GRASS Reference Manual

Raster Commands

T 'LV
=R Ti_

GRASS Development Team

USA Headquarters European Headquarters
Center for Applied Geographic & Spatial Research Ingtitute of Physical Geography-Landscape Ecology
Baylor University University of Hannover
P.O. Box 97351 Schneiderberg 50
Waco, Texas 76798-7351 30167 Hannover
USA Germany
grass@baylor.edu

http://www.baylor.edu/~grass
http://www.geog.uni-hannover.de/grass/

Table of Contents

Topic Page
(€A Y 1 1100 18 Tox 1] SRR 4
(5101 VLY £ TR 6
LV = o [14
(0072 S T 1N 1 R 16
[0 o 1= R 18
[0 0 1= R 20
(8 01U = R 26
(0= £SO 28
[T (o =R 30
00110 o PR TR 31
02 TR 33
701 o TR 35
[00] [0 =TSR 38
(0] 01011 1R 41
FLCOIMPIESS. ... eeteeeeeeiett ettt e e e e e e e be e e e e e e e e e e e ne s s b et e e e e e e e e anb b e ee e e e e e e e e e nnnnsnneeeaeeeeaannnnnneeeeeas 50
[070] 1 (o 11 | PRI 53
000 P 55
(00172 ORI 58
[0 01T 60
[0 (S-S o 1 o[62
[0 [T 1 PRSP 64
[0 [(= R 65
[0 | 7= [RRR 66
(== 1 1 TR 68
0 1L T PR 69
8 o YRR 71
LoD OV e 75
(0010 [C0 X 7N 052 I PR TR 77
FAN.A0NPS - @0GIS TNPUL ...ttt e st e e s te e e e s e e s nsee e e ssbeeesnneeesnneas 99
R = o 104
(BT 1E=S o | PR 106
(R I= 0 7= SRR 108
1] 0 o PP TR 109
[T 01 (o | TR 110
01 1 TR 112
[T a1 1= LSRR 114
L0 1 oo o ¢ PP TR 116
L0 1 oo PP 117
L 1 o] o o PP 118
LIRS 0= TR 119

L T e e e e e et e e e a———————— 120

LU0 PRSPPI 121
01 PSPPSRSO 124
(17C=] o= TP 126
[0 (] 1S 0SSPSO 128
= PP TR 135
(= 01 SRR 136
L1 = 0 PRSPPI 138
(A= 0 (o o PP 139
(AT o PP TR 142
(B X (= 7= PRSP 144
(O (] o TR 145
(BN 1o PP PPSRPP 150
LT PSPPSR 151
LT gT= = = o =SS o o PR 153
00 T PRSPPI 155
(00 7= o 0= o XTSRS 157
(0107 PRSP PP 163
00T S 00 1 | TP 165
001010 = PSP 167
L0011 PRSPPI 168
(0110100 /= PRSP 171
01010 = 1 172
FNEIGNDONS ...t r e e e 173
110101 o PRSPPI 175
001 PRSP PPP 177
F.OUL.BONPS - VIS TOO0.....coiiiiiiiiiie et e e 179
01T o 186
(01 0= o | PRSP 188
(B 1U 110101 o TP PP PPPTTPPPI 190
(011 |1 00 VTP P PP PPRTPP PP 192
(01U 1 o o] 1 ¢ H TP PP PRPPPPETPPPP 194
[0 11 i PSPPSR 195
072 = S o PRSP 196
172 (o PP 198
(10 =0 1RSSR 200
oo TSP 201
Lo (0] 11 = PP R 203
0 o] [PPSR 205
[0 (17T | ST PO PP PPPPPTPPRPPI 209
L= [0 (0] 1 o PSPPSR 210
(= (ol gT= I =0 (=SS o o H PSR 212
(=0 = TSP PRSPPI 216
(S0 PSS oSSR 220

Topic Page

(1 o o] TP P PP PPPTPP PP 221
(020 o I £ TP PP PPPTPPPPI 224
(OS2 10 10 L= P PRTR 227
(=S o [P 228
(=<0 [T 1 0| TR 230
L0 1R 232
(L0 i TR 235
(08 ol TR o< o F TP PRTR 236
801" o [PPSR 240
RS 01720 01 o PP R 244
(R 720 [SO RSP TRPPPRT PP 246
[0 = SRR 248
[0S PR 251
(S 070 0o 4 APPSR PPPTPP PP 253
(ST 0] 1 (01 | R 255
(S U = =) SRR 257
LS T 0 = ULTTPRPRTR 258
(S0 o (1Y 28R 259
(S0 o 1LY 22T 261
(S0 =1 (0] 1 o TR 263
LS T 0T YR SPRR 264
0101 TR 265
0TS = 0 o SRR 267
(o X0 10T o Lo APPSR 269
11 [PPSR 271
L= 0 = = PP 273
(=57 o TR 274
L] 01T 276
(R0 1177 TR 284
(V70107 TR 285
(V1T (= 0 == TR 288
[ERTATZ= (< G010 11 <. R 294
[TV (= £ 11 o ISR 295
[TV (S £ 110 2 O TR 299
LAY o | PR TR 303
LAY T] |02 305
(AAYT= T] 11 o o o TP 307
(Y] o= RSOOSR URURRRRRRP 308
[T Y = | TR 310
D0 = 011 0 [PPSR 318

GRASS Introduction

GRASS (Geographic Resources Analysis Support System) is a raster based GIS, vector GIS,
image processing system, and graphics production system. GRASS contains over 200 programs and tools
to render maps and images on monitor and paper; manipulate raster, vector, and sites data; process multi-
spectral image data; and create, manage, and store spatial data. GRASS uses both an intuitive windows
interface as well as command line syntax for ease of operations. GRASS can interface with commercial
printers, plotters, digitizers, and databases to develop new data as well as manage existing data.

GRASS isideal for use in engineering and land planning applications. Like other GIS packages,
GRASS can display and manipulate vector data for roads, streams, boundaries, and other features.
GRASS can also be used to keep maps updated with its integral digitizing functions. Another feature of
GRASS is its ability to use raster, or cell, data. This is particularly important in spatial analysis and
design. GRASS functions can convert between vector data to raster data for seamless integration.

GRASS strengths lie in several fields. The simple user interface makes it an ideal platform for
those learning about GIS for the first time. GRASS is capable of reading and writing maps and data to
many popular commercial GIS packages including ARC/Info and Idrisi. Users wishing to write their own
code can do so by examining existing source code, interfacing with the documented GIS libraries, and
using the GRASS Programmers Manual. This alows more sophisticated functionality to be integrated in
GRASS.

The ability to work with raster data gives GRASS the unique ability to function as a surface
modeling system. GRASS contains more than 100 multi-function raster analysis and manipulation
commands. Surface processes such as rainfall-runoff modeling, flowline construction (as shown), slope
stability analysis, and spatial data analysis are just a few of the many applications of GRASS to
engineering and land planning. Since many of the raster tools are multi-functional, users can create their
own maps from GRASS data analysis.

In addition to standard two-dimensional analysis, GRASS allows users to view data in three-
dimensions. Raster maps, vector maps, and sites data can be used for visualization. Example applications
of such capabilities include airspace anaysis for airport planning (as shown), terrain analysis and
“flybys’, and spatial trends. Tools in GRASS allow the user to animate any spatial data available with
options to switch between data layers “on-the-fly”. Data used in 3-D visualization may also be saved as
till pictures, or as mpeg movie files for later replay and analysis.

Accompanying its land planning and engineering applications, GRASS contains a suite of tools
to aid in hydrologic modeling and analysis. Currently, tools are also available for performing such
functions as watershed analysis, curve number generation, flood analysis, and stream channel
characteristics for comprehensive watershed modeling. Other GRASS programs can generate graphs,
statistics, and charts of modeled and calibrated data. Additionally, GRASS can use field data for model
input or simulate parameters based on numerical data.

In addition to the traditional command line version of GRASS, a new user interface, based on
Tcl/Tk has been written. This puts the power of spatial analysis and modeling into an easy to use
Graphical User Interface that is platform-independent. This intuitive user interface lets users quickly and
easily view, manipulate, and use data. Nearly all of the programs available in GRASS are available in the
new GUI, with the standard command-line still available, giving users all of the functionality of GRASS.

This manual is part of a comprehensive set of documentation written to support GRASS. This
Users Guide consists of a complete set of command references for all current GRASS functions and tools,
including examples. An installation guide and fact sheet guides users through the installation process.
For those wishing to write their own spatial analysis and modeling applications for GRASS, a
Programmers Guide is aso available. GRASS runs on a variety of UNIX and Linux platforms including
SUN SPARCstations and Ultras, HP, Silicon Graphics, and PC’ s running Windows 95 and Windows NT.

The GRASS Development Team is currently working to further upgrade and enhance the
capabilities of GRASS. Future developments include tools that give the user the ability to work
completely in 3-D, a capability that does not exist in any other GIS package. Users will be able to work
with raster elevation data as well as vector and sites data in the 3-D environment, adding to the

visualization capabilities of GRASS. Enhancements in the numerical processing functions of GRASS also
now allow for floating-point operations to be performed on data.

For the latest information on GRASS contact the GRASS Development Team at
grass@baylor.edu or visit our web sites at:

http://www.baylor.edu/~grass if you'rein the U.S.

http://www.geog.uni-hannover.de/grass if you're in Europe

Look for our worldwide mirrors!

The GRASS Development Team is:
Bruce Byars and Markus Neteler are the devel opment team leaders and coordinators.

Helena Mitasova and Bill Brown of the GMS Lab at UIUC have made significant contributions with the
development of GRASS 5.

Additional authorsinclude:

Lisa Zygo, Edward Zarecky, Jacques Bouchard, Steve Clamons, Brent Duncan, Jason Cipriano, Jim
Westervelt, Michael Shapiro, Darrell McCauley, Dave Gerdes, Bill Hughes, Bernhard Reiter, Brook
Milligan, Eliot Cline, Jaro Hofierka, Clay Cockrell, and Bob Lozar. See the web pages for author
affiliations.

Note:

Many other people have contributed to the GRASS GIS. Without any one of them, GRASS
would not exist in its current form. The authors of the individual programs are listed at the end of their
manual page in the GRASS users manual, however, numerous authors of bug fixes and enhancements as
well as people who have been working on coordination, integration, documentation and testing are not
mentioned.

Please allow us to extend our most cordial thanks to all of you. If you contributed to GRASS at
any point during its existence, let us know your name and e-mail address so we can add your name to the
comprehensive on-line list.

To reference GRASS.

GRASS Development Team, 1999, Geographic Resources Analysis and Support System - GRASS: Baylor
University, Waco, Texas.

GRASS Development Team
Center for Applied Geographic and Spatial Research
Baylor University
P.O. Box 97351
Waco, Texas, U.SA. 76798-7351

r.answers

NAME
r.answers - Menu-driven interface from GRASS to ANSWERS

GRASSVERSION
4.x

SYNOPSIS
r.answers

DESCRIPTION

r.answers integrates ANSWERS with GRASS. ANSWERS (Areal Non-point Source Watershed
Environmental Response Simulation) is an event oriented, distributed parameter model that was
developed to simulate the behavior of watersheds having agriculture as their primary land use. Its
primary applications are watershed planning for erosion and sediment control on complex watersheds,
and water quality analysis associated with sediment associated chemicals.

r.answers provides a menu of steps to complete the input required to run an ANSWERS simulation. Each
simulation is treated as "project” by r.answers. The inputs collected for the steps completed are recorded
under a project name, so that they may be copied or recalled for further completion or modification. The
first menu one encounters when running r.answers includes functions to create a new project, work on
existing projects, copy an existing project, and remove existing projects. The main menu (shown below)
lists steps to be completed to prepare ANSWERS input, to run ANSWERS, plus other miscellaneous
functions.

ANSVEERS on GRASS Proj ect Manager Min Menu
Proj ect Name: [sanple]

Status Option Description

Set nmask, region, and resolution
Cat al ogue soils paraneters

Cat al ogue | and use and surface paraneters
Identify el evation-based input |ayers
Prepare rain gauge data

Identify outlet cel

Specify areas with subsurface drai nage
Cat al ogue channel paraneters

Defi ne channel sl opes

10 Specify BMWP's in watershed

11 Prepare ANSWERS input and run sinmulation
12 M scel | aneous Command Menu

Co~NoOU~rWNEO

Option: 0__

Steps 1-11 record and display their status to the left of the step number. If astep has not been run, no
status is displayed (as seen above). If the step has been successfully completed, the status will be listed as
"done". In some cases, a change in one step will cause the need to run another step again, in which case
the status will read "rerun”. If a step has a status of "done" or "rerun”, if itis run again it will attempt

to offer previous inputs as defaults.

Interface Operation Notes
Throughout r.answerstwo primary types of interface/input are used:

1) Text input that can be completed by hitting the RETURN key. In most cases, if no text was entered,
the given question or operation is canceled. Often times text input will consist of the name of anew or

existing map or project name, in which case entering the word "list" will provide a list of currently used
names.

2) Text or menu options that can be completed by hitting the ESC (escape) key. Thistype of interfaceis
used for menus or for entering tables of parameters. All menus have a default answer of Exit (0), so that
by ssimply hitting ESC one may leave the program’'s menus. The following keystroke guide is helpful to
know when using the parameter entry worksheets that use this interface:

[RETURN] moves the cursor to next prompt field

[CTRL-K] moves the cursor to previous prompt field

[CTRL-H] moves the cursor backward non-destructively within the field

[CTRL-L] moves the cursor forward non-destructively within the field

[CTRL-A] writesacopy of the screen to afile named "visual_ask" in your home directory
[CTRL-C] where indicated (on bottom line of screen) can be used to cancel operation

Description of Main Menu Steps

The following section describes each option of the main menu. All steps are verbose to provide as
much immediate information as is practical, however it is necessary that the user also be familiar
with the operation of ANSWERS. (Obtain a copy of the ANSWERS User's Manua (1991) by David
Beasdey and Larry Huggins. Available from Bernard Engel, Agricultural Engineering, Purdue
University, W. Lafayette, Indiana, 47907).

Steps 1 through 10 collect inputs (either maps from the currently available mapsets or other
text/numerical inputs) in order to create or extract the necessary portions of ANSWERS inputs for
that step. After steps 1 through 10 are done, step 11 can be run to assemble an ANSWERS input file.
ANSWERS can then be run using the inputs, and the output from the simulation is captured and
processed, as described under step 11.

Step 1 Set mask, region, and resolution

Map input: Watershed mask

Other inputs: Project resolution, project region (optional)

Description: All raster values in the input mask map greater than zero will be used to create reclass rules
to set the project MASK to the watershed area. Each time the project is called, the MASK will be
automatically set. Project resolution isinput in meters and it used to set the size of the watershed elements
to be used in the smulation. The part of this step attempts to find the minimal region needed to contain
the watershed mask at the given resolution. A region will be calculated to allow at least a one-cell
border around the watershed area. This region is then presented in an input screen (much like that of
r.region) for editing or approval. After the project mask, region and resolution are set, the information is
recorded and will be reset automatically each time the project iscalled. This step will create a new raster
map in the user's current mapset entitled project name].ELEMENT. This map will act as a reference to
ANSWERS methods of referring to raster cells. Raster values of the map will indicate element
number, with the category description giving row and column numbers. If any of the inputs in this step
are subsequently reset, all other steps that may have been completed will be marked with a status of
"rerun”, since changing mask, resolution or region will require that inputs will have to be resampled.

Step 2 Catalogue soils parameters

Map input: Soils

Other input: Soils parameters, tile drainage coefficient, groundwater release fraction.

Description: This step prompts for the name of a soil map, then reads the map and lists al soil
categories found in the watershed mask. For each soil found in the watershed, ANSWERS requires
values for the parameters listed below. The Project Manager facilitates preparation parameters by input
into atable.

Soi|l Parameters for ANSWERS (see ANSWERS Users Manual for nore details)

total porosity (percent pore space volune of soil)

field capacity (percent saturation)

steady state infiltration rate (mm hour)

di fference between steady state and maximuminfiltration rate (nmm hour)
exponent in infiltration equation

infiltration control zone depth (mm

ant ecedent soil npisture (percent saturation)

1
2
3
4
5
6
7
8 USLE ' K

After the soil parameters are input, a screen will prompt for groundwater release fraction and tile
drainage coefficient, which will apply to the entire watershed. The tile drainage coefficient indicates the
design coefficient (mm/day) of tile drains in those areas designated as having tile drainage. The
groundwater release fraction is measure of the contribution of lateral groundwater movement or interflow
to total runoff.

After this step is completed, it will provide an option to save the entered parameters to afile or printer
for reference. ANSWERS soils inputs will then be extracted and stored. This step may be rerun to
change any of the information. Previously entered information will be recalled and may be modified.

Step 3 Catalogue land use and surface parameters

Map input: Land cover/use.

Other input: Land cover parameters

Description: For each category in the land use map found in the watershed, ANSWERS requires values
for the parameters listed below. The Project Manager facilitates preparation parameters by input into a
table.

Land Cover Paranmeters for ANSWERS (see ANSWERS Users Manual for details)

1 short (8 characters) description of |and use and managenent
(programwi Il attenpt to use map category description, if any)

2 mm of potential rainfall interception by |and cover

3 percentage of surface covered by specified | and use

4 roughness coefficient of the surface (a shape factor)

5 m of maxi mum roughness hei ght of the surface profile

6 Manning's n (a nmeasure of flow retardance of the surface)

7 rel ative erosiveness (function of tine and USLE 'C and 'P')

After this step is completed, it will provide an option to save the entered parameters to afile or printer
for reference. ANSWERS cover inputs will then be extracted and stored. This step may be rerun to
change any of the information. Previously entered information will be recalled and may be modified.

Step 4 Identify elevation-based input layers

Map input: Slope and aspect.

Description: This step prompts for the names of previously prepared maps of slope and aspect for the
project watershed. It isimportant to note that the required format of slope and aspect maps vary from that
created by the r.slope.aspect program. Programs have been developed to process an elevation surface map
and create ANSWERS slope and aspect map. The elevation map should be true elevationsin meters. The
elevation map can be "filtered" to remove "pits’ and other potential problems to ANSWERS with the
rfill.dir program. The r.direct program can be used to prepare an ANSWERS aspect map from the
elevation layer created by r.fill.dir. The r.slope program can be used to prepare an ANSWERS slope map
from the elevation layer created by r.fill.dir. ANSWERS requires slope values which are percent
multiplied by 10 (so a slope map value of 35 indicated a slope of 3.5%). The aspect map is a critical input
to ANSWERS, since it defines the routing of runoff through the watershed, and should be carefully
examined, since the r.direct program is unable to create flawless output. The d.rast.arrow and the
d.rast.edit programs have been developed to assist this manual inspection and editing process. When

editing the flow direction map, pay careful attention to 1) cells on the watershed border, which all must
flow into the watershed. 2) cells that will be declared as "channels® must flow directly from one to
another (therefore it is suggested that channels should be identified in conjunction with this step). 3) flow
from two cells must not point directly to each other (-][-) or otherwise form circuitous routes. In the final
flow map, one should be able to start at any cell in the watershed and follow the flow directions from cell
to cell until arriving at the outlet cell.

Step 5 Prepare rain gauge data

Map input: Rain gauge areas (for multiple gauges)

Other input: Rain gauge data

Description: This step is designed to organize data used to describe the precipitation event to be simulated.
ANSWERS permits up to four rain gauges to be used, each of which will require a table of rainfall data
(time in minutes and rainfall intensity in millimeters per hour). Data from at least one rain gauge are
required. If more than one gauge is used, you will need to prepare a raster map of the watershed area to
indicate which cells are to be represented by a given gauge's data.

To facilitate the modeling of a number of storms this step will prompt for a rainfall event name. The
data tables entered will be stored in the ANSWERS database under the event name.

Rain gauge data for ANSWERS consists two columns of numbers. The first is Time (in minutes) and
the second is Rainfall Intensity (in mm/hour). Decimal values will be rounded to the closest whole
number. To input rain gauge data to the Project Manager, a file must first be prepared with rain gauge
data. If multiple gauges are to be used, one input fileis still used, datafor each gauge are separated by
should occur sequentially by gauge; so that data for gauge 1 is first in the file, data for gauge two is the
second group of data, and so on.

Example rain gauge data input files:

one gauge | two gauges

00 | 00

103 | 111 data for gauge 1

20 | 10 | 257

35 | 22 | B delinmter
559 | 00

674 | 156 data for gauge 2

1000 | 104

This step will prompt to determine if multiple rain gauges are to be used. If so, it will prompt for the name
of a map that represents areas to be assigned to the given gauges. The number of categories and their
value should match the number of rain gauges. Next the program prompts for the name of the rain
gauge datafile. The program reads the file and displays what it found to the screen for approval. Having
this, it will create the appropriate ANSWERS input files.

Step 6 Identify outlet cell

Map input: none

Other input: row and column number of watershed outlet element

Description: ANSWERS needs to know the row and column number of the element at the watershed
outlet. To facilitate your finding this information, the raster map [project name].ELEMENT has been
created. The category values of this map are the sequentially numbered cells of the watershed. The
category descriptions are the cell's row and column number. Using a tool such as d.what.rast, the row
and column number of the outlet cell can be queried from the displayed element map.

Step 7 Specify areas with subsurface drainage
Map input: Areas with subsurface drainage (optional)

Description: This step offers a menu which allows the delineation of 1) all the watershed with subsurface
drainage, 2) none of the watershed with subsurface drainage, or 3) areas with subsurface drainage
specified with a raster map (all elements with a value greater than zero will be input to ANSWERS as
having subsurface drainage. Note: the drainage coefficient for areas with subsurface is set with the
other soils parameters in step 2. If "all" or "none" of the watershed is simulated as having subsurface
drainage, no input map is required; otherwise a raster map is used to specify areas with subsurface
drainage.

Step 8 Catalogue channel parameters

Map input: Channels

Other input: Channel width and roughness coefficient for each category of channel

Description: Watershed cells with a well-defined channel should be defined to ANSWERS. ANSWERS
assumes the channel is rectangular in cross-section and is sufficiently deep to handle runoff.

To prepare channel data for use with ANSWERS, the following is needed: a raster map layer of the
channels in the watershed and a description of width (meters) and roughness (Manning's "n") for each
channel category found in the layer.

It is suggested that the aspect map from Step 4 b created in conjunction with the map, since ANSWERS
will abort operation if a one channel element does not flow directly into another adjacent channel element.

Step 9 Define channel slopes

Map input: Channel slope

Description: An optional input to ANSWERS is the slope of channels. If a channel slope input is not
given, ANSWERS assumes the slope for the channel is the same as the overland slope for the element.

If desired, a raster map may be used to define channel slope values. To do so, a raster map should be
prepared with category values for channel slopes in tenths of a percent (i.e. a category value of 31 would
indicate a channel slope of 3.1 percent).

Note: Even though channel slopes are an optional input to ANSWERS, this step must be run if only to say
no map will be used.

Step 10 Specify BMP'sin watershed

Map input: Tile Outlet Terrace, Sedimentation Pond, Grassed Waterway, and/or Field Borders.

Other input: Grassed waterway or field border width (meters)

Description: This step provides a menu to prepare any or none of the four structural Best Management
Practices (BMPs) that ANSWERS recognizes. Many BMPs can be described to ANSWERS by changing
variables describing the surface condition of the soil. Practices which are tillage-oriented, for example,
are described in the soils and land use sections. Gully structures such as a drop spillway may be simulated
by reducing channel slope. On the other hand, BMPs which are structural in nature require a change in
land use (row cropto grass for waterways, for example). ANSWERS recognizes four optiona BMP
structures. Even though the use of BMP structures is optional, this step still must be run to verify this.
NOTE: Since ANSWERS will recognize one BMP for a given watershed element, the most effective
BMP should be used. Thefollowing is a brief discussion of the BMPs:

1. ANSWERS Tile Outlet Terrace Assumptions:

- Trap efficiency of 90%

- Only lowermost terraces are described

Also, if aterrace exists only in aportion of an element, the assumption is made that all incoming flow is
influenced by the BMP. Thus, elements which have only a small portion of the practice within their
boundaries should not be given credit for the practice.

10

2. ANSWERS Sedimentation Pond Assumptions:

- Trap efficiency of 95%
- Only ponds in upland areas should be defined. In stream structures are treated differently.

Also, if apond exists only in a portion of an element, the assumption is made that all incoming flow is
influenced by the BMP. Thus, elements which have only a small portion of the practice within their
boundaries should not be given credit for the practice.

3. ANSWERS Grassed Waterway Assumptions:

- The vegetated areawith in the affected element is no longer subject to any sediment detachment.
- The model deliberately prohibits deposition within the vegetation of a grass waterway, since any
waterway that effectively traps sediment would soon fill and become ineffective.

For each category found in the layer, you will be prompted for width of the waterway
4. ANSWERS Field Border Assumptions

- The vegetated area with in the affected element is no longer subject to any sediment detachment. For
each category found in the layer, you will be prompted for width of the field border.

Step 11 Prepare ANSWERS input and run simulation

Description: Steps 1-10 must have a status of "done” before this step can be run. (Even steps for optional
inputs must be run before an ANSWERS input file can be completed). Each of the prior steps will have
prepared their part of the ANSWERS input. The first function of this step is to compile all the parts
together. Once the input file is complete, the simulation can be run. (NOTE: r.answers will call the
ANSWERS program, which must be compiled as a part of the r.answers installation. The source code
for ANSWERS should be part of the software distributed with r.answers.) The error messages that
ANSWERS may send to "standard output” are captured to afile by r.answers and displayed. If none, a
message to that effect will be printed to the screen (although this doesn't mean that the simulation ran
entirely error-free). The primary output of the simulation is captured to another file, then processed to
separate it into component parts of 1) text - the verbose reiteration of the inputs and summary of
watershed characteristics. This is useful for checking to insure that inputs were read in by ANSWERS
properly; 2) outlet hydrograph data of rainfall, runoff and sediment yield and concentration. If these
data are in order, they will be processed into a format readable by the d.linegraph program for display; 3)
individual element net sedimentation showing sediment loss or deposition, if any, for each raster element
in the watershed. Also, sediment deposition in channel elements. This step will prompt for names to
use for new watershed maps it will create by extracting these data from the output. If the simulation
event did not create sediment loss or deposition, or channel deposition for the scenario, the given map
will not be created. To find out how to access the output files, see the description of step 12, below.

Step 12 Miscellaneous Command Menu
This step calls a menu that 1) allows access to the project files in the project database and to 2) a
function that prepares a summary of the project's current status.

The project database is where r.answers stores al the inputs, output, and other non-map data
associated with the project. See the "FILES" section (below) for more information. There are two
sections to the project data, since rainfall data are kept in a separate directory. When using this step to
access database files, the program will list both the project data and the rain data files, and ask which
section you wish to access. Next you will be prompted for the name of the file to access. This request
will be turned over to the "file handler program” which facilitates sending a file to the screen, copying to
another file, or printing.

11

The project status function available under step 12 creates a helpful summary of the project, and then
passes control to the "file handler program” for display, copyingto a file, or printing.

Index of ANSWERS on GRASS database

Each project will create and use the following files in SLOCATION/answers/[project name]/data. For
the most part, there isn't much to see, unless something is not working right. If that is the case, the
first thing to check would be files listed here under the Output section or Input file. Furthermore,
attempting to fix a problem by editing any of these files could prove to have unpredictable results. Once a
problem is identified (with the input maps or parameters, most likely) fix the input mapsif need be, run
r.answers again to make any changes, such a using a different map or correcting parameters. Remember
that if amap is changed the menu step that uses it must be run again to resample the inputs. Run step
11 againto create a new input file and re-run ANSWERS.

General project data
reclass reclassrulesto create project MASK regionproject region coordinates

ANSWERS Input file
answers input file created to use as input to ANSWERS

ANSWERS Output

When ANSWERS is run, output from stdout is sent toanswers output and anything that may go
to stderr is captured in answers error. After that the output is cut into sections. (if something
unpredictable happened when ANSWERS ran, then the output and the files extracted from it may be
garbled; reading answers output and answers_error may provide clues).

answers_output complete output from running answers
answers _error errors captured when answersis run
out_chnl channel deposition data

out_sediment element sediment deposition/loss data
out_text verboseinput reiteration

out_hydro outlet hydrograph data

The outlet hydrograph data is broken into 5 files to use as input to d.linegraph

hydro_time time increments of simulation (minutes)
hydro_rain rainfall (mm/h)

hydro_runoff runoff at outlet (mm/h)

hydro_sed1 cumulative sediment at outlet (kg)
hydro_sed? sediment concentration in runoff (mg/l)

ANSWERS Element data
Element data files are extracted from input maps. Each lineis data for a watershed cell element. When
answers input is created, these files are used to create the element data section.

in_row_col watershed row and column number
in_soil sail type

in_cover land use

in_elev dopeand aspect

in_chnl channel element data

in_rain rain gauge number

in_tile subsurface drainage flag

12

ANSWERS Predata
The following files are used to form the "predata” section of the answersinput file.

chnl_predata description of channel types
cover_predata description of cover parameters
soil_predata description of soil parameters
rain_predata rain gauge data

Parameter data
These files are used by the project manager to "remember" parameters used to create the respective
predatafiles, allowing the parameters to be read back by the program for editing.

chnl_data channel parameters
cover_data cover parameters
soil_data soil parameters
SEE ALSO

d.INTRO, d.rast.edit, d.rast.num, d.what.rast, r.slope, r.fill.direct, r.direct,

AUTHOR
Chris Rewerts, Agricultural Engineering, Purdue University

13

r.average

NAME

r.average - Finds the average of values in a cover map within areas assigned the same category valuein a
user-specified base map.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.average

r.average help

r.average [-c] base=name cover=name output=name

DESCRIPTION

r.average calculates the average value of data contained in a cover raster map layer for areas assigned the
same category value in the user-specified base raster map layer. These averaged values are stored in the
category labelsfile associated with a new output map layer.

The values to be averaged are taken from a user-specified cover map. The category values for the cover
map will be averaged, unless the -c flag is set. If the -c flag is set, the values that appear in the category
labelsfile for the cover map will be averaged instead (see example below).

The output map is actually a reclass of the base map (see r.reclass), and will have exactly the same
category values as the base map. The averaged values computed by r.average are stored in the output
map's category labelsfile.

If the user simply types r.average on the command line, the user is prompted for the flag setting and
parameter values through the standard parser interface (see parser manual entry).

Alternately, the user can supply all needed flag settings and parameter values on the command line.

Flag:
-C Take the average of the values found in the category labels for the cover map, rather than the
average of the cover map's category values.

Parameters:

base=name An existing raster map layer in the user's current mapset search path. For each group
of cells assigned the same category value in the base map, the values assigned these cells in the cover map
will be averaged.

cover=name An existing raster map layer containing the values (in the form of cell category values or
cell category labels) to be averaged within each category of the base map.

output=name The name of a hew map layer to contain program output (a reclass of the base map).
Averaged values will be stored in the output map's category labels file under the user's SLOCATION/cats
directory.

EXAMPLE

Assume that farms is a map with 7 farms (i.e., 7 categories), and that soils.Kfactor is a map of soil K
factor values with the following category file:

14

cat cat

val ue | abe
Ono soil data
1.10

LoNoOA~wWN
N
®

Then
r.average -c base=farms cover=soils.Kfactor output=K.by.farm

will compute the average soil K factor for each farm, and store the result in the output map K.by.farm,
which will be areclass of farms with category labels as follows (example only):

cat cat

val ue | abe
1.1023
2.1532

172

3872

003

28

. 2345

Noghkw

NOTES

The -c option requires that the category label for each category in the cover map be a valid number,
integer, or decimal. To be exact, if the first item in the label is numeric, then that value is used.
Otherwise, zero is used. The following table covers al possible cases:

cat egory | abel val ue used by -c
.12 .12
.80 KF .8
no data 0

(This flag is very similar to the @ operator in r.mapcalc, and the user is encouraged to read the manual
entry for r.mapcalc to see how it works there.)

The user should use the results of r.average with care. Since this utility assigns a value to each cell which
is based on global information (i.e., information at spatial locations other than just the location of the cell
itself), the resultant map layer is only valid if the geographic region and mask settings are the same as
they were at the time that the result map was created.

Results are affected by the current region settings and mask.
SEE ALSO
g.region, r.cats, r.clump, r.describe, r.mapcalc, r.mask, r.mfilter, r.mode, r.neighbors, r.reclass, r.stats,

parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

15

r.basinsfill

NAME
r.basinsfill - Generates a raster map layer showing watershed subbasins.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.basinsfill

r.basinsfill help

r.basins.fill humber=value c_map=name t_map=name result=name

DESCRIPTION

r.basins.fill generates a raster map layer depicting subbasins, based on input raster map layers for the
coded stream network (where each channel segment has been "coded" with a unique category value) and
for the ridges within a given watershed. The raster map layer depicting ridges should include the ridge
which defines the perimeter of the watershed. The coded stream network can be generated as part of the
r.watershed program, but the map layer of ridges will need to be created by hand, either through digitizing
donein v.digit, or through the on-screen digitizing option accessible within d.display or d.digit.

The resulting output raster map layer will code the subbasins with category values matching those of the
channel segments passing through them. A user-supplied number of passes through the data is made in
an attempt to fill in these subbasins. If the resulting map layer from this program appears to have holes
within a subbasin, the program should be rerun with a higher number of passes.

The user can run r.basinsfill either interactively or non- interactively. If the user simply types
r.basins.fill without other arguments on the command line, the program will prompt the user for the
needed parameters using the standard GRASS parser interface (see manual entry for parser).

If the user wishes to run the program non-interactively, the following parameter values must be specified
on the command line;

Parameters:
number=value The number of passes to be made through the dataset.

c_map=name The coded stream network file name.

t map=name The thinned ridge network file name.
result=name The resultant watershed partition file name.
NOTES

The current geographic region setting is ignored. Instead, the geographic region for the entire input
stream's map layer is used.

SEE ALSO

See Appendix A of the GRASS Tutoria r.watershed for further details on the combined use of r.basinsfill
and r.water shed

d.digit, d.display, r.watershed, v.digit, parser

16

AUTHORS
Dale White, Dept. of Geography, The Pennsylvania State University
Larry Band, Dept. of Geography, University of Toronto, Canada

17

r.bilinear

NAME
r.bilinear - bilinear interpolation utility for raster map layers.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.bilinear [-q] input=name output=name [north=value] [south=value]

DESCRIPTION

r.bilinear fillsagrid cell (raster) matrix with interpolated values generated from a set of input layer data
points. It uses the bilinear interpolation method, a simple algorithm usually applied only to completely
defined raster areas (input data void of null datavalues). Here the values of 4 input cells are used to
define an interpolation function of constant gradient within each rectangular area defined by the cell
centers. User should be aware that the gradient of the interpolation functions changes discontinuously
across lines intersecting the cell centers of the input raster.

If there is a current working mask, it appliesto the output raster file. Only those cells falling within the
mask will be assigned interpolated values. The procedure for selection of input datawill consider all

input data relevant to interpolating values at the cell centers of the current geographic region, ignoring the
current mask. Zero values of the input raster are assumed to be real values of a continuous variable, thus
r.bilinear supports interpolation of variables that range from negative to positive values. If input zero
values arein fact nulls, the user bears responsibility for controlling the quality of the output, either
through post-interpolation editing of the output or pre-interpolation setting of the current mask. Note that
cells of the output raster that cannot be bounded by 4 input cell centers are set to zero (null).

OPTIONS

Flags:

-q specifies that r.bilinear run quietly (suppressing the printing of program messages to standard
output)

Parameters:

input=name Name of an input raster map layer containing data values to apply in the interpolation.

output=name Name to be assigned to new output raster map that represents the surface generated from
the data valuesin the input layer.

north=value Input raster value for the north pole (90N). Valid for longitude-latitude grids only.
south=value Input raster value for the south pole (90S). Valid for longitude-latitude grids only.

NOTES

The north* and south* parameters have been included to allow for specific input values to be assigned to
the north and/or south poles for longitude-latitude grids. These data, if included, are used to interpolate
values for cells that are north or south of aline intersecting the cell centers of the first or last row of input,
respectively. When utilized, the interpolation procedure will be continuous from the north and/or south
boundary of the current geographic region. This option is necessary, since the data structure defining a
raster will not allow for data to be assigned to a cell centered at 90N or 90S. By including the option, the
user can create output surfaces that are continuous between the poles. The interpolation will be "wrap-

18

around" from west to east (across latitude) only if the input raster has an east edge identical to its west
edge.

For longitude-latitude databases, the interpolation algorithm is based on degree fractions, not on the
absolute distances between cell centers. Any attempt to implement the latter would violate the integrity of
the interpolation method.

r.bilinear may be used in some instances as an alternative to the nearest neighbor approach inherent to
r.resample. Note, however, that the extent of non-null data area of the output raster must be less than that
of the input raster. The only exception to this occurs in the case where the north* and south* parameters
are utilized for longitude-latitude rasters.

SEE ALSO
r.surf.idw, r.surf.idw2, g.region, r.resample

AUTHOR

Greg Koerper ManTech Environmental Technology, Inc. Global Climate Research Project U.S. EPA
Environmental Research Laboratory 200 S.W. 35th Street, JSB Corvallis, OR 97333

19

r.binfer
NAME
r.binfer - Bayesian expert system development program.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.binfer

r.binfer help

r.binfer [-v] input=name [output=name]

DESCRIPTION

r.binfer is an expert system shell containing an inference engine based on Bayesian statistics (reasoning
from past experience). It is designed to assist human experts in a field develop computerized expert
systems for land use planning and management. These expert systems are designed to aid non-experts
make decisions about land use.

In Bayesian expert system programs like r.binfer, the system bases the probable impacts of a future land
use action on the conditional probabilities about the impact of similar past actions.

OPTIONS
Flags:
-V Run verbosely, displaying messages on debugging output to standard output. Includes alisting of

the symbol table used by r.binfer.

Parameters:
input=name Name of an existing file containing analysis instructions.

output=name Name to be assigned to the file to contain program output. Default: binfer.out

Using appropriate r.binfer syntax, the human expert structures an input knowledge/control script with an
appropriate combination of map layer category values (GRASS raster map layers that contain data on soil
texture, slope, density, etc.) and attributes relevant to decision-making (e.g., rainfall, temperature, season,
subjective judgement, etc.). Options exist for specifying a user interface and a data base containing prior
and conditional probahilities necessary to infer the value of a goa attribute. The expert also specifies the
format for display of end results (raster map layers) in the input script. New raster map layers -- one for
each possible inferred attribute value -- are created that contain the probability of the inferred attribute
value occurring in each grid cell.

Alternately, a single new map layer called r.binfer (or whatever output name is specified by the user) is
also output. This map shows, for each grid cell, the inferred attribute value that has the highest
probability of occurring in each grid cell, given the values of the input raster map layer and contextual
attributes.

r.binfer scripts are typed into afile by the user using a system editor like vi, and then input to r.binfer as
the input file named on the command line. For a complete description of the input syntax, see the
document GRASS Tutoria: r.binfer. For example r.binfer scripts see the EXAMPLES section below.
The results are used to generate the new raster map layers in the user's current mapset.

As stated above, r.binfer scripts contain descriptions of two types of input attributes. The map layer type
attributes are actual GRASS raster map layers, with the values defined to be ranges of the categories

20

within that raster map layer. For example, if the user chooses slope as one of the layer attributes, the
possible values for the slope attribute might be the following:

flat (slopes between 0 and 5 degrees)

low (slopes between 6 and 10 degrees)
medium (slopes between 11 and 30 degrees)
steep(slopes greater than 31 degrees)

The contextual attributes are those that do not represent raster map layers, but rather, information that
reflect criteria relevant to the specific decision being contemplated. For example, if the user chooses
"rainfall amount” as one of the contextual attributes, possible values assigned to the "rainfall amount”
attribute might be the following:

low (rainfall amounts less than an inch)

medium (rainfall amounts between one and three inches)

high (rainfall amounts grater than three inches)

The inferred attribute values are specified along with a prior probability and a table of conditional
probabilities that indicate the probability of that inferred attribute value occurring given that an input
attribute value has occurred.

r.binfer will determine the value of contextual attributes by prompting the user for input. It will then open
each of the raster map layers corresponding to each map layer

attribute. r.binfer then determines the values for all map layer attributes in each grid cell. Using the
conditional probability tables, the prior probabilities, and Bayes theorem, r.binfer calculates the output
probabilities for each inferred value and writes its probability of occurrence as a percentage. It also
determines which value is most likely to occur in that cell and writes that to the output file name.
EXAMPLES

The two sample scripts shown below illustrate only the use of r.binfer to: (1) estimate the probability that
an avalanche will occur, and (2) infer the probability of finding pine mountain beetles, at each cell across
a landscape, given the input map layer attributes shown below. The author makes no claims as to the
correctness of using these criteriato infer either event.

Some Notes on Script Construction.

1. No Data (or what to do with category zero).

If category zero is excluded from the ranges of any layer attribute value, it is treated as "no data" and the
resulting probability and combined maps will reflect this.

Otherwise, category zero is treated just like any other cell value.
2. Category ranges for layer attributes.

The category ranges are specified using r.reclass rules. For example, avalue list for slope might look like
this:

(flat [0 1 thru 3], gentle [4 thru 8], moderate [9 thru 15], other [16 thru 89]).

3. Question Attachments.

21

Question attachments can be supplied for and context attribute or attribute value. If names are chosen
cleverly, the default menu should be sufficient.

4. Determinant List.
At this time the determinant list serves no real purpose.
Planned extensions to binfer will make use of thislist, so just don't use it for now.

5. Probabilities.
The conditional probability table is very important, try to be sure of its accuracy.

Fil enane: aval anche. bi nfer

This is a r.binfer script that infers the probability of an
aval anche occurring, given the values of the input attributes.

NOTE: Execute r.binfer as follows:
r. bi nfer aval anche. bi nfer [out put=nane]
If the user does not specify an output file nane,
the conbined nap will be naned binfer.

HHFHFHEHEFF R

Script file output keywords:

#Conbi nedMap (Col ortable) - assigns the conbined map the given col ortable.
#NoCombi nedMap - only generates probability maps

(one for each inferred attribute val ue).

#NoPr obabi | i t yMaps - only generates conbi ned nap.
#(Col ortabl e) can be any of the follow ng keywords:
#Aspect - aspect colors,

#G ey, Gay - grey scale,

#H sto - histogram stretched grey scal e,

#Rai nbow - rai nbow col ors,

#Ranp - color ranp (default),

#Random - random col ors,

#RYG - red yell ow green,

#Wave - col or wave.

#

#

Start layer attribute section.

— %
)
<
)
=

Layer attribute #1 is aspect

sout hern exposures
al | eastern exposures
west ern exposures
all northern exposures
all others = 0.

PONE

(south[16 thru 22],east[22 23 1 thru 4],west[11 thru 15], north[5 thru 10]).

Layer attribute #2 is slope

HOHHH O HHTHFHHHFHO HHH®
=3

ope:

low- 0 to 9 degrees

nmoderate - 10 - 19 degrees

steep - 20 - 29 degrees

severe - 30 - 88 degrees

#

(low 1 thru 10], noderate[11 thru 19],steep[20 thru 30], severe[31 thru 89]).
%

End of |ayer section

22

#
Start context section

#

cont ext:

#

Contextual attribute #1 is tenperature

NOTE: A nmenu will be constructed using the attribute nanme and
the nanes of the attribute val ues.

The user will be pronpted to enter his choice.

#

tenper at ure:
(freezing, col d, warm hot) .

#

Contextual attribute #2 is snowfall_ant

NOTE: A nmenu will be constructed using the question attachnments
supplied here.

The user will be pronpted to enter his choice.

#

snowfal | _ant:

(a {question "Less than one foot."},
b {question "Between a foot and four feet."},
c {question "Mre than four feet."})
{question "How nmuch snow has accunul ated ?"}.

%

End of context section.

#
Start inferred section
#
inferred:
#
Inferred attribute is aval anche.
#
aval anche:
#
Inferred attribute value "high".
A colortable of Ranp will be assigned (default).
NOTE: Prior probability, and conditional probabilities are given in
this section.
#
(hi gh <0.20>

[0. 10, 0. 50, 0. 20, 0. 20;
0. 05, 0. 15, 0. 20, 0. 60;
0. 80, 0. 15, 0. 00, 0. 05;
0.05,0.35,0.60;] ,

Inferred attribute val ue "noderate".
A colortable of Grey will be assigned.

H* o H*

moderate Grey <0.30>

[0. 15, 0. 35, 0. 25, 0. 25;
0. 10, 0. 20, 0. 20, 0. 50;
0. 75, 0. 20, 0. 00, 0. 05;
0.05,0.35,0.60;] ,

Inferred attribute value "low'.
A col ortabl e of Rainbow will be assigned.

H* o H*

| ow Rai nbow <0. 50>
[0. 25, 0. 25, 0. 25, 0. 25;
0. 25, 0. 25, 0. 25, 0. 25;
0. 50, 0. 30, 0. 10, 0. 10;
0.10,0.40,0.50;]).
%
End of inferred section.
End of aval anche. binfer script.

#

Fil enane: bugs. bi nfer

#

This is a r.binfer script that infers the probability of finding
pine nountain beetles, given the input |ayer attributes bel ow.

NOTE: Execute r.binfer as follows:
#bi nf er bugs. bi nfer [out put=nane]

if the user does not specify an output name, the conbi ned map
will be naned binfer.

#

Script file output keywords:

#

#Conbi nedMap (Col ortable) - assigns the conbined map the given col ortable.

#NoCombi nedMap - only generates probability maps

(one for each inferred attribute val ue).

#NoPr obabi | i t yMaps - only generates conbi ned nap.

#(Col ortabl e) can be any of the follow ng keywords:

#Aspect - aspect colors,

#G ey, Gay - grey scale,

#H sto - histogram stretched grey scal e,

#Rai nbow - rai nbow col ors,

#Ranp - color ranp (default),

#Random - random col ors,

#RYG - red yell ow green,

#Wave - col or wave.

#

Choose the conmbined map colortable to be a col or wave

Conbi nedMap Wave

#

Start layer attribute section.

#

| ayer:

#

Layer attribute #1 is slope

#

sl ope:

#

#

(low 1 thru 10], noderate[11 12 13 14 thru 20],steep[21 thru 30], severe[31 thru 89]).

#

Layer attribute #2 is aspect

#

aspect :

#

#

(south[16 thru 22],east[22 23 1 thru 4],west[11 thru 15],
north[5 thru 10]).

#

Layer attribute #3 is vegcover

#

vegcover:

(other[1 thru 2], coniferous[3], deci duous[4], nm xed[5], di sturbed[6]).

#

Layer attribute #4 is (forest) density

#

density:

(nonforest[1], sparse[2], noderate[3], dense[4]).

%

End of |ayer section.

#

Start inferred section

#

inferred:

#

Inferred attribute is bugs

#

bugs:

#

Inferred attribute value "bugs".

A colortable of Ranp will be assigned (default).
NOTE: Prior probability, and conditional probabilities are given in
this section.

#

(bugs <0. 20>

[0.124,0.416,0.371,0.090; # conditionals corresponding to slope
0. 180, 0. 292, 0. 292, 0. 239; # nyaspect,
0.011, 0. 798, 0. 022,0. 169, 0. 0; # vegcover
0. 202, 0. 326, 0. 213, 0. 258;], # and density (one per val ue)

24

A col ortabl e of Rai nbow will

H* o H*

nobugs Rai nbow <0. 80>
[0. 404, 0. 416, 0. 157, 0. 011;
0. 225, 0. 281, 0. 281, 0. 225;

Inferred attribute val ue "nobugs".

be assi gned.

0. 281, 0. 427, 0. 135, 0. 056, 0. 0;

0.584,0.112,0.202,0.112;]).
%
End of inferred section.
End of bugs. binfer script.

SEE ALSO
GRASS Tutorid r.binfer

AUTHOR
Kurt Buehler, Purdue University

25

r.buffer

NAME
r.buffer - Creates a raster map layer showing buffer zones surrounding cells that contain non-zero
category values.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.buffer

r.buffer help

r.buffer [-q] input=name output=name distances=value[,value,...] [units=name]

DESCRIPTION

r.buffer creates a new raster map layer showing buffer (ak.a., "distance" or "proximity") zones around all
cells that contain non-zero category values in an existing raster map layer. The distances of buffer zones
from cells with non- zero category values are user-chosen. Suppose, for example, that you want to place
buffer zones around roads. This program could create the raster map layer shown below on the right
based on road information contained in the raster map layer shown on the | eft.

000000000000000000000000
111000000000000000000000
000111111111100000000000
000000001000011100000000
000000001000000011111111
000000001000000000000000
000000001000000000000000
000000001000000000000000
000000001000000000000000

111122222222222222333333
000111111111112222222222
111000000000011112222222
221111110111100011111111
222222210122111100000000
322222210122222111111111
333332210122222222222222
333332210122332222222222
333332210122333333333333

Category 0: No roads Category 0: Road |ocation
Category 1: Roads Category 1: Buffer Zone 1 around roads
Category 2: Buffer Zone 2 around roads

Category 3: Buffer Zone 3 around roads

INTERACTIVE PROGRAM USE
The user can run the program interactively by simply typing r.buffer without program arguments on the
command line. The program then prompts the user for parameter values.

(1) You are requested to identify the existing raster map layer from which distance-from calculations shall
be based, and a name (of your choice) for the new raster map layer which will contain the results.

(2) Then, identify the units of measurement in which buffer (distance) zones are to be calculated, and the
distance of each buffer zone from each non-zero cell in the input map. The user has the option of
identifying up to 60 continuous zones. The zones are identified by specifying the upper limit of each
desired zone (r.buffer assumes that O is the starting point). ("Continuous’ is used in the sense that each
category zone's lower value is the previous zone's upper value. The first buffer zone aways has distance O
asits lower bound.) Distances can be entered in one of four units: meters, kilometers, feet, and miles.

(3) Last, calculate distances from cells containing user- specified category values, using the "fromcell"
method. [The "fromcell” method goes to each cell that contains a category value from which distances are
to be calculated, and draws the requested distance rings around them. This method works very fast when
there are few cells containing the category values of interest, but works slowly when there are numerous
cells containing the category values of interest spread throughout the area.]

26

The r.buffer program now runs the process in "background”" and returns keyboard control to the user.
These processes can occasionally take up to an hour or more to finish; however, because they run in the
background, you are free to do other things with the computer in the interim.

NON-INTERACTIVE PROGRAM USE
The user can run r.buffer specifying all parameter values on the command line, using the form:

r.buffer [-q] input=name output=name distances=value[,value,...] [units=name]

Flags:
-q Run quietly
Parameters:

input=name The name of an existing raster map layer whose non-zero category value cells are to be
surrounded by buffer zones in the output map.

output=name The name assigned to the new raster map layer containing program output. The output
map will contain buffer zones at the user-specified distances from non-zero category value cell in the
input map.

distances=value| ,value,...] The distance of each buffer zone from cells having non-zero category
values in the input map.

units=name The unit of measurement in which distance zone values are to be calculated. Possible
choices for name are: meters, kilometers, feet, and miles. The default units used, if unspecified by the
user, are meters.

EXAMPLE
In the example below, the buffer zones would be (in the default units of meters): 0-10, 11-20, 21-30, 31-40
and 41-50.

Format:
r.buffer input=name output=name distances=value[,value,...] [units=hame]

Example:
r.buffer input=map.in output=map.out distances=10,20,30,40,50 units=meters

NOTES

r.buffer measures distances from center of cell to center of cell using Euclidean distance measure for
planimetric databases (like UTM) and using ellipsoidal geodesic distance measure for latitude/longitude
databases.

r.buffer calculates distance zones from all cells having non-zero category values in the input map. If the
user wishes to calculate distances from only selected input map layer category values, the user should run
(for example) r.reclass prior to r.buffer, to reclass all categories from which distance zones are not desired
to be calculated into category zero.

SEE ALSO
r.region, r.mapcalc, r.reclass

AUTHORS

Michael Shapiro, U.S. Army Construction Engineering Research Laboratory
James Westervelt, U.S. Army Construction Engineering Research Laboratory

27

r.cats

NAME
r.cats - Prints category values and labels associated with user-specified raster map layers.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.cats

r.cats help

r.cats map=name [cats=range| ,range,...]][fs=character|space|tab] [val s=value]

DESCRIPTION
r.cats prints the category values and labels for the raster map layer specified by map=name to standard
output.

The user can specify all needed parameters on the command line, and run the program non-interactively.
If the user does not specify any categories (e.g., using the optional cats=range[,range,...] argument), then
all the category values and labels for the named raster map layer that occur in the map are printed. The
entire map is read, using r.describe, to determine which categories occur in the map. If a listing of
categories is specified, then the labels for those categories only are printed. The cats may be specified as
single category values, or as ranges of values. The user may also (optionally) specify that afield separator
other than a space or tab be used to separate the category value from its corresponding category label in
the output, by using the fs=character|spacejtab option (see example below). If no field separator is
specified by the user, atab is used to separate these fields in the output, by default.

The output is sent to standard output in the form of one category per line, with the category value first on
the line, then an ASCII TAB character (or whatever single character or space is specified using the fs
parameter), then the label for the category.

If the user sSimply types r.cats without arguments on the command line the program prompts the user for
parameter values using the standard GRASS parser interface described in the manual entry for parser.

Parameter:
valssvalue Comma separated value list: e.g. 1.4, 3.8, 13

EXAMPLES
r.cats map=soils

prints the values and labels associated with al of the categories in the soils raster map layer;

r.cats map=soils cats=10,12,15-20

prints only the category values and labels for soils map layer categories 10, 12, and 15 through 20; and
r.cats map=soils cats=10,20 fs= :

prints the values and labels for soils map layer categories 10 and 20, but uses ":" (instead of atab) as the
character separating the category values from the category values in the output.

28

Example outpult:

10: Dunps, mine, Cc
20: Kyl e clay, KaA

NOTES
Any ASCII TAB characters which may be in the label are replaced by spaces.

The output from r.cats can be redirected into afile, or piped into another program.

SEE ALSO
UNIX Manual entries for awk and sort
r.coin, r.describe, r.rast.what, r.support, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

29

r.circle

NAME
r.circle — Creates araster map containing concentric rings around a given point.

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.circle output=name coordinate=x,y [mult=value]

DESCRIPTION

This module creates a raster map containing concentric rings around a given point. The cell values are
increasing linear from the center point to outer rings.

OPTIONS

Parameters:

output=name Name for new raster file.

coordinate=x,y The coordinate of the center (easting, northing)

mult=value Multiplier

AUTHOR
Bill Brown, U.S. Army Construction Engineering Research Laboratory

30

r.clump

NAME

r.clump - Recategorizes data in a raster map layer by grouping cells that form physically discrete areas
into unigque categories.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.clump

r.clump help

r.clump [-g] input=name output=name [title="string"]

DESCRIPTION

r.clump finds all areas of contiguous cell category values in the input raster map layer name. It assigns a
unique category value to each such area ("clump") in the resulting output raster map layer name. If the
user does not provide input and output map layer names on the command line, the program will prompt
the user for these names, using the standard parser interface (see manual entry for parser).

Category distinctions in the input raster map layer are preserved. This means that if distinct category
values are adjacent, they will NOT be clumped together. (The user can run r.reclass prior to r.clump to
recategorize cells and reassign cell category values.)

OPTIONS

Flag:
-q Run quietly, without printing messages on program progress to standard output.

Parameters:
input=name Name of an existing raster map layer being used for input.

output=name Name of new raster map layer to contain program output.

title="string" Optional title for output raster map layer, in quotes. If the user fails to assign atitle for
the output map layer, none will be assigned it.

ALGORITHM
r.clump moves a 2x2 matrix over the input raster map layer. The lower right-hand corner of the matrix is
grouped with the cells above it, or to the left of it. (Diagonal cells are not considered.)

NOTES

r.clump works properly with raster map layers that contain only "fat" areas (more than a single cell in
width). Linear elements (lines that are a single cell wide) may or may not be clumped together depending
on the direction of the line -- horizontal and vertical lines of cells are considered to be contiguous, but
diagonal lines of cells are not considered to be contiguous and are broken up into separate clumps.

A random color table and other support files are generated for the output raster map layer.
SEE ALSO

r.average, r.buffer, r.combine, r.grow, r.infer, r.mapcalc, r.nfilter, r.neighbors, r.poly, r.reclass,
r.support, r.weight, parser

31

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

32

r.cn

NAME
r.cn - Generates a curve number map layer
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.cn

r.cn help

r.cn sg=name lu=name pr=name hc=name cn=name amc=value

DESCRIPTION
r.cn generates a SCS Curve Number raster map in GRASS.

OPTIONS

Parameters:

sg=name Raster input map of hydrologic soil groups.

lu=name Raster input map of landuse.

pr=name Raster input map of cultural practice or management.

hc=name Raster input map of hydrologic condition.

cn=name Raster output map of curve numbers.

amc=value Equivalent AMC condition number for the curve number output.
Options: 1-3

r.cn uses information from the four map layers by reading the cell layer and its category files. So it is
important to update the category files for all four layers and it expects the categories of the map layer
exactly as shown below:

For the hydrologic soil group map (sg=), the categories may be either A, B, C or D.

For the landuse map (lu=), the categories may be either fallow, row crops, small grain, close-seeded
legumes, rotation meadow, pasture, range, meadow, woods, farmsteads, roads (dirt) or hard surface.

For the cultural practice or management map layer the categories may be straight row, contoured, or
contoured and terraced.

For the hydrological condition map the categories may be poor, fair, or good.

If the combination of the four layers categories does not exist in the SCS CN table, an error message is
printed and the program quits.

NOTE

The r.cn program is sensitive to the current window setting. Thus the program can be used to generate a
CN map of any sub-area within the full map layer. Also, r.cn is sensitive to any mask in effect.

33

AUTHORS
Raghavan Srinivasan, Bernie Engel, and James Darrell McCauley, Agricultural Engineering, Purdue
University

r.coin

NAME
r.coin - Tabulates the mutual occurrence (coincidence) of categories for two raster map layers.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.coin

r.coin help

r.coin [-gw] mapl=name map2=name units=name

DESCRIPTION
r.coin tabulates the mutual occurrence of two raster map layers categories with respect to one another.
This analysis program respects the current geographic region and mask settings.

The user can run the program non-interactively by specifying al needed flags settings and parameter
values on the command line, in the form:

r.coin [-qw] mapl=name map2=name units=name

Flags:

-q Run quietly, and suppress the printing of program status messages to standard output.
-w Print awide report, in 132 columns (default: 80 columns)

Parameters:

mapl=name Name of first raster map layer.
map2=name Name of second raster map layer.

units=name Units of measure in which to output report results.
Options: ¢, p, X, Y, & h, k, m

Alternately, the user can run r.coin interactively by smply typing r.coin without command line
arguments; in this case, the user will be prompted for the names of the two raster map layers, which will
be the subjects of the coincidence analysis. r.coin then tabulates the coincidence of category values among
the two map layers and prepares the basic table from which the report is to be created. This tabulation is
followed by an indication of how long the coincidence table will be. If the table is extremely long, the
user may decide that viewing it is not so important after all, and may cancel the request at this point.
Assuming the user continues, r.coin then allows the user to choose one of eight units of measure in which
the report results can be given. These units are:

cells

percent cover of region

percent of <map name> category (column)
percent of <map name> category (row)
acres

hectares

square kilometers

square miles

3??:79)‘< X T O

35

Note that three of these options give results as percentage values: "p" is based on the grand total number
of cells; "x" is based on only column totals; and "y" is based on only row totals. Only one unit of measure
can be selected per report output. Type in just one of the letters designating a unit of measure followed by
a <RETURN>. The report will be printed to the screen for review. After reviewing the report on the
screen, the user is given several options. The report may be saved to a file and/or sent to a printer. If
printed, it may be printed with either 80 or 132 columns. Finally, the user is given the option to rerun the
coincidence tabulation using a different unit of measurement.

Below is a sample of tabular output produced by r.coin. Here, map output is stated in units of square
miles. The report tabulates the coincidence of the Spearfish sample database's owner and road raster map
layers categories. The owner categoriesin this case refer to whether the land is in private hands (category
1) or is owned by the U.S. Forest Service (category 2). The roads map layer categories refer to various
types of roads (with the exception of category value "0", which indicates "no data’; i.e., map locations at
which no roads exist). r.coin does not report category labels. The user should run r.report or r.cats to
obtain this information.

The body of the report is arranged in panels. The map layer with the most categories is arranged along
the vertical axis of the table; the other, along the horizontal axis. Each panel has a maximum of 5
categories (9 if printed) across the top. In addition, the last two columns reflect a cross total of each
column for each row. All of the categories of the map layer arranged along the vertical axis are included
in each panel. Thereis atotal at the bottom of each column representing the sum of all the rows in that
column. A second total represents the sum of al the non-zero category rows. A cross total (Table Row
Total) of all columns for each row appears in a separate panel.

Note how the following information may be obtained from the sample report.

In the Spearfish data base, in area not owned by the Forest Service, there are 50.63 sgquare miles of land
not used for roads. Roads make up 9.27 square miles of land in this area. Of the total 102.70 square
miles in Spearfish, 42.80 square miles is owned by the Forest Service. In tota, there are 14.58 square
miles of roads. There are more category 2 roads outside Forest Service land (2.92 mi. sq.) than there are
inside Forest land boundaries (0.72 mi. sq.).

Following is a sample report.

| CO NCI DENCE TABULATI ON REPORT

| = oo |
Location: spearfish Mapset: PERMANENT Date: Wed Jun 1 13:36:08

|

| Layer 1: owner-- Oanership
| Layer 2: roads-- Roads
|
|
|

Mask: none
Units: square mles
| = |
| W ndow: North: 4928000. 00 |
| West: 590000. 00 East: 609000. 00
| Sout h: 4914000. 00 |
o m et m ee e ee—o o +
Panel #1 of 1
o m ot em e ee— oo +
| | owner | Panel Row Tot al |
| cat# | 1 | 2 | wcat 0O | wo cat O
| = |
|r0 | 50.63 |37.49 |88.12 |88.12 |
|ol | 1.53 | 0.68 | 2.21 | 2.21
|a2 | 2.92 | 0.72 | 3.64 | 3.64
|d3 | 3.97 | 2.57 | 6.54 | 6.54

36

I
| Total | I I I I

[with 0 |59.90 |42.80 | 102. 70 | 102. 70 |
AP e e e L P e PP PR |
[Wo O | 9.27 | 5.32 |14.58 | 14. 58 |
e m e - +
e e e e e e o +

| Tabl e Row Tot al |
| cat# | wcat 0| wo cat O |

|ro | 88.12 | 88.12

o1	2.21	221
a2	3.64	3.64
d3	6.54	6.54
s4	2.00	2.00
5	0.19	0.19

Tot al		
with 0	102.70	102.70

wo O	14.58	14.58
o e e e e e e e e e eeeaooo +
NOTES

It is not a good idea to run r.coin on a map layer which has a monstrous number of categories (e.g.,
unreclassed elevation). Because r.coin reports information for each and every category, it is better to
reclassify those categories (using reclass) into a more manageable number prior to running r.coin on the
reclassed raster map layer.

r.coin calculates the coincidence of two raster map layers. Although r.coin alows the user to rerun the
report using different units, it is not possible to simply rerun the report with different map layers. In order
to choose new map layers, it is necessary to rerun r.coin.

SEE ALSO
r.region, r.cats, r.describe, r.mask, r.reclass, r.report, r.stats

AUTHORS

Michael O'Shea, U.S. Army Construction Engineering Research Laboratory
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

37

r.colors

NAME
r.colors - Creates’M odifies the color table associated with a raster map layer.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.colors

r.colors help

r.colors[-wq] map=name color=type

DESCRIPTION

r.colors alows the user to create and/or modify the color table for a raster map layer. The map layer
(specified on the command line by map=name) must exist in the user's current mapset search path. The
color table specified by color=type must be one of the following:

color type description

aspect (aspect oriented grey colors)

grey (grey scal e)

grey.eq (histogramequalized grey scale)

ayr (green through yellow to red col ors)

rai nbow (rainbow color table)

ramp (col or ranp)

random (random col or table)

ryg (red through yellow to green colors)

wave (col or wave)

rul es (create new col or table based on user-specified rules)

If the user specifies the -w flag, the current color table file for the input map will not be overwritten. This
means that the color table is created only if the map does not already have a color table. If this option is
not specified, the color table will be created if one does not exist, or modified if it does.

If the user sets the -q flag, r.colors will run quietly, Without printing numerous messages on its progress
to standard output.

Color table types aspect, grey, grey.eq (histogram-equalized grey scale), gyr (green-yellow-red), rainbow,
ramp, ryg (red-yellow-green), random, and wave are pre-defined color tables that r.colors knows how to
create without any further input.

The rules color table type will cause r.colors to read color table specifications from standard input (stdin)
and will build the color table accordingly. Using color table type rules, there are three ways to build a
color table: by color list, by category values, and by "percent” values.

Building a customized color table by color list is the simplest of the three rules methods: just list the
colors you wish to appear in the color table in the order that you wish them to appear. Use the standard
GRASS color names: white, black, red, green, blue, yellow, magenta, cyan, aqua, grey, gray, orange,
brown, purple, violet, and indigo.

For example, to create a color table for the raster map layer elevation that assigns greens to low map

category values, browns to the next larger map category values, and yellows to the still larger map
category values, one would type:

38

r.colors map=elevation color=rules
green

brown

yellow

end

To build a color table by category values indices, the user should determine the range of category values
in the raster map layer with which the color table will be used. Specific category values will then be
associated with specific colors. Note that a color does not have to be assigned for every valid category
value because r.colors will interpolate a color ramp to fill in where color specification rules have been left
out. The format of such a specification is as follows:

category_value color_name
category_value color_name

category_value color_name
end

Each category value must be valid for the raster map layer, category values must be in ascending order
and only use standard GRASS color names (see above).

Colors can also be specified by color numbers each in the range 0-255. The format of a category value
color table specification using color numbers instead of color namesis as follows:

category_value red_number green_number blue_number
category_value red_number green_number blue_number

category_value red_number green_number blue_number
end

Specifying a color table by "percent” values allows one to treat a color table as if it were numbered from 0
to 100. The format of a "percent” value color table specification is the same as for a category value color
specification, except that the category values are replaced by "percent” values, each from 0-100, in
ascending order. Theformat is asfollows:

percent_value% color_name
percent_value% color_name

percent_value% color_name
end

Using "percent" value color table specification rules, colors can also be specified by color numbers each in
the range 0-255. The format of a percent value color table specification using color numbers instead of
color namesis as follows:

percent_value% red_number green_number blue_number
percent_value% red_number green_number blue_number

percent_value% red_number green_number blue_number
end

39

Note that you can also mix these three methods of color table specification; for example:

0 black

10% yellow

78 blue
magenta

purple

brown

100% 0 255 230
end

EXAMPLES

(1) The below example shows how you can specify colors for a three category map, assigning red to
category 1, green to category 2, and blue to category 3. Start by using a text editor, like vi, to create the
following rules specification file. Save it with the name rulesfile.

lred

2 green
3 blue
end

The color table can then by assigned to map threecats by typing the following command at the GRASS>
prompt:

cat rules.file | r.colors map=threecats color=rules

(2) To create anatural looking LUT for true map layer elevation, use the following rules specification file.
It will assign light green shades to the lower elevations (first 20% of the LUT), and then darker greens
(next 15%, and next 20%) and light browns (next 20%) for middle elevations, and darker browns (next
15%) for higher elevations, and finally yellow for the highest peaks (last 10% of LUT).

0% 0230 O
20% 0160 O
35% 50130 O
55% 120100 30
75% 120130 40
90% 170160 50
100% 255 255 100

SEE ALSO
d.colormode, d.colors, d.colortable, d.display, d.legend, p.colors, r.support

AUTHORS

Michael Shapiro, U.S. Army Construction Engineering Research Laboratory
David Johnson, DBA Systems, Inc. supplied the idea to create this program

40

r.combine

NAME
r.combine - Allows category values from several raster map layers to be combined.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.combine
r.combine < inputfile

DESCRIPTION

r.combine accepts commands that are similar to those used for boolean combinations (AND, OR, NOT) in
order to overlay user-selected groups of categories from different raster map layers. After the r.combine
program is started, the users are asked if they want the graphic output to go to a color graphics monitor.
If a color graphics monitor is not used, the graphic output is displayed on the terminal screen. This
display is, of course, quite rough. It consists of numerals representing the various categories that result
from the r.combine analysis. Following this question, the user will seea[1]:. Thisisthe first prompt, and
indicates that r.combine is ready to receive input from the user.

The following commands perform operations in r.combine:

Comrand | |
[Alias] | Followed by | Such as
| |
NAVE | nanme for raster | sandstone
[name] | map out put
| |
GROUP | category val ues | 1-40 (el evation. 255)
[gr oup] | and a raster map
[arp] I I
AND | expression describ- | (grp 4 (soils)) (grp 2 (owner))
[and] | ing a raster map
[& [&&] | and categories |
| |
OR | expression describ- | (grp 4 (soils)) (grp 2 (owner))
[or] | ing a raster map
[1 101 |1 11 and categories |
| |
NOT | expression describ- | (grp 2 3 (roads))
[not] | ing a raster map
[~] | and categories
| |
OVER | existing raster nmap | sandstone yell ow
[over] | and color |
[overlay] | |
| |
COVER | existing raster nap | sandstone
[cover] | |
| |

r.combine uses the same colors for all the operating commands. This s the r.combine color table:

0 bl ack 4 bl ue 8 grey 12 bl ue/ grey
1 red 5 purple 9 red/grey 13 purpl e/ grey
2 yellow 6 green 10 yel | ow grey 14 green/ grey
3 orange 7 white 11 orange/ grey 15 dark grey

The user may enter commands either line-by-line from within r.combine, or by typing the commands into
a file which is then read into r.combine using the UNIX redirection symbol <. The command format is

41

the same for the two methods. The line-by-line method, however, does not allow as much flexibility as
does use of an input file. If aline containing a syntax error is entered on the r.combine command line, it
is cleared; the line must then be re- entered in its entirety. Input files containing mistakes, however, can
easily be modified (rather than recreated). An input file is especially advantageous when a more complex
series of statementsis input to r.combine.

r.combine uses two types of commands: those which perform operations, and those which have some other
function. r.combine can probably best be learned by following examples, so pay special attention to those
included below with the operating command descriptions. Notice two thingsin particular:

1) All parentheses must be closed. A raster map layer name must often be enclosed within parentheses;
each time one of the above commands is used, it and its appropriate companions must also be enclosed
within parentheses.

2) Certain spaces are important. Generally, r.combine requires at least one space before an opening
parenthesis (except when it is the first character in an expression). r.combine ignores extra spaces and tab
characters.

OPERATING COMMANDS
Below is a summary of the syntax of the operating commands, a description of each command, and
examples using the Spearfish sample data base.

NAME

(NAME new_map_name (Expression))

Allows graphic output to be saved in the raster map layer new_map_name, so that it is available for
additional analysis or for future viewing. The results of performing the expression in parentheses are then
placed into the named output raster map layer (here, new_map_name). Note that this means that
r.combine may be used to create new raster map layers from existing ones. r.combine automatically
creates a color table for the new raster map layers, however, the user should run the GRASS program
r.support to fill in category assignments and history information if the new raster map layer is to be saved
for future use in the mapset.

example:

(NAME sandstone (GROUP 4 (geology)))

The above command will result in the creation of a new raster map layer named sandstone, noting the
locations of cells with geology category value 4. You must then run the GRASS program r.support in
order to label the categories present in the new raster map layer. Resultant categories:

0 - black: other than sandstone
1 - red: sandstone

GROUP

(GROUP category_values (existing raster map layer))

Selects out categories of the desired values from the existing raster map layer, which is indicated in
parentheses directly after the category grouping. It aso worksto select out just one category from the map
layer. Any of the following are legal category groupings:

2
1-18
1257.

example:
(GROUP 1-40 (elevation.255))

42

Depicts only the area with elevation 1187 meters or less (i.e., elevation map layer category values 1
through 40 only). Resultant categories:

0 - black: elevation > 1187 m
1-red : elevation<= 1187 m

example:

(NAME low.hi (GROUP 1-40 238-255 (elevation.255)))

Depicts only those areas with elevations of either 1187 meters or less, or in excess of 1787 meters
(elevation categories 1-40, and 238-255). The graphic output is saved in the new raster map layer called
low.hi. Resultant categories:

0 - black : elevation> 1187 mand < 1787 m
1-red : elevation <= 1187 mand >= 1787 m

AND

(AND (Expression A) (Expression B))

Combines two map layers and creates a new one, when BOTH of the category values associated with the
same given cell location in the two combined map layers are non-zero, a category value of 1 is assigned to
that cell in the new map layer. If, however, either map layer assigns a category value of zero to the same
given cell location, the category value associated with this cell's location in the resultant map layer also
becomes zero.

For example,

rastermap 1 220

210

000 100 results
AND--> 110
rastermap 2 101 00O
110

110

example:

(AND (GROUP 4 7-9 (geology)) (GROUP 2 (owner)))
Depicts the occurrences of categories 4, 7, 8, and 9 from the map layer geology whenever they occur on
U.S. Forest Service property. Results are displayed to the terminal screen. Resultant categories:

0 - black : no data occurred in one or the other of the raster map layers
1-red :the AND condition is met

Note that if neither map layer contained any areas of "no data’, the resultant raster map layer would
include only 1's.

Example:
(NAME sand (AND (GROUP 4 7-9 (geology)) (GROUP 2 (owner))))
Same as above, except the results are saved in the map layer sand.

OR

(OR (Expression A) (Expression B))

Combines two map layers and creates a new one; when EITHER of the category values associated with
the same given cell location in the two combined map layers is non-zero, a category value of 1 is assigned
to that cell in the new map layer. 1If, however, both map layers assign a category value of zero to the same

43

given cell location, the category value of this cell in the resultant map layer also becomes zero. Only two
map layers may be combined at one time. For example:

rastermap 1 220

210

000111 results
OR-> 110

raster map 2 101110
110

110

Example:

(OR (GROUP 4 7-9 (geology)) (GROUP 2 (owner)))

Depicts al occurrences of categories 4, 7, 8, and 9 from the map layer geology as well as showing all the
land, which is U.S. Forest Service property. Results are displayed to the terminal screen. Resultant
categories:

0 - black: this area has neither the values of 4, 7, 8, or 9 nor isit on U.S. Forest Service property
1-red : this area meets one or the other of the conditions noted above

Note that no distinction is made between those places where conditions are met in both map layers and
where they are met in only one. See the r.combine command OVER if it is necessary to make that
distinction.

NOT(NOT (Expression))

Negates Expression in order to define a new map layer, which contains the opposite of what is defined by
Expression. The new raster map layer will contain category values of either O or 1. 0 values would
indicate that the NOT conditions were not met. Cell values of 1 would indicate that the NOT conditions
were met. In order to specify the map layer in which to save the output from NOT, use the r.combine
command NAME.

Example:

(NAME rds (NOT (GROUP 0 (roads))))

Areas containing category zero in the existing map layer roads indicate those locations within the data
base where roads do not exist. Negating that expression leaves us with al other areas - i.e., those
locations at which roads do exist. Here, the graphic output is saved in the raster map layer named rds.
Resultant categories:

0 - black: no roads
1-red : roads

The same results could have been obtained with: (NAME rds (GROUP 1-5 (roads))). NOT is most useful
in those cases where it is simpler to define something on the basis of what it is not than on the basis of
what it is.

OVER

(OVER color (Expression)) or (OVER existing_rastermap color (Expression))

Performs a transparent overlay operation. This means that when a map layer which depicts some feature
in blue is overlain with one which depicts a feature in yellow, the resulting raster map layer will show
areas of overlap in green; areasin the two raster map layer that do not overlap other areas maintain their
original colors (i.e., yellow or blue).

OVER may be run with or without an existing map layer name. If the user does not specify an existing
raster map layer name, OVER applies the color specified to the expression in parentheses and displays the
results. If an existing raster map layer name is specified, OVER applies the color to the expression (just
as before) and then overlays the results on top of the existing raster map layer. In order to make sense of
the colors which result, use only those existing map layers created using OVER.

OVER allows the user to specify just four colors:

col or val ue
red 1
yel | ow 2
bl ue 4
grey 8

These four colors are then combined to form other colors. The number of progressive overlays allowed is
limited to four (one for each of the basic colors above). The actual number of colors on the resultant raster
map layer, however, varies depending on the distribution of the features and on the interaction of the
features from the different map layers which are overlain. When two or more of these colors are overlain,
new colors are created. The numerical values associated with the colors above are significant, in that the
values of any additional colors created reflect the sum of two or more of the four above. These overlain
color values appear on the resultant overlay as cell (category) values. The user should know what these
values represent in order to know what category information is to be associated with the new map layer
(entered using the GRASS r.support command), and to know the significance of this and subsequent
analyses involving the new map layer.

Any of these colors and category values may result from OVER. Note that this is the same as the
r.combine color table listed above.

0 bl ack 4 bl ue 8 grey 12 bl ue/ grey
1 red 5 purple 9 red/grey 13 purpl e/ grey
2 yellow 6 green 10 yel | ow grey 14 green/ grey
3 orange 7 white 11 orange/ grey 15 dark grey

The syntax for OVER makes no provision for a new raster map layer name. It is necessary to use the
r.combine operator NAME to specify a new raster map layer name in which to save the graphic output
generated by OVER. If the user runs OVER without specifying an output raster map layer name, output is
displayed to the terminal. However, this output is available for future use only if it is saved using the
NAME command.

example:

(NAME park.or.priv (OVER red (GROUP 1 (owner))))

The new raster map layer park.or.priv displays private land (i.e., category 1 of the raster map layer owner)
in red, and displays U.S. Forest Service land (i.e., "no data" areas within the owner map layer) as black.
Resultant categories:

0 - black: park
1-red : privateland

example:

(NAME roads.or.not (OVER park.or.priv yellow (GROUP 0 (roads))))

Category 0 in the map layer roads is overlain in yellow on top of the park.or.priv map layer created above.
The output is placed in a new map layer named roads.or.not. Resultant categories in roads.or.not are:

0 - black : park; road

1-red : private; road
2 - yellow: park; noroad

45

3-orange: private; no road

example:

(NAME low.elev (OVER park.or.priv blue (GROUP 1-19 (elevation.255))))

The elevation categories of 1123 meters or less from the map layer elevation.255 are assigned the color
blue and then overlain on park.or.priv (generated in the previous example). Resultant categories in the
new map layer low.elev are:

0- black : park; > 1123 m
1-red : private; > 1123m
4-blue : park; <=1123m
5- purple: private; <= 1123m

Note how category 5 is the sum of red (1) + blue (4) (i.e.,, the intersection of areas containing low
elevations and private lands with roads).

COVER

(COVER existing_map (Expression))

Performs an opaque overlay operation. This means that where the top map layer contains "holes" (cell
category values of 0), the bottom map layer will show through. Where the top map layer contains
information on a feature, it will cover (substitute its category value for) whatever is below it. The top map
layer is that which is defined by Expression. The bottom map layer is existing_map; this map layer must
already exist.

The user does not specify colors with COVER. COVER uses the default color table that is listed above
with OVER. Colors are assigned starting with the lower map layer. The category values are assigned the
color from the table that corresponds with that value. For example, 1 would be red; 2, yellow; 3, orange,
etc. Moving to the upper map layer COVER starts wherever it |eft off after the lower one. If the highest
value of the lower map layer was 5, then all non-zero (i.e., places where a feature exists) cells of the upper
map layer would be assigned the value of 6 (green). Note that if, in this case, the upper map layer did not
have any cells of value zero, then the entire resulting new map layer would be green. The upper map
layer would have been assigned the value 6 and would have completely covered that which was below it.

Thisiswhat happens:

Expression1110
(topraster map) 1100
00006660 result

-> 6620
oldmap25005522
(bottom raster map) 0520
5522

As many map layers may be overlain as is desired. However, there is a practical limit on the number of
map layers that can be used while still generating sensible output. That number depends on the features
involved in each map layer, and how many cells within the upper (overlying) map layers contain category
values of zero (holes through which underlying data can be seen).

COVER has no provision for saving graphic output. Use the r.combine command NAME to save output
in araster map layer.

Example:
(NAME lo.elev (COVER owner (GROUP 1-19 (elevation.255))))

46

The categories that indicate elevation of 1123 meters or less are placed on top of the existing map layer
owner. Output is saved in lo.elev. Resultant categories:

1-red : private ownership; elev> 1123 m
2 - yellow : park property; elev> 1123 m
3-orange: parkor private; elev <= 1123 m

Example:

(NAME sand.lo (COVER lo.elev (GROUP 4 (geology))))

Category 4 of geology (sandstone) is placed on top of lo.elev, the raster map layer created in the previous
example. The output is saved in sand.lo. Resultant categories:

1-red : private ownership; elev> 1123 m; no sandstone
2 - yellow : park property; elev > 1123 m; no sandstone

3 - orange: parkor private; elev <= 1123 m; no sandstone
4 - blue : parkor private; any elev; sandstone

ADDITIONAL COMMANDS
r.combine also contains a number of commands, which are not used for operations, but serve a variety of
other functions. Additional commands:

Conmand]| Alias Fol I owed By
|
QT | quit g exit bye
CATS | categories cats exi sting raster nap
EXP | exp expr nurmber of an expression
I
I

<
W NDOW | w ndow
HI STORY| history hist

existing input file

I
|
|
| .
| shell comand e.g. vi conb.1
|
| existing raster map |ayer

|

|

|

HELP | help conbi ne conmand for which help is needed
ERASE | erase
QUIT

Allows the user to exit from r.combine while remaining within the GRASS session.

CATS raster map
Gives user an on-line listing of categories and labels for the map layer specified.
For example:

[1]: CATS owner

EXPEXP expression number

During an r.combine session, each completed expression and command is assigned a number. This
number may be used to reference the expression to which it is assigned; this means that the user can
substitute the number of the expression for the expression itself.

For example:

[4]:(GROUP 5 (geology))
[5]: (NAME limestone (EXP 4))

Use the UNIX history mechanism (explained below) to determine the specific numbers associated with
particular expressions in your current r.combine session.

I1shell command

Allows user to temporarily suspend r.combine and go run another command, as in the two examples
below:

47

Ivi input
lg.list type=rast

Unless otherwise specified by the user, when afile is created using a system editor (like vi) from within
r.combine, this file will be placed in the user's mapset under the COMBINE directory. After the
command is completed, control returns to r.combine.

<< input filename
Takes input from the specified filename containing r.combine commands. The user, of course, must
previously have entered the commands into this named input file. 1f no pathname is given, the input file
is assumed to be in the user's mapset under the COMBINE directory. For example, the user would
perform the following steps to redirect input from the file comb.in into the r.combine program (while
within r.combine):

First, the user would create the file:

Ivi comb.in

Second, the user would direct r.combine to take its input from the file:
< comb.in

WINDOWWINDOW raster_map
Gives on-line geographic region (window) information about the raster map layer specified.

HISTORY
Provides a listing of al previously completed expressions used within the current r.combine session, and
the numbers associated with the execution of these commands.

HELP command
An on-line help facility for r.combine commands only. Type in the name of the r.combine command for
which help is needed, to see the entry for that command.

ERASE
Will cause the color graphics monitor to clear.

NOTES

In all of the above examples, only a single line of input was provided to r.combine. However, since
r.combine conveniently ignores extra spaces and tabs, it is possible to type input to r.combine in the
manner outlined below. Users may find this to more clearly exhibit the relationships involved and
parentheses needed. This can be typed as shown below either directly at the r.combine command line, or
redirected into r.combine from an already existing file.

example:

(NAME good.place

(AND

(OR

(GROUP 1 2 5 (geology))
(GROUP 1-5 (elevation.255))
)

(NOT

(GROUP 1-4 (landuse))

)

48

)
)

Such involved input to r.combine might conveniently be typed into an input file, and then input to
r.combine using the UNIX redirection mechanism <.

SEE ALSO
GRASS Tutorial:, r.combine, r.infer, r.mapcalc, r.weight

AUTHORS

L. Van Warren, U.S. Army Construction Engineering Research Laboratory
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory
James Westervelt, U.S. Army Construction Engineering Research Laboratory

49

r.compress

NAME
r.compress - Compresses and decompresses raster files.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.compress

r.compress help

r.compress [-u] map=name[,name,...]

DESCRIPTION
The GRASS program r.compress can be used to compress and decompress raster map layers.

During compression, this program reformats raster files using a run-length-encoding (RLE) agorithm.
Raster map layers which contain very little information (such as boundary, geology, soils and land use
maps) can be greatly reduced in size. Some raster map layers are shrunk to roughly 1% of their original
sizes. Raster map layers containing complex images such as elevation and photo or satellite images may
increase dightly in size. GRASS uses a nhew compressed format, and all new raster files are now
automatically stored in compressed form (see FORMATS below). GRASS programs can read both
compressed and regular (uncompressed) file formats. This allows the use of whichever raster data format
consumes less space.

As an example, the Spearfish data base raster map layer owner was originally a size of 26600 bytes. After
it was compressed, the raster file became only 1249 bytes (25351 bytes smaller).

Raster files may be decompressed to return them to their origina format, using the -u option of
r.compress. If r.compress is asked to compress a raster file which is aready compressed (or to
decompress an aready decompressed file), it simply informs the user of this and asks the user if he wishes
to perform the reverse operation.

PROGRAM OPTIONS

r.compress can be run either non-interactively or interactively. In non-interactive use, the user must
specify the name(s) of the raster map layer(s) to be compressed (or decompressed) on the command line,
using the form map=name[,name,...] (where each name is the name of a raster map layer to be
compressed or decompressed). To decompress a map, the user must include the -u option on the
command line. If the -u option is not included on the command line, r.compress will attempt to compress
the named map layer(s).

If the user simply types r.compress without specifying any map layer name(s) on the command line,
r.compress will prompt the user for the names of the map layers to be compressed/decompressed, and ask
whether these maps are to be compressed or decompressed. This program interface is the standard
GRASS parser interface described in the manual entry for parser.

Flags:
-u If set, r.compress converts a compressed map to its uncompressed format. If not set, r.compress
will attempt to compress the named map layer(s).

Parameters:
map=name] name,....] The name(s) of raster map layer(s) to be compressed or decompressed.

50

FORMATS

Conceptually, a raster data file consists of rows of cells, with each row containing the same number of
cells. A cell consists of one or more bytes. The number of bytes per cell depends on the category values
stored in the cell. Category values in the range 0-255 require 1 byte per cell, while category valuesin the
range 256-65535 require 2 bytes, and category values in the range above 65535 require 3 (or more) bytes
per cell.

The decompressed raster file format matches the conceptual format. For example, a raster file with 1 byte
cells that is 100 rows with 200 cells per row, consists of 20,000 bytes. Running the UNIX command Is -|
on this file will show a size of 20,000. If the cells were 2 byte cells, the file would require 40,000 bytes.
The map layer category values start with the upper left corner cell followed by the other cells along the
northern boundary. The byte following the last byte of that first row is the first cell of the second row of
category values (moving from left to right). There are no end-of-row markers or other syncing codesin the
raster file. A cell header file (cellhd) is used to define how this string of bytes is broken up into rows of
category values.

The compressed format is not so simple, but is quite elegant in its design. It not only requires less disk
space to store the raster data, but often can result in faster execution of graphic and analysis programs
since there is less disk 1/0. There are two compressed formats. the pre- version 3.0 format (which
GRASS programs can read but no longer produce), and the version 3.0 format (which is automatically
used when new raster map layers are created).

PRE-3.0 FORMAT:

First 3 bytes (chars) - These are a specia code that identifies the raster data as compressed.

Address array (long) - array (size of the number of rows + 1) of addresses pointing to the internal start of
each row. Because each row may be a different size, this array is necessary to provide a mapping of the
data.

Row by row, beginning at the northern edge of the data, a series of byte groups describes the data. The
number of bytes in each group is the number of bytes per cell plus one. The first byte of each group gives
acount (up to 255) of the number of cells that contain the category values given by the remaining bytes of
the group.

POST-3.0 FORMAT:

The 3 byte code is not used. Instead, afield in the cell header is used to indicate compressed format.

The address array is the same.

The RLE format is the same as the pre-3.0 RLE, except that each row of data is preceded by a single byte
containing the number of bytes per cell for the row, and if run-length- encoding the row would not require
less space than non-run- length-encoding, then the row is not encoded.

These improvements give better compression than the pre-3.0 format in 99% of the raster data layers.
The kinds of raster data layers which get bigger are those in which each row would be larger if

compressed (e.g., imagery band files). But even in this case the raster data layer would only be larger by
the size of the address array and the single byte preceding each row.

SEE ALSO
r.support, parser

51

AUTHORS
James Westervelt, U.S. Army Construction Engineering Research Laboratory
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

52

r.contour

NAME
r.contour - Produces a GRASS binary vector map of specified contours from GRASS raster map layer.

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.contour

r.contour help

r.contour [-gn]input=name output=name [levels=valuevalue,...,value] [minlevel=value]
[maxlevel=value] [step=value]

DESCRIPTION
r.contour produces a contour map of user-specified levels from a raster map layer. This program works
two ways.

1. Contours are produced from a user-specified list of levels.

2. Contours are produced at some regular increment from user-specified minimum level to maximum
level. If no minimum or maximum level is specified, minimum or maximum data value will be used.

OPTIONS

r.contour may be run interactively or non-interactively. To run the program non-interactively, the user
must specify the input and output file names, either a list of levels or a step value and, optionaly,
minimum and maximum levels:

r.contour [-gn] input=name output=name [levels=value,value,...,value] [minlevel=value]
[maxlevel=value] [step=value]

To run the program interactively, the user may simply type r.contour at the command line and will be
prompted for parameter values.

Flags:

-q Suppress progress report & min/max information
-n Suppress single crossing error messages
Parameters:

input=name Name of input raster map layer.
output=name Name of the binary vector file created.
levels=value,value,...,value Comma separated list of desired levels.

minlevel=value Beginning (lowest) value to be used when stepping through contours.
Default is minimum data value.

maxlevel=value Ending (highest) value to be used when stepping through contours.
Default is maximum data value.

step=value Increment between contour levels.

53

NOTES
r.contour will either step through incremental contours or produce contours from alist of levels, not both.
If both alist of levels and a step are specified, the list will be produced and the step will be ignored.

Zero istreated as avalid data value by r.contour.

If a contour level exactly matches a category value in the raster file, the contour line may backtrack on
itself, causing illegal arcs to be produced in the output GRASS vector file.

AUTHOR
Terry Baker, U.S. Army Construction Engineering Research Laboratory

r.cost

NAME

r.cost - Outputs a raster map layer showing the cumulative cost of moving between different geographic
locations on an input raster map layer whose cell category values represent cost.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.cost

r.cost help

r.cost [-vK] input=name output=name [coordinate=x,y[,X,y,...]] [stop_coordinate=x,y[,X,Y,...]]
[max_cost=value]

DESCRIPTION

r.cost determines the cumulative cost of moving to each cell on a cost surface (the input raster map layer)
from other user-specified cell(s) whose locations are specified by their geographic coordinate(s). Each cell
in the original cost surface map will contain a category value, which represents the cost of traversing that
cell. r.cost will produce an output raster map layer in which each cell contains the lowest total cost of
traversing the space between each cell and the user-specified points. (Diagona costs are multiplied by a
factor that depends on the dimensions of the cell.) This program uses the current geographic region
settings.

OPTIONS

r.cost can be run either non-interactively or interactively. The program will be run non-interactively if the
user specifies the names of raster map layers and any desired options on the command line, using the
form:

r.cost [-vK] input=name output=name [coordinate=x,y[,X,y,...]] [stop_coordinate=x,y[,X,y,...]]

where the input name is the name of a raster map layer representing the cost surface map, the output
name is the name of a raster map layer of cumulative cost, and each X,y coordinate pair gives the
geographic location of a point from which the transportation cost should be figured.

Alternately, the user can simply type r.cost on the command line, without program arguments. In this
case, the user will be prompted for parameter values using the standard GRASS parser interface described
in the manual entry for parser.

r.cost can be run with two different methods of identifying the starting point(s). One or more points
(geographic coordinate pairs) can be provided on the command line. In lieu of command line coordinates,
the output map (e.g., output) is presumed to contain starting points. All non- zero cells are considered to
be starting points. Beware: doing this will overwrite output with the results of the calculations. If output
does exist and points are also given on the command line, the output is ignored and the coordinates given
on the command line are used instead.

Flags:
-V Processing is tracked verbosely. This program can run for avery long time.
-k The Knight's move is used which improves the accuracy of the output. In the diagram below, the

center location (O) represents a grid cell from which cumulative distances are calculated. Those neighbors

55

marked with an X are always considered for cumulative cost updates. With the -k option, the neighbors
marked with a K are also considered.

UK. KL
K. X. X. X.K
XL, 0. x. .
K. X. X. X.K
KK

Parameters:
input=name Name of input raster map layer whose category values represent surface cost.

output=name Name of raster map layer to contain output. Also can be used as the map layer of the
input starting points. If so used, the input starting point map will be overwritten by the output.

coordinate=x,y[,X,Y,X,y, --.] Each x, y coordinate pair gives the easting and northing (respectively)
geographic coordinates of a starting point from which to figure cumulative transportation costs for each
cell. Asmany points as desired can be entered by the user.

stop_coordinate=x,y[,X,y,X,y, ...]| Each x, y coordinate pair gives the easting and northing (respectively)
geographic coordinates of a stopping point. During execution, once the cumulative cost to all stopping
points has been determined, processing stops. As many points as desired can be entered by the user.

max_cost=value An optional maximum cumulative cost.

EXAMPLE

Consider the following example:

Input:
COST SURFACE
2.2.1.1.5.5.5
2.2.8.8.5.2.1
7.1.1.8.2.2.2

8.7.8.8.8.8.5

8.8.1.1.573]9.
R S R
8.1.1.2.5.3.9.

Output (using -k): Output (not using -k):

COST SURFACE CUMLLATIVE COST SURFACE
21. 21. 20. 19. 17. 15. 14.. 22. él: 21% 20* 17. 15. 14.
20. 19. 22. 19. 15. 12. 11.. 20. 19. 22+ 20" 35* 12, 11.
22, 18. 17. 17. 12. 11. 9.. 22. 18. 17* 18* 13* 11. O.
e

21. 14. 13. 12. 8. 6. 6.. 21. 14. 13. 12. 8. 6. 6.

56

The user-provided ending location in the above example is the boxed 3 in the left-hand map. The costsin
the output map represent the total cost of moving from each box ("cell") to one or more (here, only one)
starting location(s). Cells surrounded by asterisks are those that are different between operations using
and not using the Knight's move (-k) option. This output map can be viewed, for example, as an elevation
model in which the starting location(s) is/are the lowest point(s). Outputs from r.cost can be used as
inputs to r.drain, in order to trace the least-cost path given in this model between any given cell and the
r.cost starting location(s). The two programs, when used together, generate |least-cost paths or corridors
between any two map locations (cells).

NOTES
If you submit the starting point map on the command line by specifying:

output=start_pt_map

the starting point map will be overwritten by the calculated output. It is wise to copy or rename (e.g.,
using g.copy or g.rename) the map of starting points to another name before submitting it to r.cost;
otherwise, its contents will be overwritten.

Sometimes, when the differences among cell category values in the r.cost cumulative cost surface output
are small, this cumulative cost output cannot accurately be used as input to r.drain (r.drain will output bad
results). This problem can be circumvented by making the differences between cell category valuesin the
cumulative cost output bigger. It is recommended that, if the output from r.cost is to be used as input to
r.drain, the user multiply the input cost surface map to r.cost by the value of the map's cell resolution,
before running r.cost. This can be done using r.mapcalc or other programs. The map resolution can be
found using g.region.

SEE ALSO
g.copy, g.region, g.rename, r.drain, r.in.ascii, r.mapcalc, r.out.ascii, parser

AUTHOR

Antony Awaida, Intelligent Engineering Systems Laboratory, M.1.T.
James Westervelt, US Army Construction Engineering Research Lab

57

r.covar

NAME
r.covar - Outputs a covariance/correlation matrix for user specified raster map layer(s).
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.covar

r.covar help

r.covar [-mrg] map=name[,name,...]

DESCRIPTION
r.covar outputs a covariance/correlation matrix for user- specified raster map layer(s). The output can be
printed, or (if run non-interactively) saved by redirecting output into afile.

The output is an N x N symmetric covariance (correlation) matrix, where N is the number of raster map
layers specified on the command line. For example,

r.covar map=Ilayer.1,layer.2,layer.3

would produce a 3x3 matrix (values are example only):

462. 876649 480. 411218 281. 758307
480. 411218 513. 015646 278.914813
281. 758307 278.914813 336. 326645

OPTIONS
The program will be run non-interactively, if the user specifies the names of raster map layers and any
desired options on the command line, using the form

r.covar [-mrg] map=name[,name,...]
where each name specifies the name of a raster map layer to be used in calculating the correlations, and

the (optional) flags -m, -r, and -q have meanings given below. If these flags are not specified on the
command line, their answers default to "no".

{:rlnags. Include zero values in the correlation calculations, due to the mask.
-r Print out the correlation matrix.

-q Run quietly (without comments on program progress).

Parameters:

map=name[,name,...] Existing raster map layer(s) to be included in the covariance/correlation matrix
calculations.

Alternately, the user can simply type r.covar on the command line, without program arguments. In this

case, the user will be prompted for flag settings and parameter values using the standard GRASS parser
interface described in the manual entry for parser.

58

PRINCIPLE COMPONENTS

This module can be used as the first step of a principle components transformation. The covariance
matrix would be input into a system, which determines eigen values and eigen vectors. An NxN
covariance matrix would result in N real eigen values and N eigen vectors (each composed of N rea
numbers). In the above example, the eigen values and corresponding eigen vectors for the covariance
matrix are:

conponent ei gen val ue ei gen vector
1 1159. 745202 < 0.691002 0. 720528 0. 480511 >
2 5.970541 < 0.711939 -0.635820 -0.070394 >
3 146.503197 < 0.226584 0.347470 -0.846873 >

The component corresponding to each vector can be produced using r.mapcalc as follows:

r.mapcalc 'pc.1 = 0.691002* layer.1 + 0.720528*layer.2 + 0.480511*layer.3'
r.mapcalc 'pc.2 = 0.711939* layer.1 - 0.635820* layer.2 - 0.070394* |ayer.3'
r.mapcalc 'pc.3 = 0.226584* layer.1 + 0.347470* layer.2 - 0.846873*|layer.3'

Note that based on the relative sizes of the eigen values, pc.1 will contain about 88% of the variance in the
data set, pc.2 will contain about 1% of the variance in the data set, and pc.3 will contain about 11% of the
variance in the data set.

Also, note that the range of values produced in pc.1, pc.2, and pc.3 will not (in general) be the same as
those for layer.1, layer.2, and layer.3. It may be necessary to rescale pc.1, pc.2 and pc.3 to the desired
range (e.g. 0- 255). This can be done with r.rescale.

NOTES
If your system has a FORTRAN compiler, then the program m.eigensystem in src.contrib can be compiled
and used to generate the eigen values and vectors.

SEE ALSO
i.pca, m.eigensystem, r.mapcalc, r.rescale, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

59

r.Cross

NAME
r.cross - Creates a cross product of the category values from multiple raster map layers.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.cross

r.cross help

r.cross [-gZ] input=name,name[,name,...] output=name

DESCRIPTION

r.cross creates an output raster map layer representing all unique combinations of category values in the
raster input layers (input=name,name,name, ...). At least two, but not more than ten, input map layers
must be specified. The user must also specify a name to be assighed to the output raster map layer created
by r.cross.

OPTIONS
The program will be run non-interactively if the user specifies the names of between 2-10 raster map
layers be used as input, and the name of araster map layer to hold program output, using the form:

r.cross [-gZ] input=name,name[,name,...] output=name

where each input name specifies the name of a raster map layer to be used in calculating the cross
product, the output name specifies the name of a raster map layer to hold program output, and the options
-q and -z respectively specify that the program isto run quietly and exclude zero data values.

Alternately, the user can simply type r.cross on the command line, without program arguments. In this
case, the user will be prompted for needed input and output map names and flag settings using the
standard GRASS parser interface described in the manual entry for parser.

Fags:
-q Run quietly. Suppresses output of program percent-complete messages. If this flag is not used,
these messages are printed out.

-Z Do not cross zero data values. This means that if a zero category value occurs in any input data
layer, the combination is assigned to category zero in the resulting map layer, even if other data layers
contain non-zero data. In the example given above, use of the -z option would cause 3 categories to be
generated instead of 5.

If the -z flag is not specified, then map layer combinations in which not all category values are zero will
be assigned a unique category value in the resulting map layer.

Parameters:

input=name,namef ,name,...] The names of between two and ten existing raster map layers to be
used as input. Category values in the new output map layer will be the cross-product of the category values
from these existing input map layers.

output=name The name assigned to the new raster map layer created by r.cross, containing program
output.

60

EXAMPLE
For example, suppose that, using two raster map layers, the following combinations occur:

mapl map2

NFR,EFP,OO
ANRFELNPF

r.cross would produce a new raster map layer with 5 categories:

mapl map2 out put

NFR,RFPOO
ANRFELNPF
A wWNPEF

Note: The actual category value assigned to a particular combination in the result map layer is dependent
on the order in which the combinations occur in the input map layer data and can be considered
essentially random. The example given hereisillustrative only.

SUPPORT FILES
The category file created for the output raster map layer describes the combinations of input map layer
category values which generated each category. In the above example, the category labels would be:

cat egory cat egory
val ue | abel
1 layer1(0) layer2(1)
2 layer1(0) layer2(2)
3 layer1(1l) layer2(1)
4 layerl(1l) layer2(2)
5 Jlayerl(2) layer2(4)

A random color table is also generated for the output map layer.

NOTES

When run non-interactively, r.cross will not protect existing files in the user's mapset. If the user
specifies an output file name that already exists in his mapset, the existing file will be overwritten by the
New r.cross output.

SEE ALSO
r.corr, r.covar, r.stats, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

61

r.describe

NAME
r.describe - Prints terse list of category values found in araster map layer.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.describe

r.describe help

r.describe [-1rqdi] map=name[nv=string] [nsteps=value]

DESCRIPTION
r.describe prints aterse listing of category values found in a user-specified raster map layer.

The program will be run non-interactively, if the user specifies the name of a raster map layer and any
desired flags on the command line, using the form

r.describe [-1rqdi] map=name

where the map name is the name of a raster map layer whose categories are to be described, and the
(optional) flags -1, -r, -q, -d, and -i have the meanings described below.

Alternately, the user can simply type r.describe on the command line, without program arguments. In
this case, the user will be prompted for needed flag settings and the parameter value using the standard
GRASS parser interface described in the manual entry for parser.

PROGRAM USE
The user can select one of the following two output reports from r.describe:

(1) RANGE. A range of category values found in the raster map layer will be printed. The range is
divided into three groups: negative, positive, and zero. If negative values occur, the minimum and
maximum negative values will be printed. If positive values occur, the minimum and maximum positive
values will be printed. If zero occurs, this will be indicated.

(2) FULL LIST. A list of al category values that were found in the raster map layer will be printed.

The following sample output from r.describe:

0 2-4 10-13

means that category data values 0, 2 through 4, and 10 through 13 occurred in the named map layer. The
user must choose to read the map layer in one of two ways:

(1) DIRECTLY. The current geographic region and mask are ignored and the full raster map layer is
read. This method is useful if the user intends to reclassify or rescale the data, since these functions
(r.reclass and r.rescale) also ignore the current geographic region and mask.

(2) REGIONED and MASKED. The map layer is read within the current geographic region, masked by
the current mask.

62

NON-INTERACTIVE PROGRAM USE
r.describe examines a user-chosen raster map layer. If run non-interactively, the layer name must be
supplied on the command line.

A compact list of category values that were found in the data layer will be printed.
Following is a sample output:

0 2-4 10-13

Flags:
-1 Print the output one value per line, instead of the default short form. In the above example, the -1
option would output:

-r Only print the range of the data. The highest and lowest positive values, and the highest and lowest
negative values, are output. In the above example, the -r option would outpuit:

0213
If the -1 option is also specified, the output appears with one category value per line.

-q Quiet. The -g option will tell r.describe to be silent while reading the raster file. 1f not specified,
program percentage-completed messages are printed.

-d Use the current geographic region settings. Normally, r.describe will read the data layer directly,
ignoring both the current region settings and mask. The -d option tells r.describe to read the map layer in
the current region masked by the current mask (if any).

-i Read fp map as integer.

Parameters:
map=name Name of raster map.
nv=string String representing no data cell value.

nsteps=value Number of quantization steps.

NOTES
The range report will generally run faster than the full list.

SEE ALSO
g.region, r.mask, r.reclass, r.rescale, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

63

r.digit

NAME
r.digit - Interactive tool used to draw and save vector features on a graphics monitor using a pointing
device (mouse)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.digit

DESCRIPTION

The GRASS tool r.digit provides the user with away to draw lines, areas, and circles on a monitor screen,
and to save these featuresin acell file. Lines, areas, and circles are to be drawn using a pointing device
(mouse). A mouse button menu indicates the consequences of pressing each mouse button. The user is
requested to enter the category number associated with the line, area, or circle subsequently drawn by the
user. Lines, areas, and circles are defined by the series of points marked by the user inside the map
window. r.digit will close areas when the user has not. By drawing a series of such features, the user can
repair maps, identify areas of interest, or smply draw graphics for advertisement. When drawing is
completed, araster map based on the user'sinstructions is generated. It is available for use asamask, in
analyses, and for display.

Digitizing isdone in a"polygon™ method. Each areais circumscribed completely. Two or more areas
and/or lines might define asingle part of amap. Each part of the map, however, is assigned only the
LAST areaor line which covered it.

THE PROCESS:

Step 1: Choose to define an area or line, quit, or finish. If you quit, the session exits with nothing
created. If you choose to finish (done), you will be prompted for a new map name; the new map is then
created.

Step 2: If you choose to make an area or line you must identify the category number for that area or line.
Step 3: Using the mouse trace the line or circumscribe the area; or, finish (go to Step 1).

SEE ALSO

v.digit - Highly, interactive tool for digitizing, editing, and labeling vector data
d.display - Tool for displaying and producing maps

d.mapgraph - Draws simple graphics on amap

r.in.poly - Tool for importing "polygon™ data to raster format

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

r.direct

NAME
r.direct - Generates aflow direction map from a given elevation layer
(GRASS Raster Program)

GRASSVERSION
4.x,5.x

SYNOPSIS

r.direct

r.direct help

r.direct input=name output=name type=name

DESCRIPTION
r.direct generates a flow direction map from a given elevation layer.

OPTIONS
Parameters:
input=name elevation map

output=name flow direction map

type=name type of flow direction map to be created.

Options: agnps or grass
The type is the type of format for which the user wishes to create the flow direction map. The agnps
format gives category vaues from 1-8, with 1 facing north and increasing values in the clockwise
direction. The answers format gives category values from 0-360 degrees, with 0 (360) facing east and
values increasing in the counter clockwise direction at 45 degree increments. The grass format gives the
same category values as the r.slope.aspect program.

Example
r.direct input=ansi.elev output=ansi.asp type=grass
will create a flow direction map ansi.asp for the type grass
NOTE
r.direct is sensitive to the current window setting. Thus the program can be used to generate a flow

direction map for any sub-area within the full map layer. Also, r.direct is sensitive to any mask in effect.

SEE ALSO
r.fill.dir, r.slope.aspect

AUTHOR
Raghavan Srinivasan, Agricultural Engineering, Purdue University

65

r.drain

NAME
r.drain - Traces aflow through an elevation model on araster map layer.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.drain

r.drain help

r.drain input=name output=name [coordinate=x,y[,X,Y,...]]

DESCRIPTION

r.drain traces a flow through a least-cost path in an elevation model. The elevation surface (a raster map
layer input) might be the cumulative cost map generated by the r.cost program. The output result (also a
raster map layer) will show one or more least-cost paths between each user- provided location(s) and the
low spot (low category values) in the input model.

The program will be run non-interactively, if the user specifies the names of raster map layers and any
desired options on the command line, using the form

r.drain input=name output=name [coordinate=x,y[,X,Y,...]]

where the input name is the name of a raster map layer to be used in calculating drainage, the output
name is the name of the raster map layer to contain output, and each x,y coordinate pair is the geographic
location of a point from which drainage is to be calculated.

Alternately, the user can simply type r.drain on the command line, without program arguments. In this
case, the user will be prompted for needed parameter values using the standard GRASS parser interface
described in the manual entry for parser.

OPTIONS
Parameters:
input=name Name of raster map layer containing cell cost information.

output=name Name of raster map layer to contain program output.

coordinate=x,y[,x,y,...] Each x,y pair is the easting and northing (respectively) of a starting point from
which a least-cost corridor will be developed. As many points as desired can be input. (But, see BUGS
below.)

EXAMPLE
Consider the following example:

I nput : Qut put :

66

The user-provided starting location in the above example is the boxed 19 in the left-hand map. The path
in the output shows the least-cost corridor for moving from the starting box to the lowest (smallest)
possible point. Thisis the path araindrop would take in this landscape.

BUGS
Currently, r.drain will not actually provide output for more than one pair of input coordinates stated on
the command line.

r.drain also currently finds only the lowest point (the cell having the smallest category value) in the input
file that can be reached through directly adjacent cells that are less than or equal in value to the cell
reached immediately prior to it; therefore, it will not necessarily reach the lowest point in the input file. It
currently finds pitsin the data, rather than the lowest point present.

Only one least-cost path is currently printed to the output file for the user.

Sometimes, when the differences among cell category values in the r.cost cumulative cost surface output
are small, this cumulative cost output cannot accurately be used as input to r.drain (r.drain will output bad
results). This problem can be circumvented by making the differences between cell category values in the
cumulative cost output bigger. It is recommended that, if the output from r.cost is to be used as input to
r.drain, the user multiply the input cost surface map to r.cost by the value of the map resolution, before
running r.cost. This can be done using r.mapcalc or other programs. The map resolution can be found
using g.region.

SEE ALSO
g.region, r.cost, r.mapcalc, parser

AUTHOR
Kewan Q. Khawaja, Intelligent Engineering Systems Laboratory, M.I.T.

67

r.feat.thin

NAME
r.feat.thin - GRASS module that takes the feature output of r.param.scale and creates either a sites file or
raster containing VIPs (pits, peaks and passes).

GRASSVERSION
4.x

SYNOPSIS
r.feat.thin [-sc] feat=name dem=name [out=name]

OPTIONS

Flags:

-S Create sites file output

-C Create corner values

Parameters:

feat=name Raster surface feature layer from r.param.scale
dem=name DEM that matches feature classification

out=name Output raster layer containing thinned surface features
SEE ALSO

r.param.scale, s.delaunay

AUTHOR & HISTORY
Jo Wood, Dept. of Geography, 19th July, 1995

Modified to include elevation in sites output (conforms with GRASS 4.2 sites API). This alows
production of TIN from sitesfile alone.

Jo Wood, 4th September, 1996

Modified to force output of corner cellsif required.

68

r.fill.dir

NAME
rfill.dir - Filters and generates a depressionless elevation map and a flow direction map from a given
elevation layer r.fill.dir (GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r fill.dir

rfill.dir input=elev_map elevation=corrected_elev_map direction=flow_direction_map type=agnps
(answers or grass)

OPTIONS
Parameters:
input=mapname elevation map

elevation=map corrected elevation map
direction=map flow direction map
type=text type of flow direction map to be created
EXAMPLE
rfill.dir input=ansi.elev elevation=ansi fill.elev direction=ansi.asp type=grass

will create a depressionless elevation map ansi .fill.elev and a flow direction map ansi.asp for the type
grass

ATTENTION

The typeisthe type of format at which the user wishes to create the flow direction map. The agnps format
gives category values from 1-8, with 1 facing north and increasing values in the clockwise direction. The
answers format gives category values from 0-360 degrees, with 0 (360) facing east and values increasing
in the counter clockwise direction at 45 degree increments. The grass format gives the same category
values as the r.slope.aspect program.

The method adopted to filter the elevation map and rectify it is based on the paper titled " Software Tools
to Extract Structure from Digital Elevation Data for Geographic Information System Analysis' by SK.
Jenson and J.O. Domingue (1988).

The procedure takes an elevation layer as input and initially fills all the depressions with one pass across
the layer. Next the flow direction algorithm tries to find a unique direction for each cell. If the watershed
program detects areas with potholes, it delineates this area from the rest of the area and once again the
depressions are filled using the neighborhood technique used by the flow direction routine. The fina
output will be a depressionless elevation layer and a unique flow direction layer.

The flow direction map can be encoded in either ANSWERS (Beasley et. al, 1982) or AGNPS (Y oung et.
al, 1985) form, so that it can be readily used as input to these
hydrologic models. The resulting depressionless elevation layer can further be manipulated for deriving
slopes and other attributes required by the hydrologic models.

69

NOTE

Ther fill.dir program is sensitive to the current window setting. Thus the program can be used to generate
aflow direction map for any sub-area within the full map layer. Also, r fill.dir is sensitive to any mask in
effect.

SEE ALSO
r.direct, r.slope.aspect

REFERENCES

Jenson, SK., and J.O. Domingue. 1988. Extracting topographic structure from digital elevation model
data for geographic information system analysis. Photogram. Engr. and Remote Sens. 54: 1593-
1600.

Beasley, D.B. and L.F. Huggins. 1982. ANSWERS (areal nonpoint source watershed environmental
response simulation): User's manual. U.S. EPA-905/9-82-001, Chicago, IL, 54 p.

Young, RA., C.A. Onstad, D.D. Bosch and W.P. Anderson. 1985. Agricultural nonpoint surface
pollution models (AGNPS) | and 1l model documentation. St. Paul: Minn. Pollution control
Agency and Washington D.C., USDA-Agricultural Research Service.

AUTHOR
Raghavan Srinivasan, Agricultural Engineering Department, Purdue University

70

r.flow

NAME

r.flow - construction of slope curves (flowlines), flowpath lengths, and flowline densities (upslope areas)
from araster digital elevation model (DEM).

(GRASS Raster/Vector Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.flow

r.flow help

r.flow [-u3mMgh] elevin = name [aspin = name] [barin = name] [skip=val] [bound = val] [
offset = val | [flout = name] [Igout = name] [dsout =name]

DESCRIPTION

r.flow generates flowlines using a combined raster-vector approach (see Mitasova and Hofierka 1993 and
Mitasova et al. 1995) from an input elevation raster map elevin (integer or floating point), and optionally
an input aspect raster map aspin and/or an input barrier raster map barin. There are three possible output
maps, which can be produced in any combination simultaneously: a vector file flout of flowlines, a raster
map Igout of flowpath lengths, and a raster map dsout of flowline densities (which are equal upsiope
contributed areas per unit width, when multiplied by resolution).

Aspect used for input must follow the same rules as aspect computed in other GRASS programs (see
r.dlope.aspect, s.surf.rst).

Flowline output is given in a vector map flout (flowlines generated downhill). The line segments of
flowline vectors have endpoints on edges of a grid formed by drawing imaginary lines through the centers
of the cellsin the elevation map. Flowlines are generated from each cell downhill by default; they can be
generated uphill using the flag -u. A flowline stops if its next segment would reverse the direction of flow
(from up to down or vice-versa), cross a barrier, or arrive at a cell with undefined elevation or aspect.
Another option, skip=val, indicates that only the flowlines from every val-th cell are to be included in
flout. The default skip is max(1, <rows in elevin>/50, <cols in elevin>/50). A high skip usually speeds
up processing time and often improves the readability of a visualization of flout.

Flowpath length output is given in araster map Igout. The value in each grid cell is the sum of the planar
lengths of al segments of the flowline generated from that cell. If the flag -3 is given, elevation is taken
into account in calculating the length of each segment.

Flowline density downhill or uphill output is given in araster map dsout. The value in each grid cell isthe
number of flowlines that pass through that grid cell, which means the number of flowlines from the entire
map which have segment endpoints within that cell.

OPTIONS
The program will run non-interactively if the user specifies program arguments and flag settings on the
command line using the following form:

r.flow [-u3mMgh] elevin = name [aspin = name] [barin = name] [skip=val] [bound = val] [
offset = val] [flout = name] [Igout = name] [dsout = name]

Alternatively, the user can simply type r.flow on the command line and the program will ask for
parameter values and flag settings interactively, using the standard GRASS parser interface.

71

Flags:

-u Generate flowlines uphill (default generates flowlines downhill).
-3 Compute three-dimensional lengths (default is two-dimensional).
-m Use less memory and compute aspect at each cell on the fly. This option incurs a performance

penalty. If thisflag is given, the aspect input map (if any) will be ignored.

-M Use afixed size memory and utilize page-swapping to handle large input files. This option incurs
a severe performance penalty but is the only way to handle arbitrarily-large datafiles. If thisflag is given,
the -mflag will be ignored.

-q Quiet operation. Do not print diagnostic messages indicating progress.
-h Display reference information.
Parameters:

elevin=name Use the existing raster file name with elevations as input (required).
aspin=name Use the existing raster file name with aspects as input.

barin=name Use the existing raster file name with non-zero values representing barriers as input.

skip=val Set the number of cells between flowlines in the flout output map to val.

bound=val Set the maximum number of segments of each flowline to val (default is the maximum
possible).

flout=name Output coordinates of flowlines to a vector file named name.

Igout=name Output flowpath length values to araster file named name.
dsout=name Output flowline density values to araster file named name.

offset=value Maximum magnitude of random grid point offset.
Default: 0

NOTES

For best results, use input elevation maps with high precision units (e.g., centimeters) so that flowlines do
not terminate prematurely in flat areas. To prevent the creation of tiny flowline segments with
imperceivable changes in elevation, an endpoint which would land very close to the center of agrid cell is
guantized to the exact center of that cell. The maximum distance between the intercepts along each axis
of asingle diagonal segment and another segment of 1/2 degree different aspect is taken to be "very close"
for that axis. Note that this distance (the so-called "quantization error") is about 1-2% of the resolution on
maps with square cells.

The values in length maps computed using the -u flag represent the distances from each cell to an upland
flat or singular point. Such distances are useful in water erosion modeling for computation of the LS
factor in the standard form of USLE. Uphill flowlines tend to merge on ridge lines; by redirecting the
order of the flowline points in the output vector map, dispersed waterflow can be simulated. The density
map can be used for the extraction of ridge lines.

72

Computing the flowlines downhill simulates the actual flow (also known as the raindrop method). These
flowlines tend to merge in valleys; they can be used for localization of areas with waterflow accumulation
and for the extraction of channels. The downslope flowline density multiplied by the resolution can be
used as an approximation of the upslope contributing area, defined as the area from which water flows
into a given cell, per unit contour width. This areais a measure of potential water flux for the steady state
conditions and can be used in the modeling of water erosion for the computation of the unit stream power
based LS factor or sediment transport capacity.

The program has been designed for modeling erosion on hillslopes and has rather strict conditions for
ending flowlines. It is therefore not very suitable for the extraction of stream networks or delineation of
watersheds unless a DEM without pits or flat areasis available.

If r.flow is invoked with the -M flag, it will create up to three segment files; concurrently running copies
of r.flow using this flag will compete for the same three files. Until concurrency control is standardized in
GRASS it is suggested that all concurrently running copies of r.flow using the -M flag have distinct input
and output files.

DIAGNOSTICS
ERROR: GISRC - variable not set. The program was run outside of GRASS.

Usage: r.flow [-uzmg] elevin=name [aspin=name] [barin=name][skip=value] [bound=value]
[flout=name] [Igout=name] [dsout=name]

Invalid options were specified on the command line.

ERROR: r.flow: error getting current region

ERROR: r.flow: cannot reset current region

"ERROR: r.flow: cannot find file" filename

"ERROR: r.flow: cannot get header for " filename

"ERROR: r.flow: cannot create raster\|\|vector map " filename

ERROR: r.flow: cannot create\|[\|open\|\|read\|\|write segment "file " filename

Self-explanatory or beyond explanation.
"ERROR: r.flow: " input " file's resolution differs from current” region resolution. The resolutions of all
input files and the current region must match. In future versions this error will be demoted to awarning.

"ERROR:r.flow: resolution too unbalanced (" val " x " val ")" The difference in length between the two
axes of agrid cell is so great that quantization error is larger than one of the dimensions. Resample the
map and try again.

SEE ALSO
r.basinsfill, r.watershed, r.drain, r.slope.aspect, r.water.outlet

AUTHORS
Original version of program:
Maros Zlocha and Jaroslav Hofierka, Comenius University, Bratislava, Slovakia,

The current modified version of the program (adapted for GRASS5.0):
Helena Mitasova, Mark Ruesink, and Joshua Caplan, University of Illinois at Urbana-Champaign with
support from US Army CERL.

REFERENCES
Mitasova, H. (1993): Surfaces and modeling. Grassclippings (winter and spring) p.18-19.

73

Mitasova, H. and Hofierka, J. (1993): Interpolation by Regularized Spline with Tension: 11. Application to
Terrain Modeling and Surface Geometry Analysis. Mathematical Geology 25(6), 641-650.

Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.(1996): Modeling topographic potential for erosion and
deposition using GIS. Int. Jour. of GIS, 10(5), 629-641.

Mitasova, H., Mitas, L., Brown, W.M., Gerdes, D.P., Kosinovsky, I., Baker, T., 1995: Modeling spatially
and temporally distributed phenomena: New methods and tools for GRASS GIS. International

Journal of Geographical Information Systems 9(4), 433-446.

74

r.grow

NAME
r.grow - Generates an output raster map layer with contiguous areas grown by one cell (pixel).
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.grow

r.grow help

r.grow [-bq] input=name output=name

DESCRIPTION
r.grow adds one cell around the perimeters of all areas in a user-specified raster map layer and stores the
output in a new raster map layer.

An area consists of any contiguous clump of cells with non-zero category values. No distinction is made
between differing category values within an area. Rather, a border is grown around the outside of each
entire contiguous set of non-zero cells.

The output raster map layer will not go outside the boundaries set in the current geographic region. Thus,
if a contiguous area in the input raster map layer extends to the geographic edge of the current map layer,
no new border cells can be added to that side of the area

Growth around a rectangular area in the input raster map layer will occur straight out from each edge, but
not diagonally from the corners of the rectangle. Thus, the "grown" border area will contain lines along
the edge of the original rectangle, but the corners of the border will not be squared off. Instead, the lines
of the border that go along each side of the original rectangle will touch only at the corners of the cells at
the end of each line.

OPTIONS

The user can run r.grow either interactively or non- interactively. The program is run interactively if the
user types r.grow without specifying flag settings and parameter values on the command line. In this
case, the user will be prompted for input.

Alternately, the user can run r.grow non-interactively, by specifying the names of an input and output map
layer, and including any desired flags, on the command line.

Flags:

-b Output a binary raster map layer having only zero-one category values, regardless of the category
values in the input map layer. In this case, al cells with a non-zero category value in the input map layer
are assigned to category 1 in the output map layer. If the -b flag is not used, these cells will retain their
original non-zero category values. In either case, al cells whose category value is changed from O during
the growing process are assigned a category value of 1 in the output map.

-q Run quietly, suppressing printing of information about program progress to standard outpuit.
Parameters:

input=name Name of an existing raster map layer in the user's current mapset search path containing
areasto be "grown".

75

output=name Name of the new raster map layer to contain program output. This map will be binary if
the user sets the -b flag. Otherwise, input map cells having non-zero category values will retain their
origina values. In either case, all cells whose values changed during growth will be assigned category
value 1 in the output map.

NOTES

The r.grow command can be used to represent the boundary of one or more areas. In this case, the zero-
one (binary) output option should NOT be used. Then the input map layer can be subtracted from the
output map layer using the r.mapcalc command. All original non-zero category values will be subtracted
out, leaving the boundary areas only. This resulting zero-one boundary depiction can be displayed over
other related raster map layers using the overlay option of d.rast.

If the resolution of the current geographic region does not agree with the resolution of the input raster
map layer, unintended resampling of the original raster map layer may occur. The user should be sure
that the current geographic region is set properly.

SEE ALSO
d.rast, g.region, r.mapcalc, r.poly

AUTHOR
Marjorie Larson, U.S. Army Construction Engineering Research Laboratory

76

r.hydro.CASC2D

NAME
r.hydro.CASC2D - GRASS raster command to execute fully integrated distributed hydrol ogic modeling.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS:

r.hydro.CASC2D

r.hydro.CASC2D help

r.hydro.CASC2D [-toepidbuq] elevation=mapname time_step=value tot_time=value
discharge=mapname outlet_east& north& slope=east,north,bedslope rain_duration=value

[watershed mask=mapname] [initial_depth=mapname] [storage capacity=mapname]
[interception_coefficient=mapname] [roughness_map=mapname] [Manning_n=value]

[conductivity=mapname] [capillary=mapname] [porosity=mapname] [moisture=mapname]
[pore_index=mapname] [residual _sat=mapname] [lake_map=mapname] [lake elev=mapname]
[radar_intensity_map=mapname] [links_map=mapname] [nodes map=mapname]
[channel_input=mapname] [table input=mapname] [dis_profile= mapname]
[wat_surf_profile=mapname] [hyd_location=mapname] [r_gage file=mapname] [unif_rain_int=value]
[num_of raingages=value] [gage time_step=value] [radar_time step=value] [write_time_step=value]
[unit_el_conv=value] [unit_lake=value] [unit_space=value] [d_thresh=value]
[dis_hyd_location=mapname] [depth_map=mapname] [inf_depth_map=mapname]
[surf_moist_map=mapname] [rate_of infil_map=mapname] [dis_rain_map=mapname]

NOTE

In above, the command line arguments have been rearranged so that the required parameters (without
brackets) are placed first. When doing "r.hydro.CASC2D help", the user will see a different sequence of
parameters.

DISCLAIMER

Users with no background in or understanding of distributed hydrology are strongly advised against using
this code in any mode, particularly in operational mode. Besides knowledge of basic hydrology,
experience with typical numerical techniques used in physically-based hydrodynamic models is
recommended as it will help the user grasp capabilities and limitations of this model. This manual is
significantly condensed for electronic distribution and is in no way comprehensive. Users are encouraged
to experiment with the model and venture in hydrology textbooks and journal papers to learn more about
the topics touched upon in this manual

HISTORY

CASC2D originaly began with the two-dimensional overland flow routing algorithm developed in APL
by Prof. P.Y. Julien at Colorado State University. The overland flow routing module was converted from
APL to FORTRAN by Bahram Saghafian, then at Colorado State University, with the addition of Green &
Ampt infiltration and explicit channel routing (Julien and Saghafian, 1991, Saghafian, 1992, and Julien et
al., 1995). The Fortran version was reformulated, significantly enhanced, and re-written in the C
programming language by Bahram Saghafian at the U.S. Army Construction Engineering Research
Laboratories. Implicit channel routing code was developed and added to r.hydro.CASC2D by Fred L.
Ogden (Ogden, 1994), formerly at Colorado State University, now Asst. Professor, Department of Civil
and Environmental Engineering, University of Connecticut, Storrs, Connecticut. This version became
known as r.hydro.CASC2D, part of the GRASS GIS for hydrologic simulations (Saghafian, 1993).

77

DESCRIPTION

r.hydro.CASC2D is a physicaly-based, distributed, raster hydrologic model which simulates the
hydrologic response of a watershed subject to a given rainfall field. Input rainfall is alowed to vary in
space and time. Major components of the model include interception, infiltration, and surface runoff
routing. Interception is a process whereby rainfall is retained by vegetation. Interception is estimated
using an empirical three parameter model. Infiltration is the process whereby rainfall or surface water is
pulled into the soil by capillary and gravity forces. The Green and Ampt equation with four parametersis
applied to model the event-based infiltration. For continuous soil moisture accounting, redistribution of
soil moisture can also be simulated whenever the non-intercepted rainfall intensity falls below the
saturated hydraulic conductivity of the soil. The redistribution option requires two more soil hydraulic
parameters. Excess rainfall becomes surface runoff and is routed as overland flow and subsequently as
channel flow. The overland flow routing formulation is based on a two-dimensional explicit finite
difference (FD) technique, while two different FD techniques, one explicit and one implicit, provide
options for routing one-dimensional channel flow. Through a step function, a depression depth may be
specified, below which no overland flow will be routed.

The following sections describe various aspects of the model. In executing the model, the likelihood of
making a serious mistake by an inexperienced user is unfortunately very high due to complexity of input
and output options. Thus the user must thoroughly read all the details of this manual and then select
appropriate options for his or her needs. Since at this time GRASS is an integer GIS, all input maps are
stored in integer form. This requires conversion from integer to floating point representation via a scaling
factor. The scaling factor for all floating point values is fixed. Therefore, the integer maps of parameter
values are created by multiplying floating point values (e.g. volumetric water content) by a multiplier.

PARAMETERS/OPTIONS

The following input/output parameters/options control complexity of the smulation. Map and file names
in square brackets [] are optional. Some maps are mutually exclusive (logical -or-), while some maps
reguire other maps to enable proper function (logical -and-). Carefully read the NOTES section.

INPUT
TOPOGRAPHY

€levation=mapname map of elevation (DEM).

outlet_east& north& slope=value,value,value easting, northing, and bed sSope at the
outlet

(comma delimited)

TIME

time_step=value computational time step duration in seconds. (typ. 1 to 30 seconds)

tot_time=value total simulation timein sec.

OVERLAND FLOW

[Manning_n=value] spatialy uniform Manning's n roughness value for overland flow.
-Or-
[roughness_map=mapname] spatialy varied map of Manning's n roughness coefficient (values in

1000* Manning's n).

78

[watershed _mask=mapname] map of watershed boundary (or mask). This option is recommended,
as it speeds execution greatly.

[d_thresh=value] threshold overland depth, in meters, below which overland routing
will not be performed (i.e. average depression storage).

[initial_depth=mapname] map of initial overland (not lakes) depth in mm.

RAINFALL

rain_duration=value total rainfall duration in sec.

[unif_rain_int=value] spatially uniform rainfall intensity in mm/hr.

-or-

[r_gage file=filename] raingage rainfall input file name (ASCII).

-and-

[num_of raingages=value] number of recording raingages.

-and-

[gage time step=value] time step (temporal resolution) of recorded raingage data in sec.
-or-

[radar_intensity_map=mapname] prefix of time series of maps of radar- (or otherwise-) generated
rainfall intensities in mm/hr.

-and-

[radar_time_step=value] timeincrement between radar- (or otherwise-) generated rainfall mapsin sec.
INTERCEPTION

[storage_capacity=mapname] map of vegetation storage capacity in tenths of mm.

-and-

[interception_coefficient=mapname] map of interception coefficient (values in 1000*actual
coefficient).

INFILTRATION

[conductivity=mapname] map of soil saturated hydraulic conductivity in tenths of mm/hr (Req'd for G& A
and Redist).

[capillary=mapname] map of soil capillary pressure head at the wetting front in tenths of mm (Reg'd
for G& A and Redist).

[porosity=mapname] map of soil effective porosity (values in 1000*porosity) (Req'd for G&A and
Redist).

79

[moi sture=mapname] map of initial soil moisture (values in 1000*moisture) (Req'd for G&A and
Redist).

[pore_index=mapname] map of soil pore-size distribution index (Brooks & Corey lambda) in
1000*index (Req'd for Redist).

[residual_sat=mapname] map of soil residual saturation (values in 1000*residual saturation) (Req'd for
Redist).

LAKES

[lake_map=mapname] map of lakes categories.

[lake elev=mapname] = map of lakesinitial water surface elevation (also see unit_lake).
CHANNEL ROUTING

[channel_input=filename] channel input data file name (ASCII), required for explicit
(EX) and implicit (IM) channel routing methods.

[links_map=mapname] map of channel network link numbers. (EX & M)
[nodes_map=mapname] map of channel network node numbers. (EX & IM)

[table_input=filename] look-up table file for links with breakpoint cross section, link type 8, (ASCII)
(IM)

[dis_profile=filename] channel initial discharge profile file name (ASCII). (IM)
[wat_surf_profile=filename] channel initial water surface profile file name (ASCII). (IM)

[hyd_location=filename] file name containing link and node numbers of interna locations where
discharge hydrographs are to be saved (ASCII).

UNITS

[unit_el_conv=value] unit conversion factor by which the values in elevation must be DIVIDED to
convert them into meters.

[unit_lake=valu€] unit conversion factor by which the values in lake surface elevation map must
be DIVIDED to convert them into meters.

[unit_space=value] unit conversion factor by which all region easting and northing values must be
DIVIDED to convert them into meters.

OUTPUT

discharge=filename outlet hydrograph file name (ASCII).

[dis_hyd_location=filename] output file name for discharge hydrograph at internal locations
(ASCII)

[write_time_step=value] timeincrement for writing output raster maps in seconds.

80

-and-

[depth_map=mapname] output maps of surface depth in mm.

[inf_depth_map=mapname] output maps of cumulative infiltration depth in tenths of mm.
[surf_moist_map=mapname] output maps of surface soil moisture in number of fractions of a
thousand.

[rate_of infil_map=mapname] output maps of infiltration rate in mm/hr.
[dis_rain_map=mapname] output maps of distributed rainfall intensity in mm.

FLAGS
There are several flags whose utility is driven by data availability and/or user's choice.

-t spatialy interpolates raingage rainfall intensities using Thiessen polygon technique. The default
technique uses inverse-distance-squared proportionality for interpolation of rainfall intensity over space.

-0 routes edge-accumulated overland flow out of active region (ONLY when no mask is specified).
Often the surface water accumulated at the edges of the current region creates severe backwater effects
and may limit the use of longer computational time steps.

-e performs one-dimensional explicit finite difference channel routing. May be suitable for low- to
medium-intensity rainstorms over small arid and semi-arid watersheds with no base flow discharge. This
option often limits the computational time step to small values (<10 seconds). Channel bed smoothing is
recommended to eliminate adverse slopes. No hydraulic structures, except reservoir spillways, can be
simulated.

-p assumes uniform channel geometry in each link (requires -e option). If this option is chosen, the
channel input file (channel _input) must have only one line per fluvial link rather than the default of one
line per node.

-i performs Preissmann double sweep implicit channel routing. Particularly suitable for watersheds
with some base flow to avoid dry-bed condition with channel slopes less than 1%. Supercritical slopes
cannot be handled; a warning message will be printed if supercritical flow is encountered.

-b initializes the channel depth and discharge files (similar to -d, requires -i option) using the
standard step backwater method. This option must be used with -i flag and replaces -d option to write
"dis_profile" and "wat_surf_profile" files. At present, only link types 1, 2, and 8 may exist in the channel
network.

-d performs channel initialization for implicit routing (similar to -b, requires -i option) by flooding
the entire channel network with a horizontal water surface and draining down to normal depth using a
y(t) outlet boundary condition (similar to -b). It is essentia for implicit channel routing technique that a
minimum initial base flow discharge exist in the channels and also the corresponding initial water surface
profile at each node in the channel network have a realistic value. When the depth at the outlet reaches
normal depth, the values of depth and discharge at each node is written to "dis profile” and
"wat_surf_profile" files for use in start up of actual ssimulations. With this option no other component of
the model is executed; only the implicit channel routing is performed to create initial depth and discharge
files necessary for start up of actual simulations.

81

-u writes discharges in cubic feet per second (cfs) and volumesin cubic feet in "discharge” file. The
internal calculations are all in S| units regardless of this flag. The default SI unit prints the discharges in
cubic meters per second (cms) and volumes in cubic meters (m3).

-q quietly skips printing iteration, time, and discharge values to the screen. No status report is
printed.

IMPORTANT NOTES
The user must pay close attention to the following notes prior to any simulation:

1) watershed mask: Although optional, preparation of this map is highly recommended as it cuts down
on the memory requirements by the amount directly proportional to the ratio of mask area over the region
area (also see -o flag). If the basin (mask) delineation has not been performed correctly, surface water
may accumulate near the edges of the watershed. This excess water has no way out of the watershed and
will accumulate, creating undesirable backwater effects within the watershed which eventualy dictate use
of shorter time step in order to accommodate such effects. It is recommended, in such instances, to re-
delineate the watershed along the edges. An aternative would be to lower the elevation of the cells being
flooded by excessive surface runoff near the edges such that no artificial backwater is created.

2) elevation: The elevation map in the form of Digital Elevation Model (DEM) is undoubtedly one of the
most important inputs for distributed modeling. Thus the quality of the DEM plays a major role in
success of distributed hydrologic simulations. DEMs almost always contain errors. Large flat areasin the
DEM may be due to the limited vertical resolution of elevation data. Routing over such flat areas usually
creates problems for the numerical techniques used in distributed physically-based models. Unreal pitsin
the DEM may be artifacts of interpolation scheme used to rasterize digitized contours, or due to coarse
resolution in areas of concave topography. As a rule of thumb, the user must cross check the DEM with
topographic maps of the area. One way to discover potential errorsin the DEM isto run r.hydro.CASC2D
iteratively with no other option except uniform rainfall and a relatively short time step. Writing surface
depth maps should also be selected (see depth_map and write_time_step options). The simulation may
terminate normally, at which case the surface depth maps must be examined in order to determine where
most water accumulation occurred and whether such accumulation areas are justified by the topographic
map of the area. Also, stream network may be checked for proper connectivity via depth maps.
Alternatively, if the model crashed at a certain location (whose address is printed on the screen as well as
at the bottom of discharge file) the user must zoom in and double check the DEM with the topographic
map. Often times some manual editing of the DEM is necessary in order to impose the actual drainage
trend of the topo map. Prior to editing it is recommended that the DEM be multiplied by 10 or 100,
particularly if the origina vertical resolution of the DEM is also a concern. To account for this
multiplication factor use unit_el_conv=10 or unit_el_conv=100, whichever appropriate. Note that only the
unreal pits and depressions must be removed since they most likely trap surface runoff which would have
otherwise contributed to the outlet. The real lakes and reservoirs may be simulated if delineated (see
lake_map). In any event, non-smoothed DEMs require short computational time steps, while properly
smoothed DEMSs, particularly those with coarser grid space resolution, allow use of longer time steps.
Another source of concern, which was briefly mentioned in above paragraph, about the quality of the
DEMs is that a nicely connected stream network cannot be derived from non-smoothed DEM. If no
delineated network (in the form of a vector file, for example) is available, an approach similar to what was
described before may be taken in order to edit the DEM. However where a network has been delineated
independent of the DEM then the elevation of stream cells should be checked so that they are not higher
than those of the surrounding cells. Otherwise the stream cells will not properly collect the surface runoff.

3) initial_depth: This is a map which contains initial overland depth values, if any. Rarely used since

prior to the storm overland planes are often dry. For channel initial depth see dis profile and
wat_surf_profile options.

82

4) storage capacity & interception_coefficient: In r.hydro.CASC2D, the interception rate (i) is expressed
as.

i()=r(t) whilel <a
i()=b*r(t) whilel > a

where r(t) denotes rainfall intensity at time t; a is the storage capacity; b is the interception coefficient;
and | isthe cumulative interception depth. Storage capacity maps, as well as interception coefficient map,
are usually a reclass of vegetation map. For table of storage capacity and interception coefficient values
see Gray (1970, section 4.6) or Bras (1990) p. 233.

5) roughness map: This map represents the spatial distribution of overland Manning roughness
coefficient n. This map could be a reclass of vegetation cover map and/or the land use map. Tables of
Manning's n are available in most hydrology textbooks. By using Manning resistance equation it is
assumed that the overland flow over watersheds satisfies the conditions of turbulent flow over rough
surfaces.

6) conductivity, capillary, porosity, & moisture: Four soil property maps are needed for modeling
infiltration process using the Green-Ampt technique. These maps respectively contain saturated hydraulic
conductivity, capillary suction head, effective porosity, and initial soil moisture content. The first three
maps may be reclasses of soil texture map and the last one must be prepared considering antecedent soil
moisture conditions. Based on soil textural classifications, tables of estimates of the first three parameters
can be found in Rawls et al. (1983). Wherever reliable field measurements of such parameters are
available they may be substituted for table values. Note that the saturated hydraulic conductivity map
must be adjusted for the percent of rock fraction within the soil, if known. If these four maps are
specified, Green & Ampt infiltration calculations are performed. If one or more of the maps is not
specified, no infiltration calculations are made.

7) pore_index & residual_sat: These two maps are required when continuous soil moisture accounting is
of primary interest. The model is capable of redistributing the soil moisture during periods of no- or low-
intensity rainfall, over which infiltration capacity may recover for the next burst of storm intensity. The
technique used herein for hiatus and post-hiatus stages is primarily based on the method by Smith el al.
(1993). In this model Green-Ampt equation is used for post-hiatus stage. Tables of pore-size distribution
index (Brooks & Corey lambda) and residual saturation are given by Rawls et al. (1982). As in (6),
measured values should be substituted where available. When the four maps specified in (6) as well asthe
two maps specified here are given as command line arguments, the redistribution infiltration routine is
used. All six maps must be specified to enable redistribution infiltration calculations.

8) lake map & lake elev: The first map is the delineated lake map with different categories
corresponding to individual lakes and the second map holds the initial water surface elevation in the
lakes. It is best to number the lakes categories sequentialy. If alake or reservoir connects to the implicit
channel network at its outlet, then the lake must also be numbered as a link as reflected in the
channel_input file. See channel_input and links_map options for more details. However isolated pond
areas may be simulated as well; in fact such ponds are recommended to be delineated as part of the
lake_map. Such isolated lakes should not be present in the links map since their outlet is not connected to
the channel network. The routing of the lakes is performed by linear reservoir technique. Rainfall is
added directly to the lake inflow. No interception or infiltration is abstracted from the lake cells.

9) radar_intensity_map: Thisisthe common prefix of radar- or otherwise- generated rainfall maps. One
possible source of this type of data could be the NEXRAD system (Crum and Albery, 1993).
Alternatively, such time series of raster maps may come from the output of an interpolation software,
which takes in the rainfall site data corresponding to different times and generates the time series of raster
maps. For instance, where raingage rainfall data is available, one could run s.surf.tps of GRASS, one
time for every recording time, and save the interpolated rainfall maps to be used as input for

83

r.hydro.CASC2D. In any case one must pay attention to the unit of intensity, which is in integer
millimeters per hour for map values. Also see radar_time_step, and rain_duration options. Example: If
one sets radar_intensity_map=rain.map and there are a total of eight maps in regular intervals of 10
minutes (radar_time_step=600 and rain_duration= 4800, both in seconds), then the actual name of the
maps in the current mapset would have to be: "rain.map.l", "rain.map.2" through "rain.map.8",
respectively corresponding to time periods of 0-10, 10-20 through 70-80 minutes.

10) links_map & nodes map: A link isachannel segment, of finite length, which is comprised of two or
more computational nodes placed at the center of each grid cell. Any internal boundary condition (weirs
and lakes/reservoirs, for example) is also considered a link with only two nodes, one node upstream of the
internal link and one downstream. Although all links and nodes must be numbered as discussed below,
the link and node maps only contain trapezoidal or look-up table cross sections (link types 1 and 8).
Internal boundary condition link types (e.g. weirs) do not appear in the link or node maps. The internal
boundary condition link types do appear in the channel_input file (see attachment). The purpose of the
link and node maps is to provide connectivity information between overland flow grid cells and channel
(link,node) pairs. This information is used to pass overland flow to the 1-D channel model as latera
inflow. The nodes map must contain the node numbers corresponding to the links map. Thus nodes
corresponding to internal boundary condition links are not present in the nodes map. At a cell where a
link terminates and another link begins (junctions for example) the node number must comply with the
downstream link; i.e. this cell is assigned a value of 1 in the nodes map. However one must note that the
last node of the upstream link also lies at such junction cells. This last node number must be accounted
for in the main ASCII channel datafile (channel_input), in which the total number of nodes per link must
be given. An exception to this rule is the most downstream link leading to the outlet. The links map
essentially describes topology of the stream network and its strict conformation with the stream
numbering conventionsis vital. Output from the GRASS command r.watershed cannot be directly used in
conjunction with r.hydro.CASC2D. The link numbers assigned by r.watershed must be re-numbered in
accordance with the following rules. Additionally, the node map may be constructed by re-numbering the
link map. The general rules for link and node numbering are:

A) Thefirst link is numbered 1.

B) Upstream links must have smaller link numbers than downstream links.
C) Link numbers must change at junctions.

D) Link numbers may not be skipped.

E) Node numbersincrease in the downstream direction.

F) Looped reaches cannot be simulated.

G) Streamsmay run only in x-y directions and not diagonally.

H) Link types cannot be mixed within alink.

A small example network with three links is given below:

LI NK MAP NODE MAP
0000OO0OO0OOOOOOODO 0000OO0OO0OOOOOOODO
0000100000O0O00O0 0000100000O0O00O
0001100000200 0003200000100
0001000002200 0004000003200
0001100022000 0005600054000
0000100220000 0000700760000
0000113200000 0000891800000
00000030000O00O0 0000002000000O0
0000003300000 0000003400000
00000003 000O00O0 0000000500000

This network has three fluvial links, link 1 has 9 nodes in the node map, while link 2 has 8 and link 3 has
5. Note that the junction of links 1 and 2 is labeled link 3. However, links 1 and 2 have hidden nodes at
this junction, which must have the same bed elevation as the first node in link 3, but different cross-
sections. The junction is really not the same point in space for all three links, but really represents a short

distance from the confluence. In the channel_input file, link 1 really has 10 nodes and link 2 has 9. Link
3 would only have 5 nodes, because it’s downstream end is not a junction, rather it is the watershed outlet.
The link and node maps tell r.hydro.CASC2D that the overland flow in the grid cell a row 5, column 4 is
passed to link 1, node 5. For more discussion of links and nodes maps, see channel _input description and
the last section of this document for channel input and table file options®.

11) channel_input, table file: For a detailed description of channel data file set-up and requirements: see
the last section of this document which is a modified version of the document presented at the CASC2D
Workshop by F.L. Ogden, June 9-10, 1994, at the University of Memphis, Tennessee (Revision 2, 10
January 1995). Also it is recommended for the user to refer to Ogden (1994) for an overview of the
implicit channel routing formulation and numerical scheme. Note that for explicit channel routing, the
same channel input file may be used provided that only link types 1 and 4 are present. If explicit channel
routing is used, the channel thalweg elevations are taken from the channel_input file, not from the DEM.

12) dis profile & wat_surf_profile: These two files hold, respectively, the discharge profile and the water
surface profile of all nodes within the stream network, including internal boundary condition nodes.
These files are created by running r.hydro.CASC2D with the -i option AND either -d or -b. After
creation, these files are used to initialize the implicit channel routing scheme for actual watershed
simulations. They must be present for actual ssimulations. The -d flag creates initial discharge and depth
files by flooding the entire channel network with a horizontal water surface, and draining the network
using a depth vs. time relation at the watershed outlet. This draining proceeds until normal depth is
reached at the outlet. At thistime, the dis_profile and wat_surf_profile files are written for use in channel
initialization for later simulations. The -b flag creates the initialization files using the standard step
backwater method. Note that in dis_profile the unit of discharge is in cubic meters per second and the
unit of depth in wat_surf_profile is in meters. Except for the reservoirs, the water surface profile file
actually holds the flow depth values and thus is measured relative to the bed. CAUTION: The implicit
channel routing routine must have good first approximation of depth and discharge at each node in the
network. Inaccurate values (guesses) will surely lead to a crash. Additionally, the implicit channel routine
is for SUBCRITICAL (Froude number < 1) flow only. A newly created channel input file will almost
always crash when first run. It isthen the task of the user to identify the location of the problem. Usually,
there are regions of hydraulically steep slopes which cause supercritical flow. The channel code will warn
the user of supercritical flow, including node and link number when it occurs, and then exits. The user
should look at that node/link combination, and alter the data file to eliminate the reach of steep slopes.
One workable solution to prevent stability problems at low flows is to use the so-called "Preissmann Slot"
(see Cunge et al., 1980, for example). Be patient, as getting the channel network running is a time
consuming process. There are a host of possible errors including: abrupt changes in cross-section, DEM-
error, etc.,, which can cause problems. The implicit routing method is not applicable to steep
(mountainous or upland) streams. If supercritical flow is encountered in upland (1st order) streams, they
can be eliminated from the network. The user should verify the suitability of this approach on each
watershed.

13) hyd_location: If afilename is specified, this input ASCII file contains the link and node numbers of
the locations at which discharge hydrographs are to be written to the file named in the dis_hyd location
option. The first column in this file should contain link numbers and the second column must be filled
with the corresponding node numbers. For a description of the output, see the dis_hyd location option.

14) r_gage file: This is an ASCII file which must be provided when raingage rainfall data is being
simulated. At the top of the file, two-column lines hold the easting and the northing for each raingage.
The number of such lines is determined by the total number of recording raingages (num_of _raingages).
The location of any of the gages does not have to be within the current region nor within the current
watershed mask as long as the easting and the northing are not specified relative to the current region, but
are based on absolute values in the UTM or SP coordinates. If a gage falls outside in a different zone to
the left of the active region's zone, then negative values are also acceptable. Note however that raingages
well outside the watershed under analysis generally provide poor rainfall estimates. The subsequent lines

85

at the bottom of the raingage file must reflect tempora variation of rainfall intensity. The number of
columns per line is equal to the number of raingages (specified via num_of_raingages). The columns are
separated by space. The number of lines in this lower portion is equal to number of instances, separated
by a constant time interval, the raingages have made a recording. As usualy is the case, the unit of
rainfall intensity for raingage data must be in inches per hour. Example: For three raingages, each
recording rainfall intensity every 2 minutes for a total duration of, say, 10 minutes, afile called "rain.inp"
may look likethis:

205150.0 750212.0
20545.0 750104.0
205320.0 750173.0

0.0 0.0 0. 55
1.75 2.25 0. 80
1. 00 1.80 1.50
0. 65 0. 90 0.70
0.0 0. 50 0. 30

In above example, the eastings and northing of the first, second, and third raingages are
(205150.0,750212.0), (20545.0,750104.0), and (205320.0,750173.0) respectively. The intensities
recorded by the first gage, for example, are 0.0, 1.75, 1.00, 0.65, and 0.0 inches per hour, respectively,
over 0-2, 2-4, 4-6, 6-8, and 8-10 minutes, etc. For this example r_gage file=rain.inp,
num_of raingages=3, gage time step=120, and rain_duration=600. For state plane (SP) coordinate
system the eastings and northing will have to be in feet rather than meters.

15) outlet_east&north&slope: These three values determine the location of the outlet, in terms of its
easting and northing, and the outlet bed slope. One needs to make sure that the outlet described by its
easting and northing is not only within the active region but also inside watershed mask. Often times the
region is not set to its original settings after zoom-in operations (d.zoom) are performed and this may put
the outlet outside the active region thus causing the model to eventually crash. The bed slope is equal to
tangent of the angle which is made between the bed profile at the outlet and horizontal plane. This slope
is primarily used to calculate the outflow overland discharge at the outlet, if any, based on normal depth
boundary condition, when no channel routing is performed (all surface flow treated as overland flow and
channels essentially assumed wide). Normal depth is aso assumed to prevail at the outlet when explicit
channel routing (-€) has been selected.

16) Manning_n: The alternative to simulating spatially varied roughness coefficient is to provide a single
value of Manning roughness coefficient n via Manning_n parameter. The user is warned if both
roughness_map and Manning_n have been specified.

17) unif_rain_int: This option represents the intensity of the spatially- uniform temporally-constant (up to
the rainfall duration) rainfall. Therefore this option may replace r_gage file and radar_intensity_map
options. The unit isin millimeters per hour.

18) num_of raingages: The total number of recording raingage. If this variable is set to one, no spatial
interpolation is performed and the rainfall is treated as uniform is space but could vary in time. The
temporal variation will be then provided by r_gage file. Note that when num_of _raingages is set to one,
the easting and northing of the gage is irrelevant although two (arbitrary) values must still be provided at
the top of raingage file (r_gage file).

19) time_step: This represents the duration of computational time step in seconds and is a critica
variable determining the total execution time for a particular simulation. There is no firm guide for the
selection of the time step; it comes with experience and strongly depends on watershed and rainfall
characteristics. The general rule for overland routing and explicit channel routing is that shorter time
steps must be used for higher intensity storms, finer horizontal grid resolution (grid spacing), steeper
watershed slopes, larger watershed areas, and smoother surfaces. Stability of explicit routing depends

86

upon Courant number. Unfortunately, the critical condition for Courant number limits the length of the
computational time step, which must be used for the entire simulation unless variable time step algorithm
is implemented in the future. Shorter time steps must be used when backwater effects are generated,
mainly in flat areas which are not part of the lake map. If the time step is too long for any particular
simulation the surface water depth in completely flat areas may show a checker-board pattern, i.e.
oscillations are observed in the water surface level. This eventually results in a crash. As such, the time
step should be decreased and the simulation repeated; or the flat areas be delineated within the lake map.

20) gage time_step: This variable represents the time interval, in seconds, between recording instances of
rainfall intensities by raingage(s). It is implied that the rainfall data has been recorded in regular
intervals. Seethe notesunder r_gage file for an example.

21) radar_time_step: A value expressing the time interval between consecutive rainfall maps. A uniform
time step isimplied.

22) rain_duration: This is the total duration of rainfall in seconds. If multistorm events are simulated,
the time from the beginning of the first storm to the end of the last storm constitutes the total rainfall
duration. As such, selection of soil moisture redistribution capability is recommended via specifying pore
index (pore_index) and residual saturation (residual_sat) maps.

23) tot_time: The total simulation time in seconds. If the falling limb of the discharge hydrograph is of
particular interest the total simulation time must be set to a value greater than total rainfall duration plus
the expected recession time.

24) write_time_step: This time parameter determines the frequency of writing output raster maps and is
equal to the time interval, in seconds, at which output raster maps are saved. Also see depth_map,
inf_depth_map, surf_moist_map, rate_of_infil_map, and dis_rain_map output options.

25) unit_el_conv: This conversion factor is used to convert elevation values in DEM (elevation) map to
meters. This parameter doesn't need to be specified if the DEM is already in meters since the default is
one. For DEM unitsin cm or ft, unit_el_conv must be respectively set to 100 or 3.281.

26) unit_lake: This conversion factor is used to convert the water surface elevation valuesin the lake_elev
map to meters. The default is 1.0.

27) unit_space: This conversion factor is used to convert the horizontal grid spacing resolution to meters.
The default is 1.0. For state plane coordinate system in ft, set unit_space equal to 3.281.

28) d_thresh: This parameter represents an average step retention storage below which the overland
depth will not be routed. Another words, al depressions less than or equal to d_thresh are filled before
any overland flow could begin. The unit must be in meters so for 2 mm of depression storage set
d_thresh=0.002. Higher values of depression storage would reduce the total execution time of the model
as the overland routing consumes most of the CPU effort.

29) discharge: The discharge hydrograph computed at the outlet will be saved in this ASCII file under the
current directory. Some other information, such as peak discharge, is also printed in thisfile.

30) dis_hyd location: Whenever the hyd location option is selected, the discharge at individual node/link
pairs will be saved in this file. The discharge hydrographs at the (link,node) locations specified in
hyd location file are grouped in columns. The number of lines in this file is determined by the total
number of iterations equal to tot_time divided by time_step.

31) depth_map, inf_depth_map, surf_moist_map, rate_of infil_map, & dis rain_map: depth_map is the
common filename prefix given to the time series of output raster maps containing surface depth values in

87

millimeters. At the channel cells the channel flow depth will be recorded in the maps. The surface depth
maps, and all other output maps, are saved at regular intervals determined by write time_step option. If
write_time_step is not set, no output raster map will be saved. The first map aways corresponds to the
initial condition and naturally shows the water surface profile corresponding to the base flow discharge
within the channel network when implicit channel routing is performed. Similarly the last depth map
corresponds to the end-of-simulation time, or to the time at which the program finished abnormally, for
example due to selection of a long step which generated oscillations leading to a crash. Abnormal
program termination caused by oscillating depths may show negative depths in the overland plane. There
is a hard-coded limit of 2000 output raster maps for each simulation. inf_depth map and
rate_of infil_map are two options to save the output raster maps of cumulative infiltration depth, in tenth
of mm, and rate of infiltration in mm/hr, respectively. These two options can only be selected when
infiltration is being computed via either the Green & Ampt or redistribution methods. surf_moist_map
output contains the soil moisture values at the soil surface and it may solely be selected with continuous
infiltration option (pore_index and residual_sat maps are specified). dis rain_map option saves the
instantaneous rainfall intensities, in mm/hr, at write time_step intervals and may be set for the
simulations involving spatially distributed rainstorms; i.e. raingage rainfall data or radar (or other sources
of rainfal raster maps) data. Example: If one sets depth map=depth.out, tot time=1000, and
write_time_step= 100, then a total of 11 raster depth maps will be saved in a normally-terminated
simulation: depth.out.00, depth.out.01, depth.out.02 through depth.out.10, respectively corresponding to
times equal to 0, 100, 200, through 1000 seconds. These maps may be viewed sequentially in animation
form using the GRASS animator program xganim.

GENERAL NOTESFOR CHANNEL_INPUT AND TABLE_FILE FILE OPTIONS

The naming convention associated with the Preissmann double-sweep 1-D implicit channel routing
method is based on the concept to links and nodes. A link is a channel segment, or an internal boundary
condition, which is comprised of two or more computational nodes. All internal boundary conditions
contain two nodes, while fluvial reaches may be of any size greater than or equa to two nodes. The
following discussion of input file format must first distinguish between different link types. A few of the
possible link types are presented below in Table 1. As of August 1995, only link types1, 2, 4, and 8 are
supported. Development is continuing on link types 3 and 7.

Table 1. Link Types

Li nk Nunber of Nunber of
Type DESCRI PTI ON of Link Type Par amet er s Nodes

1 Fl uvi al Link, Trapezoidal Cross-Section 5 >=2

2 Overflow Weir 8 2

3 Cul vert/Weir (not yet supported) 8 2

4 Reservoi r 5 2

7 Bri dge Crossing (not yet supported) 8 2

8 Fl uvi al Link, Look-up Table (Breakpoint) 4 >=2

Cross-Section

At present the channel model formulation accepts cross-sectional input for only two different channel
geometries, namely trapezoidal, and breakpoint via look-up table. Trapezoidal channel parameters, which
must be provided as input at each computation node, include: Manning's n, bottom width, channel depth,
side slope, and bed elevation. Look-up tables of cross sectional properties must include cross-sectional
area, top width, and conveyance at equal depth intervals. Smooth transition in channel cross sectional
properties within links of type 8 and between all connecting fluvial links often plays a vital role in the
success of simulations. Abrupt changes in cross-sections can lead to numerical errors in mass
conservation.

88

As far as handling the reservoirs (link type 4), flow is not routed through reservoirs in this version of the
CASC2D channel routing code. Instead the linear reservoir approximation is used. Among other internal
boundary conditions link types, only weirs can be simulated at present.

The channel_input file contains the channel bed elevation at each node, which constructs the longitudinal
profile of channels in the drainage network. Ideally, the modeler should use surveyed cross sections and
thalweg profiles of the channel network. However, extensive surveys are often impossible for the entire
drainage networks on large watersheds. In lieu of an extensive survey, there are existing tools for
extracting channel topology from digital elevation models (DEM). However, if the channel network is
extracted from a DEM, a smoothing algorithm must be applied (e.g. Ogden et a., 1994) to produce
physically realistic longitudinal profiles because of errorsinherent in any DEM.

EXAMPLE OF INPUT FILE FORMAT AND CONSTRUCTION
NOTE: The channel_input file and table file both follow Sl unit convention. All units of length are in
meters, including elevations.

In this example, a channel input data file is constructed for a fictitious watershed. Note that this
particular example is merely for demonstration and has not been tried in any simulation run. The stream
network will consist of trapezoidal and look-up table fluvia links, an internal reservoir, and an overflow
weir. Regarding the MASK map (watershed_mask option), note that all watershed cells must be marked
with 1, while al raster cells outside the watershed boundary are marked with 0. Also all the cellsin the
lake should carry the value 1 on the LAKE map (lake_map option). If there was another lake in this
example, it would be denoted with the number 2, etc.

The channel link humbering scheme typically employed in double-sweep routing was explained in the
main text. With reference to the LINK map shown below, (links_map option), assume that links 1 and 2
drain into link 3, which in-turn drainsin to the lake, which is assigned link number 4. Also links 7 and 8
drain into link 9. Link 5 originates at the outlet of the reservoir. Link 5 is split into link 6 because of a
change in some cross-section property. Links 6 and 9 flow into link 10, which isimmediately upstream
from aweir which must be considered link 11. Finally, link 12, the most downstream link, lies below the
weir (link 11). Note that the LINK map contains continuous sequence of link numbers, except for the
internal boundary conditions such as the weir (link 11) and lakes (link 4), which does not appear in the
LINK map.

EXAMPLE LINK MAP

=
QOO0 O0OO0OO0OO0OO0OO0OO0OO0OOOOONNOO

=
[ejololololololololololololooloNoNoNal VN o]

R e
ONNOOOOOOO0OD0O0OO00O00O0O0OO0O0OO

=
e} VeoleololololololololololoolololoNoloNeNe]

=
e} SieoleololololololololololoolololoNoloNeNe]

[e¥eYoleNololofoRefooRe ool foRo o foR oo o)
D000 0O0OMOOOODOOOO0OOO0OO0OOOOO
e

OO0 O0OO0O0OWMOONOOO0OO0OO0OOO0OOO0OO0O0OO0O
QOO0 O0WOWOONOOOO0OO0OO0OOORrRRFL,RLRO
QOO0 O0WOONNOO0OOO0OO0OO0OORrFrL,ROOO
QOO0 O0WONNOOOOOOOORrOOO0OO
QOO0 O0WN~NOOOOOOOORrFrL,ROOOO
OO0 0WVWWOOOOOOOOOORrOOOOO
OO0 O0WVWOOO0OO0OO0OO0OO0OO0OORrRLRPFPOOOOO
QOO0 WVWOWOOOOOOO0OOOFrROOOOOOO
OO0 WOOOUIUIOOOWWWNOOOOOO
OQO0OO0OWOOUIUIOOOOOOONOOOOOO
QOO0 WOOOOOOOOOOONNNNOOO
MNOOOOOOO0OO0OO0OO0OO0OO0OO0OO0OO0OOO0OOO0OO0O
[elololololololololololololoolololoNoloNeNe]

89

Now, refer to the NODE map (nodes map option) shown below. In the NODE map, each link is
numbered from 1 to the number of grid cells spanned by that link, with the exception of the internal
boundary conditions. Conceptually, internal boundary conditions (including reservoirs) have two nodes
but they are not given any node numbers in the NODE map. Thisis how the program recognizes internal
boundary conditions. Furthermore, all links except the one leading to the watershed outlet must have an
extra node to provide connectivity to the downstream link. Therefore, even though the NODE map may
show link 1 to have 13 nodes, it actually has 14. This implied extra node for link 1, shared between the
most downstream node of link 1 and the most upstream node of link 3, provides the connection between
link 1 and link 3. The number of nodes in each link in this example are shown below in Table 2. Note
that the node map entries for the lake (link 4) are 0.

EXAMPLE NODE MAP

[c¥eYoloNololofoRelofoRo ool foRoNofoR oo o)
OO0 0OO0OORrRO0OO0O0DO0O00O00O0O0O0O0OO
OO0 O0OO0OONOOROOO0O0O000OO0O0O0OO
OOO0O0OORWOONOOOOOOOOWNRO
OO0OO0O0O0UIOOAWOOOOOOOUTROOO
00000 ONUIODOOO0O0OOODOOOO
OO0 ORMNOO0O0O0O00O00ONOOOO
OOO0OWNOOOOODOOO0O0OOWOOOOO
e
OOO0OROOOOOOOOONROOOOOO
OO0 UIOO0OOOO0OO0OOOWOOOOOOO
OOONOOONROOOWNROOOOOOO
OO0 PMOOAWOOOOOOOVOOOOOO
OO0 WONROOO0OO0O0OO00OMNOUIOOO
OCOORRAWOOOOOOOOOOOORMWOO
OOONOOOOOO0OO0O0OO0OO0O0OOOOONRO
ONRPWOOO0O0O0O0O0D0O00O000O0OO0O0OO
OWOOO0O0O0O00O0ODO0OO0O0OOO0O0OOOO
ORODOOOO0OO0O0O0O0DO0OO0O0O0OO0O0OO0OOOO
PUIOO0OO00000O000O00O00O0O00O0OO
[c¥eYolelololofoRefeoRe ool foRo o foRo o)

Table 2. Number of Nodes in each Link for Example Watershed Stream Network

Li nk Nunber Nunber of Nodes Nunber of Nodes
as in nodes_map in channel -input file
1 13 14
2 10 11
3 3 4
4 0 2
(reservoir)
5 4 5
6 4 5
7 8 9
8 6 7
9 9 10
10 3 4
11 0 2
(weir)
12 6 6

(outlet 1ink)

90

The first portion of the channel input file is used to pass physical constants and simulation parameters to
the model. These include the gravitational acceleration "g", kinetic energy correction factor "alpha’, the
friction slope weighting factor "beta’, the spatial derivative weighting coefficient "theta’, the length of
each node "dx", the computational time step "dt" (seconds), the total simulation time "tt" (seconds), and
the discharge in al first order streams"gmin" (m3/s). At present, the time step "dt" must be identical to
the computational time step used in the overland flow routing portion of r.hydro.CASC2D. The program
must be told the number of links, and the largest number of nodes in any link in the network for dynamic
memory alocation. In our example problem, the number of links is 12, and the maximum number of
nodesis 14 (in link 1). Remember that all links which are not at the outlet or not immediately upstream
of a reservoir must have an extra node for connectivity purposes. The total number of links is called
"nlinks", and the largest number of nodes in any link in the network is called "maxnodes’. In this
example, we will use the constants and parameters given in Table 3:

Table 3. physical constants and simulation parameters

g 9.81 m's2

"al pha" 1.0

"bet a" 0.5

"theta" 0.55

"dx" 100.0 m

"dt" 30.0 s

"ttt 3600.0 s

"qmn" 0.07 cms
"nlinks" 12
"maxnodes" 14

This data constitutes the first portion of channel_input file and is arranged into a header which must have
the form (note floating point and integers):

9.81

1.0 0.5 0.55
100.0

30.0 3600.0

The second portion of the input file describes link types as well as the network topology and connectivity.
Thisis accomplished using a line-input format, one line for each link in the network. Each line contains
6 values arranged in columns, as shown in Table 4.

Table 4. Connectivity information format

Col um Dat a DESCRI PTI ON
1 Li nk nunber (1 NT)
2 Li nk type (INT)
3 Number of links upstreamfromthis link (max. 2, mn. 0) (INT)
4 Upstream link #1 (INT) (O if no upstream|inks)
5 Upstream link #2 (INT) (O if no or only one upstreamlink)
6 Downstream link (O for outlet) (INT)

91

As far as link types in the current example, assume that links 1 through 9, except reservoir link 4 (link
type 4), are well-described as trapezoidal (type 1), and we are using look-up table data to describe the
cross-sections of links 10 and 12 (type 8). The welir (link 11) is of link type 2. Thus the second portion
of input file for describing link types and connectivity looks like:

1 1 0 0 0 3
2 1 0 0 0 3
3 1 2 1 2 4
4 4 1 3 0 5
5 1 1 4 0 6
6 1 1 5 0 10
7 1 0 0 0 9
8 1 0 0 0 9
9 1 2 7 8 10
10 8 2 6 9 11
11 2 1 10 0 12
12 8 1 11 0 0

Note that only the outlet link has O as a downstream dependency. It isimportant that this be the only link
with 0 as a downstream dependency. Also, the location and topology of internal boundary condition links
(4 and 11) with respect to other links are known via above connectivity information in the channel_input
file. Asan interpretation, examine link number 10 above. It is of link type 8 (look-up table cross-section
data), has 2 upstream dependencies (links 6 and 9), and flows into link 11.

The third portion of the input file contains the individual hydraulic property information for each node
in the network. Assume for now that al the trapezoidal channels in the network have the properties
shown in Table 5.

Table 5. Cross-Sectional Properties of Example Trapezoidal Channels

Manni ng roughness coefficient varies

Bottom wi dth (m) varies

Channel depth (m 1.75

Si de slope HV varies

Tal weg el evati on dependent upon | ocation

Now, build the input file section for link #1 which has 13 nodes on the NODE map, plus an extra for
connectivity at the upstream end of link 3 (total of 14 nodes). Thisinput file section will look like:

1 14

0.035 2.10 1.75 2.00 264.40
0.035 2.10 1.75 2.00 263.85
0.035 2.10 1.75 2.00 263.41
0.035 2.10 1.75 2.00 262.98
0.035 2.10 1.75 2.00 262.75
0.035 2.10 1.75 2.00 262.54
0.035 2.10 1.75 2.00 262.37
0.035 2.10 1.75 2.05 262.02
0.035 2.20 1.75 2.05 261.87
0.035 2.20 1.75 2.10 261.75
0.035 2.20 1.75 2.10 261.67
0.035 2.20 1.75 2.15 261.52
0.035 2.30 1.75 2.15 261.25
0.035 2.40 1.75 2.15 261.00

The 1 and 14 on the first line indicate that it is link 1, with 14 nodes. The columns represent Manning's
n, bottom width, channel depth, trapezoidal side slope H/V, and thalweg elevation, respectively.

92

Link 2 might have an entry which looks like:

OO0O00OO00O0OO0O0O0ON
o
%

o
NRONNRNNNR R R
=
o
PRRPPRPRRERERRER
~
ol
NRONNNRRR R R R
©
o
)

o
N
0
o

0.035 2.60 1.75 2.20 261.00
0.035 2.60 1.75 2.40 260.20
0.035 2.80 1.75 2.90 259.67
0.035 2.80 1.75 2.90 259.17

The elevation of the downstream end of links 1 and 2 must be equal to the bed elevation of the upstream
end of link 3. It is required that the bed elevation of all channel inverts at each junction be equal. Even
though they are not exactly the same points in space, they are assumed close enough to have the same
elevation.

\ link 1\ / link 2 /
\ node 14\ / node 11 /
\ /

\ /

\ /

\ /

I I

| link 3 |

| node 1

I I

The input for other links with trapezoidal cross section is similar to the input for link 1 (see the next
section for the complete input file).

Additionally, assume that the reservoir (link 4) has a surface area of 0.498 square km, a rectangular
spillway width of 12m, a spillway discharge coefficient of 0.97, an initial water surface elevation of
260.10m, and a spillway crest elevation of 260.50m. The resulting input file entry is shown below.

4 2
0.498 12.0 0.97 260.10 260.50
0. 000 0.0 0.00 0. 00 0. 00

The number of nodes (line entries) in the channel_input file per reservoir link is two, but the numbers
entered in the second row entry are for further improvements and for now their value isirrelevant. Also
note that the bed elevation at the downstream limit of link 3 MUST be lower than the initial water surface
elevation in the reservoir (link 4). This is mandatory at all downstream boundaries between channels
flowing into the reservoirs. Reservoirs serve as downstream boundary conditions at upstream links. The
elevation of reservoirs should therefore never be allowed to fall below critical depth in any channels which
flow into the reservoir. If this happens, the code will crash.

93

The input for links 5, 6, 7, 8, and 9 will be similar to links 1, 2, and 3. See the constructed input file at
the end of this text. Trapezoidal channel links are simple in terms of input. The channel depth field is
intended to represent the average bank-full depth of the channel. This number is not used in the present
version of the code, but will be in the future when the overland flood plane and channel flows are coupled
iteratively. At present the flows are not fully coupled. Water can flow only from the overland flow plane
into the channels, not from the channels back to the flood plane.

If look-up table data are used (link type 8), the look-up tables are stored in a separate file. The GRASS
command line option for this look-up table file is table file. If there is any link type 8 in the
channel_input data file, the program will attempt to open the file table file (typically called "table.dat").
If thisfile is not present, the program will terminate. In channel_input file, all that is needed is the table
number for a particular description cross section, and the thalweg elevation. Assume that the 4 nodes in
link 10 are approximated by one cross-section, which is given as table entry 1, then the channel_input file
entry for link 10 would look like:

10 4
1 244.0 1 243.5 1 243.0 1 242.5

In this format, the first column represents the look-up table number for the given node, and the second
column represents the bed elevation for that node. Table numbers can be mixed within alink. However,
abrupt changes in cross-section should be avoided because they cause significant continuity errors in the
formulation. The format of the table file is discussed later in this document.

Link 11 isan overflow weir link. While this link has no nodes which appear in the node map for overland
flow connectivity, it does have two nodes in terms of channel topology. The meaning of the columnsin
the weir node input section is presented in Table 6.

Table 6. Parameter description for Weirs

Line Entry Col um Par amet er description

forward direction weir discharge coefficient
reverse direction weir discharge coefficient
0.0 (reserved for future use)

crest length, neters

el evation of weir crest, neters

0.0 (reserved for future use)

downstream bed el evation, neters

=
a' abhwnNE

NNR R R R
IN

The first (upstream) node represents the crest of the rectangular weir. The second (downstream) node
represents the bed of the channel just downstream from the weir. Assume that this weir has a crest
elevation of 244.4 m, a crest width of 8 m, a discharge coefficient in the forward direction of 0.92, a
discharge coefficient for flow in the reverse direction equal to 0.85, and the channel bed elevation
immediately downstream from the weir is 239.8m. The entry for this weir in the channel_input file would
thus appear as.

11 2
0.92 0.85 0.00 8.00 244.4
0. 00 0.00 0.00 0.00 239.8

Link 12 uses table entry 2 for the its first four nodes and entry 4 for the remaining two nodes. Note that
link 12 has 6 nodes in the node map, and 6 nodes in the channel_input file. Because link 12 is the outlet
link, we do not add an extra node at the downstream end for connectivity purposes. The portion of the
channel_input file for link 12 looks like:

12 6

2 239.80
2 239.47
2 239.33

94

2 239.05
3 238.54
3 238.44

Hence, 238.44 is the thalweg elevation at the outlet of the catchment. Also notice that the upstream end
of link 12 and the downstream node of link 11 have the same bed elevation.

Weirs cannot be used as the outlet boundary condition for this channel model. If your watershed has a
weir at the outlet, just place a short link downstream from the weir with appropriate characteristics.

FINAL CHANNEL FILE FORMAT
The example channel datafile (typicaly called chn.dat) developed for this example looks like:

---------------------- BEG N channel _input FILE HERE-----------cmmmmmmmm o

9.81

1.0 0.5 0.55

100.0

30.0 3600.0

0. 07

12

14

1 1 0 0 0 3

2 1 0 0 0 3

3 1 2 1 2 4

4 4 1 3 0 5

5 1 1 4 0 6

6 1 1 5 0 10

7 1 0 0 0 9

8 1 0 0 0 9

9 1 2 7 8 10

10 8 2 6 9 11

11 2 1 10 0 12

12 8 1 11 0 0

1 14

0.035 2.10 1.75 2.00 264.40
0.035 2.10 1.75 2.00 263.85
0.035 2.10 1.75 2.00 263.41
0.035 2.10 1.75 2.00 262.98
0.035 2.10 1.75 2.00 262.75
0.035 2.10 1.75 2.00 262.54
0.035 2.10 1.75 2.00 262.37
0.035 2.10 1.75 2.05 262.02
0.035 2.20 1.75 2.05 261.87
0.035 2.20 1.75 2.10 261.75
0.035 2.20 1.75 2.10 261.67
0.035 2.20 1.75 2.15 261.52
0.035 2.30 1.75 2.15 261.25
0.035 2.40 1.75 2.15 261.00
2 11

0.035 1.80 1.75 1.80 264.21
0.035 1.80 1.75 1.80 264.10
0.035 1.90 1.75 1.90 263.81
0.035 1.90 1.75 1.90 263.56
0.035 2.00 1.75 1.90 263.34
0.035 2.10 1.75 1.90 262.86
0.035 2.10 1.75 2.00 262.24
0.035 2.10 1.75 2.00 261.76
0.035 2.20 1.75 2.10 261.48
0.035 2.30 1.75 2.10 261.26
0.035 2.30 1.75 2.10 261.00
3 4

0.035 2.60 1.75 2.20 261.00
0.035 2.60 1.75 2.40 260.20
0.035 2.80 1.75 2.90 259.67
0.035 2.80 1.75 2.90 259.17

95

12.0
000 0.0

oo
N
(o)
[o¢]

cooocoou
o
w
(6]
SINSESESININ

[eNoloNeoNoNe)
o
w
(&)]

NN NN N
a
o

OCO0O0O0O0O0O0O0O~N
o
%
o
NNONRRRRRR
©
o

cocoocooow®
o
w
al
NESENINE
o
o

[eNeoNoNeNeNe]
o
w
(&)1
Wwwww
w
o

ococooooo0
W w0 W wwww

il e

PRRPPRRPRRPRER il

el

il

il el

.00

260.10 260.50

NESESISISIS

NESENTNESINESY ST SR ST SISISIS

NESESISISINIS

WwwN N

W W 0w wwww

0. 00

.00

244.
239.

0. 00

40

channel _input FILE ---------------------------

96

TABLE_FILE INPUT FORMAT

If link type 8 (look-up table x-sections) is present in the channel_input file, we require a file typically
called "table.dat", to store all look-up table values. This file must begin with an integer equal to the
number of tables contained within the file. In our example this number is 3. Then we require 3 tables.
The first line of each table is an integer equal to the table number. The second line in the table entry
contains two numbers, an integer, and a floating point (real) value. The first number is equal to the
number of entries (rows) in each particular table, designated by "numhts’. The second number is the
vertical distance between hydraulic property points, which must be a constant for each table. For instance,
if you describe the variation of cross-sectional area, top width, and conveyance at 0.5 m vertical intervals,
this number will be 0.5.

Each table entry must then contain "numhts" lines, each with four entries. The first line must be:

0.0 0.0 0.0 0.0

subsequent lines must contain the following:

hei ght topwi dt h X-section_area Xx-section_conveyance.

For instance, assume we know geometric variables for table entries 1, 2, and 3. The file "table.dat"
(table file option) may look like:

3

15 1.0

0.0 0.0 0.0 0.0
1.0 2.1 5.9 13.5
2.0 6.9 22.3 122.2
3.0 14.7 72.1 312.8
4.0 19.6 145.6 789.4
28 0.5

0.0 0.0 0.0 0.0
0.5 1.1 1.5 7.5
1.0 1.7 3.4 17.1
1.5 3.1 11.2 43.9
2.0 5.2 32.4 98.5
2.5 7.2 49.2 187.4
3.0 9.2 86.4 312.5
3.5 12.1 143.1 624.9
35 1.0

0.0 0.0 0.0 0.0
1.0 2.2 5.4 15.5
2.0 6.6 15.3 132.2
3.0 15.7 81.8 352.8
4.0 21.4 155.2 839.6

For further clarification, consider table 2 above, corresponding to cross sectional properties of the four
most upstream nodes of link 12. Table 2 has 8 entries, each separated by 0.5 meter of depth. At a depth
of 3.0 m, for example, the channel has a top-width of 9.2m, a cross-sectional area of 86.4 m2, and a
conveyance of 312.5 m3/s. The conveyance K is used to calculate the discharge using:

Q=K*sgrt(Sope)
Where using Manning's equation, K is defined (in Sl units) as:
K= 1n* (Area) * (Hydraulic_radius)’(2/3)

These tables can be produced easily using a spreadsheet using measured channel cross-section data.

97

REFERENCES

Bras, R. L., 1990, Hydrology: An introduction to hydrologic science, Addison-Wesley, Reading, Mass.,
643 p.

Crum, T. D, and R. L. Alberty, 1993, The WSR-88D and the WSR-88D operational support facility,
Bulletin of the American Meteorological Soc., 74(9), pp. 1669-1687.

Cunge, JA., F.M. Holly, and A. Verwey, 1980, Practica Aspects of Computational River Hydraulics,
lowa Institute of Hydraulic Research, 404HL The University of lowa, lowa City, |1A 52242. 420
p.

Gray, D.M., 1970, Handbook on the Principles of Hydrology, Nationa Research Council of Canada,
Water Information Center Inc., Water Research Building, Manhasset Isle, Port Washington,
N.Y., 11050.

Julien, P. Y., and B. Saghafian, 1991, CASC2D users manua - A two dimensional watershed rainfall-
runoff model, Civil Engr. Report, CER90-91PY J}-BS-12, Colorado State University, Fort Collins,
CO.

Julien, P. Y., Saghafian, B., and F. L. Ogden, 1995, "Raster-Based Hydrologic Modeling of Spatialy-
Varied Surface Runoff”, Water Resources Bulletin, AWRA, 31(3), pp. 523-536.

Ogden, F.L., 1994, de-St Venant channel routing in distributed hydrologic modeling., Proc. Hydraulic
Engineering "94, ASCE Hydraulics Speciaty Conference, G.V. Cotroneo and R.R. Rumer, eds.,
Vol. 1, pp. 492-496.

Ogden, F.L., Saghafian, B., and W.F. Kraewski, 1994, GIS-based channel extraction and smoothing
algorithm for distributed hydrologic modeling, Proc. Hydraulic Engineering "94, ASCE
Hydraulics Specialty Conference, G.V. Cotroneo and R.R. Rumer eds., August 1-5, 1994,
Buffalo, N.Y., pp. 237-241.

Rawls, W. J., Brakensiek, D. L., and N. Miller, 1983, Green-Ampt infiltration parameters from soils data,
J. of Hydraulic Engineering, ASCE, 109(1), pp. 62-70.

Rawls, W. J,, Brakensiek, D. L., and K. E. Saxton, 1982, Estimation of soil water properties, Trans. of
ASAE, pp. 1316-1320.

Saghafian, B., 1992, Hydrologic analysis of watershed response to spatially varied infiltration, Ph.D.
Dissertation, Civil Engr. Dept., Colorado State University, Fort Collins, CO.

Saghafian, B., 1993, Implementation of a distributed hydrologic model within Geographic Resources
Analysis Support System (GRASS), Proceedings of the Second International Conference on
Integrating Environmental Models and GIS, Breckenridge, CO.

Smith, R. E., Corradini, C., and F. Melone, 1993, Modeling infiltration for multistorm runoff events,
Water Resources Research, 29(1), pp. 133-144.

AUTHORS
B. Saghafian and F. L. Ogden, Colorado State University

98

r.in.agnps - aggrs_input

NAME
aggrs_input - AGNPS-GRASSS non-point source hydrology model input interface
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS
aggrs_input

DESCRIPTION

The major objective of the AGNPS-GRASS input interface is to minimize the user interaction in
preparing the input data for the AGNPS model and to minimize the number of user supplied/developed
IS database layers. Of the 22 different data required by the model for each cell (appendix 2), the interface
will prepare the input data with only 8 (appendix 2) basic GIS database layers supplied by the user and
with minimal user interaction. There are 5 (appendix 2) parameters needed for the whole watershed
which will be obtained from the user.

Execute aggrs _input program from the shelltool window where GRASS is running. A Watershed Input
menu will appear on the shelltool window requesting the following data/information from the user:

Parameters:
Watershed description Enter a description about the watershed. This information optional and will
appear in both input and output of the AGNPS model run.

Rainfall Amount Enter the total amount of rainfall in inches.
Erosivity Index Value Enter the erosivity index value for that particular storm/rainfall event.

Cell Sze The length of the side of a cell in metersis entered. The square of the cell size
will be the area of each cell.

File name to save in AGNPS for mat Enter a file name with .dat as the extension to save
the AGNPS model input file created by the AGNPS-GRASS input interface tool. This will be stored in
the current working directory.

Enter the watershed name The name of the watershed should be entered here. All the input
layers should have the same watershed name with the proper extension (as X in appendix 1). Please refer
to appendix 1 for the valid extensions and valid category labels/values that are allowed for each layer.

Then hit the Esc key to continue.

NOTES

Error Messages: If any of the category labels/values for the input layers is not valid, an error message is
printed and the program quits. Run support on the layer where the category label is wrong to correct it.
The program support helps to modify the supporting files of a map, which include header, category, color,
and history. The wrong/misspelled category labels can be corrected by running support on the layer to be
corrected and choosing the category option. If there is any problem with the flow direction layer, error
messages are printed for those cell numbers that had problems and the nature of those problems (like
circularity, sinks or holes, or flow directions pointing at each other). Use Dedit on the aspect map to

99

correct the problems. The Dedit program helps to display and edit the aspect map with arrows on it,
which should enable one to correct the flow direction on a cell by cell basis.

For each run of this input interface tool, a new temp_cell_num layer is created and stored in the current
mapset. In this map, the cells are numbered from top to bottom and left to right. Thisis a useful layer for
editing and interpreting the error messages due to conflicting flow direction for any particular cell. While
using the Dedit program to correct the errors, this map allows one to locate the cell number where
conflicts occur.

Once the input interface completes its run without errors, it saves the data in the AGNPS format. The
AGNPS model can be executed with this data. The name of the executable file program to run the
AGNPS model is agrun. Type agrun from the shelltool window where GRASS is running. The program
will ask for the input file name. Enter the name of the file that was saved by running the AGNPS-GRASS
input interface, with the .dat extension. The model will output the results of the run with a.nps extension.
Both input and output ASCII files are needed to execute the AGNPS-GRASS output interface tool (the
Visualization tool).

Appendix 1

Water shed boundary

(X.wshd)

Should have category values greater than O within the watershed and O's outside of the watershed
boundary.

Elevation

(X.elev)

Elevation data in meters should be the category values for each cell. Also make sure at least 1 row and
column of data around the watershed boundary exists to estimate slope and aspect at the boundary of the
watershed.

Aspect

(X.asp.cell_size)

The aspect map should have values between 1-8 as category values and should not have any sinks,
circularity or more than one outlet. Cell_size is the number that the user entered for question 4 in the
interface input menu. For example, if the watershed is modeled for a 100 meter cell size, then the aspect
map name should be X.asp.100

Soils

(X.s0ils)

If any of the soil attribute (K factor, clay, sand or hydrological soil group) maps do not exist, then the
program looks for X.soils map to extract information from the Soils-5 data base. (currently this is not
working fully).

USLE K factor

(X.K)

The USLE K factor map should contain the value of the K factor as the category label for each cell. This
is obtained from the soil type map.

Hydrological soil group

(X.hyg)
The category labels allowed are either A, B, C, or D and should appear as category labels for each cell.

This is obtained from the soil type map.

100

Sand
(X.sand)
The percentage of sand content should be the category label for each cell. Thisis obtained from the soil

type map.

Clay

(X.clay)

The percentage of clay content should be there as a category label for each cell. Thisis obtained from the
soil type map.

Land use

(X.luse)

The land use map category labels allowed are fallow, row crops, small grain, legumes, rotation meadow,
close-seeded legumes, pasture, range, meadow, woods, woodland, grass waterway, hard surface,
farmsteads, roads (dirt), water, or marsh.

Management Practice

(X.mgpr)

The management practice map category labels allowed are straight row, contoured, or contoured and
terraced.

Nutrient

(X.nut)

The cell value should correspond to the level of fertilizer application, i.e. 1, 2, 3 or 0. Where 1-low, 2-
medium, 3-high and O-urban, water or marsh. (refer fertilizer level table).

Machinery

(X.mach)

This map is used to find the fertilizer availability factor for the top 1 cm depth of soil. The category labels
allowed are large offset disk, moldboard plow, lister, chisel plow, disk, field cultivator, row cultivator,
anhydrous applicator, rod weeder, planter, smooth, or no till. The category label for urban, water, marsh
or farmsteads can be no till or smooth (refer fertilizer availability factor table).

Channel slope

(X.chdl)

A channel slope length map has to be prepared by the user. Percentage of channel slope should be the
value of the category in that cell. If thislayer is missing, the user has the choice to either enter the name
of layer which has the channel slope values or can accept the default value of 50% of the overland slope
value as the channel slope value (recommended by the AGNPS manual).

Sope length factor

(X.den)

A dlope length factor layer in feet has to be prepared by the user for each cell. The value should be the
value of the category in that cell.

USLE C factor

(X.0)
The USLE C factor map should contain the value of the C factor as the category label for each cell.

101

Fertilization level

| Level of | Assuned fertilization (Ib/acre)
|fertilization | N P | I nput

| < |
| None 0 0 | O

| Low 50 20 | 1 |
| Medi um 100 40 | 2

| Hi gh 200 80 | 3

Till age practice Fertilizer availability factor (%
Large offset disk 40
Mol dboard pl ow 10
Li ster 20
Chi sel pl ow 67
Di sk 50
Field cultivator 70
Row cul ti vator 50
Anhydr ous applicator 85
Rod weeder 95
Pl ant er 85
Smooth or no till 100

Appendix 2: AGNPS cdll input parameters

1. Cell number

2. Number of cell into which it drains

3. SCS curve number

4. Average slope %

5. Slope shape factor

6. Average field dlope length

7. Average channel slope

8. Slope length factor

9. Mannings roughness coefficient for channel

10. Soail erodibility factor (K) from USLE

11. Cropping factor (C) from USLE

12. Practice factor (P) from USLE

13. Surface condition constant (based on land use)

14. Aspect (one of 8 directions indicating drainage from cell)

15. Soil texture (sand, silt, clay, peat)

16. Fertilization level (zero, low, medium, high)

17. Incorporation factor (% fertilizer left in top 1 cm of soil)

18. Point source indicator (indicates existence of a point source input within a cell)
19. Gully source level (estimate of amount, tons, or gully erosion in a cell)

20. Chemical oxygen demand factor

21. Impoundment factor (indicating presence of an impoundment terrace system within the cell)
22. Channel indicator (indicating existence of a defined channel within a cell)

The 8 basic input GIS layers required for extracting the data by the AGNPS-GRASS input interface tool

are:

1. Soils
2. Elevation

102

3. Land use

4. Management practice

5. Fertilizer or nutrient inputs

6. Type of machinery used for land preparation
7. Channel slope

8. Slope length factor

Five pieces of data are required for the total watershed:

1. Watershed identification/description

2. Precipitation (inches)

3. Erosion Index (El-value) for that storm/rainfall event
4. Area of each cell (acres)

5. Outlet cell number

An important implication of this set is that AGNPS does not accommodate non-uniform storms, i.e. it
uses a lumped modeling approach for its rainfall.

For each watershed element, AGNPS requires the following 22 input data values (its distributed parameter
information):

1. Cell number

2. Number of the cell into which it drains

3. SCS curve number

4. Average land slope (%)

5. Slope shape factor (uniform, convex or concave)

6. Average field slope length (feet)

7. Average channel slope (%)

8. Average channel side slope (%)

9. Mannings roughness coefficient for the channel

10. Soil erodibility factor (K) for USLE

11. Cropping factor (C) for USLE

12. Practice factor (P) for USLE

13. Surface condition constant (factor based on land use)

14. Aspect (one of 8 possible directions indicating the principal drainage direction from the cell)
15. Soil texture (sand, silt, clay, peat)

16. Fertilization level (zero, low, medium, high)

17. Incorporation factor (% fertilizer left in top 1 cm of soil)

18. Point source indicator (indicates existence of a point source input within a cell)
19. Gully source level (estimate of amount, tons, of gulley erosion in acell)

20. Chemical oxygen demand factor

21. Impoundment factor (indicating the presence of an impoundment terrace system within the cell)
22. Channel indicator (indicating existence of a defined channel within a cell)

AUTHOR
Raghavan Srinivasan, TAES-Blackland Research Center, Temple, Texas

103

r.in.arc

NAME
r.in.arc - Convert an ESRI ARC/INFO ASCII raster file (GRID) into a (binary) raster map layer.
(GRASS Raster Data Import Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.inarc

r.in.arc help

r.in.arc input=name output=name [title="phrase"] [mult=multiplier]

DESCRIPTION
r.in.arc allows a user to create a (binary) GRASS raster map layer from an ESRI ARC/INFO ASCII GRID
file with (optional) title.

OPTIONS
Parameters:
input=name Name of an existing ASCII raster file to be imported.

output=name Name to be assigned to resultant binary raster map layer.
titte="phrase" Title to be assigned to resultant raster map layer.

mult=multiplier Multiply all raster cell values by multiplier. multiplier is a floating point value, and has
adefault value of 1.0.

The input file has a header section, which describes the location and size of the data, followed by the data
itself.

The header has 6 lines:

ncol s:
nrows:

xl1 corner:
yl 1 corner:
cellsize:

or aternatively (not supported in r.in.arc):

ncol s:
nrows:
xllcenter:
yl 1l center:
cellsize:

NOTES
r.in.arc handles floating point cell values. The mult option allows the number of significant figures of a
floating point cell to be increased before importing. Multiples of ten are the most functional multipliers.

SEE ALSO
r.out.arc

104

AUTHOR
Unknown German author, updated by Bill Brown to floating point support.

105

r.in.ascii
NAME
r.in.ascii - Convert an ASCII raster text file into a (binary) raster map layer.
(GRASS Raster Data Import Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.in.ascii

r.in.ascii help

r.in.ascii [-ifd] input=name output=name [title="phrase"] [mult=multiplier] [nv=string]
DESCRIPTION

r.in.ascii allows a user to create a (binary) GRASS raster map layer from an ASCI|I raster input file with
(optional) title.

OPTIONS

Flags:

-i Integer values are imported.

-f Floating point values are imported.

-d Double floating point values are imported.

Parameters:
input=name Name of an existing ASCII raster file to be imported.

output=name Name to be assigned to resultant binary raster map layer.
titte="phrase" Title to be assigned to resultant raster map layer.

mult=multiplier Multiply all raster cell values by multiplier. Multiplier is afloating point value, and has
adefault value of 1.0.

nv=string String representing NULL value data cells.

The input file has a header section which describes the location and size of the data, followed by the data
itself.

The header has 6 lines:

north: XXXXXX. XX
sout h: XXXXXX. XX
east : XXXXXX. XX
west : XXXXXX. XX
rows: r
col s: c

The north, south, east, and west field values entered are the coordinates of the edges of the geographic
region. The rows and cols field values entered describe the dimensions of the matrix of data to follow.
The data which follows are r rows of c integers.

EXAMPLE

106

The following is a sample input file to r.in.ascii:

nort h: 4299000. 00 |
sout h: 4247000. 00 |
east: 528000. 00 |
west: 500000. 00 |
rows: 10 |
col s: 15 |

I

RPRRRRREPRPRPRR
NN NNNNN
WwWWwwwwwwww
F N N N N N N N N NI N
ool oo al
X NN N N N N N W)
NNNN NN NN
00 00 00 0O 0O 0O OO OO OO OO
O © © © © ©©©©©

NOTES

The geographic coordinates north, south, east, and west describe the outer edges of the geographic region.
They run along the edges of the cells at the edge of the geographic region and NOT through the center of
the cells at the edges.

The data (which follows the header section) must contain r x ¢ values, but it is not necessary that all the
datafor arow be on oneline. A row may be split over many lines.

r.in.ascii handles floating point cell values, but truncates them into integer values. The mult option

allows the number of significant figures of a floating point cell to be increased before truncation to an
integer. Multiples of ten are the most functional multipliers.

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

107

r.in.erdas

NAME

r.in.erdas - Creates raster files from ERDASfiles. It creates one raster file for each band, and creates
color support if an ERDAS trailer file is specified.

(SCS GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.in.erdas

r.in.erdas help

r.in.erdas erdas=name [trl=name] prefix=name

DESCRIPTION
This command prompts the user twice:

First the user is asked if he wishes to select a subset of the bands available in the ERDAS file for output.
If unspecified by the user, al bands are used, by default.

Second, the user is asked if he wishes to select a subregion of the image available in the ERDASfile. If
unspecified by the user, the complete image is used, by default.

Note:
GRASS raster files will be named prefix.band Remember that it is necessary to run: r.support: to create
the histogram or change the color table and i.group: to associate the individual raster files as an image

group.

OPTIONS

Parameters:

erdas=name Input ERDAS file name.
trl=name Input ERDAS trailer file name.

prefix=name Prefix of the GRASS raster filesto be created.

AUTHOR
M. L. Holko, USDA, SCS, NHQ-CGIS

108

r.in.gif

NAME
r.in.gif - Converts a GIF87 (8bit) raster file to a GRASS raster file.
(GRASS Raster Data Import Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.in.gif [-v] input=name output=name [title=name]

DESCRIPTION

This program converts a GIF raster file (8bit) to a GRASS raster file. Output is placed in the /cell
directory under the user's current GRASS mapset.

OPTIONS

Fag:

-V Verbose mode.

Parameters:
input=name Name of an existing GIF raster file to be imported.

output=name Name to be assigned to resultant binary raster map layer.

titte="phrase" Title to be assigned to resultant raster map layer.

The program prompts the user to enter the name of the GIF raster file to be converted and the name to be
assigned to the GRASS raster file to contain the resultant image. The user should adjust boundary
coordinates stored in the cell header after import using r.support .

The user must, of course, first create the GIF raster file to be converted (e.g., from a scanning system that
produces GIF raster file format).

NOTE
The GIF89 format is currently not accepted.

SEE ALSO
r.support, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

109

r.in.hdf

NAME
r.in.hdf - Convert datain HDF format into a (binary) raster map layer.
(GRASS Raster Data Import Program)

GRASSVERSION
4.x ,5x

SYNOPSIS

r.in.hdf

r.in.hdf help

r.in.hdf [-gal] input=name [output=name] [mult=value] [dsets=value[,value,...]]

DESCRIPTION
r.in.hdf allows a user to create a GRASS raster map layer from afile in NCSA Hierarchical Data Format

(HDF).

OPTIONS

Flags:

-q Run quietly

-a Convert ALL data setsin the HDF file

-l Only list the contents of the HDF file (no conversion)

Parameters:
input HDF file to be converted.

output Name of new raster file.
Default: hdf.rast

mult Floating point multiplier. (rastfile = (int)(file.hdf * multiplier))
dsets A list of reference numbers for datasets to be extracted.

The raster file created will have its southwest origin at 0 East and O North, with resolution of 1. To view
the new GRASS raster file, use g.region rast=newfile, then use d.rast as normal. You may wish to
manually change the new raster's cellhd file.

NCSA HDF is a multi-object file format developed by The National Center for Supercomputing
Applications at Champaign, Illinois for the transfer of graphica and floating-point data between
machines. NASA Pathfinder AVHRR data is stored in HDF format. The HDF format defines both a
raster type and a SDS (scientific data set) type. The later is basically a highly structured multi-
dimensional array of values. A single HDF file may contain more than one SDS or raster; using the -a
option will extract all data sets from the HDF file, creating a separate GRASS raster file from each data
set and naming the raster files outputname01, outputname02, outputname03.... If the -a option is not
specified and the HDF file contains more than one data set, only the first data set is extracted unless the
user specifies specific reference numbers for desired data sets in the file using the dsets option. To see a
list of reference numbers for data sets in an HDF file, use the -I flag. If the HDF file contains labels or
descriptions of the data, these will be shown when using the -I flag. Labels and descriptions from the HDF
file will also be written to the GRASS history file when creating the raster map. If a multiplier is given
using the mult option, every file created will be the product of the input data set and the multiplier. If the

110

HDF file contains an SDS, it must be only two dimensional in order for r.in.hdf to accept it as input. If
the HDF file contains an 8-bit raster image with an associated palette, a GRASS color file will be created.
This program will not import 24-bit HDF raster images.

NCSA distributes the HDF library and several public domain visualization applications which use the
HDF format. Some commercial applications also support HDF. For more information, use the NCSA
anonymous ftp server ftp.ncsa.uiuc.edu or contact:

NCSA

152 Computing Applications Building
605 E. Springfield Ave.

Champaign, IL 61820

(217) 244-0072

BUGS

If a data set contains long labels and descriptions, some of it may be truncated when writing to the
GRASS history file. The GRASS history structure currently allows 50 lines of 80 characters each. But
when editing history using r.support, only 20 lines of 65 characters may be used.

SEE ALSO
r.out.hdf, r.support, g.region

AUTHOR
Bill Brown, U.S. Army Construction Engineering Research Laboratory

111

r.n.ll

NAME

r.in.ll - Converts raster data referenced using latitude and longitude coordinates to a UTM-referenced map
layer in GRASS raster format.

(GRASS Raster Data Import Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.inll

r.in.ll help

r.indl [-g] input=name output=name bpc=value corner=corner,lat,lon dimension=rows,cols res=latres,
lonres spheroid=name

DESCRIPTION

This program converts raster data referenced using latitude and longitude coordinates to a UTM-
referenced map layer in GRASS raster format. r.in.ll is primarily used as the final program in converting
DTED and DEM digital elevation datato GRASS raster format, but is not limited to this use. r.in.ll
uses the user's current geographic region settings. Only data that falls within the current geographic
region will appear in the final raster map layer.

r.in.ll requires the user to enter the following information:

OPTIONS

Flags:

-S Signed data (high bit means negative value).

Parameters:
input=name Name of an existing input raster map layer.

output=name Name to be assigned to the output raster map layer.
bpc=value Number of bytes per cell.

corner=corner,lat,lon One corner latitude and longitude of the input. Format:
{ nw|nelsw|se} ,dd:mm:ss{ N|S} ,ddd: mm:ss{ E[W}

The latitude and longitude are specified as dd.mm.ssH where dd is degrees, mm is minutes, ss is
seconds, and H is the hemisphere (N or Sfor latitudes, E or W for longitudes).

For example, to specify the southwest corner:

corner=sw,46N,120W

Note: the latitude and longitude specified are for the center of the corner cell.
dimension=rows,cols Number of rows and columnsin the input file.
res=latres,loners Resolution of the input (in arc seconds).

spheroid=name Name of spheroid to be used for coordinate conversion.

112

Options: airy, australian, bessel, clark66, everest, @grs80, hayford, international,
krasovsky, wgsb6, wgs72, wgsd4

EXAMPLE
The command line:

r.in.l input=rot.out output=import.out dimension=358,301 bpc=2 res=3,3 corner=sw,37:13N,103:45W
spheroid=wgs72

reads data from the file rot.out, converts the data, and stores them in the file import.out. The data
to be converted are made up of 358 rows and 301 columns, and have a resolution of 3x3 arc seconds.

NOTES

In the conversion of DTED and DEM elevation data to raster map layer format, r.in.l follows
execution of the data rotation program m.rot90. Because the user can glean information on the
number of rows and columns, the resolutions of the latitude and longitude, and the number of bytes
per column from the header file produced by the tape extraction programs m.dted.extract and
m.dmaUSGSead, the user should recall that m.rot90 has rotated the files produced by the tape
extraction programs 90 degrees; this means that the user should INTERCHANGE the numbers of rows
and columns present in the header file for input to r.in.Il. The number of rows shown in the tape extract
header file now become the number of columns in the m.rot90 output file; the number of columns
shown in the tape extract header file are now the number of rows present in the m.rot90 output file.

The user should aso note that the raster map layer imported into GRASS will be based on the current
geographic region settings. The boundaries of this geographic region should therefore be checked
before importing the raster map layer. Data outside of the geographic region will not be imported and
missing data will be assigned the category value "no data’.

SEE ALSO
m.dmaUSGSread, m.dted.examine, m.dted.extract, m.rot90

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

113

r.in.miads

NAME

r.in.miads - Converts a MIADS output ASCII text file into an GRASS raster import (r.in.ascii) formatted
file.

(SCS GRASS Raster Program)

GRASSVERSION
4.x,5.x

SYNOPSIS
r.in.miads
r.in.miads help

r.in.miads input=name output=name strip=value line=value cell=value Northing=value Easting=value
size=value

DESCRIPTION

r.in.miads allows a user to create a r.in.ascii formatted ASCII file from a MIADS output printer format
ASCII file. The program will actively read the MIADS data file, selectively remove and process each
strip, creating a individual r.in.ascii formatted file for each strip, and finally create one category file for
all strips. The program also produces a report file summarizing all pertinent information for each strip.

The resulting r.in.ascii files for each strip are then used in conjunction with the GRASS commands
r.in.ascii and r.patch to create a complete raster file.

OPTIONS

Parameters:

input=name MIADS input file name.

output=name GRASS raster data output file name.
strip=value MIADSs strip number of reference cell.
line=value MIADSs line number of reference cell.
cell=value MIADS cell number of reference cell.
Northing=value UTM Easting at the cell reference.
Easting=value UTM Northing at the cell reference.

size=value Cell size (length one side) in meters.

SCS has developed scripts run.miads, getstrip, and strip.99s. These scripts make the MIADS to GRASS
conversion easier.

run.miads - SCS macro to perform the complete conversion of a MIADS printer format data set to a
GRASS raster file.

getstrip - Reads each MIADS strip file and converts it to a independent GRASS data file. Support may

be run on any one of these strip files; however, there is no category information available. Each strip may
be viewed at this time with d.rast or d.display.

114

strip.99s - Special pre-r.in.miads macro that removes the 99's from the MIADS data file. This effectively
removes border information, replacing it with "no data" values.

SEE ALSO
d.display, d.rast, r.in.ascii, r.patch, r.support

AUTHOR

r.in.miads - R. L. Glenn, USDA, SCS, NHQ-CGIS
run.miads, strip.99s - Harold Kane, USDA, SCS, Oklahoma State Office

115

r.in.pbm

NAME
r.in.pbm - Converts an ASCII/BINARY PPM image file to a GRASS raster file.
(GRASS Raster Data Import Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.in.pbm{[-v] input=name output=name

DESCRIPTION

This program converts a PPM raster file to a GRASS raster file. Output is placed in the /cell directory
under the user's current GRASS mapset.

OPTIONS

Flag:

-v Verbose mode.

Parameters:
input=name Name of an existing PPM raster file to be imported.

output=name Name to be assigned to resultant binary raster map layer.

The program prompts the user to enter the name of the PPM raster file to be converted and the name to be
assigned to the GRASS raster file to contain the resultant image. Currently PPM ASCIl and PPM
BINARY (PBM) formats are supported.

The user should adjust boundary coordinates stored in the cell header after import using r.support .

The user must, of course, first create the PPM raster file to be converted (e.g., from a scanning system that
produces PPM raster file format).

NOTE
The maximum color number is limited to 32768 colors.

SEE ALSO
r.support, parser

AUTHOR
Bill Brown, GMS Labs, UIUC

116

r.in.poly

NAME
r.in.poly - Create raster maps from ASCII polygor/line datafile
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.in.poly

r.in.poly help

r.in.poly input=name output=name [title="phrase"] [rows=value]

DESCRIPTION
r.in.poly allows the creation of GRASS ASCI| files containing polygon and linear features.

OPTIONS

Parameters:

input=name Unix input file, in ASCII format, containing the polygon and linear features. The
format of thisfileis described in the section INPUT FORMAT below.

output=name Raster output file
titte="phrase" Title for resultant raster map (optional)

ronws Number of rowsto hold in memory (default: 512). This parameter allows users with less memory
(or more) on their system to control how much memory r.in.poly uses.

INPUT FORMAT
The input format for the input file consists of sections describing either polygonal areas or linear features.
The basic format is:

A <for polygonal areas>
easting northing

cat# | abel
<for linear features>
easting northing

-

;:at # | abel

The A signals the beginning of a polygon. It must appear in the first column. The L signals the beginning
of alinear feature. It also must appear in the first column. The coordinates of the vertices of the polygon,
or the coordinates defining the linear feature follow and must have a space in the first column and at least
one space between the easting and the northing. To give meaning to the features, the = indicates that the
feature currently being processed has category value cat# (which must be an integer) and a label (which
may be more than one word, or which may be omitted).

SEE ALSO
r.digit - interactive on-screen polygon/line digitizing for raster maps
r.colors - creates color tables for raster maps

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

117

r.in.ppm

NAME
r.in.ppm - Converts an ASCII/BINARY PPM image file to a GRASS raster file.
(GRASS Raster Data Import Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.in.ppm[-vb] input=name output=name [nlev=value]

DESCRIPTION

This program converts a PPM raster file to a GRASS raster file. Output is placed in the /cell directory
under the user's current GRASS mapset. Optionally, the user is asked to enter the maximum number of
levels for each band; the default value is 20 (= 20 x 20 x 20 = 8000 colors). If the number of colorsin the
PPM raster file is greater than the maximum number of colors, a quantized color table is created and each
color of the PPM raster file assigned to the nearest available color. Optionaly, the program creates 3
separate raster maps of the (true) red, green and blue levels. Currently PPM ASCII and PPM BINARY
(PBM) formats are supported.

OPTIONS
Fags:
-V Verbose mode

-b Create 3 separate raster maps of the (true) R/G/B levels

Parameters:
input=name Name of an existing PPM raster file to be imported.

output=name Name to be assigned to resultant binary raster map layer.
nlev=value Max number of levels for R/G/B.

Options: 1-256
Default: 20 (= 8000 colors)

NOTES
R/G/B levels: each output raster map layer is given alinear gray scale color table. Each output raster map
layer is assigned the user-specified output with (.r, .g, .b) suffix.

The user should adjust boundary coordinates stored in the cell header after import using r.support and
parser.

SEE ALSO
r.in.pbm

AUTHOR
Stefano Merler, ITC-irst (Italy)

118

r.in.sunrast

NAME
r.in.sunrast - Converts a SUN raster file to a GRASS raster file.
(GRASS Raster Data Import Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.in.sunrast

DESCRIPTION
This program converts a SUN raster file that has been created by SUN's "screendump” utility to a GRASS
raster file. Output is placed in the /cell directory under the user's current GRASS mapset.

The program prompts the user to enter the name of the SUN raster file to be converted and the name to be
assigned to the GRASS raster file to contain the resultant image.

It is recommended that this program be used in an X, y database (as opposed to, for example, a UTM data
base), since the cell header is created with nonsense coordinates (i.e., coordinates designed only to specify
the number of rows and columns in the image). Of course, the user can adjust the cell header after import
using r.support.

The user must, of course, first create the SUN raster file to be converted, either by running the SUN
"screendump” utility (to capture a displayed image) or by some other means (e.g., from a scanning system
that produces SUN raster file format).

NOTE
If you are using the screendump utility on a SUN workstation to create the sun rasterfile, do not use the -e
option. This option creates a sun rasterfile format that r.in.sunrast does not understand.

SEE ALSO
SUN screendump utility
r.support, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

119

r.in.tiff

NAME
r.in.tiff - Converts a TIFF (8bit) raster file to a GRASS raster file.
(GRASS Raster Data Import Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.in.tiff [-v] input=name output=name

DESCRIPTION
This program imports a TIFF raster file (8bit) to a GRASS raster file. Output is placed in the /cell
directory under the user's current GRASS mapset.

OPTIONS

Fag:
-V Verbose mode

Parameters:
input=name Name of an existing TIFF raster file to be imported.

output=name Name to be assigned to resultant binary raster map layer.

The program prompts the user to enter the name of the TIFF raster file to be converted and the name to be
assigned to the GRASS raster file to contain the resultant image. Currently "TIFF/uncompressed”,
"TIFF/LZW-compression” and TIFF/PackBits-compression” formats are supported. The user should
adjust boundary coordinates stored in the cell header after import using r.support .

The user must, of course, first create the TIFF raster file to be converted (e.g., from a scanning system that
produces TIFF raster file format).

NOTE
The TIFF 24bit format is currently not supported.

SEE ALSO
r.support, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

120

r.infer

NAME
r.infer - Outputs a raster map layer whose category values represent the application of user-specified
criteria (rules statements) to other raster map layers category values. (GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.infer

r.infer help

r.infer [-vt] rulesfile=name

DESCRIPTION

r.infer is an inference engine which applies a set of user- specified rules to named raster map layers. A
new raster map layer named infer is created as output, whose category values reflect the ability of each cell
in the named input layers to satisfy the named conditions.

r.infer commands (conditions and consequences) are typed into afile by the user using a system editor like
vi, and then input to r.infer as the rulesfile named on the command line. The results are used to generate
anew raster map layer named infer in the user's current mapset. This program performs analyses similar
to r.combine, but uses a (possibly) more pleasing syntax and approach.

OPTIONS
The program will be run non-interactively if the user specifies the name of a rules file and any desired
flags on the command line, using the form:

r.infer [-vt] rulesfile=name

where name is the name of an ASCII file containing valid input rules to r.infer, and the (optional) flags -v
and -t have the meanings described in the OPTIONS section, below.

Alternately, the user can simply type r.infer on the command line, without program arguments. In this
case, the user will be prompted for the needed parameter value and flag settings using the standard
GRASS parser interface described in the manual entry for parser.

Flags:

-t Allows the user to run r.infer in test mode. The user is questioned about the truth of each
condition named in the file. r.infer then outputs the value that would be placed in the new layer infer for
a cell meeting conditions specified by the user. When no sets of conditions stated in the input file are
satisfied (based upon the user's answers), cell values of zero are output. Test mode is used to test the
accuracy of the user's logic. Users are encouraged to run r.infer in test mode prior to actually creating

map layers.

-V Makes r.infer run verbosely, giving information about each cell as it is analyzed according to the
statement conditions.

Parameter:

rulesfile=name Allows the user to input rules to r.infer from an ASCII file, rather than from standard
input. This rulesfile must exist in the user's current working directory or be given by its full pathname.
File rules statements take the same form as those given on the command line. Examples of valid rules
statements are given in the sections below.

121

COMMANDSAND STATEMENTS
The following commands are available in r.infer:

Command | Ali ases | Fol | owed By | Such As

| | |

| FMAP | ANDI FMAP | cellnmap cat# | geology 2
| ANDMAP | |
| | |

| FNOTMAP | ANDNOTMAP| cellmap cat# | geology 2
| | |

THENMAPHYP) |cat# [statenent]| 3 nice vacation spot
| | |

THEN | | statenent | No sandstone
| | condition |
| | |

I F | AND | predefined | No sandstone
| ANDIF | statenent condition|

These five commands may be used to formulate statements with functions ranging from a simple
reclassification to a more complex expert system type application. Statements are composed of one or
more conditions followed by one or more hypotheses and/or conclusions. The use of aliases is provided to
allow for the use of a command which has an English meaning consistent with the logic at that point.

Following is a description of each of the five commands. The map layers used in the examples are in the
Spearfish sample data base.

IFMAP

Map condition.

Map conditions are questions to each cell about the presence of specified map layer category values.
r.infer questions each cell in the named map layer (here, geology) about its contents (i.e., category value).
Cells which satisfy the named condition(s) stated by IFMAP (i.e., here, those cells which contain geology
map layer category values 4 or 5) will be assigned the subsequently-stated map conclusion or hypothesis
(category), in the new map layer infer. Cellswhich fail to satisfy named map condition(s) will continue to
move down through the user's rulesfile (searching for conditions it is able to satisfy) if any additional
conclusions/hypotheses are stated in the file, or will be assigned category zero in the new map layer infer
(if no additional conclusions/hypotheses are possible in this rulesfile).

example: IFMAP geology 4 5

IFNOTMAP

Map condition.

Like IFMAP, but instead questions each cell about the absence of specified map layer categories. Cells
which meet the IFNOTMAP conditions (i.e., below, those cells which do NOT include owner map layer
category value 2) will be assigned the named conclusionothesis, in the new map layer infer.

example: IFNOTMAP owner 2

THENMAPHYP

Map conclusion.

Assigns each cell a specified category value in the new map layer infer based on the cell's ability or failure
to meet conditions named above this THENMAPHY P statement in the rulesfile. The user should note that
although the user can specify a uniquely-named rulesfile, r.infer always directs its output to a file named
infer in the current mapset (overwriting whatever is currently in this file). Therefore, if the user wishes to
save this file for future use, this file should be renamed before the user next runs r.infer (e.g., using the
GRASS command g.rename).

122

It isimportant to realize that r.infer runs through the conditions stated in the named rulesfile one cell at a
time, moving from the top of the raster input file to the bottom of the raster input file. As soon as the cell
currently being examined by r.infer satisfies a set of conditions, it is assigned a category value in the new
map layer infer. r.infer does NOT check to see if that same cell satisfies other conditions named further
down in the input file, too. Instead, it moves on to the next cell, and begins anew with the conditions
named at the top of the input file. Essentially, this means that conclusions made higher-up in the input file
have precedence over conditions named further down in the input file.

example: IFMAP density 1 THENMAPHYP 1 no trees

In the above example, all cells having a category value of 1 (non-forest) in the map layer density, are
assigned a category value of 1 in the resultant map layer infer. The trailing text "no trees' is entered into
the category support file for category 1 in the new map layer infer.

THEN

Statement hypothesis.

At the conclusion of one or several condition statements, instead of making a map conclusion as with
THENMAPHY P, the conditions are used to create a hypothesis. This may then be referenced in later
statements using the IF command. The trailing text at the end of the THEN statement is used as the
means with which to reference the hypothesis. An example follows the description of 1F below.

IF

Statement condition.

States a condition based on an hypothesis that was created by a previous THEN statement. IF may be used
only after a THEN has set up the group of statements that are to be referenced later.

example:

IFMAP elevation.255 170-255 ANDIFMAP density 34 THEN high elevation with trees!
IF high elevation with trees ANDIFMAP owner 2 THENMAPHYP 1 thisisthe place

The above example queries each cell for the presence of both elevations greater than 1580 meters (i.e., for
elevation.255 category values 170-255) and a medium to high density of trees (i.e., density category values
34). All areas (i.e., cells) that satisfy these criteria are assigned to the hypothesis "high elevation with
trees."” The "!" simply tells r.infer to ignore whatever appears on that line (a comment statement), and is
used here for readability.

The IF statement then references cells having "high elevation with trees' (i.e., those cells that satisfied
both of the above conditions named by the IFMAP and ANDIFMAP statements). If a cell both has "high
elevations with trees’ and owner map layer category 2 (areas owned by the Forest Service), it is assigned
by the THENMAPHY P statement to category 1 in the new map layer infer. The trailing text "this is the
place" is automatically entered into the category support file for the new map infer. Cells failing to meet
all of the conditions stated in this input file will be assigned category 0 in the new map layer infer.

SEE ALSO
GRASS Tutorial: r.infer
g.rename, r.combine, r.mapcalc, r.weight, parser

AUTHOR

James Westervelt, U.S. Army Construction Engineering Research Laboratory

George W. Hageman, SOFTMAN Enterprises P.O. Box 11234 Boulder, Colorado 80301
Daniel S. Cox, In Touch 796 West Peachtree St. NE Atlanta, GA 30308

123

r.info

NAME
r.info - Outputs basic information about a user-specified raster map layer.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.info

r.info help

r.info map=name

DESCRIPTION

r.info reports some basic information about a user-specified raster map layer. This map layer must exist
in the user's current mapset search path. Information about the map's boundaries, resolution, projection,
data type, category number, data base location and mapset, and history are put into a table and written to
standard output. The types of information listed can aso be found in the /cats, /cellhd, and /hist
directories under the mapset in which the named map is stored.

The program will be run non-interactively if the user specifies the name of a raster map layer on the
command line, using the form:

r.info map=name

where name is the name of araster map layer on which the user seeks information. The user can save the
tabular output to a file by using the UNIX redirection mechanism (<); for example, the user might save a
report on the soils map layer in afile called soil.rpt by typing:

r.info map=soils > soil.rpt

Alternately, the user can simply type r.info on the command line, without program arguments. In this
case, the user will be prompted for the name of a raster map layer using the standard GRASS parser
interface described in the manual entry for parser. The user is asked whether he wishes to print the report

and/or saveitin afile. If saved, the report is stored in a user-named file in the user's home directory.

Below is the report produced by r.info for the raster map geology in the Spearfish sample data base.

| Layer: geol ogy Date: Mon May 4 10:00: 14 1987 : |
| Location: spearfish Login of Creator: grass |
| Mapset: PERVMANENT |
| Title: Geol ogy |

Type of Map: rasterNunber of Categories: 9
Rows: 140
Col umms: 190
Total Cells: 26600
Proj ection: UTM (zone 13)
N: 4928000. 00 S: 4914000. 00 Res: 100. 00
E: 609000. 00 W 590000. 00 Res: 100. 00

Dat a Sour ce:
Raster file produced by ERCS Data Center

Dat a Descri ption:
Shows the geol ogy for the map area

124

SEE ALSO
g.mapsets, r.coin, r.describe, r.report, r.stats, r.support, r.what, parser

AUTHOR
Michael O'Shea, U.S. Army Construction Engineering Research Laboratory

125

r.kappa

NAME
r.kappa - Calculate error matrix and kappa parameter for accuracy assessment of classification result.
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.kappa

r.kappa help

r.kappa [-mwqzh] classification=name reference=name output=name [title="name"]

DESCRIPTION

r.kappa tabulates the error matrix of classification result by crossing classified map layer with respect to
reference map layer. Both overall kappa (accompanied by its variance) and conditional kappa values are
calculated. This analysis program respects the current geographic region and mask settings.

OPTIONS
The user can run the program non-interactively by specifying all needed flag settings and parameter
values on the command line, in the form:

r.kappa [-mwqzh] classification=name reference=name output=name [title="name"]

Flags:

-m Report zero values due to mask.

-w Print awide report, 132 columns
Default: 80

-q Run quietly.

-Z Report non-zero values only.

-h Report without header.

Parameters:
classification=name Name of classified raster map layer.

reference=name Name of reference raster map layer.
output=name Name of ASCII filein which to output report results.

titte=name Title of the report file which isthe first line in output file.
Default: ACCURACY ASSESSMENT

Alternately, the user can run r.kappa interactively by smply typing r.kappa without command line
arguments; in this case, the user will be prompted for the names of classified result map and reference
map, which will be the subjects of the analysis. r.kappa then calculates the error matrix of the two map
layers and prepares the table from which the report is to be created. kappa values for overal and each
classes are computed along with their variances. Also percent of commission and omission error, tota

126

correct classified result by pixel counts, total area in pixel counts and percentage of overall correctly
classified pixelsis tabulated.

The report will be write to an output file which is in plain text format and named by user at prompt of
running the program.

The body of the report is arranged in panels. The classified result map layer categories are arranged along
the vertical axis of the table, while the reference map layer categories along the horizontal axis. Each
panel has a maximum of 5 categories (9 if wide format) across the top. In addition, the last column of the
last panel reflects a cross total of each column for each row. All of the categories of the map layer
arranged along the vertical axis, i.e., the reference map layer, are included in each panel. There is a total
at the bottom of each column representing the sum of all the rowsin that column.

NOTES

It is recommended to reclassify categories of classified result map layer into a more manageable number
before running r.kappa on the classified raster map layer. Because r.kappa calculates and then reports
information for each and every category.

NA's in output file mean non-applicable in case MASK exists.

SEE ALSO
g.region, r.cats, r.mask, r.reclass, r.report, r.stats

AUTHOR
Tao Wen, University of Illinois at Urbana-Champaign, Illinois

127

r.kineros

NAME
r.kineros - A GRASS Program for Determining the Topology of Stream Networks

GRASSVERSION
4.x

INTRODUCTION

This paper presents a GRASS (geographical resource analysis support system; Shapiro et al., 1992; United
States Army Corps of Engineers, 1993) program for determining the topology of stream networks. The
program inputs raster files generated by the GRASS program r.watershed. Because it determines the
relationships of tributary streams, it is called r.tribs. The input files required are:

stream: araster map of stream segments; stream segments are labeled using integer values greater than or
equal to 2,

accumulation: a raster map of the number of cells that drain through each cell; absolute values is the
amount of overland flow that is routed through a pixel,

drainage: a raster map of drainage directions; if there is no flow direction, a value of -1 is assigned.
Otherwise, the integers 1 through 8 are assigned to the compass
directions shown below:

5 6 7
4 -1 8
3 2 1

For example, a value of 2 means that the pixel drains south, a value of 5 means the pixel drains to the
northwest.

Two tables are output by r.tribs. The first table list the tributaries associated with each stream segment.
The second table list streams and tributaries in an order such that a stream and its tributaries are printed
only if the tributaries have been previoudly listed. That is, first order streams are listed first, streams with
tributaries that are first order streams are listed second, and so on. The program can also be run in
debugging mode, in which more detailed information is printed.

The program r.tribs was written so that GRASS can be used to generate input for a runoff and erosion
model called KINEROS (Smith et al., in press; Woolhiser et al., 1990). KINEROS represents a watershed
as a set of related elements. Elements may be hillslopes, channels or ponds. A computational order must
be specified so that boundary conditions for an element, such as the amount of water contributed by lateral
hillslopes and upstream tributaries, are available. The program r.tribs provides KINEROS with that
computational order.

Input Files

We assume that the program r.watershed has been run, and that the input files stream, accumulation and
drainage are available. Assume these files are called stream.0, accum.0 and drain.O, respectively. The
command-line version of r.tribsis:

GRASS 4.1 > r.tribs st=stream 0 ac=accum O dr=drain.0

128

Alternately, the command r.tribs can be entered on the command line:

GRASS 4.1 > r.tribs
and the user will be prompted for these files.

M ethodology and Example of Output
Thisis followed by a listing of the tributaries associated with each stream. The tributaries of a stream are
determined by using the following methodology.

a. The stream and accumulation files are scanned to determine the locations of pixels that are stream
segments and have the lowest accumulation of runoff for that

segment. These points mark the locations of the heads of the stream segments. Locations of the head of a
stream are stored for the next step.

b. Points within one pixel of the head are scanned to determine if they are part of a different stream
segment and if they drain into the head of this stream. The drainage

raster file is used to determine the drainage direction. Any point meeting this criteria are listed as
tributary streams.

c. All points with no tributaries are first order. Tributary values are set to zero.
d. Thelabel of the stream and its tributaries are stored and printed to the screen.

We have used r.tribs to generate output for a small watershed (17.5 km2) in Idaho (Horse Creek) in which
we used r.watershed to define atotal of 50 stream segments. Note that stream segments and tributaries are
labeled using even integers ranging from 2 to 102. Stream segment 2 is located at the mouth of the
watershed.

The r.tribs program first outputs the number of rows (nrows) and columns (ncols) in the raster files. Then
the maximum and minimum labels of stream segments are printed. This is followed by two tables. The
first table lists streams and their tributaries. An example of thistable is given below.

nrows: 138

ncol s: 273

Max streamindex = 102

Mn streamindex = 2

Stream 2 Tributary 0: 6 Tributary 1: 4
Stream 4 Tributary 0: O Tributary 1: 0
Stream 6 Tributary 0: 14 Tributary 1: 8
Stream 8 Tributary 0: 12 Tributary 1: 10
Stream 10 Tributary 0: O Tributary 1: 0O
Stream 12 Tributary O Tributary 1: O
Stream 14 Tributary 22 Tributary 1: 16
Stream 16 Tributary 20 Tributary 1: 18
Stream 18 Tributary O Tributary 1: 0
Stream 20 Tributary O Tributary 1: 0O
Stream 22 Tributary 102 Tributary 1: 24
Stream 24 Tributary 36 Tributary 1: 26
Stream 26 Tributary 30 Tributary 1: 28
Stream 28 Tributary O Tributary 1: 0
Stream 30 Tributary 34 Tributary 1: 32
Stream 32 Tributary O Tributary 1: 0
Stream 34 Tributary O Tributary 1: 0O
Stream 36 Tributary 100 Tributary 1: 38
Stream 38 Tributary 42 Tributary 1: 40
Stream 40 Tributary O Tributary 1: 0
Stream 42 Tributary 98 Tributary 1: 44
Stream 44 Tributary 96 Tributary 1: 46
Stream 46 Tributary 50 Tributary 1: 48
Stream 48 Tributary O Tributary 1: 0O
Stream 50 Tributary 58 Tributary 1: 52

R0 Q

129

Stream 52 Tributary
Stream 54 Tributary
Stream 56 Tributary
Stream 58 Tributary
Stream 60 Tributary
Stream 62 Tributary
Stream 64 Tributary
Stream 66 Tributary
Stream 68 Tributary
Stream 70 Tributary
Stream 72 Tributary
Stream 74 Tributary
Stream 76 Tributary
Stream 78 Tributary
Stream 80 Tributary
Stream 82 Tributary
Stream 84 Tributary
Stream 86 Tributary
Stream 88 Tributary
Stream 90 Tributary
Stream 92 Tributary
Stream 94 Tributary
Stream 96 Tributary O Tributary 1: 0

Stream 98 Tributary O Tributary 1: O

Stream 100 Trlbutary O O Tributary 1: O
Stream 102 Tributary O0: O Tributary 1: 0

56 Tributary 1: 54
O Tributary 1: 0O
O Tributary 1: 0
90 Tributary 1: 60
88 Tributary 1: 62
66 Tributary 1: 64
O Tributary 1: 0
74 Tributary 1: 68
72 Tributary 1: 70
O Tributary 1: 0O
O Tributary 1: O
82 Tributary 1: 76
80 Tributary 1: 78
O Tributary 1: O
O Tributary 1: O
86 Tributary 1: 84
O Tributary 1: O
O Tributary 1: 0
O Tributary 1: O
94 Tributary 1: 92
O Tributary 1: 0O
O Tributary 1: O

099999999999999999999999

If the program is run in debugging mode, then the values of stream, accumulation and direction of the
head of the stream and the surrounding 8 pixels are aso printed. Set the value of DB_FIND_TRIBS
(defined in the beginning of the routine find_tribs) to a value of 1 and recompile the program to activate
debugging mode.

The second table that is output by r.tribs list the streams and their associated tributaries in their proper
computational order. The program loops through the data listed above several times. First streams with no
tributaries are listed (LOOP 1). Then streams with only first-order streams as tributaries are listed (LOOP
2). Then, streams with tributaries listed in previous loops are listed. The program continues until all
streams have been listed. The variable "Order" is aso listed, which can be interpreted as the
computational order. This is the order in which programs, such as KINEROS, must consider streams in
the network such that data for tributaries will be available when considering the listed stream. An
example listing of the computational order of streamsis given below.

Computational Order of Stream Segments:

LOOP: 1

Oder: O Stream 4 Tributary 0: O Tributary 1: 0
Oder: 1 Stream 10 Tributary 0: O Tributary 1: 0
Order: 2 Stream 12 Tributary 0: O Tributary 1: 0
Order: 3 Stream 18 Tributary 0: O Tributary 1: 0
Oder: 4 Stream 20 Tributary 0: O Tributary 1: 0
Oder: 5 Stream 28 Tributary 0: O Tributary 1: 0
Oder: 6 Stream 32 Tributary 0: O Tributary 1: 0
Oder: 7 Stream 34 Tributary 0: O Tributary 1: 0
Order: 8 Stream 40 Tributary 0: O Tributary 1: 0
Order: 9 Stream 48 Tributary 0: O Tributary 1: 0
Order: 10 Stream 54 Tributary 0: 0 Tributary 1: O
Order: 11 Stream 56 Tributary 0: 0 Tributary 1: O
Order: 12 Stream 64 Tributary 0: 0 Tributary 1: O
Order: 13 Stream 70 Tributary 0: 0 Tributary 1: O
Order: 14 Stream 72 Tributary 0: 0 Tributary 1: O
Order: 15 Stream 78 Tributary 0: 0 Tributary 1: O
Order: 16 Stream 80 Tributary 0: 0 Tributary 1: O
Order: 17 Stream 84 Tributary 0: 0 Tributary 1: O
Order: 18 Stream 86 Tributary 0: 0 Tributary 1: O
Order: 19 Stream 88 Tributary 0: 0 Tributary 1: O
Order: 20 Stream 92 Tributary 0: 0 Tributary 1: O
Order: 21 Stream 94 Tributary 0: 0 Tributary 1: O
Order: 22 Stream 96 Tributary 0: 0 Tributary 1: O
Order: 23 Stream 98 Tributary 0: 0 Tributary 1: O

130

Order: 24 Stream 100 Tributary 0: O Tributary 1: O
Order: 25 Stream 102 Tributary 0: O Tributary 1: O

Order: 26 Stream 8 Tributary 0: 12 Tributary 1: 10
Order: 27 Stream 16 Tributary 0: 20 Tributary 1:
Order: 28 Stream 30 Tributary
Order: 29 Stream 52 Tributary
Order: 30 Stream 68 Tributary
Order: 31 Stream 76 Tributary
Order: 32 Stream 82 Tributary 86 Tributary
Order: 33 Stream 90 Tributary 94 Tributary

1

34 Tributary 1

56 Tributary 1:
Tributary 1: 70

80 Tributary 1:

1

1

eeeeeee
~
N

Order: 34 Stream 26 Tributary 30 Tributary 1: 28
Order: 35 Stream 74 Tributary 82 Tributary 1: 76

Order: 50 Stream 2 Tributary 0: 6 Tributary 1: 4

Obtaining r.tribsvia FTP or email

The C programs that are required to generate r.tribs are available via anonymous ftp to
moon.cecer.army.mil. | have printed out the main segment of the r.tribs program in Appendix I. This was
done to illustrate how routines in the GRASS library are used to read in raster data. Routines from the
GRASS library begin with "G_". Two utility programs are also used: imatrix and ivector. These are
discussed by Press and others (1989), and are used to allocate space for arrays. Comments in the code
discuss the details of each routine. Appendix Il lists the makefile used to compile r.tribs. Note that the
variable GIS must be edited so that the proper path to the grass directory is specified.

131

As previously mentioned, the program can be obtained by anonymous ftp to moon.cecer.army.mil. Change
to the "incoming/r.tribs* directly to get the files. The program can aso be obtained by contacting the
author via email (jfsS@po.cwru.edu). The code has been commented to help the user to understand the
program structure.

REFERENCES
Press, W.H., Flannery, B.P., Teukolsky, S.AA., and Vetterling, W.T., 1989, Numerical Recipesin C: The
Art of Scientific Computing, Cambridge University Press, 735 pp.

Shapiro, M., Westervelt, J,, Gerdes, D., Larson, M., and Brownfield, K.R., 1992, GRASS 4.0
Programmer's Manual, U.S. Army Construction Engineering Research Laboratory, Champaign,
[llinois, 292 pp.

Smith, R.E., Goodrich, D.C., Woolhiser, D.A., and Unkrich, C.L., in press, A KINematic Runoff and
EROSion Model, in: V.P. Singh (Ed.), Computer Models of Watershed Hydrology, Water
Resources Pub., Highlands Ranch, Colorado

United States Army Corps of Engineers, 1993, GRASSA.1 Userss Reference Manua, U.S. Army
Construction Engineering Research Laboratories, Champaign, Illinois, 556 pp.

Woolhiser, D.A., Smith, R.E., Goodrich, D.C., 1990, KINEROS, A Kinematic Runoff and Erosion
Model: Documentation and Users Manual, U.S. Department of Agriculture, Agricultural
Research Service, ARS-77, 130 pp.

Appendix |: main.c code for r.tribs

#include "gis.h"

#i ncl ude <stdio. h>

int **imatrix();

int *ivector();

/*

Programto determ ng the topol ogy of a stream network. A
table is generated that reports the tributaries that are

at the head of each stream segenent. The conputational order
of streams is also determ nted.

Witten by:

Dr. John F. Stamm

Departnent of Geol ogi cal Sciences
Case Western Reserve University
Cl evel and, OH 44106- 7216

email: jfs5@o.cwu. edu

EE R R T IR

*

*/

mai n(argc, argv)
int argc;

char *argv[];

/*

* Matricies

*/

int **accum

int **chann;

int **aspect;
CELL *cell;

char *chann_nare;
char *accum nare;
char *aspect _nane;
char *mapset;

int col;

int fd_accum

int fd_chann;

int fd_aspect;
int ncols;

int nrows;

int row

struct {

132

struct Option *accum ;
struct Option *chann ;
struct Option *aspect ;
} parm

/*

Al'l ocate menmory for the Option structure and return a
pointer to this structure. Do this for the structured
vari abl es parm accum and parm chann.

E N

* Set values for parm accum

*/
parm accum = G define_option() ;
parm accum >key = "accunul ati on";

parm accum >type = TYPE_STRI NG

parm accum >requi red = YES;

parm accum >gi spronpt = "old, cell,raster" ;

parm accum >descri pti on= "Name of the ACCUMULATI ON map"
/*

* Set val ues for parm chann

*/
parm chann = G define_option() ;
parm chann->key = "streant;

parm chann->type = TYPE_STRI NG

parm chann->required = YES;

parm chann->gi spronpt = "old, cell,raster" ;

par m chann- >descri pti on= "Name of the STREAM map" ;
/*

* Set val ues for parm aspect

*/
parm aspect = G define_option() ;
parm aspect - >key = "drai nage";

par m aspect - >type = TYPE_STRI NG
parm aspect - >required = YES;

parm aspect->gi spronpt = "old,cell,raster" ;

parm aspect - >descri pti on= "Nane of the DRAI NAGE DI RECTI ON
map"

/*

* Initailize S library for this program

*/

G gisinit(argv[0]);

/*

* Parse values fromthe command line. |If this is not
* successful, then display a usage statement and exit.
*/

if (G_parser(argc, argv))

exit (-1);

accum nane par m accum >answer ;

chann_nane par m chann- >answer ;

aspect _nane = parm aspect - >answer ;

/*

* Find the name of mapset that we are going to use.
*/

mapset = G find_cell2 (accumnane, "");

if (mapset == NULL) {

char nsg[100] ;

sprintf (nsg, "%: <%> cellfile not found\n",

G _program nane(), accum nane);

G fatal _error (msg);

exit(1);

}

/*

* Open the cell files in "mapset".

*/

fd_accum = G open_cell _old (accum name, nmapset);

if (fd_accum < 0)

exit(1);

fd_chann = G open_cell _old (chann_nanme, nmapset);

if (fd_chann < 0)

exit(1);

fd_aspect = G open_cell_old (aspect_nane, mapset);
if (fd_aspect < 0)

exit(1);

/*

* Open up a vector that is just |long enough to hold one
* row of data.

133

*/

cell = G allocate_cell _buf();

/*

* Determ ne the nunber of rows and col ums.
*/

nr ows G wi ndow_rows();

ncol s = G wi ndow_col s();
printf ("\n", nrows);

printf ("nrows: %\n", nrows);
printf ("ncols: %\n", ncols);

/*

* Allocate menory for nmatricies.
*/

accum = imatri x(0, nrows, 0, ncol s);
chann = imatrix(0, nrows, 0, ncol s);
aspect = imatrix(0, nrows, 0, ncol s);
/*

* Process DEM and Channel files.
*/

for (row=(nrows-1); row>=0; row-) {

if(G get_map_row (fd_accum cell, row) < 0)
exit(1);

for (col = 0; col < ncols; col++) {
accunfrowj[col] = (int)cell[col];

}

if(G get_map_row (fd_chann, cell, row) < 0)
exit(1);

for (col = 0; col < ncols; col++) {
chann[rowj[col] = (int)cell[col];

}
if(G get_map_row (fd_aspect, cell, row < 0)

exit(1);

for (col = 0; col < ncols; col++) {

aspect[rowj[col] = (int)cell[col];

}

/*

* Conpute the topol ogy of the network.

*/

(void)find_tribs(nrows, ncols, accum chann, aspect);
exit(0);

}

Appendix I1: Gmakefile

PGM = r.tribs

AS = /GRAS34. 1

HOMVE = .

SRC = $(GE S)/src

LIBDIR = $(SRC)/Iibes/LIB

G SLIB = $(LIBDIR)/Iibgis.a

OFI LES = debug.o \

find_tribs.o\

imatrix.o \

ivector.o \

main. o \

nei ghbors. o \

stream order.o

$(HOMVE) / $(PGV) : $(OFI LES) $(d SLI B)
$(CC) $(LDFLAGS) $(OFILES) $(GSLIB) -0 $(PGVY
$(GSLIB): #

AUTHOR
John F. Stamm

Department of Geological Sciences, Case Western Reserve University, Cleveland, OH 44106-7216, email:

jfsb@po.cwru.edu

134

r.lags

NAME

r.lags - GRASS module to calculate various spatial dependence measures for all possible lags within a
given image. Each measure is made by comparing two cells only for each lag azimuth and distance. The
whole image is read once for each cell in the image, therefore is very computationally expensive. A Sparc
2 would typically take 1 hour to calculate a 150x150 image.

GRASSVERSION
4.x

SYNOPSIS
r.lags [-sc] in=name out=name [measure=name]

OPTIONS

Flags:

-n Calculate non-zero values only

-V Calculate semi-variogram instead
Parameters:

in=name Raster surface layer to measure
out=name Output raster containing lag map

measure=name Spatial dependence measure (Moran's | or texture)
Options: moran,texture
Default: moran

AUTHOR & HISTORY
V1.0 written 17.6.92 to calculate Moran autocorrel ation statistic.

V2.0 written 18.7.92 to also calulate Haralick's grey-tone spatial dependence textural measures.

V2.1 modified 18.9.95 to conform to standard GRASS program structure.

Future improvements could include (i) Option of faster, memory intensive option; (ii) Further lag
dependent measures; (iii) Cumulative lags under some distance weighting function. (iv) Option of

ignoring/including zero values in the calculation.

Jo Wood, November, 1995

135

rledist

NAME

r.ledist - The r.le.dist program can be used to measure distances between patches and report those distances
using several methods.

(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.ledist

r.le.dist help

rledist [-bntu] map=name [sam=name] [reg=name] [ski=value] [can=value] [dil=name[,name,...]]
[di2=name[,name,...]] [out=name]

OPTIONS

Flags:

-b Run in background

-n Output map 'num’ with patch numbers

-t Use 4 neighbor tracing instead of 8 neighbor

-u Output maps 'units x' with sampling units for each scale x
Parameters:

map Raster map to be analyzed

sam Sampling method (choose only 1 method): w=whole map, u=units, m=moving window, r=regions
Options: w, u, m, r
Default: w

reg Name of regions map, only when sam = r; omit otherwise

Ski Skip m boundary cells to speed up nearest neighbor search
Options: 0-10
Default: 0

can Use only 'can’ candidate patches for faster nearest neighbor search
Options: 1-30
Default: 30

dil Distance methods (Choose only 1 method):

Options: m0, m1, m2, m3, m4, m5, m6, m7, m8, m9
(CC=Center-Center, EE=Edge-Edge, CE=Center-Edge):
mO = each patch to all adjacent neighbors CC
m1 = each patch to all adjacent neighbors CE
m2 = each patch to nearest patch of same gp CC
m3 = each patch to nearest patch of same gp CE
m4 = each patch to nearest patch of same gp EE
mb5 = each patch to nearest patch of any diff. gp CC
m6 = each patch to nearest patch of any diff. gp CE

136

m7 = patches of 1 gp to nearest of specific gp CC
m8 = patches of 1 gp to nearest of specific gp CE
m9 = patches of 1 gp to nearest of specific gp EE

di2 Distance measures:

Options: n1, n2, n3, n4, n5, n6
nl = mean dist.
n2 = st. dev. dist.
n3 = mean dist. by gp
n4 = st. dev. dist. by gp
n5 = no. of dist. by dist. class
n6 = no. of dist. by dist. class by gp

out Name of output file for individual patch measures, when sam=w, u, r; if out=head, then column
headings will be printed

SEE ALSO
Ther.le Programs Users Guide
r.le.null, r.le.patch, r.le.pixel, r.lerename, r.le.setup, r.le.trace

AUTHOR
William L. Baker, Department of Geography and Recreation, University of Wyoming

137

r.le.null

NAME

r.le.null - Ther.le.null program is designed to generate a neutral structure map layer. This map layer can be
used as a"null hypothesis" layer for testing the statistical significance of landscape measures.

(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.lenull

r.le.null help

r.le.null map=name num=value att=value[,value,...] pro=value[,value,...]

Parameters:
map Raster map, with neutral structure, to be created.

num Number of attributes desired in the map (max = 24).

att Attributei (an integer) of 'num’ attributes.

pro Probability (as a % between 0-100) for attribute i of 'num’ attributes.
SEE ALSO

Ther.le Programs Users Guide

r.ledist, r.le.patch, r.le.pixel, r.lerename, r.le.setup, r.le.trace

AUTHOR
William L. Baker, Department of Geography and Recreation, University of Wyoming

138

r.le.patch

NAME

r.le.patch - This program can be used to calculate attribute, patch size, core (interior) size, shape, fracta
dimension, and perimeter measures for sets of patchesin alandscape

(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.le.patch

r.le.patch help

r.le.patch [-bcnptu] map=name [sam=name] [reg=name] [att=name[,name,...]] [siz=name[,name,...]]
[col=value] [co2=name[,name,...]] [shl=name] [sh2=name[,name,...]] [fra=name] [per=name[,name,...]]
[out=name]

OPTIONS

Flags:

-b Run in background

-C Output map 'interior' with patch cores

-n Output map 'num’ with patch numbers

-p Include sampling area boundary as perimeter

-t Use 4 neighbor tracing instead of 8 neighbor

-u Output maps 'units x' with sampling units for each scale x
Parameters:

map Raster map to be analyzed

sam Sampling method (choose only 1 method): w=whole map, u=units, m=moving window, r=regions
Default: w

reg Name of regions map, only when sam = r; omit otherwise

att Attribute measures:

Options: al, a2, a3, a4, a5, ab, a7
al = mean pixel attribute
a2 = st. dev. pixel attribute
a3 = mean patch attribute
a4 = st. dev. patch attribute
ab = cover by gp
a6 = density by gp
ar = total density

Siz Patch size measures:
Options: s1, s2, s3, 4, S5, s6
sl = mean patch size
S2 = t. dev. patch size

139

S3 = mean patch size by gp
4 = <t dev. patch size by gp
s5 =no. by size class

s6 = no. by size class by gp

col Edge width in pixels (integer) for use with co2

co2 Core size measures (required if col was specified):
Options: c1, c2, 3, ¢4, ¢5, c6, ¢7, c8, c9, c10
¢l = mean coresize
C2 = dt. dev. core size
€3 = mean edge size
c4 = <. dev. edge size
¢5 = mean core size by gp
c6 = <. dev. coresize by gp
c7 = mean edge size by gp
c8 = <t. dev. edge size by gp
¢9 = no. by sizeclass
¢10 = no. by size class by gp

shl Shape method (choose only 1 method):
m1 = perim./area
m2 = corr. perim./area
m3 = rel. circum. circle

sh2 Shape measures (required if shl was specified):
Options: h1, h2, h3, h4, h5, h6
h1 = mean patch shape
h2 = st. dev. patch shape
h3 = mean patch shape by gp
h4 = st. dev. patch shape by gp
h5 = no. by shape class
h6 = no. by shape class by gp

fra Fractal dimension measures:
Options: f1
f1 = perim.-areafractal dim.

per Perimeter measures (required if pel was specified):
Options: p1, p2, p3, p4, p5, p6
pl = sum of perims.
p2 = mean perim.
p3 = st. dev. perim.
p4 = sum of perims. by gp
p5 = mean perim. by gp
p6 = st. dev. perim. by gp

out Name of output file for individual patch measures, when sam=w, u, r; if out=head, then column
headings will be printed

SEE ALSO

Ther.le Programs Users Guide
r.ledist, r.le.null, r.le.pixel, r.le.rename, r.le.setup, r.le.trace

140

AUTHOR
William L. Baker, Department of Geography and Recreation, University of Wyoming

141

r.le.pixel

NAME

r.le.pixel - Ther.le.pixel program contains a set of measures for attributes, diversity, texture, juxtaposition,
and edge.

(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.le.pixel

r.le.pixel.help

r.le.pixel [-beuzl] map=name [sam=name] [reg=name] [att=name[,name,...]] [div=name],name,...]]
[tel=name] [te2=name[,name,...]] [jux=name],name,...]] [edg=name] ,name,...]]

OPTIONS
Flags:
-b Run in background

-e Output map 'edge’ of edges given a'l' in r.le.para/edgefile

-u Output maps 'units x' with sampling units for each scale x
-Z Output map 'zscores with standardized scores
Parameters:

map Raster map to be analyzed

sam Sampling method (choose only 1 method): w=whole map, u=units, m=moving window, r=regions
Default: w

reg Name of regions map, only when sam = r; omit otherwise

att Attribute measures:
Options: b1, b2, b3, b4
b1 = mean pixel attribute
b2 = st. dev. pixel attribute
b3 = minimum pixel attribute
b4 = maximum pixel attribute

div Diversity measures:
Options: d1, d2, d3, d4
d1 = richness
d2 = Shannon

d3 = dominance
d4 = inverse Simpson

tel Texture method (choose only 1 method):
Options: m1, m2, m3, m4, m5, m6, m7
ml=2N-H
m2 = 2N-45
m3 = 2N-V

142

m4 = 2N-135
m5 = 4N-HV
m6 = 4N-DIAG
m7 = 8N

te2 Texture measures (required if tel was specified):
Options: t1, t2, t3, t4, t5
t1 = contagion
t2 = ang. sec. mom.
t3 = inv. diff. mom.
t4 = entropy
t5 = contrast

jux Juxtaposition measures (weight file in r.le.para needed):
Options: j1, j2
j1 = mean juxtaposition
j2 = standard deviation of juxtaposition

edg Edge measures:
Options: €1, e2
el = sum of edges
€2 = sum of edges by type (edge filein r.le.para needed)

SEE ALSO
Ther.le Programs Users Guide
r.ledist, r.le.null, r.le.patch, r.le.rename, r.le.setup, r.le.trace

AUTHOR
William L. Baker, Department of Geography and Recreation, University of Wyoming

143

r.lerename
NAME
r.lerename - The r.lerename program is used to either add a suffix to all the files in the r.le.out subdirectory,
or to rename the files one by one.
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.lerename

r.lerename help

r.lerename[-a] [ext=name] [old=name[,name,...]] [new=name[,name,...]]

DESCRIPTION
It is necessary to rename the files before running an r.le program over again, because the r.le program will
overwrite existing files each time the program is started.

OPTIONS

Flag:

-a All files in r.leout that have extension .out change their extension to parameter ext; others not
affected

Parameters:

ext New extension with which to replace the .out extension of filesinr.le out directory

old Old file namei in r.le.out directory to be changed

new New file name for old file namei in r.le.out directory
SEE ALSO

Ther.le Programs Users Guide

r.ledist, r.le.null, r.le.patch, r.le.pixel, r.le.setup, r.le.trace

AUTHOR
William L. Baker, Department of Geography and Recreation, University of Wyoming

144

r.le.setup

NAME

r.le.setup - The r.le.setup program is used to set up the sampling and analysis framework that will be used by
the other r.le programs.

(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS
r.le.setup

DESCRIPTION

The first menu allows the user to define a rectangular sampling frame, select how sampling will be done
(regions, sampling units, moving window), setup the limits for groups and classes, and change the color
table. Use the left mouse button to make your choice.

Information about the structure of the landscape is obtained by overlaying a set of sampling areas on top
of a specified part (the sampling frame of a map layer, and then calculating specific structural measures
for the part of the map layer that corresponds to the area in each sampling area.

To setup a sampling frame click on SAMPLING FRAME in the main menu. The program will ask "Will
the sampling frame (total area within which sampling units are distributed) be the whole map? (y/n) [y]"
Just hit a carriage return to accept the default, which is to use the whole map. Y ou do not need to setup a
sampling frame if you want to use the whole map, as this is the default. To setup a different sampling
frame type "n" in response to this question. Then use the mouse and a rubber band box to outline a
rectangular sampling frame on screen. This box will be moved to the nearest row and column of the map.
You will be asked last whether you want to "Refresh the screen before choosing more setup?' 1f you don't
like the sampling frame you just setup, answer yes to this question, then click on SAMPLING FRAME
again to redo this part of the setup. This sampling frame will be used in all subsequent setup procedures
unless you change it. Y ou can changeit at any time by simply clicking on SAMPLING FRAME again.

A sampling area may be one of four things. First, it is possible to treat the entire map layer as the one
(and only) sampling area. Second, if the map layer can be divided into meaningful geographical regions,
then it is possible to treat the regions themselves as sampling areas. The third option is that the sampling
areas may be sampling units of fixed shape and size (also called scale) that are placed within the map
layer as a whole. The fourth and fina option is that the sampling area may be moved systematically
across the map as a moving window.

If regions are to be used as the sampling areas , then the user can use r.le.setup to draw regions or any
existing map of regions can simply be used directly. To draw regions and create a new regions map in
r.le.setup select "REGIONS" from the first r.le.setup menu, and the user is asked to do the following:

1. "ENTER THE NEW REG ON MAP NAME:". Only a new raster map nane is acceptable. The user
can type LIST to find out the existing raster map nanmes in this |location and mapset.

2. "PLEASE QUTLINE REG ON # 1". The user should nove the npuse cursor into the graphic
nmoni tor wi ndow and use the nouse buttons as instructed:

Left button: where am|.to display the current coordinates of the cursor.

M ddl e button: Mark start (next) point. to enter a vertex of the regi on boundary.

Ri ght button: Finish region-connect to 1st point to close the region boundary by setting
the last vertex to be equal to the first one.

3. A "REG ON OPTIONS: " nenu is displayed and the user should use the nmpbuse to sel ect one

of the options:
"DRAW MORE": repeat the above process and setup another region.

145

"START OVER': abandon the previous setup and start all over again.
"DONE- SAVE": save the regions outlined so far and exit this procedure.
"QUIT-NO SAVE": quit the procedure without saving the regions.

Once the "DONE-SAVE" option is selected, the new raster map of the sampling regionsis generated. It is
displayed on the monitor window for several seconds, the monitor window is refreshed, the main menu is
displayed again, and the program is ready for other setup work. Note that you cannot draw regions in
areas outside the mask, if amask is present (see r.mask command).

The user can also use the GRASS r.digit or v.digit programs to digitize circular or polygonal regions and
to create a sampling regions map without using r.le.setup. Or, as mention above, an existing raster map
can be used as a regions map.

If sampling units are to be used as the sampling areas (Fig. 2), then choose "SAMPLING UNITS" from
the first r.le.setup menu. The program checks the r.le.para subdirectory for an existing "units’ file from a
previous setup session and allows the user to rename this file (to save it) before proceeding. Ther.le.setup
program will otherwise overwrite the "units' file. Then the following choice is displayed followed by a
series of other choices:

Whi ch do you want to do?
(1) Use the keyboard to enter sanpling unit paraneters
(2) Draw the sanpling units with the nopuse
Enter 1 or 2:

When sampling units are defined using the keyboard, the user inputs the shape and size (scale) of the
sampling units by specifying dimensions in pixels using the keyboard. When sampling units are drawn
with the mouse, the user clicks the mouse to define the sampling units in the GRASS monitor window,
and then actualy places the sampling units for each scale onto the map. By placing the units with the
mouse the user can directly determine the method of sampling unit distribution as well as the shape, size,
and number of sampling units.

If the choice is made to define sampling units using the keyboard, the following series of questions must
be answered:

How many different SCALES do you want (1-15)7?

The user is asked to specify the number of scales that will be used. The r.le programs allow the user to
simultaneously sample the same map with the same measures using sampling areas of different sizes.
Currently there can be between 1 and 15 scales that can be sampled simultaneously. Substantial output
can be produced if many scales are used.

Sampling units must be placed spatially into the landscape. There are five options for doing this:

Random nonoverlapping

Sampling units are placed in the landscape by randomly choosing numbers that specify the location of the
upper left corner of each sampling unit, subject to the constraint that successive sampling units not
overlap other sampling units or the edge of the landscape, and that they must be entirely within the area
defined by the mask (see r.mask command) if one exists.

Systematic contiguous

Sampling units are placed side by side across the rows. The user will be able to enter arow and column to
indicate where the upper left corner of the systematic contiguous framework should be placed. Rows are
numbered from the top down beginning with row 1 of the sampling frame. Columns are numbered from
left to right, beginning with column 1 of the sampling frame. A random starting location can be obtained
by using a standard random number table to choose the starting row and column. The r.le.setup program
does not avoid placing the set of sampling units over areas outside the mask. The user will have to make

146

sure that sampling units do not extend outside the mask by choosing a particular starting row and column
or by drawing a sampling frame before placing the set of sampling units.

Systematic noncontiguous

The user must specify the starting row and column as in #2 above and the amount of spacing (in pixels)
between sampling units. Horizontal and vertical spacing are identical. Sampling units are again placed
side by side (but spaced) across the rows. As in #2 the program does not avoid placing sampling units
outside the masked area; the user will have to position the set of units to avoid areas outside the mask.

Stratified random

The strata are rectangular areas within which single sampling units are randomly located. The user must
first specify the starting row and column as in #2 above. Then the user must specify the number of strata
in the horizontal and vertical directions. As in #2 the program does not avoid placing sampling units
outside the masked area; the user will have to position the set of units to avoid areas outside the mask.

Centered over sites

The user must specify the name of a sitefile containing point locations. A single sampling unit is placed
with its center over each site in the site file. This is a useful approach for determining the landscape
structure around points, such as around the location of wildlife observations.

The user is prompted to enter a ratio that defines the shape of the sampling units. Sampling units may
have any rectangular shape, including square as a specia case of rectangular. Rectangular shapes are
specified by entering the ratio of columns/rows (horizontal dimension/vertical dimension) as a real
number. For example, to obtain a sampling unit 10 columns wide by 4 rows long specify the ratio as 2.5
(10/4).

Recomended maxi mum SIZE is min x cell total area.
What size (in cells) for each sanpling unit of scale n?

The user is then given the recommended maximum possible size for a sampling unit (in pixels) and asked
to input the size of sampling units at each scale. Sampling units can be of any size, but the maximum size
is the size of the landscape as a whole. All the sampling units, that make up a single sampling scale, are
the same size. After specifying the size, the program determines the nearest actual number of rows and
columns, and hence size, that is closest to the requested size, given the shape requested earlier.

The nearest size is x cells wide Xy cells high = xy cells
Is this size OK? (y/n) [vy]

Maxi mum NUMBER of units in scale nis p?
What NUMBER of sanpling units do you want to try to use?

The maximum number of units that can be placed over the map, given the shape and size of the units, is
then given. The user can then choose the number of sampling units to be used in the map layer. It may
not always be possible to choose the maximum number, depending upon the shape of the sampling units.
In the case of systematic contiguous and noncontiguous, the program will indicate how many units will fit
across the columns and down the rows. The user can then specify a particular layout (e.g., 6 units could
be placed as 2 rows of 3 per row or as 3 rows of 2 per row).

Is this set of sanmpling units OK? (y/n) [y[

Finally, the set of sampling units is displayed on the screen (e.g., Fig. 1) and the user is asked whether it
is acceptable. If the answer is no, then the user is asked if the screen should be refreshed before
redisplaying the menu for "Methods of sampling unit distribution” so that the user can try the sampling
unit setup again.

147

The choice is made to define sampling units using the mouse, then the following menu for use with the
mouse is displayed:

Qutline the standard sanpling unit of scale n.

Left button: Check unit size
M ddl e button: Mbove cursor
Ri ght button: Lower right corner of unit here

The user can then use the mouse and the rubber band box to outline the standard sampling unit. Once it
has been outlined, the number of columns and rows in the unit, the ratio of width/length and the size of
the unit, in cells, will be displayed. After thisfirst unit is outlined, then a new menu is displayed:

Qutline nore sanmpling units of scale n?

Left button: Exi t
M ddl e button: Not used
Ri ght button: Lower right corner of next unit here

The user can then place more units identical to the standard unit by simply clicking the right mouse
button where the lower right corner of the unit should be placed. The rest of the rubber band box can be
ignored while placing additional units. The program is set up so that units cannot be placed so they
overlap one another, so they overlap the area outside the mask, or so they overlap the edge of the sampling
frame. Warning messages are issued for all three of these errors and a sampling unit is simply not placed.

Using this procedure a rectangular "window" or single sampling area is moved systematically across the
map to produce a new map (Fig. 2,3). This sampling procedure can only be used with the measures that
produce a single value or with a single class or group when measures produce distributions of values
(Table 1). Thefirst class or group specified when defining class or group limits (section 2.3.2.) is used if
distributional measures are chosen with the moving window sampling method. In this case, the user
should manually edit the r.le.para/recl_tb file so that the desired group is listed as the first group in this
file.

Sampling begins with the upper left corner of the window placed over the upper left corner of the
sampling frame. It is strongly recommended that the user read the section on the GRASS mask (section
2.2.2) prior to setting up the moving window, as this mask can be used to speed up the moving window
operation. The value of the chosen measure is calculated for the window area. This value is assigned to
the location on the new map layer corresponding to the center pixel in the window if the window has odd
(e.g. 3 X 3) dimensions. The value is assigned to the location on the new map layer corresponding to the
first pixel below and to the right of the center if the window has even dimensions (e.g. 6 X 10). If this
pixel has the value "0," which means "no data" in GRASS, then this pixel is skipped and avalue of "0" is
assigned to the corresponding location in the new map. The window is then moved to the right (across
the row) by one pixel, and the process is repeated. At the end of the row, the window is moved down one
pixel, and then back across the row. This option produces a new map layer, whose dimensions are smaller
by approximately (m-1)/2 rows and columns, where m is the number of rows or columns in the window.

If the "MOVE-WINDOW" option in the main menu is selected, first the program checks for an existing
"move_wind" file, in the r.le.para subdirectory, containing moving window specifications from a previous
session. The user is given the option to avoid overwriting this file by entering a new file name for the old
"move wind" file. Users should be aware that moving window analyses are very slow, because a large
number of sampling units are, in effect, used. See the appendix on "Time needed to complete analyses
with the r.le programs’ for some ideas about how moving window size and sampling frame area affect the
needed time to complete the analyses.

The r.le programs r.ledist and r.le.patch allow the attribute categories in the input map to be reclassed
into several attribute groups, and reports the analysis results by each of these attribute groups. It is
necessary to setup group limits for all measures that say "by gp" when typing "r.le.dist help" or "r.le.patch
help" at the GRASS prompt. The same reclassing can be done with the measurement indices (e.g., size),

148

except that each "cohort” (class) of the reclassed indices is called an index class instead of a group. It is
also necessary to setup class limits for all measures that say "by class' when typing "r.le.dist help” or
"r.le.patch help" at the GRASS prompt.

Group/class limits are setup by choosing "GROUP/CLASS LIMITS" from the main menu upon starting
r.le.setup, or you can create the files manually using a text editor. The program checks for existing
group/class limit files in subdirectory r.le.para and allows the user to rename these files prior to
continuing. If the files are not renamed the program will overwrite them. The files are named recl_tb
(attribute group limits), size (size class limits), shape PA (shape index class limits for perimeter/area
index), shape CPA (shape index class limits for corrected perimeter/area index), shape RCC (shape
index class limits for related circumscribing circle index), and from_to (for the r.le.dist program distance
methods m7-m9).

Attribute groups and index classes are defined in a different way. In ther.le programs attribute groups are
defined asin the following example:

1, 3, 5, 7, 9 thru 21 =1 (comment)
31 thru 50 = 2 (comment)
end

In this example, the existing categories 1, 3, 5, 7, {9, 10, ... 20, 21} are included in the new group 1,
while {31, 32, 33, ..., 49, 50} areincluded in the new group 2. The charactersin bold are the "key words"
that are required in the definition. Each lineis called one "reclass rule".

The GRASS reclass convention is adopted here with a little modification (see "r.reclass’ command in the
GRASS User's Manual). The differenceis that r.le only allows one rule for each group while the GRASS
r.reclass command alows more than one. The definition of "from"™ and "to" groups is simply the
extension of the GRASS reclass rule. The advantage of using the GRASS reclass convention is that the
user can generate a permanent reclassed map, using GRASS programs, directly from the r.le setup results.

The r.le measurement index classes are defined by the lower limits of the classes, as in the following
example:

0.0, 10.0, 50.0, 200.0, -999

This means:
i f
i f
i f
i f

>= 0.0 and v < 10.0 then v belongs to index class 1
>= 10.0 and v < 50.0 then v belongs to index class 2
>= 50.0 and v < 200.0 then v belongs to index class 3
>= 200.0 then v belongs to index class 4

<< <<

where v is the calculated index value and -999 marks the end of the index class definition. The measurement
index can be the size index, one of the three shape indices, or one of the three distance indices. The program
is currently designed to allow no more than 25 attribute groups, 25 size classes, 25 shape index classes, and 25
distance index classes. As an alternative, the user may want to permanently group certain attributes prior to
entering the r.le programs. For example, the user may want to group attributes 1-10, in a map whose
attributes are ages, into a single attribute representing young patches. The user can do this using the GRASS
r.reclass and r.resample commands, which will create a new map layer that can then be analyzed directly

(without setting up group limits) with the r.le programs.

SEE ALSO
Ther.le Programs Users Guide
r.digit, r.ledist, r.le.null, r.le.patch, r.le.pixel, r.lerename, r.le.trace, r.reclass, r.resample, v.digit

AUTHOR
William L. Baker, Department of Geography and Recreation, University of Wyoming

149

r.letrace

NAME

r.letrace - the r.letrace program can be used to display the boundary of each patch and show how the
boundary is traced, display the attribute, size, perimeter, and shape indices for each patch, and save the datain
an output file.

(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.letrace

r.letrace help

r.le.trace [-npt] map=name [out=name]

DESCRIPTION

When sampling the whole map (sam=W), the r.le.trace program can be used to do three things: (1) display the
boundary of each patch and show how the boundary is traced, (2) display the attribute, size, perimeter, and
shape indices for each patch, and (3) save these data in an output file.

Flags:

-n Output map 'num’ with patch numbers

-p Include sampling area boundary as perimeter
-t Use 4 neighbor tracing instead of 8 neighbor
Parameters:

map Raster map to be analyzed

out Name of output file to store patch data
SEE ALSO

Ther.le Programs Users Guide

r.ledist, r.le.null, r.le.patch, r.le.pixel, r.lerename, r.le.setup

AUTHOR
William L. Baker, Department of Geography and Recreation, University of Wyoming

150

r.line

NAME

r.line - Creates a new binary GRASS vector (v.digit) file by extracting linear features from a thinned
raster file.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.line

r.line help

r.line input=name output=name [type=name]

DESCRIPTION
r.line scans the named raster map layer (input=name) and extracts thinned linear features into the named
vector file (output=name).

OPTIONS
The user can run this program either non-interactively or interactively. The program will be run non-
interactively if the user specifies program arguments on the command line, using the form:

r.line input=name output=name [type=name]

If the user specifies input raster and output vector map names on the command line, any other parameter
values left unspecified on the command line will be set to their default values (see below). Alternately, the
user can simply type r.line on the command line, without program arguments. In this case, the user will
be prompted for parameter values using the standard GRASS parser interface described in the manual
entry for parser.

Parameters:
input=name Name of existing raster file to be used as inpuit.

output=name Name of new vector file to be output.

type=name Line type of the extracted vectors; either line or area. Specifying line will type extracted
vectors as linear edges. Specifying area will type extracted vectors as area edges.

Options: line or area.

Default: type=line

r.line assumes that the input map has been thinned using r.thin.

NOTES

r.line extracts vectors (ak.a, "arcs') from a raster file. These arcs may represent linear features (like
roads or streams), or may represent area edge features (like political boundaries, or soil mapping units).
The attribute type option allows the user to establish the use of either linear or area edge attributes for all
of the extracted vectors.

r.poly may be used to extract vectors that represent area features (like soil mapping units, elevation
ranges, etc.) from araster file.

151

The user must run v.support on the resultant vector (v.digit) files to build the dig_plus information.

r.thin and r.line may create excessive nodes at every junction, and may create small spurs or "dangling
lines" during the thinning and vectorization process. These excessive nodes and spurs may be removed
using v.trim.

BUGS
The input raster file MUST be thinned by r.thin; if not, r.line may crash.

SEE ALSO
r.poly, r.thin, v.digit, v.support, v.trim, parser

AUTHOR
Mike Baba, DBA Systems, Inc. 10560 Arrowhead Drive Fairfax, Virginia 22030

152

r.linear.regression

ATTENTION: This page is not yet properly corrected! It was taken from r.rational.regression. So be
careful and send a better version to neteler@geog.uni-hannover.de

NAME
r.linear.regression - linear and nonlinear regression calculation (GRASS Image Processing Program)

GRASSVERSION
4.x

SYNOPSIS

r.linear.regression

r.linear.regression help

r.linear.regression input=name output=name

DESCRIPTION

The r.linear.regression program calculates the linear regression model. If it is used as an image
processing tool, the multispectral space remote sensing data will be the regression variables (ASCII file)
and the ground vegetation coverage measurements will be the response variables (also ASCII file) and this
command will be useful for obtaining linear regression models from the remote-sensing data which have
corresponding ground measurement and for predicting vegetation coverage using other remote-sensing
data which have no corresponding ground truth records. The input file has the following format

regression valuables x1, X2, ... response variable y
channel 1 (x1) channel 2 (x2) ... coverage

For athree channel remote-sensing data the following is an example of input ASCII file

0. 4350 0. 2616 0.7016 0. 98
0.4140 0.2620 0. 6520 0. 99
0. 4940 0. 3500 0. 5580 0. 34
0.5983 0. 5350 0. 5650 0.10
0. 4883 0. 3733 0. 5533 0. 88
0.4150 0.2916 0.5116 0. 60
0. 5566 0. 5250 0. 5466 0. 09
0. 4420 0.2820 0. 6800 0. 86
0. 4220 0.2620 0. 6260 0. 88
0. 4766 0. 3666 0. 5933 0.61
0.5180 0. 4300 0.5140 0. 60
0.4416 0.2700 0. 7383 0. 96
0. 4583 0. 3116 0.5133 0.76
0. 4300 0.2750 0.7233 0. 98
0. 4320 0.2760 0. 6460 1. 00
0.4733 0. 3566 0.5616 0. 53
0. 4200 0. 2450 0. 7966 1. 00
0. 4850 0. 3533 0.7216 0. 99
0. 4360 0.2620 0.7620 0. 99
0. 4283 0. 2650 0.6783 0.91
0. 4633 0. 3200 0. 6750 0. 94

The resulted regression model (coefficient numbers) and related information about the confidencial test,
goodness or utility test (e.g., correlation coefficient r between observed and calculated coverage, F value
and t value) are put on the output file (ASCII file also).

r.linear.regression will be run non-interactively if the user specifies program arguments on the command

line, using the form:
r.linear.regression input=name output=name

153

But after run, the computer will prompt the user to select model number. Alternately, the user can smply
type: r.linear.regression on the command line without program arguments. In this case, the user will be
prompted for parameter values using the standard GRASS user interface described in the manual entry for
parser.

SEE ALSO
i.rvi, i.ndvi

AUTHORS
Hong C. Zhuang, U.S. Army Construction Engineering Research Laboratory Department of Electrical
Computer Engineering, University of Illinois at Urbana-Champaign.

Michael Shapiro, U.S. Army Construction Engineering Research Laboratory.

154

r.los

NAME
r.los - Line-of-sight raster analysis program.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.los

r.los help

r.los input=name output=name coordinate=x,y [patt_map=name] [obs_elev=value] [max_dist=value]

DESCRIPTION

r.los generates a raster map output in which the cells that are visible from a user-specified observer
location are marked with integer values that represent the vertical angle (in degrees) required to see those
cells.

The program can be run either non-interactively or interactively. To run r.los non-interactively, the user
must specify at least an input file name, output file name, and the geographic coordinates of the user's
viewing location on the command line; any remaining parameters whose values are unspecified on the
command line will be set to their default values (see below). Non-interactive usage format is:

r.los input=name output=name coordinate=x,y [patt_map=name] [obs_elev=value] [max_dist=value]

Alternately, the user can type ssimply r.los on the command lineg; in this case, the program will prompt the
user for parameter values using the standard GRASS interface described in the manual entry for parser.

Parameters:
input=name Name of araster map layer containing elevation data, used as program input.

output=name Name assigned to the file in which the raster program output will be stored.

coordinate=x,y Geographic coordinates (i.e., easting and northing values) identifying the desired
location of the viewing point.

patt_map=name Name of a binary (1/0) raster map layer in which cells within the areas of interest are
assigned the category value '1', and all other cells are assigned the category value '0'. If this parameter is
omitted, the analysis will be performed for the whole area within a certain distance of the viewing point
inside the geographic region boundaries. Default: assign all cells that are within the max_dist and within
the user's current geographic region boundaries a value of 1.

obs elev=value Height of the observer (in meters) above the viewing point's elevation. Default: 1.75
(meters)

max_dist=value Maximum distance (in meters) from the viewing point inside of which the line of sight
analysis will be performed. The cells outside this distance range are assigned the category value '0'.
Options: 0-99999 (stated in map units) Default: 100

NOTES

For accurate results, the program must be run with the resolution of the geographic region set equal to the
resolution of the data (see g.region). It is advisable to use a 'pattern layer' which identifies the areas of

155

interest in which the line of sight analysisis required. Such a measure will reduce the time taken by the
program to run.

SEE ALSO
g.region, r.pat.place, parser

AUTHOR
Kewan Q. Khawaja, Intelligent Engineering Systems Laboratory, M.I.T.

156

r.mapcalc

NAME
r.mapcalc - Raster map layer data calculator.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.mapcalc
r.mapcalc [result=expression]

DESCRIPTION

r.mapcalc performs arithmetic on raster map layers. New raster map layers can be created which are
arithmetic expressions involving existing raster map layers, integer or floating point constants, and
functions.

PROGRAM USE

If used without command line arguments, r.mapcalc will read its input, one line a a time, from standard
input (which is the keyboard, unless redirected from afile or across a pipe). Otherwise, the expression on
the command lineis evaluated. r.mapcalc expects its input to have the form:

result=expression

where result is the name of araster map layer to contain the result of the calculation and expression is any
legal arithmetic expression involving existing raster map layers, integer or floating point constants, and
functions known to the calculator. Parentheses are allowed in the expression and may be nested to any
depth. result will be created in the user's current mapset.

The formula entered to r.mapcalc by the user is recorded both in the result map title (which appearsin the
category file for result) and in the history file for result.

Some characters have special meaning to the command shell. If the user is entering input to r.mapcalc on
the command line, expressions should be enclosed within single quotes. See NOTES, below.

OPERATORS AND ORDER OF PRECEDENCE
The following operators are supported:

Oper at or Meani ng Type Precedence
% nodul us (renmi nder upon divi sion) Arithretic 4
[division Arithnetic 4
* nultiplication Arithretic 4
+ addition Arithnetic 3
- subtraction Arithnetic 3
== equal Logi cal 2
I'= not equal Logi cal 2
> greater than Logi cal 2
>= greater than or equal Logi cal 2
< less than Logi cal 2
<= |l ess than or equal Logi cal 2
&& and Logi cal 1
|| or Logi cal 1

The operators are applied from left to right, with those of higher precedence applied before those with
lower precedence. Division by 0 and modulus by O are acceptable and give a O result. The logica
operators give a 1 result if the comparison is true, O otherwise.

157

RASTER MAP LAYER NAMES

Anything in the expression which is not a number, operator, or function name is taken to be a raster map
layer name. Examples:

elevation x3 3d.his

Most GRASS raster map layers meet this naming convention. However, if a raster map layer has a name
which conflicts with the above rule, it should be quoted. For example, the expression

X=ab

would be interpreted as: x equals a minus b, whereas

X="ab"

would be interpreted as. x equals the raster map layer named a-b

Also

x = 3107

would create x filled with the number 3107, while

x = "3107"

would copy the raster map layer 3107 to the raster map layer x.

Quotes are not required unless the raster map layer names look like numbers or contain operators, OR
unless the program is run non-interactively. Examples given here assume the program is run
interactively. See NOTES, below.

r.mapcalc will look for the raster map layers according to the user's current mapset search path. It is

possible to override the search path and specify the mapset from which to select the raster map layer. This
is done by specifying the raster map layer name in the form:

name@mapset
For example, the following is alegal expression:
result = Xx@PERMANENT / y@SOILS

The mapset specified does not have to be in the mapset search path. (This method of overriding the
mapset search path is common to all GRASS commands, not just r.mapcalc.)

THE NEIGHBORHOOD MODIFIER

Maps and images are data base files stored in raster format, i.e., two-dimensional matrices of integer
values. In r.mapcalc, maps may be followed by a neighborhood modifier that specifies a relative offset
from the current cell being evaluated. The format is map[r,c], where r is the row offset and c is the
column offset. For example, map[1,2] refers to the cell one row below and two columns to the right of the
current cell, map[-2,-1] refers to the cell two rows above and one column to the left of the current cell, and
map[0,1] refers to the cell one column to the right of the current cell. This syntax permits the
development of neighborhood-type filters within a single map or across multiple maps.

158

RASTER MAP LAYER VALUESFROM THE CATEGORY FILE
Sometimesiit is desirable to use a value associated with a category's contents instead of the category value
itself. If araster map layer name is preceded by the @ operator, then the labels in the category file for the
raster map layer are used in the expression instead of the category value.

For example, suppose that the raster map layer soil.ph (representing soil pH values) has a category file
with labels as follows:

cat | abel

o

no data

~NouhwWN R
OCONTWN =
BoON®OTA A

Then the expression:
result = @soils.ph * 10
would produce a result with category values 0, 14, 24, 35, 58, 72, 88 and 94.

Note that this operator may only be applied to raster map layers and produces a floating point value in the
expression. Also the category label must start with a valid number. Missing labels, or labels that do not
start with a number will (silently) produce a 0 value for that category.

GREY SCALE EQUIVALENTSAND COLOR SEPARATES

It is often helpful to manipulate the colors assigned to map categories. This is particularly useful when
the spectral properties of cells have meaning (as with imagery data), or when the map category values
represent real quantities (as when category values reflect true elevation values). Map color manipulation
can also aid visual recognition, and map printing.

The # operator can be used to either convert map category values to their grey scale equivalents or to
extract the red, green, or blue components of a raster map layer into separate raster map layers.

result = #map

converts each category value in map to a value in the range 0-255 which represents the grey scale level
implied by the color for the category. If the map has a grey scale color table, then the grey level is what
#map evaluates to. Otherwise, it is computed as:

18 * red + .81 * green + .01 * blue

The # operator has three other forms: r#map, g#map, b#map. These extract the red, green, or blue
components in the named raster map, respectively. The GRASS shell script blend.sh extracts each of
these components from two raster map layers, and combines them by a user-specified percentage. These
forms allow color separates to be made. For example, to extract the red component from map and store it
in the new 0-255 map layer red, the user could type:

red = r#map

159

To assign this map grey colors type:

r.colors map=red color=rules
black
white

To assign this map red colors type:

r.colors map=red color=rules
black
red

FUNCTIONS

The functions currently supported are listed in the table below. The type of the result is indicated in the
last column. F means that the functions always results in a floating point value, | means that the function
gives an integer result, and * indicates that the result is float if any of the arguments to the function are
floating point values and integer if all arguments are integer.

function description type
abs(x)return absol ute val ue of x *
at an(x) inverse tangent of x (result is in degrees) F
cos(x)cosine of x (x is in degrees) F
eval ([x,y,..., 1z) evaluate values of listed expr, pass results to z *
exp(x)exponential function of x F
exp(x,y) X to the power y F
float(x) convert x to floating point F
if deci si on options: *

if(x) 1 if x not zero, O otherw se

if(x,a) a if x not zero, O otherw se

if(x,a,b) aif x not zero, b otherw se
if(x,a,b,c)aif x>0, bif xis zero, cif x <0

int(x) convert x to integer [truncates]

1 og(x) natural |og of x F
I og(x, b) log of x base b F
max(x,y[,z...]) | argest val ue of those listed *
medi an(x, y[,z...]) median value of those listed *
mn(x,y[,z...]) smal | est val ue of those listed *
rand(x,y) random val ue between x and y *
round(x) round x to nearest integer

si n(x) sine of x (x is in degrees) F
sqrt (x) square root of x F
tan(x) tangent of x (x is in degrees) F

FLOATING POINT VALUESIN THE EXPRESSION
Floating point numbers are allowed in the expression. A floating point humber is a number which
contains a decimal point:

23 12. 81

Floating point values in the expression are handled in a special way. With arithmetic and logical
operators, if either operand is float, the other is converted to float and the result of the operation is float.
This means, in particular that division of integers results in a (truncated) integer, while division of floats
results in an accurate floating point value. With functions of type * (see table above), the result is float if
any argument is float, integer otherwise.

EXAMPLES
To compute the average of two raster map layersa and b:
ave= (a+ b)/2

To form aweighted average:

160

ave= (5*a+ 3*b)/8.0

To produce a binary representation of the raster map layer a so that category O remains O and all other
categories become 1:
mask = a/a

This could also be accomplished by:
mask = if(a)

To mask raster map layer b by raster map layer a
result = if(a,b)

To represent NULL values, use the function isnull ():

r.mapcalc “ b=isnull (a)”

r.mapcalc “ b=if (isnull (a),1,0)”

r.mapcalc “ b=if (isnull (a), null (), a)” #NO CHANGE

To make a floating point map out of an existing integer raster map:
test fp=1.0*test_int

REGION/MASK

The user must be aware of the current geographic region and current mask settings when using r.mapcalc.
All raster map layers are read into the current geographic region masked by the current mask. If it is
desired to modify an existing raster map layer without involving other raster map layers, the geographic
region should be set to agree with the cell header for the raster map layer. For example, suppose it is
determined that the elevation raster map layer must have each category value increased by 10 meters. The
following expression islegal and will do the job:

new_elevation = elevation + 10

Since a category value of 0 is used in GRASS for locations which do not exist in the raster map layer, the
new raster map layer will contain the category value 10 in the locations that did not exist in the original
elevation. Therefore, in this example, it is essential that the boundaries of the geographic region be set to
agree with the cell header.

However, if there is a current mask, then the resultant raster map layer is masked when it is written; i.e., O
category values in the mask force zero values in the output.

NOTES

Extra care must be taken if the expression is given on the command line. Some characters have special
meaning to the UNIX shell. These include, among others:

*()>&]

It is advisable to put single quotes around the expression; e.g.:

result = 'elevation * 2'

Without the quotes, the *, which has special meaning to the UNIX shell, would be altered and r.mapcalc
would see something other than the *.

If the input comes directly from the keyboard and the result raster map layer exists, the user will be asked

if it can be overwritten. Otherwise, the result raster map layer will automatically be overwritten if it
exists.

161

Quoting result is not allowed. However, it is never necessary to quote result since it is always taken to be
araster map layer name.

For formulas that the user enters from standard input (rather than from the command line), a line
continuation feature now exists. If the user adds \ to the end of an input line, r.mapcal c assumes that the
formula being entered by the user continues on to the next input line. There is no limit to the possible
number of input lines or to the length of aformula.

If the r.mapcalc formula entered by the user is very long, the map title will contain only some of it, but
most (if not all) of the formulawill be placed into the history file for the result map.

When the user enters input to r.mapcalc non-interactively on the command line, the program will not
warn the user not to overwrite existing map layers. Users should therefore take care to assign program
outputs raster file names that do not yet exist in their current mapsets.

BUGS

Continuation lines must end with a and have NO trailing white space (blanks or tabs). If the user does
leave white space at the end of continuation lines, the error messages produced by r.mapcalc will be
meaningless and the equation will not work as the user intended.

Error messages produced by r.mapcalc are almost useless. In future, r.mapcalc should make some
attempt to point the user to the offending section of the equation, e.g.:

X=a*b++c

ERROR: somewhereinlinel: ... b++ c...

Currently, there is no comment mechanism in r.mapcalc. Perhaps adding a capability that would cause
the entire line to be ignored when the user inserted a # at the start of aline asif it were not present, would

do the trick.

The function should require the user to type "end" or "exit" instead of simply a blank line. This would
make separation of multiple scripts separable by white space.

SEE ALSO
r.mapcalc: an Angebra for GIS and Image Processing, by Michael Shapiro and Jim Westervelt, U.S.
Army Construction Engineering Research Laboratory (March 1991).

Grey scale conversion is based on the C.ILE. x, y, z system where y represents luminance. See
“Fundamentals of Digital Image Processing,” by Anil K. Jain (Prentice Hall, NJ, 1989; p. 67).

"GRASS Tutorial: r.mapcalc,”
blend.sh, g.region, r.colors, r.combine, r.infer, r.mask, r.weight, r.xy

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

162

r.mask

NAME
r.mask - Establishes or removes the current working mask.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.mask

DESCRIPTION

The r.mask program allows the user to block out certain areas of a map from analysis, by "hiding" them
from sight of other GRASS programs. This is done by establishing a mask. While a mask exists, most
GRASS programs will operate only on data falling inside the masked area, and ignore any data falling
outside of the mask.

Because the mask is actually only areclass file called "MASK" that is created when the user identifies a
mask using r.mask, it can be copied, renamed, removed, and used in analyses, just like other GRASS
raster map layers. The user should be aware that a mask remains in place until a user renames it to
something other than "MASK", or removes it using r.mask or g.remove.

r.mask provides the following options:

1 Renpve the current mask
2 ldentify a new nmask
RETURN Exit from program

The user establishes a new mask by choosing option (2). The user will be asked to name an existing raster
map layer from among those available in the current mapset search path. Once done, the user is shown a
listing of this map's categories, and is asked to assign a value of "1" or "0" to each map category. Areas
assigned category value "1" will become part of the mask's surface, while areas assigned category value
"0" will become "no data" areas in the MASK file.

If a category is not assigned category value "1" it will automatically be assigned the category value "0" in
the resulting MASK file. Any cells falling in category "0" will fall outside the newly formed mask, and
their presence will be ignored by GRASS programs run later on, as long as the MASK file remains in
place.

NOTES

The above method for specifying a "mask" may seem counterintuitive. Areas inside the mask are not
hidden; areas outside the mask will be ignored until the MASK file is removed. This program actually
creates a raster map layer (reclass type) called MASK, which can be manipulated (renamed, removed,
copied, etc.) like any other raster map layer. Somewhat similar program functions to those performed by
r.mask can be done using r.mapcalc, g.region, and other programs.

This program can only be run interactively.

Note that some programs, like r.stats, have options that allow the user to see the effects of the current
mask without removing the current mask. See, for example, use of the -m option for r.stats.

SEE ALSO
g.copy, g.region, g.remove, g.rename, r.combine, r.infer, r.mapcalc, r.reclass, r.stats, r.weight

163

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

164

r.mask.points

NAME

r.mask.points -Examines and filters lists of points constituting lines to determine if they fall within current
region and mask and optionally an additional raster map.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.mask.points

r.mask.points help

r.mask.points [-r] [mask=name] [input=name] [fs=name]

DESCRIPTION
r.mask.points filters a list of points based on the current region and current mask. The point list consists
of lines which have the following format

easting northing [text]

eésti ng northing [text]

The eastings and northings define points in the coordinate space. Each line is examined to determine if
the point falls within the current region, current mask (if any), and optionally an additional raster map
that acts as a secondary mask. If the point falls outside the current region or falls in a grid cell that has
value zero (either in the current mask, or the specified mask file), then the entire line is suppressed.
otherwise it is printed exactly as it is input. There may be arbitrary text following the coordinate pairs
and thistext is output as well.

OPTIONS
Flags:
-r Coordinates are reversed: north east

Normal input has the east first and the north second. This option allows the order of the coordinates to be
north first and east next.

Parameters:
mask Raster map used to mask points

This parameter is optional. If not specified, then the points are mask by the default mask (if there is one).
If it is specified, then the points are mask by this layer as well as the default mask.

input Unix input containing point list

If not specified it is assumed that the user will either redirect the input from afile:
r.mask.points < file

or pipe the results from some other process (e.g., a DBMS query) into r.mask.points

some_process | r.mask.points

165

fs Input field separator character

If the coordinates are not separated by white space, but by some other character, this option specifies that
character. For example, if a colon is used between the east and north, then r.mask.point can be told this

by:
r.mask.points fs=:

NOTES
Lines that make it through the filtering are output intact. This means that if the coordinates are reversed
they will remain reversed on output. If thereisafield separator, it will also be outpuit.

SEE ALSO
r.mask, s.out.ascii, s.in.ascii, d.points

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

166

r.median

NAME

r.median - Finds the median of values in a cover map within areas assigned the same category value in a
user-specified base map.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.median

r.median help

r.median base=name cover=name output=name

DESCRIPTION

r.median calculates the median category of data contained in a cover raster map layer for areas assigned
the same category value in the user-specified base raster map layer. These median values are stored in the
new output map layer.

The output map is actually areclass of the base map.

If the user simply types r.median on the command line, the user is prompted for the parameter values
through the standard parser interface (see parser manual entry).

Alternately, the user can supply all needed parameter values on the command line.

Parameters:

base=name An existing raster map layer in the user's current mapset search path. For each group of
cells assigned the same category value in the base map, the median of the values assigned these cells in
the cover map will be computed.

cover=name An existing raster map layer containing the values to be used to compute the median
within each category of the base map.

output=name The name of a new map layer to contain program output (a reclass of the base map).
The median values will be stored in the output map.

NOTES

The user should use the results of r.median with care. Since this utility assigns a value to each cell, which
is based on global information (i.e., information at spatial locations other than just the location of the cell
itself), the resultant map layer is only valid if the geographic region and mask settings are the same as
they were at the time that the result map was created.

Results are affected by the current region settings and mask.
SEE ALSO
g.region, r.average, r.cats, r.clump, r.describe, r.mapcalc, r.mask, r.mfilter, r.mode, r.neighbors,

r.reclass, r.stats, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

167

r.mfilter

NAME
r.mfilter - Raster file matrix filter.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.mfilter

r.mfilter help

r.mfilter [-gpZ] input=name output=name filter=name [repeat=value] [title="phrase"]

DESCRIPTION

r.mfilter filters the raster input to produce the raster output according to the matrix filter designed by the
user (see FILTERS below). The filter is applied repeat times (default value is 1). The output raster map
layer can be given atitleif desired. (Thistitle should be put in quotesiif it contains more than one word.)

OPTIONS
The program can be run either non-interactively or interactively. To run r.nmfilter non-interactively, the
user should specify desired flag settings and parameter values on the command line, using the form:

r.mfilter [-gpZ] input=name output=name filter=name [repeat=value] [title="phrase"]

If the user specifies input, output, and filter file names on the command line, other parameters whose
values are unspecified on the command line will be set to their default values (see below).

Alternately, the user can simply type r.mfilter on the command line, without program arguments. In this
case, the user will be prompted for flag settings and parameter values using the standard GRASS parser
interface described in the manual entry for parser.

Flags:
-q r.mfilter will normally print messages to indicate what is doing as it proceeds. If the user
specifies the -q flag, the program will run quietly.

-Z The filter is applied only to zero category values in the input raster map layer. The non-zero
category values are not changed. Note that if there is more than one filter step, thisrule is applied to the
intermediate raster map layer -- only zero category values which result from the first filter will be
changed. In most cases thiswill NOT be the desired result. Hence -z should be used only with single step
filters.

Parameters:
input=name The name of an existing raster file containing data values to be filtered.

output=name The name of the new raster file to contain filtered program output.
filter=name The name of an existing, user-created UNIX ASCII file whose contents is a matrix

defining the way in which the input file will be filtered. The format of this file is described below, under
FILTERS.

168

repeat=value = The number of times the filter isto be applied to the input data.
Options: integer values
Default: 1

titte="phrase" A title to be assigned to the filtered raster output map. If the title exceeds one word, it
should be quoted.
Default: (none)

FILTERS
Thefilter fileisanormal UNIX ASCII file designed by the user. It has the following format:

TITLE title
MATRI Xn

n lines of n integers

DIVISBR d
TYPE S/P

TITLEA one-line title for the filter. If atitle was not specified on the command line, it can be specified
here. Thistitle would be used to construct atitle for the resulting raster map layer. It should be aone-line
description of thefilter.

MATRIX The matrix (n x n) follows on the next n lines. n must be an odd integer greater than or equal
to 3. The matrix itself consists of n rows of nintegers. The integers must be separated from each other by
at least 1 blank.

DIVISOR The filter divisor isd. If not specified, the default is 1. If the divisor is zero (0), then the
divisor is dependent on the category values in the neighborhood (see HOW THE FILTER WORKS
below).

TYPE Thefilter type. S means sequential, while P mean parallel. If not specified, the default is S.

Sequentia filtering happens in place. As the filter is applied to the raster map layer, the category values
that were changed in neighboring cells affect the resulting category value of the current cell being filtered.

Parallel filtering happens in such a way that the original raster map layer category values are used to
produce the new category value.

More than one filter may be specified in the filter file. The additiona filter(s) are described just like the
first. For example, the following describes two filters:

EXAMPLE FI LTER FI LE
TI TLE3x3 average, non-zero data only, followed by 5x5 average
MATRI X 3

169

HOW THE FILTER WORKS

The filter process produces a new category value for each cell in the input raster map layer by multiplying
the category values of the cells in the n x n neighborhood around the center cell by the corresponding
matrix value and adding them together. If a divisor is specified, the sum is divided by this divisor,
rounding to the nearest integer. (If a zero divisor was specified, then the divisor is computed for each cell
as the sum of the MATRIX values where the corresponding input cell is non-zero.)

If more than one filter step is specified, either because the repeat value was greater than one or because the
filter file contained more than one matrix, these steps are performed sequentially. This means that first
one filter is applied to the entire input raster map layer to produce an intermediate result; then the next
filter is applied to the intermediate result to produce another intermediate result; and so on, until the final
filter isapplied. Then the output cell iswritten.

NOTES

If the resolution of the geographic region does not agree with the resolution of the raster map layer,
unintended resampling of the original data may occur. The user should be sure that the geographic region
is set properly.

SEE ALSO
g.region, r.clump, r.neighbors, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Laboratory

170

r.mode

NAME

r.mode - Finds the mode of values in a cover map within areas assigned the same category value in a user-
specified base map.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.mode

r.mode help

r.mode base=name cover=name output=name

DESCRIPTION

r.mode calculates the most frequently occurring value (i.e., mode) of data contained in a cover raster map
layer for areas assigned the same category value in the user-specified base raster map layer. These modes
are stored in the new output map layer.

The output map is actually areclass of the base map.

If the user smply types r.mode on the command line, the user is prompted for the parameter values
through the standard parser interface (see parser manual entry).

Alternately, the user can supply all needed parameter values on the command line.

Parameters:

base=name An existing raster map layer in the user's current mapset search path. For each group of
cells assigned the same category value in the base map, the mode of the values assigned these cells in the
cover map will be computed.

cover=name An existing raster map layer containing the values to be used to compute the mode within
each category of the base map.

output=name The name of a new map layer to contain program output (a reclass of the base map). The
mode values will be stored in the output map.

NOTES

The user should use the results of r.mode with care. Since this utility assigns a value to each cell, which is
based on global information (i.e., information at spatial locations other than just the location of the cell
itself), the resultant map layer is only valid if the geographic region and mask settings are the same as
they were at the time that the result map was created.

Results are affected by the current region settings and mask.
SEE ALSO
g.region, r.average, r.cats, r.clump, r.describe, r.mapcalc, r.mask, r.median, r.mfilter, r.neighbors,

r.reclass, r.stats, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

171

r.moran

NAME

r.moran - GRASS module that calculates Moran's | for araster surface and optionally creates a surface of

local moran values.

GRASSVERSION
4.x

SYNOPSIS
r.moran [-zb] in=name [out=name] [size=value]

OPTIONS

Flags:

-z Exclude zeros in calculation

-b Brief output only

Parameters:

in Raster surface layer to measure.

out Output raster layer containing local Moran measures.

size Size of processing window (odd number only).
Default: 3

HISTORY
Jo Wood 21st October, 1994

Modified to give brief version of output with increased significant figures. Also reports on average local

variance - roughness measure.
Jo Wood, 3rd April, 1995

172

r.neighbors

NAME

r.neighbors - Makes each cell category value a function of the category values assigned to the cells around
it, and stores new cell valuesin an output raster map layer.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.neighbors

r.neighbors help

r.neighbors [-ag] input=name output=name method=name size=value [title="phrase"]

DESCRIPTION

r.neighbors looks at each cell in araster input file, and examines the category values assigned to the cells
in some user-defined "neighborhood" around it. It outputs a new raster map layer in which each cell is
assigned a category value that is some (user-specified) function of the values in that cell's neighborhood.
For example, each cell in the output layer might be assigned a category value equal to the average of the
category values appearing in its 3 x 3 cell "neighborhood"” in the input layer.

The program will be run non-interactively if the user specifies program arguments (see OPTIONS) on the
command line. Alternately, the user can simply type r.neighbors on the command line, without program
arguments. In this case, the user will be prompted for flag settings and parameter values.

OPTIONS

The user must specify the names of the raster map layers to be used for input and output, the method used
to analyze neighborhood category values (i.e., the neighborhood function or operation to be performed),
and the size of the neighborhood. Optionally, the user can also specify the title to be assigned to the raster
map layer output, elect to not align the resolution of the output with that of the input (the -a option), and
elect to run r.neighbors quietly (the -q option). These options are described further below.

Neighborhood Operation Methods: The neighborhood operators determine what new category value a
center cell in a neighborhood will have after examining category values inside its neighboring cells. Each
cell in araster map layer becomes the center cell of a neighborhood as the neighborhood window moves
from cell to cell throughout the map layer. r.neighbors can perform the following operations:

average The average category value within the neighborhood. In the following example, the result would
be: (7*4+6+5+4*3)/9=5.66 The result isrounded to the nearest integer (in this case 6).

median The category value found half-way through a list of the neighborhood's category values, when
these are ranged in numerical order.

mode The most frequently occurring category value in the neighborhood.

minimum The minimum category value within the neighborhood.

maximum The maximum category value within the neighborhood.
Raw Dat a Operation New Dat a

| 7 | 7 | 5| I I I I

|----1----]----] average [----|----]----|

4 17 1 4]--------- >| | 61 I

173

stddev The statistical standard deviation of category values within the neighborhood (rounded to the
nearest integer).

variance The statistical variance of category values within the neighborhood (rounded to the
nearest integer).
diversity The number of different category values within the neighborhood. In the above

example, the diversity is 4.

interspersion The percentage of cells containing categories which differ from the category assigned to
the center cell in the neighborhood, plus 1. In the above example, the interspersion is: 5/8 * 100 + 1 =
63.5 Theresult isrounded to the nearest integer (in this case 64).

Neighborhood Sze: The neighborhood size specifies which cells surrounding any given cell fall into
the neighborhood for that cell. The size must be an odd integer. Optionsare: 1, 3,5, 7,9, 11, 13, 15, 17,
19, 21, 23, and 25. For example,

| |||
3 x 3 neighborhood ---> |_|_|_|
[

-a If specified, r.neighbors will not align the output raster map layer with that of the input raster
map layer. The r.neighbors program works in the current geographic region. It is recommended, but not
required, that the resolution of the geographic region be the same as that of the raster map layer. By
default, if unspecified, r.neighbors will align these geographic region settings.

-q If specified, r.neighbors will run relatively quietly (i.e., without printing to standard output notes
on the program's progress). If unspecified, the program will print messages to standard output by default.

NOTES

The r.neighbors program works in the current geographic region with the current mask, if any. It is
recommended, but not required, that the resolution of the geographic region be the same as that of the
raster map layer. By default, r.neighbors will align these geographic region settings. However, the user
can elect to keep original input and output resolutions which are not aligned by specifying this (e.g., using
the -a option).

r.neighbors copies the GRASS color files associated with the input raster map layer for those output map
layers that are based on the neighborhood average, median, mode, minimum, and maximum. Because
standard deviation, variance, diversity, and interspersion are indices, rather than direct correspondents to
input category values, no color files are copied for these map layers. (The user should note that although
the color file is copied for averaged neighborhood function output, whether or not the color file makes
sense for the output will be dependent on the input data values.)

SEE ALSO
g.region, r.clump, r.mapcalc, r.mask, r.mfilter, r.support

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

174

r.nntool

NAME
r.nntool - Neural Network classification tool for raster maps.
(GRASS Raster Command)

GRASSVERSION
4.x

SYNOPSIS
r.nntool

DESCRIPTION

r.nntool is a fully interactive, menu-driven GRASS routine that uses a neural network to train landuse
classifications and build a classified image. r.nntool facilitates the use of neural networks and linear
classifiers in supervised classification of raster cell files. Neural networks are composed of simple non-
linear computational units called neurons that are linked together and work cooperatively to solve
complex mapping problems. Neura network output is validated by the use of a controlled training
dataset. For application in the GRASS framework, each input unit (equal to one satellite image pixel) to
the neural network is assigned a raster map layer, and training data for the network is collected on a cell
by cell basis.

Typically, asingle map layer is used for selecting training sites, although this requirement can be relaxed
so that output units can be assigned to more than one map layer, and the map layer used in selecting
training sites need not be used as output to the neural network.

Since a maximum likelihood classifier (i.maxlik) already exists in GRASS, many of the utilities of
i.maxlik in selecting and analyzing training data were used in the neural network tool. Among these
utilities is the ability to visualize and, if necessary, change histograms from each training site. The
program for the neural network tool is structured in such as a way that training classes selected in the
neural network tool could aso be used in the maximum likelihood classifier. This facilitates the
implementation of i.maxlik within GRASS for validation of neural network output. In GRASS, the
maximum likelihood classifier assumes a Gaussian distribution for the training data, which is a widely
used method for satellite imagery classification. In the use of the tool, the user is asked to enter the name
of the output map layer, the number of output classes, and the names of the input map layers. Using the
lump option of the menu, the tool selects the "dominant" category within a specified window and
generates a new map layer. The user can reset the resolution to the specified window, or retain the old
resolution in which he entered the tool. In existing GRASS routines, when resolution (window) of a
region is enlarged, the middle pixel of the window in the lower resolution is selected. Training areas are
selected using the define areas option. Using the zoom option the user can zoom out parts of the output
map in which he wishes to delineate training areas. Training areas can be delineated by clicking on
points, drawing circles, or by drawing polygons. Using the delete function, the users can interactively
select and delete polygons, with the number of samples after deletion shown in the window. Histograms
of training sites can be examined and signatures saved so that the user can use i.maxlik.

Once the user is satisfied with the training sites selected, all input map layers are sampled for their data.
At intersections of training areas with input map layers, training data for the neural network are gathered.
Training data are stored as an ASCI|I file so that the user may examine and change it, if necessary. Input
data to the network is obtained cell-wise from all areas of the input maps. The classes option of the neural
network tool lets a user examine the distribution of data when two input map layers are used. For higher
input dimensions, it is necessary to link the tool to a more sophisticated program such as xgobi. The user
may eliminate outliers, and data conflicts by drawing rectangular boxes around data points. If necessary a
whitening and diagonalization operation can be done on the data so that better class separability is

175

achieved. Unlike in using traditional classifiers, careful preprocessing of the training data should be
performed since neural networks give equal consideration to all data.

Once the user is satisfied with the class distributions, the configure option is selected. Here the user
selects a quick propagation network , or the traditional back propagation. The quick propagation network
uses gradient descent to adjust weights and assumes a parabolic shape for global minimum. Iterations of
the network are performed by the number of training cycles set by the user. Back propagation uses
gradient descent and converges to a root mean square error value set by the user. Inr.nntool, performance
of the network as training progresses is shown on the left half of the GRASS screen. Once training of the
neural network is complete, the user propagates cell values of the input map layers through the network.
The new map layer generated by the neural network can then be queried. Upon completion of network
training, the user may save the neural network structure such as the number of input, hidden, and output
units, and the network weights.

NOTES
The training site 1/O data is stored in afile called o_train (o_ for "old" training file). This is the default
file used for training the neural network.

If the random option is used to rearrange the training data, the network training data is stored in a file
called TRAIN.

The classes option can only be used right now for visualization of two input vectors. The color scheme
isn't al that exciting and future upgrades are working on using a better color scheme to represent the
training datain each class. [Users may wish to also ftp xgobi.tar.gz, and use that tool to visualize training
samplesin the o_train/TRAIN file].

The Bayes classifier right now can only be used if you have accessto IMSL (otherwise, you'll have to wait
until routines are written for diagonalizing a covariant matrix etc in C). Users will have to do a priori
determine the attribute value for each class in the output map:

Ex., Say there are 5 classes. Extend the attribute values for the classes from 0 to 100. So that,

0 - class 1
25 - class 2
50 - class 3
75 - class 4
100 - class 5.

Thisisalimitation of GRASS since the color intensities of a map are determined by the attribute values.
The input values to the network are scaled by the highest attribute of each input. Users may wish to try
other schemes such as sgn(x)(1 + In|x|), or transform the data using a squashing function such as tahn(x).

Users will have to look at the source code to do this (see nntool.c).

SEE ALSO
imagery, i.maxlik, r.reclass

AUTHORS

Ranjan Muttiah, TAES, Blackland Research Center
Bruce Byars, GRASS Research Group, Baylor University

176

r.null

NAME
r.null - The function of r.null isto explicitly create the NULL-value bitmap file.
(GRASS 5 Raster Program)

GRASSVERSION
5.x

SYNOPSIS
r.null
r.null -fincr map=name [setnull=val[-val][,val[-val],...]] [null=value]

Parameters:
map Raster map for which to edit null file

setnull List of cell values to be set to NULL

null The value to replace the null value by

DESCRIPTION

The function of r.null isto explicitly create the NULL-value bitmap file. The intended usage isto fix "old"
maps that don't have a NULL-value bitmap file (i.e. to indicate if zero isavalid value or is to be converted

to NULL).

The design is flexible. Ranges of values can be set to NULL and/or the NULL value can be eliminated and
replace with a specified value.

OPTIONS
Flags:
-f Only do the work if the map is floating-point.

-i Only do the work if the map is integer.

-n Only do the work if the map doesn't have a NULL-value bitmap file.
-C Create NULL-value bitmap file which validates all data cells.

-r Remove NULL-value bitmap file.

Parameters:

setnull=range[,range...] The values specified in the ranges are to be set to NULL. A range is either a
single value (e.g., 5.3), or a pair of values (e.g., 4.76-34.56). Existing NULL-values areleft NULL, unless
the null argument is requested.

null=value Eliminate the NULL value and replace it with value. This argument is applied only to
existing NULL values, and not to the NULLs created by the setnull argument.

NOTE
Note that value is restricted to integer if the map is an integer map.

SEE ALSO
r.support, r.quant

177

AUTHOR
U.S. Army Construction Engineering Research Laboratory

178

r.out.agnps - vis_tool

NAME
vis_tool - AGNPS-GRASS non-point source hydrology model output interface.
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS
vis_tool

DESCRIPTION

Current NPS models including AGNPS have very limited graphics capability for visualizing and
analyzing the model output. A distributed parameter model should assist in pinpointing the critical areas
where one needs to pay attention for controlling NPS pollution. Even though AGNPS gives detailed
output, users often can not make use of it, due to lack of proper analyzation and visualization tools.
Graphical displays of the results have proven to be a more effective and efficient way of interpreting the
results and in making decisions than scanning through pages and pages of numerical output in the form of
tables. The following sections discuss the visualization tool in detail.

AGNPS Output Parameters

Various output options are available with the AGNPS model. Primary output given for watersheds being
analyzed includes watershed area, cell size, storm precipitation, rainfall erosivity (El), estimates of runoff
volume, peak flow rate at the watershed outlet, area-weighted erosion, both upland and channel. Also
given are estimates of the sediment delivery ratio, sediment enrichment ratio, mean sediment
concentration, and total sediment yield for each of five sediment particle size classes. Also availableisa
nutrient analysis, which include N, P and COD mass per unit area for both soluble and sediment adsorbed
nutrients, and N, P and COD concentrations in the runoff. Table 1 lists a summary of output parameters
that can be obtained for each cell or al cellsif desired.

Table 1: AGNPS output parameters at the water shed outlet or any cell

Hydrology output

* Runof f vol ume (i nches)
* Peak runoff rate (cubic feet/second)
* Fraction of runoff generated within the cel

Sediment output

Sedi nent yield (tons)

Sedi nent concentration (ppm

Sedi nent particle size distribution

Upl and erosion (tons/acre)

Anmpunt of deposition (%

Sedi nent generated within the cell (tons)
Enrichnent ratios by particle size
Delivery ratios by particle size

E N

Chemical output!Nitrogen

* Sedi ment associ ated nass (pounds/ acre)
* Concentration of soluble material (ppm
* Mass of soluble material (pounds/acre)

179

Phosphorus

* Sedi ment associ ated nass (pounds/ acre)
* Concentration of soluble material (ppm
* Mass of soluble material (pounds/acre)

Chemical oxygen demand (COD)

* Concentration (ppm
* Mass (pounds/acre)

Initially the visualization interface generates 17 maps (Table 2) from the ASCII output files of an AGNPS
run. The generated maps can be saved for future evaluation of output. All maps are generated using the
reclass principle of the GRASS GIS tool, thereby minimum disk space is required. The map from which
all output maps were reclassed (cell number map, filename cell_num, where filename refers to the
AGNPS ASCII input/output file without its extension) should not be removed.

Table 2: List of AGNPS output maps created using Visualization tool
Cell number map

Hydrology output

* Runoff generated map
* Runoff from upstream map
* Runoff to downstream map

Sediment output

* Erosion map
* Deposition map
* Sedi ment |eaving the cell nap

Chemical output

Ni trogen associated with Sedi ment (generated) nap
Ni trogen associated with Sedi ment (leaving) nap

Ni trogen associated with Runoff (generated) nap

Ni trogen associated with Runoff (Ieaving) map
Phosphorus associated with Sedi ment (generated) map
Phosphorus associated with Sedi ment (I eaving) nap
Phosphorus associated with Runoff (generated) nap
Phosphorus associated with Runoff (Ieaving) nap
COD associ ated with Runoff (generated) map

COD associ ated with Runoff (leaving) nap

Ok %k ok Ok ok k% ok F

Resize the graphics monitor to fit the full screen of the workstation and use the d.mon program to select
the monitor. The GRASS shelltool window should be at the right hand side bottom of the screen.
Execute the vis_tool program from the shelltool window where GRASS is running. A Visualization Tool
Input menu will appear on the shelltool window requesting the following data/information from the user:

Parameters:
Watershed Map name: Enter the name of the watershed boundary map containing cell values greater
than zero and zero's for cells outside the watershed boundary.

Cell Sze: The length of the side of a cell in meters for which the model was run is entered.

Aspect Map name: Enter the name of the aspect map for the watershed. It should have been
created for the same resolution as the cell size above.

180

ASCII AGNPSfile name without its extension: Enter the ASCII AGNPS file name without its
extension since the program takes the default extension of .dat and .nps for input and output of the model,
respectively. These files should be in the current working directory, else give the full path with the file
name.

Then hit the Esc key to continue.

NOTES
Always look for a message at the bottom of the ASCII screen for continuing the execution, if there is no
message then hit Enter after answering the question else hit Esc to continue.

In the following text, each output screen of the visualization tool is discussed. The visualization tool splits
the screen into various screens to display the output of the model. The number of windows created
depends on the type of output displayed. The tool aways reserves an ASCII terminal (non graphics) for
interacting with the user. The first screen (Figure 1) provides various options including a watershed
summary (no graphics) and spatially distributed soil loss, nutrients, runoff and feedlot movement
(graphics) output of a watershed.

Figure 1: Initial screen of the Visualization tool

Visualization Tool Main Menu

Qut put Display Options

1. Watershed Summary including sedi ment (no graphics)
2. Soil Loss (graphics)

3. Nutrients Movenent (graphics)

4. Feedl ot Anal ysis (graphics)

5. Runoff Movenent (graphics)

6. Analyze Different Scenarios

7. Save Qutput Maps

8. Exit to GRASS (to cone back type 'return')

9.
E

Qui t
nter the choice (1-9):

Option 1 (Figure 1) displays the watershed summary for soil loss, runoff and nutrient movement at the
watershed outlet. This output is displayed in the non-graphics window. The watershed summary can be
accessed from any part of the visualization tool, providing an opportunity for decision makers/users to
compare the detailed cell output with the watershed outlet output for making decisions.

Options 2-5 (Figure 1) move to the next screen (Figure 2) where the appropriate output option maps are
displayed. This screen is divided into numerous windows depending on the output option chosen. The
screen is divided in half, having a series of top row windows and bottom row windows with an ASCII
terminal. The top row windows display the output maps (Table 2). A scale for each of the output mapsis
displayed showing the color and the numerical value associated with it. The color of the output maps
range from green-yellow-red, with increasing intensity of output. The right hand top corner window
displays the watershed map with cell numbers by laying a grid on top of it for reference. Below this cell
number map, the aspect map of the watershed with arrows pointing in the flow directions is displayed. In
the bottom row, two windows display the output and input statistics for any cell. The left window shows
cell inputs. The output window shows a bar chart and key features of the output option statistics for the
same cell. The default cell statistics displayed in the bottom row windows are the statistics for the outlet
cell of the watershed. The tool provides error checking and also explains what to do at each step.

In the next section, options 6-9 of Figure 1 are discussed.
Analyze Different Scenarios: This option alows the user to visualize and analyze a different simulation

for the same resolution of the original run. The user is asked to enter the name of the ASCIlI AGNPS file

181

name without its extension. The AGNPS run that was started with the visualization tool is called the
‘current’ and the simulation that was selected using this option is referred as 'selected’ hereafter in this
documentation. The program checks the resolutions between the 'current' and the 'selected’ runs and
checks for the same file names. Then the program creates the 17 output maps (Table 2) and displays the
‘current’ and the 'selected' output maps on the screen in the top row windows. The default output is the
sediment movement maps. Bottom row windows display the output histograms of the ‘current' and the
'selected’ simulations. The left bottom row window corresponds to the ‘current’ input/output window and
the right bottom row window corresponds to the 'selected’ input/output.

Under this option the user has the same options (Figure 2) discussed earlier in this document. In addition
to this, the user can alter the output visualization/analyzation to other model outputs such as sediment,
nutrients, feedlot or runoff movement. While using options 2 and 3 (Figure 2), the user is asked to select
either input or output to view in the bottom row windows.

For options 5 and 8 (Figure 2), the user is asked to select either the 'current’ or the 'selected’ simulation
results to view in a window. This option is one of the strongest features of the visualization tool for
analyzing different scenarios simultaneously.

Save Output Maps: This option allows the user to save the maps created using the visualization tool. The
user can save al or only those outputs of interest, which include sediment, N, P, COD, and runoff. The
program asks the user to enter a map name for saving the output maps. The program attaches proper
extensions depending on the type of outputs (Appendix 1). Please refer to the appendix 1 for the
extensions of different map names. It also contains reserved map names that should not exist in the
current mapset. Do not remove the filename_cell_num map, since all output maps created in the
visualization tool are reclassed from the created cell number map.

Exit to GRASS (to come back type 'return’): This option allows the user to exit to the GRASS temporarily
to perform normal operations under the GRASS GIS tool. To come back to the same menu in the
visualization tool, type return and hit enter.

Quit: This option takes the user back the GRASS prompt and exits from the visualization tool. The output
maps created will be removed from the current mapset, but will not affect those maps that are saved using
the Save Output Maps option. If you plan to use output maps at some future time, be sure to save them.

Figure 2: Generic options screen of the visualization tool for spatially distributed output

Cell input and output Display Options

Zoom

View a Cell

Vi ew an area out put

Toggl e between flow directi on map/view ng area
Show t he wat ershed sumary out put

Di spl ayed range of output naps

Di spl ay user's choice map

Draw Cunul ative and Frequency Distribution Stats
. Restore the initial screen

10. Exit to GRASS (to cone back type 'return')

11. Quit

Enter the choice (1-11):

CoNoURwWNE

Each of the optionsin Figure 2 is discussed below: Its usage and how this assists users or decision makers
is described. These options can be used aone or in combination with other options.

1. Zoom: Allows users to zoom in or zoom out of any section of the watershed by choosing one of the

displayed windows. Once the zoom operation is performed, the tool automatically adjusts or redisplays all
the maps in the top row windows to the same area, enabling users to take a closer look at an area of

182

interest. This option is particularly helpful on large watersheds. Once the Zoom option is selected, the
tool requests for a window to perform zoom operations. The user has to use the left mouse key to click on
one of the top row windows and then click on the right mouse key to complete the selection process. Then
the zoom function asks the user to use the left mouse to click on a place to define the area in the selected
window, and then drag the mouse to the desired location and click on the right mouse key to complete the
zoom process. Always follow the instructions displayed on the ASCII terminal. Failing to do so can cause
the program to stop. Similarly, the unzoom operation can be performed.

2. View a cell: This option allows the user to enter a cell number of interest to display the statistics of that
cell's inputs and outputs in the bottom row of windows. The displayed bar chart depends on the type of
option chosen in the initial screen (Figure 1). The cell number can be either entered directly using the
keyboard in the ASCII terminal or the mouse can be used to point out a cell on the graphics monitor using
the left mouse key after choosing one of the top row windows. The window selection process is detailed in
the Zoom section. This feature is helpful to visualize characteristics of both inputs and outputs of a
critical area.

3. View an area output: This option allows the user to select an area from one of the top row windows and
displays the average input and output statistics for that area in the bottom row windows. Here also, the
user is asked to select awindow from the top row windows using the selection procedure explained earlier.
Then using the left mouse key, the user selects a corner of the desired area and drags the mouse to build a
box. Click the right mouse key to complete the process. This information is helpful to study the statistics
of the critical areas and its neighbors. Using this option, one could estimate average inputs and outputs
for afield which should assist in making further decisions.

4. Toggle between flow direction map and viewing window location: This feature is helpful when users use
Zoom to view any particular section of the watershed. After a couple of zoom operations, users may loose
track of which part of the watershed is displayed. This option toggles between the flow direction map and
the whole watershed map showing a box around the current viewing area.

5. Show the watershed summary output: The summary at the outlet of the watershed for all the outputs is
displayed in the ASCII (non graphics) terminal. This option is useful to correlate cell outputs with those
of watershed outputs to make decisions.

6. Display ranges of output maps: This option allows users to visualize output maps (Table 2) for a
specified range between maximum and minimum values of the output (Figure 1) chosen. This helps users
locate critical areas easily. For example, users can use this option to display problematic areas that are
exceeding the soil tolerance limit (T factor). Options are available to save the displayed maps for later
reference, compare various scenarios or overlay one map on another in order to make decisions.

7. Display user's choice map: Users have an option to display a cell map, overlay a map on another map
or display a vector map. The chosen map can be displayed on one of the existing windows or users have
an option to create a new window anywhere in the graphics monitor to display the map. Further, the map
chosen for display can be one of the AGNPS output maps (Table 2) generated from the AGNPS output
files or one of the existing maps in the database. From of the users/decision makers point of view, this
option is helpful to reach conclusions about management strategies. For example, by overlaying a field
boundary or property boundary on an erosion map, fields within critical limits can be located.
Combinations of various outputs can be viewed simultaneously on the designed graphic windows. On
selection of this option, the user is prompted for the map to be displayed. If the user selects to display the
map in one of the existing windows, then the selection of the window operation is performed followed by
the selection of the type of display. This could be to display a cell map, overlay a map on another map or
display avector map. Maps are listed for selection. If the user selected the option to create a new window
to display a map, then the program requests a location to start the window. Using the left mouse key, drag
the mouse to create a box of desired size and click the right mouse key to end the process.

183

8. Draw Cumulative and Freguency Distribution Satistics: This option allows the user to view the
percentage of cumulative and frequency distribution area curves for any of the output maps (Table 2) or
selective input variables for either user specified ranges of intervals/classes or for 10 equal ranges of
interval s/classes between the maximum and minimum of the selected variable. This option is helpful to
see how that particular variable is distributed both cumulatively and the number of occurrences in that
interval. It is believed this information in combination with spatial referenced maps could be of very
useful in the decision making process. The steepness of the curve shows how that variable is increasing
within a corresponding range. By choosing this option, the program requests a window to display the
statistical curves. Then, the program asks the user to select either an input or output variable for which to
draw the curves. The user then has the option of keeping the previously selected X-axis intervals/classes
or can select a new range of intervals/classes. The selection of new ranges of intervals can be done in one
of two ways. Either the user can select 10 equal intervals between the maximum and minimum of the
selected variable or he can enter the ranges between the maximum and minimum values. In either case,
the number of intervals can't exceed 10.

9. Restore the initial screen: This option restores the original or initial display screen that was initiated
when one of the options from Figure 1 was chosen.

10. Exit to GRASS (to come back type ‘return’): This option alows the user to exit to the GRASS
temporarily to perform normal operations under the GRASS GIS tool. To come back to the same menu in
the visualization tool, type return and hit enter.

11. Quit: This option takes the user back to the initial screen (Figure 1). If the user has created any maps
using option 6, the program asks if these are to be saved before quitting.

Appendix 1: List of AGNPS output maps and reserved map names

Hydrology output
Runof f generated map ro_gen X.ro_gen
Runof f from upstream map ro_us X.ro_us
Runof f to downstream map ro_ds X.ro_ds
Sediment output
Er osi on map Sed_in X. Sed_in
Deposi tion map Sed_gen X. Sed_gen
Sedi nent | eaving the cell map Sed_out X. Sed_out
Chemical output
Ni trogen associated with Sedi ment (generated) nap N_sed_in X.N_sed_in
Ni trogen associated with Sedi ment (leaving) nap N_sed_out X. N_sed_out
Ni trogen associated with Runoff (generated) nap N ro_in X.N_ro_in
Ni trogen associated with Runoff (Ieaving) map N_ro_out
X. N_ro_out
Phosphorus associated with Sedi ment (generated) map P_sed_in X.P_sed_in
Phosphorus associated with Sedi ment (I eaving) nap P_sed_out X. P_sed_out
Phosphorus associated with Runoff (generated) nap Pro_in X.P_ro_in
Phosphorus associated with Runoff (Ieaving) nap P_ro_out X. P_ro_out
COD associ ated with Runoff (generated) map COD ro_in X.COD ro_in
COD associ ated with Runoff (Ieaving) nap COD_r o_out X. COD_r o_out

filename: Refers to the AGNPS ASCII input/output file without its extension

X: Refersto the name supplied by the user. The maps are saved with the extension in the current mapset.

184

AUTHOR
Raghavan Srinivasan, TAES-Blackland Research Center, Temple, Texas.

185

r.out.arc

NAME
r.out.arc - Converts araster map layer into an ESRI ARCGRID file.
(GRASