL SOC AMER
PI WASHINGTON
PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA
SN 0012-9658
EI 1939-9170
J9 ECOLOGY
JI Ecology
PD JUN
PY 2014
VL 95
IS 6
BP 1642
EP 1650
PG 9
WC Ecology
SC Environmental Sciences & Ecology
GA AI9AQ
UT WOS:000337218500022
PM 25039228
ER
PT J
AU Smith, TB
Glynn, PW
Mate, JL
Toth, LT
Gyory, J
AF Smith, Tyler B.
Glynn, Peter W.
Mate, Juan L.
Toth, Lauren T.
Gyory, Joanna
TI A depth refugium from catastrophic coral bleaching prevents regional
extinction
SO ECOLOGY
LA English
DT Article
DE coral bleaching; coral mortality; depth refuge; eastern Tropical
Pacific; El Nino-Southern Oscillation; extinction; Holocene; Millepora;
refuge
ID EL-NINO; CLIMATE-CHANGE; OXIDATIVE STRESS; REEF; RECORD; PANAMA;
MORTALITY; WINNERS; BARRIER; FISHES
AB Species intolerant of changing climate might avoid extinction within refugia buffered from extreme conditions. Refugia have been observed in the fossil record but are not well documented or understood on ecological time scales. Using a 37-year record from the eastern Pacific across the two most severe El Nino events on record (1982-1983 and 1997-1998) we show how an exceptionally thermally sensitive reef-building hydrocoral, Millepora intricata, twice survived catastrophic bleaching in a deeper-water refuge (>11 m depth). During both events, M. intricata was extirpated across its range in shallow water, but showed recovery within several years, while two other hydrocorals without deep-water populations were driven to regional extinction. Evidence from the subfossil record in the same area showed shallow-water persistence of abundant M. intricata populations from 5000 years ago, through severe El Nino-Southern Oscillation cycles, suggesting a potential depth refugium on a millennial timescale. Our data confirm the deep refuge hypothesis for corals under thermal stress.
C1 [Smith, Tyler B.; Gyory, Joanna] Univ Virgin Isl, Ctr Marine & Environm Studies, St Thomas, VI 00802 USA.
[Glynn, Peter W.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA.
[Mate, Juan L.] Smithsonian Trop Res Inst, Panama City, Panama.
[Toth, Lauren T.] Florida Inst Technol, Melbourne, FL 32901 USA.
RP Smith, TB (reprint author), Univ Virgin Isl, Ctr Marine & Environm Studies, St Thomas, VI 00802 USA.
EM tsmith@uvi.edu
FU Biological Oceanography Program of the U.S. National Science Foundation;
STRI Pre-doctoral Fellowship; University of Miami; Lana Vento Charitable
Trust; NSF Virgin Islands Experimental Program to Stimulate Competitive
Research; Smithsonian Institution Marine Science Network; Geological
Society of America; American Museum of Natural History's Lerner Gray
Fund
FX We thank the Smithsonian Tropical Research Institute (STRI) and the crew
of the R. V. Urraca for field logistics and support; I. Bethancourt, A.
Correa, A. Domingo, I. Enochs, D. Manzello, P. Fong, R. Muthukrishnan,
for field assistance; I. Enochs, J. Martens, and B. Riegl for satellite
image processing and bathymetry files; R. B. Aronson and I. G. Macintyre
for support on the coring project; and H. Cheng for conducting U-series
dating on the cores. We also thank two anonymous reviewers for comments
that improved the manuscript. Funding was provided by the Biological
Oceanography Program of the U.S. National Science Foundation (to P. W.
Glynn), a STRI Pre-doctoral Fellowship, the University of Miami Alumni
and Maytag Fellowships, the Lana Vento Charitable Trust (to T. B.
Smith), the NSF Virgin Islands Experimental Program to Stimulate
Competitive Research (to J. Gyory and T. B. Smith), and the Smithsonian
Institution Marine Science Network, Geological Society of America, and
American Museum of Natural History's Lerner Gray Fund (L. T. Toth). The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript. The Autoridad
Nacional de Ambiente de Panama (ANAM) granted the necessary permits to
conduct coral research in the Gulf of Chiriqui, Panama
NR 42
TC 10
Z9 10
U1 2
U2 36
PU ECOLOGICAL SOC AMER
PI WASHINGTON
PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA
SN 0012-9658
EI 1939-9170
J9 ECOLOGY
JI Ecology
PD JUN
PY 2014
VL 95
IS 6
BP 1663
EP 1673
PG 11
WC Ecology
SC Environmental Sciences & Ecology
GA AI9AQ
UT WOS:000337218500024
PM 25039230
ER
PT J
AU Geeta, R
Lohmann, LG
Magallon, S
Faith, DP
Hendry, A
Crandall, K
de Meester, L
Webb, CO
Prieur-Richard, AH
Mimura, M
Conti, E
Cracraft, J
Forest, F
Jaramillo, C
Donoghue, M
Yahara, T
AF Geeta, R.
Lohmann, Lucia G.
Magallon, Susana
Faith, Daniel P.
Hendry, Andrew
Crandall, Keith
de Meester, Luc
Webb, Campbell O.
Prieur-Richard, Anne-Helene
Mimura, Makiko
Conti, Elena
Cracraft, Joel
Forest, Felix
Jaramillo, Carlos
Donoghue, Michael
Yahara, Tetsukazu
TI Biodiversity only makes sense in the light of evolution
SO JOURNAL OF BIOSCIENCES
LA English
DT Article
DE Ecosystem services; evolutionary potential; evosystem services;
sustainable use
ID RESISTANCE; PERSPECTIVE; DIVERSITY; INDIA; RICE
C1 [Geeta, R.] Univ Delhi, Dept Bot, Delhi 110007, India.
[Lohmann, Lucia G.] Univ Sao Paulo, Dept Bot, BR-05508090 Sao Paulo, Brazil.
[Magallon, Susana] Univ Nacl Autonoma Mexico, Inst Biol, Dept Bot, Mexico City 04510, DF, Mexico.
[Faith, Daniel P.] Australian Museum, Sydney, NSW 2010, Australia.
[Hendry, Andrew] McGill Univ, Redpath Museum, Montreal, PQ H3A 2K6, Canada.
[Hendry, Andrew] McGill Univ, Dept Biol, Montreal, PQ H3A 2K6, Canada.
[Crandall, Keith] George Washington Univ, Computat Biol Inst, Ashburn, VA 20147 USA.
[de Meester, Luc] Lab Aquat Ecol & Evolutionary Biol, B-3000 Louvain, Belgium.
[Webb, Campbell O.] Arnold Arboretum Harvard Univ, Boston, MA 02131 USA.
[Prieur-Richard, Anne-Helene] MNHN, DIVERSITAS, F-75231 Paris 05, France.
[Mimura, Makiko] Tamagawa Univ, Div Genet & Cell Biol, Machida, Tokyo 1948610, Japan.
[Conti, Elena] Univ Zurich, Inst Systemat Bot, CH-8008 Zurich, Switzerland.
[Conti, Elena] Univ Zurich, Bot Garden, CH-8008 Zurich, Switzerland.
[Cracraft, Joel] Amer Museum Nat Hist, Dept Ornithol, New York, NY 10024 USA.
[Forest, Felix] Royal Bot Gardens, Jodrell Lab, Richmond TW9 3DS, Surrey, England.
[Jaramillo, Carlos] Smithsonian Trop Res Inst, Panama City, Panama.
[Donoghue, Michael] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA.
[Yahara, Tetsukazu] Kyushu Univ, Dept Biol, Higashi Ku, Fukuoka 8128581, Japan.
RP Geeta, R (reprint author), Univ Delhi, Dept Bot, Delhi 110007, India.
EM rgeeta53@gmail.com
RI Conti, Elena/G-3720-2010; U-ID, Kyushu/C-5291-2016; De Meester,
Luc/F-3832-2015;
OI De Meester, Luc/0000-0001-5433-6843; Crandall, Keith/0000-0002-0836-3389
NR 33
TC 2
Z9 3
U1 4
U2 51
PU INDIAN ACAD SCIENCES
PI BANGALORE
PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA
SN 0250-5991
EI 0973-7138
J9 J BIOSCIENCES
JI J. Biosci.
PD JUN
PY 2014
VL 39
IS 3
BP 333
EP 337
DI 10.1007/s12038-014-9427-y
PG 5
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA AJ0HZ
UT WOS:000337332900001
PM 24845496
ER
PT J
AU Gutstein, CS
Cozzuol, MA
Pyenson, ND
AF Simon Gutstein, Carolina
Alberto Cozzuol, Mario
Pyenson, Nicholas D.
TI The Antiquity of Riverine Adaptations in Iniidae (Cetacea, Odontoceti)
Documented by a Humerus from the Late Miocene of the Ituzaingo
Formation, Argentina
SO ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY
BIOLOGY
LA English
DT Article
DE Iniidae; late Miocene; south America; scapula; sternum; Ituzaingo
formation
ID DOLPHIN INIA-GEOFFRENSIS; EVOLUTIONARY HISTORY; EXTANT CETACEANS; WHALE
PHYLOGENY; NORTH-CAROLINA; CYTOCHROME-B; AMAZON; MORPHOLOGY; LINEAGES;
IDENTIFICATION
AB "River dolphins" are a paraphyletic group of toothed whales (Odontoceti) that represent independent secondary invasions of freshwater habitats. Different "river dolphin" lineages display suites of convergent morphological specializations that commonly reflect adaptations to riverine and freshwater environments, such as longirostry, reduced orbits, and wide, paddle-like flippers. One lineage, the Iniidae, is presently endemic to South America, and includes several extinct Neogene taxa along with their sole extant genus, Inia (the Amazon River dolphin). We report here a humerus recovered from the late Miocene deposits of the Ituzaingo Formation in the Parana Basin of Argentina. The specimen exhibits diagnostic features of the family Iniidae, including a scapular-sternal joint of the humerus, which is a unique anatomical connection among mammals. This joint permits enhanced parasagittal adduction of the flipper as a control surface, relative to other odontocetes, providing Inia with a high degree of maneuverability in its structurally complex and heterogenous riverine habitat. This unique anatomical connection, here documented from the late Miocene (similar to 9 million years-6.5 million years old), not only provides the oldest diagnostic record for Iniidae, but it also indicates a similar habitat use for this lineage, a finding coincident with the current paleoenvironmental interpretation for the Ituzaingo Formation. (C) 2014 Wiley Periodicals, Inc.
C1 [Simon Gutstein, Carolina] Univ Chile, Dept Biol, Lab Ontogenia & Filogenia, Fac Ciencias, Santiago 7800003, Chile.
[Simon Gutstein, Carolina; Pyenson, Nicholas D.] Smithsonian Inst, Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20560 USA.
[Alberto Cozzuol, Mario] Univ Fed Minas Gerais, Dept Zool, Inst Ciencias Biol, BR-31270910 Belo Horizonte, MG, Brazil.
[Pyenson, Nicholas D.] Burke Museum Nat & Culture, Dept Mammal, Seattle, WA USA.
[Pyenson, Nicholas D.] Burke Museum Nat & Culture, Dept Paleontol, Seattle, WA USA.
RP Gutstein, CS (reprint author), Univ Chile, Dept Biol, Las Palmeras 3425, Santiago 7800003, Chile.
EM sgcarolina@gmail.com
RI Cozzuol, Mario/H-8302-2012;
OI Cozzuol, Mario/0000-0003-3645-0401; Gutstein,
Carolina/0000-0002-0823-2434
FU CONICYT, Becas Chile, Departamento de Postgrado y Postitulo of the
Vicerrectoria de Asuntos Academicos of Universidad de Chile; NMNH Small
Grant Award; NMNH Office of the Director; Smithsonian Institution's
Remington Kellogg Fund; National Geographic Society Committee on
Research Exploration [8903-11, 9019-11]
FX Grant sponsor: CONICYT, Becas Chile, Departamento de Postgrado y
Postitulo of the Vicerrectoria de Asuntos Academicos of Universidad de
Chile (C. S. G.); Grant sponsor: NMNH Small Grant Award; Grant sponsor:
NMNH Office of the Director; Grant sponsor: The Smithsonian
Institution's Remington Kellogg Fund; Grant sponsor: National Geographic
Society Committee on Research Exploration (N.D.P); Grant number:
8903-11, 9019-11; Grant sponsor: (CSG).
NR 53
TC 4
Z9 4
U1 3
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1932-8486
EI 1932-8494
J9 ANAT REC
JI Anat. Rec.
PD JUN
PY 2014
VL 297
IS 6
BP 1096
EP 1102
DI 10.1002/ar.22901
PG 7
WC Anatomy & Morphology
SC Anatomy & Morphology
GA AI7DJ
UT WOS:000337042100008
PM 24585575
ER
PT J
AU Johnson, AEM
Freeman, EW
Wildt, DE
Songsasen, N
AF Johnson, Amy E. M.
Freeman, Elizabeth W.
Wildt, David E.
Songsasen, Nucharin
TI Spermatozoa from the maned wolf (Chrysocyon brachyurus) display typical
canid hyper-sensitivity to osmotic and freezing-induced injury, but
respond favorably to dimethyl sulfoxide
SO CRYOBIOLOGY
LA English
DT Article
DE Maned wolf; Osmotic stress; Sperm cryopreservation; Glycerol; Dimethyl
sulfoxide; Cooling
ID MEXICAN GRAY WOLVES; BLACK-FOOTED FERRET; SPERM QUALITY; BOAR SPERM;
PERMEABILITY CHARACTERISTICS; REPRODUCTIVE TECHNOLOGIES;
MEMBRANE-PERMEABILITY; STALLION SPERMATOZOA; AVIAN SPERMATOZOA;
TOLERANCE LIMITS
AB We assessed the influences of medium osmolality, cryoprotectant and cooling and warming rate on maned wolf (Cluysocyon brachyurus) spermatozoa. Ejaculates were exposed to Ham's F10 medium (isotonic control) or to this medium plus NaCl (350-1000 mOsm), sucrose (369 and 479 mOsm), 1 M glycerol (1086 mOsm) or dimethyl sulfoxide (Me2SO, 1151 mOsm) for 10 min. Each sample then was diluted back into Ham's medium and assessed for sperm motility and plasma membrane integrity. Although glycerol and Me2SO had no influence (P > 0.05), NaCl and sucrose solutions affected sperm motility (P < 0.05), but not membrane integrity. Motility of sperm exposed to <600 mOsm NaCl or sucrose was less (P < 0.05) than fresh ejaculate, but comparable (P> 0.05) to the control. As osmolality of the NaCl solution increased, motility decreased to <5%. In a separate study, ejaculates were diluted in Test Yolk Buffer containing 1 M glycerol or Me2SO and cooled from 5 degrees C to -120 degrees C at -57.8 degrees C, -124.2 degrees C or -67.0 degrees C/min, frozen in LN2, thawed in a water bath for 30s at 37 degrees C or 10 s at 50 degrees C, and then assessed for motility, plasma- and acrosomal membrane integrity. Cryopreservation markedly (P < 0.05) reduced sperm motility by 70% compared to fresh samples. Higher (P < 0.05) post-thaw motility (20.0 +/- 1.9% versus 13.5 +/- 2.1%) and membrane integrity (51.2 +/- 1.7% versus 41.5 +/- 2.2%) were observed in samples cryopreserved in Me2- SO than in glycerol. Cooling rates influenced survival of sperm cryopreserved in glycerol with -57.8 degrees C/min being advantageous (P < 0.05). The findings demonstrate that although maned wolf spermatozoa are similar to domestic dog sperm in their sensitivity to osmotic-induced motility damage, the plasma membranes tolerate dehydration, and the cells respond favorably to Me2SO as a cryoprotectant. Published by Elsevier Inc.
C1 [Johnson, Amy E. M.; Wildt, David E.; Songsasen, Nucharin] Smithsonian Conservat Biol Inst, Ctr Species Survival, Front Royal, VA USA.
[Johnson, Amy E. M.] George Mason Univ, Dept Environm Sci & Policy, Fairfax, VA 22030 USA.
[Freeman, Elizabeth W.] George Mason Univ, New Century Coll, Fairfax, VA 22030 USA.
RP Songsasen, N (reprint author), Smithsonian Conservat Biol Inst, 1500 Remount Rd, Front Royal, VA 22630 USA.
EM songsasenn@si.edu
OI Johnson, Amy/0000-0002-9288-1305
FU Morris Animal Foundation
FX This study was supported by the Morris Animal Foundation. The Maned Wolf
SSP played a key role in recruiting and organizing participating
institutions. The authors thank: staff from the White Oak Conservation
Center, Houston Zoo, Connecticut's Beardsley Zoo, Sedgwick County Zoo,
Louisville Zoo, Natural Science Center of Greensboro, Dickerson Park Zoo
and the Smithsonian Conservation Biology Institute for participating;
and Dr. Luis Padilla, Dr. Erika Wilson-Lipanovich, Lara Mouttham,
Tatiana Motheo and Ainjil Bills for technical assistance.
NR 67
TC 3
Z9 5
U1 0
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0011-2240
EI 1090-2392
J9 CRYOBIOLOGY
JI Cryobiology
PD JUN
PY 2014
VL 68
IS 3
BP 361
EP 370
DI 10.1016/j.cryobiol.2014.04.004
PG 10
WC Biology; Physiology
SC Life Sciences & Biomedicine - Other Topics; Physiology
GA AI5CX
UT WOS:000336884100009
PM 24731851
ER
PT J
AU Hultgren, KM
AF Hultgren, Kristin M.
TI Variable effects of symbiotic snapping shrimps on their sponge hosts
SO MARINE BIOLOGY
LA English
DT Article
ID DWELLING ALPHEID SHRIMP; CARIBBEAN CORAL-REEFS; COMMUNITY STRUCTURE;
SEA-ANEMONES; MUTUALISM; PLANT; COEVOLUTION; MORPHOLOGY; PREDATION;
HABITATS
AB Mutualistic relationships are ubiquitous in tropical coral reefs, but the costs and benefits to partner species are often poorly known. In Caribbean coral reefs, several species of snapping shrimp (Synalpheus spp.) dwell exclusively in marine sponges, which serve as both habitat and food source. A paired experimental design was used to examine the effects of Synalpheus occupancy on predation, morphology, and growth of their sponge host Lissodendoryx colombiensis in Bocas del Toro, Panama (9.351A degrees N, 82.258A degrees W) in June 2009. Shrimp occupancy significantly decreased consumption of sponges by a predatory sea star (Oreaster reticulatus) and also affected sponge morphology; sponges grown without shrimps decreased in canal size, in both the laboratory and the field. Shrimp occupancy had more ambiguous effects on sponge growth. In laboratory experiments, shrimp occupancy benefited sponge growth, although all sponges experienced overall decreases in mass. In field experiments, there were no significant differences in growth between occupied and empty sponges. However, the benefits of shrimp occupancy on sponge growth were negatively correlated with overall increases in sponge size; sponges that decreased in mass during the experiment benefited more from shrimp occupancy than sponges that increased in mass. These costs and benefits suggest that Synalpheus has variable effects on sponges: positive effects on sponges in the presence of predators, and/or when sponges are decreasing in mass (e.g., during periods of physical stress), but a negative effect on sponges during periods of active sponge growth.
C1 [Hultgren, Kristin M.] Smithsonian Inst, Natl Museum Nat Hist, Washington, DC 20013 USA.
RP Hultgren, KM (reprint author), Seattle Univ, 901 12th Ave, Seattle, WA 98122 USA.
EM hultgrenk@seattleu.edu
FU Smithsonian Marine Science Network
FX The Smithsonian Marine Science Network provided funding for this study.
This study could not have been completed without the patience and help
of the staff at the Smithsonian's Bocas del Toro marine station and the
advice and help of J. Emmett Duffy. This study was greatly improved by
advice from J. Pawlik, M. E. Hay, and J. Wulff. M. McGrew and C. Freeman
provided invaluable assistance in the field. This manuscript was also
greatly improved by the comments of Martin Thiel, Tripp Macdonald, and
several anonymous reviewers. All experiments and collections were
conducted in compliance with the current laws of Panama.
NR 52
TC 0
Z9 0
U1 1
U2 30
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0025-3162
EI 1432-1793
J9 MAR BIOL
JI Mar. Biol.
PD JUN
PY 2014
VL 161
IS 6
BP 1217
EP 1227
DI 10.1007/s00227-014-2412-z
PG 11
WC Marine & Freshwater Biology
SC Marine & Freshwater Biology
GA AI4AG
UT WOS:000336806700001
ER
PT J
AU Miller, AW
Ruiz, GM
AF Miller, A. Whitman
Ruiz, Gregory M.
TI Arctic shipping and marine invaders
SO NATURE CLIMATE CHANGE
LA English
DT Editorial Material
ID INVASION; RISK
C1 [Miller, A. Whitman; Ruiz, Gregory M.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA.
RP Miller, AW (reprint author), Smithsonian Environm Res Ctr, 647 Contees Wharf Rd,POB 28, Edgewater, MD 21037 USA.
EM millerw@si.edu
OI Ruiz, Gregory/0000-0003-2499-441X; Miller, Whitman/0000-0003-0484-182X
NR 20
TC 21
Z9 21
U1 6
U2 34
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
EI 1758-6798
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD JUN
PY 2014
VL 4
IS 6
BP 413
EP 416
PG 5
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA AI8EC
UT WOS:000337138700007
ER
PT J
AU Dudley, R
AF Dudley, Robert
TI Drunks and Monkeys
SO SCIENTIST
LA English
DT Article
C1 [Dudley, Robert] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Dudley, Robert] Smithsonian Trop Res Inst, Panama City, Panama.
RP Dudley, R (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.
NR 0
TC 0
Z9 0
U1 1
U2 3
PU LABX MEDIA GROUP
PI MIDLAND
PA PO BOX 216, 478 BAY ST, MIDLAND, ONTARIO L4R 1K9, CANADA
SN 0890-3670
EI 1547-0806
J9 SCIENTIST
JI Scientist
PD JUN
PY 2014
VL 28
IS 6
BP 70
EP 70
PG 1
WC Information Science & Library Science; Multidisciplinary Sciences
SC Information Science & Library Science; Science & Technology - Other
Topics
GA AI5WS
UT WOS:000336940900018
ER
PT J
AU Garvin, HM
Sholts, SB
Mosca, LA
AF Garvin, Heather M.
Sholts, Sabrina B.
Mosca, Laurel A.
TI Sexual Dimorphism in Human Cranial Trait Scores: Effects of Population,
Age, and Body Size
SO AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY
LA English
DT Article
DE sex estimation; ordinal scores; non-metric traits; Walker method;
forensic anthropology
ID GREATER SCIATIC NOTCH; FORENSIC ANTHROPOLOGY; AMERICAN WHITES; LONG
BONES; STATURE; MORPHOLOGY; COLLECTION; HOMINIDS; INDIANS; NEGROES
AB Sex estimation from the skull is commonly performed by physical and forensic anthropologists using a five-trait scoring system developed by Walker. Despite the popularity of this method, validation studies evaluating its accuracy across a variety of samples are lacking. Furthermore, it remains unclear what other intrinsic or extrinsic variables are related to the expression of these traits. In this study, cranial trait scores and postcranial measurements were collected from four diverse population groups (U.S. Whites, U.S. Blacks, medieval Nubians, and Arikara Native Americans) following Walker's protocols (total n=499). Univariate and multivariate analyses were utilized to evaluate the accuracy of these traits in sex estimation, and to test for the effects of population, age, and body size on trait expressions. Results revealed significant effects of population on all trait scores. Sample-specific correct sex classification rates ranged from 74% to 94%, with an overall accuracy of 85% for the pooled sample. Classification performance varied among the traits (best for glabella and mastoid scores and worst for nuchal scores). Furthermore, correlations between traits were weak or nonsignificant, suggesting that different factors may influence individual traits. Some traits displayed correlations with age and/or postcranial size that were significant but weak, and within-population analyses did not reveal any consistent relationships between these traits across all groups. These results indicate that neither age nor body size plays a large role in trait expression, and thus does not need to be incorporated into sex estimation methods. Am J Phys Anthropol 154:259-269, 2014. (c) 2014 Wiley Periodicals, Inc.
C1 [Garvin, Heather M.; Mosca, Laurel A.] Mercyhurst Univ, Dept Anthropol Archaeol, Erie, PA 16546 USA.
[Garvin, Heather M.; Mosca, Laurel A.] Mercyhurst Univ, Dept Appl Forens Sci, Erie, PA 16546 USA.
[Sholts, Sabrina B.] Smithsonian Inst, Dept Anthropol, Natl Museum Nat Hist, Washington, DC 20013 USA.
RP Garvin, HM (reprint author), Mercyhurst Univ, 501 E 38th St, Erie, PA 16546 USA.
EM HMGarvin@gmail.com
FU NSF Doctoral Dissertation Improvement Grant [BCS-1061313]; Sigma Xi GIAR
[G20101015155040]
FX Grant sponsor: NSF Doctoral Dissertation Improvement Grant; Grant
number: BCS-1061313; Grant sponsor: Sigma Xi GIAR; Grant number:
G20101015155040.
NR 48
TC 10
Z9 11
U1 1
U2 28
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-9483
EI 1096-8644
J9 AM J PHYS ANTHROPOL
JI Am. J. Phys. Anthropol.
PD JUN
PY 2014
VL 154
IS 2
BP 259
EP 269
DI 10.1002/ajpa.22502
PG 11
WC Anthropology; Evolutionary Biology
SC Anthropology; Evolutionary Biology
GA AH9VM
UT WOS:000336492900009
PM 24595622
ER
PT J
AU Pobiner, B
AF Pobiner, Briana
TI SHAPING HUMANITY: HOW SCIENCE, ART, AND IMAGINATION HELP US UNDERSTAND
OUR ORIGINS
SO AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY
LA English
DT Book Review
C1 [Pobiner, Briana] Smithsonian Inst, Natl Museum Amer Hist, Dept Anthropol, Washington, DC 20560 USA.
RP Pobiner, B (reprint author), Smithsonian Inst, Natl Museum Amer Hist, Dept Anthropol, Washington, DC 20560 USA.
NR 1
TC 0
Z9 0
U1 2
U2 7
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0002-9483
EI 1096-8644
J9 AM J PHYS ANTHROPOL
JI Am. J. Phys. Anthropol.
PD JUN
PY 2014
VL 154
IS 2
BP 317
EP 317
DI 10.1002/ajpa.22508
PG 1
WC Anthropology; Evolutionary Biology
SC Anthropology; Evolutionary Biology
GA AH9VM
UT WOS:000336492900017
ER
PT J
AU Graves, GR
AF Graves, Gary R.
TI Historical decline and probable extinction of the Jamaican Golden
Swallow Tachycineta euchrysea euchrysea
SO BIRD CONSERVATION INTERNATIONAL
LA English
DT Article
ID WINTERING POPULATIONS; PREDATION; BEHAVIOR
AB The endemic Jamaican subspecies of the Golden Swallow Tachycineta euchrysea euchrysea has been rare and locally distributed since its discovery in 1847. By the 1950s, its geographic range had contracted to a small region along the northern frontier of Cockpit Country. The last unequivocal sight records occurred in the early 1980s, raising strong concern about the swallow's conservation status. I conducted an island-wide search for the swallow from 1994 through 2012. Standardised censuses of aerial insectivores at 1,281 sites, including the last redoubts of the Golden Swallow in Trelawny Parish, revealed no evidence of the species. These surveys and the absence of documented sight records during the past three decades suggest that the Jamaican race of the Golden Swallow is close to extinction if not already extinct. The cause of the population decline is unknown but is most likely linked to chronic predation by introduced mammalian predators, particularly the arboreal black rat Rattus rattus
C1 [Graves, Gary R.] Smithsonian Inst, Dept Vertebrate Zool, Natl Museum Nat Hist, MRC 116, Washington, DC 20013 USA.
[Graves, Gary R.] Univ Copenhagen, Ctr Macroecol Evolut & Climate, DK-2100 Copenhagen O, Denmark.
RP Graves, GR (reprint author), Smithsonian Inst, Dept Vertebrate Zool, Natl Museum Nat Hist, MRC 116, POB 37012, Washington, DC 20013 USA.
RI publist, CMEC/C-3010-2012; publicationpage, cmec/B-4405-2017
FU Alexander Wetmore fund of the Smithsonian Institution; James Bond fund
of the Smithsonian Institution
FX Brian Schmidt was an indispensable participant in the aerial insectivore
censuses and supplied the base maps. Kim Bostwick (Cornell University
Museum of Vertebrates), Mike Brooke (Cambridge University Museum of
Zoology), Ben Marks (Field Museum), Brad Millen (Royal Ontario Museum),
Robert Prys-Jones and Hein van Grouw (Natural History Museum, formerly
British Museum of Natural History), Tony Parker (National Museums
Liverpool), Jeremiah Trimble (Museum of Comparative Zoology, Harvard
University), and Paul Sweet, Tom Trombone and Mary LeCroy (American
Museum of Natural History) provided information on swallow specimens in
their care. Catherine Levy and Jim Wiley provided additional information
about the Golden Swallow in Jamaica. Susan Koenig and Mike Schwartz
(Windsor Research Centre) and Catherine Levy (Kingston) provided
critical logistical support. Nick Gotelli gave advice on EcoSim.
Catherine Levy, Susan Koenig, Justin Proctor, Jason Townsend, and three
anonymous reviewers critiqued earlier drafts of the manuscript. Ellen
Alers (Smithsonian Institution Archives) and Catherine Levy helped with
W. T. March correspondence. Leslie Overstreet of the Joseph F. Cullman
3rd Library of Natural History (Smithsonian Institution Libraries)
provided a digital scan of the Gosse lithograph. This paper is dedicated
to Errol Francis (1950-2011) for his contributions to Jamaican science.
I am grateful to them all. Fieldwork was supported by the Alexander
Wetmore and the James Bond funds of the Smithsonian Institution.
NR 60
TC 1
Z9 1
U1 0
U2 11
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0959-2709
EI 1474-0001
J9 BIRD CONSERV INT
JI Bird Conserv. Int.
PD JUN
PY 2014
VL 24
IS 2
BP 239
EP 251
DI 10.1017/S095927091300035X
PG 13
WC Ornithology
SC Zoology
GA AI1IG
UT WOS:000336603600010
ER
PT J
AU Chollett, I
Canty, SWJ
Box, SJ
Mumby, PJ
AF Chollett, Iliana
Canty, Steven W. J.
Box, Stephen J.
Mumby, Peter J.
TI Adapting to the impacts of global change on an artisanal coral reef
fishery
SO ECOLOGICAL ECONOMICS
LA English
DT Article
DE Small-scale fisheries; Fuel price; Wave exposure; Climate change;
Emission scenarios; Economic scenarios; Adaptation
ID SOCIAL-ECOLOGICAL SYSTEMS; SMALL-SCALE FISHERIES; CLIMATE-CHANGE;
SPECIES DISTRIBUTIONS; MODELS; MANAGEMENT; SUSTAINABILITY; EXPLOITATION;
COMMUNITIES; HONDURAS
AB When assessing future changes in fishing, research has focused on changes in the availability of the resource. Fishers' behaviour, however, also defines fishing activity, and is susceptible not only to changes in weather but also to changes in the economy, which can be faster and more ubiquitous. Using a novel modelling approach and spatially explicit predictors we identified the current drivers of artisanal fishing activity and predicted how it is likely to change in 2025 and 2035 under two climate and two economic scenarios. The model is effective at explaining the activity of fishers (AUC = 0.84) and suggests that economic variables overwhelm the importance of climate variables in influencing the decisions of fishers in our case study area (Utila, Honduras). Although future changes in the overall incidence of fishing activity are modest, decreases in the number of accessible fishing grounds with projected increases in fuel prices will increase localised fishing effort depleting fish resources near the port. Compelling adaptation strategies in the area require the intervention of the market chain to make the sale price of fish more responsive to fuel price fluctuations and changes in fishing behaviour to improve fuel efficiency, including the revival of traditional ways of fishing. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Chollett, Iliana; Mumby, Peter J.] Univ Exeter, Marine Spatial Ecol Lab, Coll Life & Environm Sci, Exeter EX4 4PS, Devon, England.
[Chollett, Iliana; Mumby, Peter J.] Univ Queensland, Sch Biol Sci, Marine Spatial Ecol Lab, Brisbane, Qld 4072, Australia.
[Canty, Steven W. J.] Ctr Estudios Marinos, Tegucigalpa, Honduras.
[Box, Stephen J.] Smithsonian Marine Stn, Ft Pierce, FL 34949 USA.
RP Chollett, I (reprint author), Univ Exeter, Marine Spatial Ecol Lab, Coll Life & Environm Sci, Exeter EX4 4PS, Devon, England.
EM i.c.chollett-ordaz@exeter.ac.uk; steve_canty@utilaecology.org;
boxs@si.edu; p.j.mumby@uq.edu.au
FU European Union [244161]; Pew Laureate Fellowship [2008-000330-010]; ARC
Laureate Fellowship [FL0992179]; Summit Foundation [504502]
FX The research leading to these results has received funding from the
European Union 7th Framework programme (P7/2007-2013) under grant
agreement no. 244161, Pew (grant 2008-000330-010) and ARC Laureate
Fellowships (FL0992179) to PJM and the Summit Foundation (grant 504502)
and Smithsonian Marine Station at Fort Pierce contribution number 949 to
SJB. We are grateful to the Caribbean Community Climate Change Centre,
particularly Timo Baur, for assisting in the provision of climate change
data, and to Alice Rogers and two reviewers for their comments on the
manuscript.
NR 49
TC 5
Z9 5
U1 5
U2 48
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-8009
EI 1873-6106
J9 ECOL ECON
JI Ecol. Econ.
PD JUN
PY 2014
VL 102
BP 118
EP 125
DI 10.1016/j.ecolecon.2014.03.010
PG 8
WC Ecology; Economics; Environmental Sciences; Environmental Studies
SC Environmental Sciences & Ecology; Business & Economics
GA AI2OK
UT WOS:000336697600015
ER
PT J
AU Graves, GR
AF Graves, Gary R.
TI WESTERN MARSH HARRIER PREYS ON HERRING GULL
SO JOURNAL OF RAPTOR RESEARCH
LA English
DT Letter
DE Western Marsh Harrier; Circus aeruginosus; Herring Gull; Larus
argentatus; predation
ID CIRCUS-AERUGINOSUS; DIET; BEHAVIOR; FOOD
C1 [Graves, Gary R.] Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, Washington, DC 20013 USA.
[Graves, Gary R.] Univ Copenhagen, Ctr Macroecol Evolut & Climate, DK-2100 Copenhagen O, Denmark.
RP Graves, GR (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, MRC 116,POB 37012, Washington, DC 20013 USA.
EM gravesg@si.edu
RI publist, CMEC/C-3010-2012; publicationpage, cmec/B-4405-2017
NR 8
TC 0
Z9 0
U1 5
U2 12
PU RAPTOR RESEARCH FOUNDATION INC
PI HASTINGS
PA 14377 117TH STREET SOUTH, HASTINGS, MN 55033 USA
SN 0892-1016
EI 2162-4569
J9 J RAPTOR RES
JI J. Raptor Res.
PD JUN
PY 2014
VL 48
IS 2
BP 191
EP 192
PG 2
WC Ornithology
SC Zoology
GA AI0RF
UT WOS:000336556400011
ER
PT J
AU Le Borgne, JF
Poretti, E
Klotz, A
Denoux, E
Smith, HA
Kolenberg, K
Szabo, R
Bryson, S
Audejean, M
Buil, C
Caron, J
Conseil, E
Corp, L
Drillaud, C
de France, T
Graham, K
Hirosawa, K
Klotz, AN
Kugel, F
Loughney, D
Menzies, K
Rodriguez, M
Ruscitti, PM
AF Le Borgne, J. F.
Poretti, E.
Klotz, A.
Denoux, E.
Smith, H. A.
Kolenberg, K.
Szabo, R.
Bryson, S.
Audejean, M.
Buil, C.
Caron, J.
Conseil, E.
Corp, L.
Drillaud, C.
de France, T.
Graham, K.
Hirosawa, K.
Klotz, A. N.
Kugel, F.
Loughney, D.
Menzies, K.
Rodriguez, M.
Ruscitti, P. M.
TI Historical vanishing of the Blazhko effect of RR Lyr from the GEOS and
Kepler surveys
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE techniques: photometric; stars: individual: RR Lyrae; stars:
oscillations; stars: variables: RR Lyrae
ID TAROT TELESCOPES; STARS; PERIOD; LIGHT; BEHAVIOR; CYCLE
AB RR Lyr is one of the most studied variable stars. Its light curve has been regularly monitored since the discovery of its periodic variability in 1899. The analysis of all observed maxima allows us to identify two primary pulsation states, defined as pulsation over a long (P-0 longer than 0.56684 d) and a short (P-0 shorter than 0.56682 d) primary pulsation period. These states alternate with intervals of 13-16 yr, and are well defined after 1943. The 40.8-d periodical modulations of the amplitude and the period (i.e. the Blazhko effect) were noticed in 1916. We provide homogeneous determinations of the Blazhko period in the different primary pulsation states. The Blazhko period does not follow the variations of P-0 and suddenly diminished from 40.8 d to around 39.0 d in 1975. The monitoring of these periodicities deserved, and still deserves, a continuous and intensive observational effort. For this purpose, we have built dedicated, transportable and autonomous small instruments, Very Tiny Telescopes (VTTs), to observe the times of maximum brightness of RR Lyr. As immediate results, the VTTs recorded the last change of the P-0 state in mid-2009 and extended the time coverage of the Kepler observations, thus recording a maximum O - C amplitude of the Blazhko effect at the end of 2008, followed by the historically smallest O - C amplitude in late 2013. This decrease is still ongoing and the VTTs are ready to monitor the expected increase in the next few years.
C1 [Le Borgne, J. F.; Poretti, E.; Klotz, A.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France.
[Le Borgne, J. F.; Poretti, E.; Klotz, A.] CNRS, IRAP, F-31400 Toulouse, France.
[Le Borgne, J. F.; Poretti, E.; Klotz, A.; Denoux, E.; Corp, L.; Klotz, A. N.] GEOS, F-28300 Bailleau Leveque, France.
[Poretti, E.] INAF Osservatorio Astron Brera, I-23807 Merate, LC, Italy.
[Smith, H. A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Kolenberg, K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Kolenberg, K.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Heverlee, Belgium.
[Szabo, R.] MTA CSFK, Konkoly Observ, H-1121 Budapest, Hungary.
[Bryson, S.] NASA Ames Res Ctr, Mountain View, CA 94035 USA.
[Audejean, M.] Observ Chinon, F-37500 Chinon, France.
[Buil, C.] Observ Castanet Tolosan, F-31320 Castanet Tolosan, France.
[Caron, J.; Kugel, F.] Observ Chante Perdrix, F-04150 Banon, France.
[Conseil, E.; Drillaud, C.] Observ Strasbourg, AFOEV, F-67000 Strasbourg, France.
[Corp, L.; de France, T.; Graham, K.; Menzies, K.] AAVSO, Cambridge, MA 02138 USA.
[Hirosawa, K.] VSOLJ, Tsukuba, Ibaraki 3050035, Japan.
[Loughney, D.] British Astron Assoc, Variable Star Sect BAA VSS, London W1J 0DU, England.
[Ruscitti, P. M.] Osservatorio Astron B Occhialini, I-67041 Aielli, AQ, Italy.
RP Le Borgne, JF (reprint author), Univ Toulouse, UPS OMP, IRAP, Toulouse, France.
EM jleborgne@irap.omp.eu
OI Poretti, Ennio/0000-0003-1200-0473; Szabo, Robert/0000-0002-3258-1909
FU NASA's Science Mission Directorate; Hungarian Academy of Science;
Hungarian OTKA grant [K83790]; KTIA [URKUT_10-1-2011-0019]; European
Community [269194]; Janos Bolyai Research Scholarship of the Hungarian
Academy of Sciences
FX Funding for the Kepler Discovery Mission is provided by NASA's Science
Mission Directorate. The Kepler Team and the Kepler Guest Observer
Office are recognized for helping to make this mission and these data
possible. EP acknowledges Observatoire Midi-Pyrenees for the two-month
grant allocated in 2013 October and November, which allowed him to work
at the Institut de Recherche en Astrophysique et Planetologie in
Toulouse, France. The present study has used the SIMBAD data base
operated at the Centre de Donnees Astronomiques (Strasbourg, France) and
the GEOS RR Lyr data base hosted by IRAP (OMP-UPS, Toulouse, France).
This study has been supported by the Lendulet-2009 Young Researchers
Programme of the Hungarian Academy of Science, the Hungarian OTKA grant
K83790 and the KTIA URKUT_10-1-2011-0019 grant. The research leading to
these results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 269194
(IRSES/ASK). RSz was supported by the Janos Bolyai Research Scholarship
of the Hungarian Academy of Sciences. The basic ideas of the VTT project
have been sketched during several GEOS meetings, and fruitful
discussions with R. Boninsegna, M. Dumont, J. Fabregat, F. Fumagalli, D.
Husar, J. Remis, J. Vandenbroere and J. M. Vilalta are gratefully
acknowledged.
NR 39
TC 9
Z9 9
U1 0
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2014
VL 441
IS 2
BP 1435
EP 1443
DI 10.1093/mnras/stu671
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AH9WC
UT WOS:000336494800039
ER
PT J
AU Keto, E
Burkert, A
AF Keto, Eric
Burkert, Andreas
TI From filaments to oscillating starless cores
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE hydrodynamics; radiative transfer; ISM: clouds; ISM: kinematics and
dynamics
ID MOLECULAR CLOUD CORES; DYNAMICAL STATE; DARK CLOUD; BARNARD 68;
EMISSION; GLOBULE
AB Long-wavelength sonic oscillations are observed or inferred in many of the small, dark molecular clouds, the starless cores, that are the precursors to protostars. The oscillations provide significant internal energy and the time-scale for their dissipation may control the rate of star formation in starless cores. Despite their importance, their origin is unknown. We explore one hypothesis that the oscillations develop as a starless core forms from a filament. We model this process with a numerical hydrodynamic simulation and generate synthetic molecular line observations with a radiative transfer simulation. Comparison with actual observations shows general agreement suggesting that the proposed mechanism is viable.
C1 [Keto, Eric] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02420 USA.
[Burkert, Andreas] Univ Munich, D-81679 Munich, Germany.
RP Keto, E (reprint author), Harvard Smithsonian Ctr Astrophys, 160 Garden St, Cambridge, MA 02420 USA.
EM keto@cfa.harvard.edu
FU German Science Foundation [1573]
FX AB thanks the Harvard-Smithsonian Center for Astrophysics for their
hospitality during multiple visits. The research of AB is supported by
the priority programme 1573 'Physics of the Interstellar Medium' of the
German Science Foundation.
NR 33
TC 2
Z9 2
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2014
VL 441
IS 2
BP 1468
EP 1473
DI 10.1093/mnras/stu379
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AH9WC
UT WOS:000336494800042
ER
PT J
AU Parker, ML
Walton, DJ
Fabian, AC
Risaliti, G
AF Parker, M. L.
Walton, D. J.
Fabian, A. C.
Risaliti, G.
TI PCA of PCA: principal component analysis of partial covering absorption
in NGC 1365
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: active; galaxies: individual: NGC 1365; galaxies: individual:
MCG-6-30-15; galaxies: Seyfert
ID RAY SPECTRAL VARIABILITY; XMM-NEWTON; BLACK-HOLE; MCG-6-30-15;
REFLECTION; DISCOVERY; LAGS; LINE
AB We analyse 400 ks of XMM-Newton data on the active galactic nucleus NGC 1365 using principal component analysis (PCA) to identify model-independent spectral components. We find two significant components and demonstrate that they are qualitatively different from those found in MCG-6-30-15 using the same method. As the variability in NGC 1365 is known to be due to changes in the parameters of a partial covering neutral absorber, this shows that the same mechanism cannot be the driver of variability in MCG-6-30-15. By examining intervals where the spectrum shows relatively low absorption we separate the effects of intrinsic source variability, including signatures of relativistic reflection, from variations in the intervening absorption. We simulate the principal components produced by different physical variations, and show that PCA provides a clear distinction between absorption and reflection as the drivers of variability in AGN spectra. The simulations are shown to reproduce the PCA spectra of both NGC 1365 and MCG-6-30-15, and further demonstrate that the dominant cause of spectral variability in these two sources requires a qualitatively different mechanism.
C1 [Parker, M. L.; Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Walton, D. J.] CALTECH, Pasadena, CA 91125 USA.
[Risaliti, G.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy.
[Risaliti, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Parker, ML (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
EM mlparker@ast.cam.ac.uk
OI Risaliti, Guido/0000-0002-3556-977X
FU Science and Technology Facilities Council (STFC)
FX The authors would like to thank the anonymous referee for their helpful
comments. MLP acknowledges financial support from the Science and
Technology Facilities Council (STFC).
NR 24
TC 8
Z9 8
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2014
VL 441
IS 2
BP 1817
EP 1824
DI 10.1093/mnras/stu712
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AH9WC
UT WOS:000336494800066
ER
PT J
AU Hartman, JD
Bakos, GA
Torres, G
Kovacs, G
Johnson, JA
Howard, AW
Marcy, GW
Latham, DW
Bieryla, A
Buchhave, LA
Bhatti, W
Beky, B
Csubry, Z
Penev, K
De Val-Borro, M
Noyes, RW
Fischer, DA
Esquerdo, GA
Everett, M
Szklenar, T
Zhou, G
Bayliss, D
Shporer, A
Fulton, BJ
Sanchis-Ojeda, R
Falco, E
Lazar, J
Papp, I
Sari, P
AF Hartman, J. D.
Bakos, G. A.
Torres, G.
Kovacs, G.
Johnson, J. A.
Howard, A. W.
Marcy, G. W.
Latham, D. W.
Bieryla, A.
Buchhave, L. A.
Bhatti, W.
Beky, B.
Csubry, Z.
Penev, K.
De Val-Borro, M.
Noyes, R. W.
Fischer, D. A.
Esquerdo, G. A.
Everett, M.
Szklenar, T.
Zhou, G.
Bayliss, D.
Shporer, A.
Fulton, B. J.
Sanchis-Ojeda, R.
Falco, E.
Lazar, J.
Papp, I.
Sari, P.
TI HAT-P-44b, HAT-P-45b, AND HAT-P-46b: THREE TRANSITING HOT JUPITERS IN
POSSIBLE MULTI-PLANET SYSTEMS
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE planetary systems; stars: individual (HAT-P-44, HAT-P-45, HAT-P-46);
techniques: photometric; techniques: spectroscopic
ID ECCENTRIC ORBIT; GIANT PLANETS; BRIGHT STAR; LONG-PERIOD; MULTIPLANET
SYSTEMS; KEPLER FIELD; HOST STARS; K-DWARF; SEARCH; STELLAR
AB We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V = 13.2, 12.8, and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.35, 0.89, and 0.49 M-J, and radii of 1.24, 1.43, and 1.28 R-J. The stellar hosts have masses of 0.94, 1.26, and 1.28 M-circle dot . Each system shows significant systematic variations in its residual radial velocities, indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 872 days, eccentricity of 0.494 +/- 0.081, and a minimum mass of 4.0 M-J. Due to aliasing we cannot rule out alternative solutions for the outer planet having a period of 220 days or 438 days. For HAT-P-45, at present there is not enough data to justify the additional free parameters included in a multi-planet model; in this case a single-planet solution is preferred, but the required jitter of 22.5 +/- 6.3 m s(-1) is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 days and a minimum mass of 2.0 M-J, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued radial velocity monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.
C1 [Hartman, J. D.; Bakos, G. A.; Bhatti, W.; Csubry, Z.; Penev, K.; De Val-Borro, M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Torres, G.; Latham, D. W.; Bieryla, A.; Beky, B.; Noyes, R. W.; Esquerdo, G. A.; Falco, E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Kovacs, G.] Konkoly Observ Budapest, Budapest, Hungary.
[Kovacs, G.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA.
[Johnson, J. A.; Shporer, A.] CALTECH, Dept Astrophys, Pasadena, CA 91125 USA.
[Howard, A. W.; Fulton, B. J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Marcy, G. W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Buchhave, L. A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Fischer, D. A.] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Everett, M.] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Szklenar, T.; Lazar, J.; Papp, I.; Sari, P.] Hungarian Astron Assoc, H-1461 Budapest, Hungary.
[Zhou, G.; Bayliss, D.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Shporer, A.] Las Cumbres Observ Global Telescope Network, Santa Barbara, CA 93117 USA.
[Shporer, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Sanchis-Ojeda, R.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
RP Hartman, JD (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
EM jhartman@astro.princeton.edu
RI Howard, Andrew/D-4148-2015;
OI Howard, Andrew/0000-0001-8638-0320; Penev, Kaloyan/0000-0003-4464-1371;
Buchhave, Lars A./0000-0003-1605-5666; Hartman, Joel/0000-0001-8732-6166
FU NASA [NNG04GN74G, NNX08AF23G, NNX13AJ15G, NNX09AB29G, NNX09AF59G,
N154Hr, N108Hr]; NSF [AST-1108686]; Kepler Mission under NASA
[NCC2-1390]; Hungarian Scientific Research Foundation (OTKA) [K-81373];
NOAO [A284Hr]
FX HATNet operations have been funded in part by NASA grants NNG04GN74G,
NNX08AF23G, and NNX13AJ15G. J.D.H., G.A.B., and W.B. received partial
support from NSF grant AST-1108686. G.A.B., Z.C., and K. P. acknowledge
partial support from NASA grant NNX09AB29G. G.T. acknowledges partial
support from NASA grant NNX09AF59G. We acknowledge partial support also
from the Kepler Mission under NASA Co-operative Agreement NCC2-1390 (PI:
D.W.L.). G.K. thanks the Hungarian Scientific Research Foundation (OTKA)
for support through grant K-81373. This research has made use of Keck
telescope time granted through NOAO (program A284Hr) and NASA (N154Hr,
N108Hr). This paper uses observations obtained with facilities of the
Las Cumbres Observatory Global Telescope. Data presented in this paper
are based on observations obtained at the HAT station at the
Submillimeter Array of SAO, and the HAT station at the Fred Lawrence
Whipple Observatory of SAO. We also thank Mount Stromlo Observatory and
Siding Spring Observatory for granting us time on the ANU 2.3 m
telescope. This research has made use of the Exoplanet Orbit Database
and the Exoplanet Data Explorer at http://www.exoplanets.org.
NR 68
TC 10
Z9 10
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUN
PY 2014
VL 147
IS 6
AR 128
DI 10.1088/0004-6256/147/6/128
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AH6TC
UT WOS:000336262600004
ER
PT J
AU Janes, K
Barnes, SA
Meibom, S
Hoq, S
AF Janes, Kenneth
Barnes, Sydney A.
Meibom, Soren
Hoq, Sadia
TI OPEN CLUSTERS IN THE KEPLER FIELD. II. NGC 6866
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE Hertzsprung-Russell and C-M diagrams; methods: data analysis; open
clusters and associations: individual (NGC 6866)
ID COLOR-MAGNITUDE DIAGRAMS; VARIABLE-STARS; CCD PHOTOMETRY; PARAMETERS;
ISOCHRONES; AGE
AB We have developed a maximum-likelihood procedure to fit theoretical isochrones to the observed cluster color-magnitude diagrams of NGC 6866, an open cluster in the Kepler spacecraft field of view. The Markov chain Monte Carlo algorithm permits exploration of the entire parameter space of a set of isochrones to find both the best solution and the statistical uncertainties. For clusters in the age range of NGC 6866 with few, if any, red giant members, a purely photometric determination of the cluster properties is not well-constrained. Nevertheless, based on our UBVRI photometry alone, we have derived the distance, reddening, age, and metallicity of the cluster and established estimates for the binary nature and membership probability of individual stars. We derive the following values for the cluster properties: (m - M)(v) = 10.98 +/- 0.24, E(B - V) = 0.16 +/- 0.04 (so the distance = 1250 pc), age = 705 +/- 170 Myr, and Z = 0.014 +/- 0.005.
C1 [Janes, Kenneth; Hoq, Sadia] Boston Univ, Dept Astron, Boston, MA 02215 USA.
[Barnes, Sydney A.] Leibniz Inst Astrophys, Potsdam, Germany.
[Meibom, Soren] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Barnes, Sydney A.] Space Sci Inst, Boulder, CO 80301 USA.
RP Janes, K (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA.
FU Boston University; Lowell Observatory; Barnes family; LoMonaco family;
NASA [NNX09AH18A]
FX We acknowledge the financial and technical support from Boston
University and the Lowell Observatory. S.A.B is grateful for financial
support from the Barnes and LoMonaco families and thanks the Flagstaff
Public Library for providing a serene working environment during a
crucial phase of this work. S.M. acknowledges support from NASA
cooperative agreement NNX09AH18A (the Kepler Cluster Study).
NR 20
TC 3
Z9 3
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUN
PY 2014
VL 147
IS 6
AR 139
DI 10.1088/0004-6256/147/6/139
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AH6TC
UT WOS:000336262600015
ER
PT J
AU Kraus, AL
Shkolnik, EL
Allers, KN
Liu, MC
AF Kraus, Adam L.
Shkolnik, Evgenya L.
Allers, Katelyn N.
Liu, Michael C.
TI A STELLAR CENSUS OF THE TUCANA-HOROLOGIUM MOVING GROUP
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE binaries: spectroscopic; open clusters and associations: individual
(Tucana-Horologium); stars: activity; stars: kinematics and dynamics;
stars: low-mass; stars: pre-main sequence
ID LOW-MASS STARS; LITHIUM DEPLETION BOUNDARY; TW-HYDRAE ASSOCIATION;
DIGITAL SKY SURVEY; ETA-CHAMAELEONTIS CLUSTER;
GALAXY-EVOLUTION-EXPLORER; BROWN DWARF CANDIDATES; MAIN-SEQUENCE STARS;
NEARBY YOUNG STARS; BETA-PICTORIS
AB We report the selection and spectroscopic confirmation of 129 new late-type (SpT = K3-M6) members of the Tucana-Horologium moving group, a nearby (d similar to 40 pc), young (tau similar to 40 Myr) population of comoving stars. We also report observations for 13 of the 17 known Tuc-Hor members in this spectral type range, and that 62 additional candidates are likely to be unassociated field stars; the confirmation frequency for new candidates is therefore 129/191 = 67%. We have used radial velocities, Ha emission, and Li-6708 absorption to distinguish between contaminants and bona fide members. Our expanded census of Tuc-Hor increases the known population by a factor of similar to 3 in total and by a factor of similar to 8 for members with SpT >= K3, but even so, the K-M dwarf population of Tuc-Hor is still markedly incomplete. Our expanded census allows for a much more detailed study of Tuc-Hor than was previously feasible. The spatial distribution of members appears to trace a two-dimensional sheet, with a broad distribution in X and Y, but a very narrow distribution (+/- 5 pc) in Z. The corresponding velocity distribution is very small, with a scatter of +/- 1.1 km s(-1) about the mean UVW velocity for stars spanning the entire 50 pc extent of Tuc-Hor. We also show that the isochronal age (tau similar to 20-30 Myr) and the lithium depletion boundary age (tau similar to 40 Myr) disagree, following the trend in other pre-main-sequence populations for isochrones to yield systematically younger ages. The H alpha emission line strength follows a trend of increasing equivalent width with later spectral type, as is seen for young clusters. We find that moving group members have been depleted of measurable lithium for spectral types of K7.0-M4.5. None of our targets have significant infrared excesses in the WISE W3 band, yielding an upper limit on warm debris disks of F < 0.7%. Finally, our purely kinematic and color-magnitude selection procedure allows us to test the efficiency and completeness for activity-based selection of young stars. We find that 60% of K-M dwarfs in Tuc-Hor do not have ROSAT counterparts and would have been omitted in X-ray-selected samples. In contrast, GALEX UV-selected samples using a previously suggested criterion for youth achieve completeness of 77% and purity of 78%, and we suggest new SpT-dependent selection criteria that will yield > 95% completeness for tau similar to 40 Myr populations with GALEX data available.
C1 [Kraus, Adam L.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Kraus, Adam L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Shkolnik, Evgenya L.] Lowell Observ, Flagstaff, AZ 86001 USA.
[Allers, Katelyn N.] Bucknell Univ, Dept Phys & Astron, Lewisburg, PA 17837 USA.
[Liu, Michael C.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA.
RP Kraus, AL (reprint author), Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA.
FU Clay fellowship
FX The authors thank Jason Curtis for obtaining many excellent observations
as part of a time trade, Jason Wright for useful suggestions regarding
the optimal map projection for plotting stars on the celestial sphere,
and the anonymous referee for a helpful and thorough critique of the
paper. A.L.K. was supported in part by a Clay fellowship.
NR 92
TC 41
Z9 41
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUN
PY 2014
VL 147
IS 6
AR 146
DI 10.1088/0004-6256/147/6/146
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AH6TC
UT WOS:000336262600022
ER
PT J
AU Lacy, CHS
Torres, G
Fekel, FC
Muterspaugh, MW
AF Lacy, Claud H. Sandberg
Torres, Guillermo
Fekel, Francis C.
Muterspaugh, Matthew W.
TI ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR AP ANDROMEDAE
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE binaries: eclipsing; binaries: spectroscopic; stars: fundamental
parameters; stars: individual (AP And)
ID SPECTROSCOPIC BINARIES; BOLOMETRIC CORRECTIONS; RADIAL-VELOCITIES; Y-2
ISOCHRONES; LIGHT CURVES; EXTINCTION; TELESCOPE; ACCURACY; MODELS;
ORBITS
AB AP And is a well-detached F5 eclipsing binary star for which only a very limited amount of information was available before this publication. We have obtained very extensive measurements of the light curve (19,097 differential V magnitude observations) and a radial velocity curve (83 spectroscopic observations) which allow us to fit orbits and determine the absolute properties of the components very accurately: masses of 1.277 +/- 0.004 and 1.251 +/- 0.004 M-circle dot, radii of 1.233 +/- 0.006 and 1.1953 +/- 0.005 R-circle dot, and temperatures of 6565 +/- 150 K and 6495 +/- 150 K. The distance to the system is about 400 +/- 30 pc. Comparison with the theoretical properties of the stellar evolutionary models of the Yonsei-Yale series of Yi et al. shows good agreement between the observations and the theory at an age of about 500 Myr and a slightly sub-solar metallicity.
C1 [Lacy, Claud H. Sandberg] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA.
[Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Fekel, Francis C.; Muterspaugh, Matthew W.] Tennessee State Univ, Ctr Excellence Informat Syst, Nashville, TN 37209 USA.
RP Lacy, CHS (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA.
EM clacy@uark.edu; gtorres@cfa.harvard.edu; fekel@evans.tsuniv.edu;
matthew1@coe.tsuniv.edu
OI Lacy, Claud/0000-0002-0455-679X
FU NSF [AST-1007992]; NSF through Major Research Instrumentation Program
[1039522]; state of Tennessee through Centers of Excellence programs
FX The authors wish to thank Bill Neely who operates and maintains the NFO
WebScope for the Consortium, and who handles preliminary processing of
the images and their distribution. Thanks also to University of Arkansas
undergraduate student Craig Heinrich for initial analysis of the URSA
photometry and preliminary radial velocities. We thank P. Berlind, Z.
Berta, M. L. Calkins, G. A. Esquerdo, G. Furesz, D. W. Latham, R. P.
Stefanik, and S. Tang for help with the spectroscopic observations of AP
And on Mount Hopkins, as well as R. J. Davis and J. Mink for maintaining
the echelle databases at the CfA. G. T. acknowledges partial support
through NSF grant AST-1007992. The research at Tennessee State
University was made possible by NSF support through grant 1039522 of the
Major Research Instrumentation Program. In addition, astronomy at
Tennessee State University is supported by the state of Tennessee
through its Centers of Excellence programs. We wish to thank an
anonymous referee of this article for suggestions that improved the
clarity of our paper and expanded some of our discussion.
NR 54
TC 3
Z9 3
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUN
PY 2014
VL 147
IS 6
AR 148
DI 10.1088/0004-6256/147/6/148
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AH6TC
UT WOS:000336262600024
ER
PT J
AU Zhou, G
Bayliss, D
Penev, K
Bakos, GA
Hartman, JD
Jordan, A
Mancini, L
Mohler, M
Csubry, Z
Ciceri, S
Brahm, R
Rabus, M
Buchhave, L
Henning, T
Suc, V
Espinoza, N
Beky, B
Noyes, RW
Schmidt, B
Butler, RP
Shectman, S
Thompson, I
Crane, J
Sato, B
Csak, B
Lazar, J
Papp, I
Sari, P
Nikolov, N
AF Zhou, G.
Bayliss, D.
Penev, K.
Bakos, G. A.
Hartman, J. D.
Jordan, A.
Mancini, L.
Mohler, M.
Csubry, Z.
Ciceri, S.
Brahm, R.
Rabus, M.
Buchhave, L.
Henning, T.
Suc, V.
Espinoza, N.
Beky, B.
Noyes, R. W.
Schmidt, B.
Butler, R. P.
Shectman, S.
Thompson, I.
Crane, J.
Sato, B.
Csak, B.
Lazar, J.
Papp, I.
Sari, P.
Nikolov, N.
TI HATS-5b: A TRANSITING HOT SATURN FROM THE HATSouth SURVEY
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE stars: individual (HATS-5, GSC 5897-00933); techniques: photometric;
techniques: spectroscopic
ID HUBBLE-SPACE-TELESCOPE; EXTRASOLAR PLANET; TRANSMISSION SPECTRUM;
ATMOSPHERIC HAZE; GIANT PLANETS; OKAYAMA HIDES; IODINE CELLS; HOST
STARS; SUBARU HDS; STELLAR
AB We report the discovery of HATS-5b, a transiting hot Saturn orbiting a G-type star, by the HATSouth survey. HATS-5b has a mass of Mp approximate to 0.24 M-J, radius of R-p approximate to 0.91 R-J, and transits its host star with a period of P approximate to 4.7634 days. The radius of HATS-5b is consistent with both theoretical and empirical models. The host star has a V-band magnitude of 12.6, mass of 0.94 M-circle dot, and radius of 0.87 R-circle dot. The relatively high scale height of HATS-5b and the bright, photometrically quiet host starmake this planet a favorable target for future transmission spectroscopy follow-up observations. We reexamine the correlations in radius, equilibrium temperature, and metallicity of the close-in gas giants and find hot Jupiter-mass planets to exhibit the strongest dependence between radius and equilibrium temperature. We find no significant dependence in radius and metallicity for the close-in gas giant population.
C1 [Zhou, G.; Bayliss, D.; Schmidt, B.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
[Penev, K.; Bakos, G. A.; Hartman, J. D.; Csubry, Z.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Penev, K.; Bakos, G. A.; Hartman, J. D.; Csubry, Z.; Beky, B.; Noyes, R. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Jordan, A.; Brahm, R.; Rabus, M.; Suc, V.; Espinoza, N.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 7820436, Chile.
[Mancini, L.; Mohler, M.; Ciceri, S.; Henning, T.; Csak, B.; Nikolov, N.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Buchhave, L.] Univ Copenhagen, Niels Bohr Inst, DK-1168 Copenhagen, Denmark.
[Butler, R. P.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Shectman, S.; Thompson, I.; Crane, J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA.
[Sato, B.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan.
[Lazar, J.; Papp, I.; Sari, P.] Hungarian Astron Assoc, Budapest, Hungary.
[Nikolov, N.] Univ Exeter, Sch Phys, Astrophys Grp, Exeter EX4 4QL, Devon, England.
RP Zhou, G (reprint author), Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia.
EM george.zhou@anu.edu.au
RI Butler, Robert/B-1125-2009;
OI Jordan, Andres/0000-0002-5389-3944; Penev, Kaloyan/0000-0003-4464-1371;
Schmidt, Brian/0000-0001-6589-1287; Buchhave, Lars
A./0000-0003-1605-5666; Nikolov, Nikolay/0000-0002-6500-3574; Hartman,
Joel/0000-0001-8732-6166
FU NSF MRI grant [NSF/AST-0723074]; NASA [NNX12AH91H]; ARC Laureate
Fellowship Grant [FL0992131]; FONDECYT project [1130857, BASAL CATA
PFB-06]; Millennium Institute of Astrophysics (MAS) [IC120009];
Millennium Science Initiative [P10-022-F]; FONDECYT postdoctoral
fellowship [3120097]; CONICYT-PCHA/Doctorado Nacional and Fondecyt
project [1130857]; Robert Martin Ayers Sciences Fund; Chilean Ministry
of Economy; [NSF/AST-1108686]; [P087. A-9014(A), P088. A-9008(A),
P089. A-9008(A), P087. C-0508(A), and P089. A-9006(A)]
FX Development of the HATSouth project was funded by NSF MRI grant
NSF/AST-0723074, operations are supported by NASA grant NNX12AH91H, and
follow-up observations receive partial support from grant
NSF/AST-1108686. Work at the Australian National University is supported
by ARC Laureate Fellowship Grant FL0992131. Follow-up observations with
the ESO 2.2 m/FEROS instrument were performed under MPI guaranteed time
(P087.A-9014(A), P088. A-9008(A), P089. A-9008(A)) and Chilean time
(P087.C-0508(A)). A. J. acknowledges support from FONDECYT project
1130857, BASAL CATA PFB-06, and projects IC120009 "Millennium Institute
of Astrophysics (MAS)" and P10-022-F of the Millennium Science
Initiative, Chilean Ministry of Economy. V. S. acknowledges support form
BASAL CATA PFB-06. M. R. acknowledges support from FONDECYT postdoctoral
fellowship No3120097. R. B. and N. E. acknowledge support from
CONICYT-PCHA/Doctorado Nacional and Fondecyt project 1130857. This work
is based on observations made with ESO Telescopes at the La Silla
Observatory under program IDs P087. A-9014(A), P088. A-9008(A), P089.
A-9008(A), P087. C-0508(A), and P089. A-9006(A). We acknowledge the use
of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert
Martin Ayers Sciences Fund, and the SIMBAD database, operated at CDS,
Strasbourg, France. Operations at the MPG/ESO 2.2 m telescope are
jointly performed by the Max Planck Gesellschaft and the European
Southern Observatory. The imaging system GROND has been built by the
high-energy group of MPE in collaboration with the LSW Tautenburg and
ESO. We thank Rgis Lachaume for his technical assistance during the
observations at the MPG/ESO 2.2 m telescope. Australian access to the
Magellan Telescopes was supported through the National Collaborative
Research Infrastructure Strategy of the Australian Federal Government.
We thank Albert Jahnke, Toni Hanke (HESS), and Peter Conroy (MSO) for
their contributions to the HATSouth project.
NR 60
TC 8
Z9 8
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUN
PY 2014
VL 147
IS 6
AR 144
DI 10.1088/0004-6256/147/6/144
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AH6TC
UT WOS:000336262600020
ER
PT J
AU Aliu, E
Archambault, S
Aune, T
Behera, B
Beilicke, M
Benbow, W
Berger, K
Bird, R
Buckley, JH
Bugaev, V
Cardenzana, JV
Cerruti, M
Chen, X
Ciupik, L
Collins-Hughes, E
Connolly, MP
Cui, W
Dumm, J
Dwarkadas, VV
Errando, M
Falcone, A
Federici, S
Feng, Q
Finley, JP
Fleischhack, H
Fortin, P
Fortson, L
Furniss, A
Galante, N
Gall, D
Gillanders, GH
Griffin, S
Griffiths, ST
Grube, J
Gyuk, G
Hanna, D
Holder, J
Hughes, G
Humensky, TB
Kaaret, P
Kertzman, M
Khassen, Y
Kieda, D
Krennrich, F
Kumar, S
Lang, MJ
Madhavan, AS
Maier, G
McCann, AJ
Meagher, K
Millis, J
Moriarty, P
Mukherjee, R
Nieto, D
de Bhroithe, AO
Ong, RA
Otte, AN
Pandel, D
Park, N
Pohl, M
Popkow, A
Prokoph, H
Quinn, J
Ragan, K
Rajotte, J
Ratliff, G
Reyes, LC
Reynolds, PT
Richards, GT
Roache, E
Rousselle, J
Sembroski, GH
Shahinyan, K
Sheidaei, F
Smith, AW
Staszak, D
Telezhinsky, I
Tsurusaki, K
Tucci, JV
Tyler, J
Varlotta, A
Vassiliev, VV
Vincent, S
Wakely, SP
Ward, JE
Weinstein, A
Welsing, R
Wilhelm, A
AF Aliu, E.
Archambault, S.
Aune, T.
Behera, B.
Beilicke, M.
Benbow, W.
Berger, K.
Bird, R.
Buckley, J. H.
Bugaev, V.
Cardenzana, J. V.
Cerruti, M.
Chen, X.
Ciupik, L.
Collins-Hughes, E.
Connolly, M. P.
Cui, W.
Dumm, J.
Dwarkadas, V. V.
Errando, M.
Falcone, A.
Federici, S.
Feng, Q.
Finley, J. P.
Fleischhack, H.
Fortin, P.
Fortson, L.
Furniss, A.
Galante, N.
Gall, D.
Gillanders, G. H.
Griffin, S.
Griffiths, S. T.
Grube, J.
Gyuk, G.
Hanna, D.
Holder, J.
Hughes, G.
Humensky, T. B.
Kaaret, P.
Kertzman, M.
Khassen, Y.
Kieda, D.
Krennrich, F.
Kumar, S.
Lang, M. J.
Madhavan, A. S.
Maier, G.
McCann, A. J.
Meagher, K.
Millis, J.
Moriarty, P.
Mukherjee, R.
Nieto, D.
de Bhroithe, A. O'Faolain
Ong, R. A.
Otte, A. N.
Pandel, D.
Park, N.
Pohl, M.
Popkow, A.
Prokoph, H.
Quinn, J.
Ragan, K.
Rajotte, J.
Ratliff, G.
Reyes, L. C.
Reynolds, P. T.
Richards, G. T.
Roache, E.
Rousselle, J.
Sembroski, G. H.
Shahinyan, K.
Sheidaei, F.
Smith, A. W.
Staszak, D.
Telezhinsky, I.
Tsurusaki, K.
Tucci, J. V.
Tyler, J.
Varlotta, A.
Vassiliev, V. V.
Vincent, S.
Wakely, S. P.
Ward, J. E.
Weinstein, A.
Welsing, R.
Wilhelm, A.
TI INVESTIGATING THE TeV MORPHOLOGY OF MGRO J1908+06 WITH VERITAS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma rays: general; gamma-ray burst: individual (MGRO J1908+06, VER
J1907+062); pulsars: individual (PSR J1907+0602); ISM: supernova
remnants
ID PULSAR WIND NEBULA; GAMMA-RAY EMISSION; GALACTIC PLANE; PSR J1907+0602;
REMNANT; G40.5-0.5; MILAGRO; ARRAY
AB We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10(stat) +/- 0.20(sys). The TeV emission is extended, covering the region near PSR J1907+0602 and also extending toward SNR G40.5-0.5. When fitted with a two-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma(src) = 0 degrees.44 +/- 0 degrees.02. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5-0.5, 0 degrees.33 away.
C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Rajotte, J.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Aune, T.; Ong, R. A.; Popkow, A.; Rousselle, J.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Behera, B.; Chen, X.; Federici, S.; Fleischhack, H.; Maier, G.; Pohl, M.; Prokoph, H.; Telezhinsky, I.; Vincent, S.; Welsing, R.; Wilhelm, A.] DESY, D-15738 Zeuthen, Germany.
[Beilicke, M.; Buckley, J. H.; Bugaev, V.; Ward, J. E.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Benbow, W.; Cerruti, M.; Fortin, P.; Galante, N.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Berger, K.; Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Berger, K.; Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Bird, R.; Collins-Hughes, E.; Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Cardenzana, J. V.; Humensky, T. B.; Krennrich, F.; Madhavan, A. S.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Chen, X.; Federici, S.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL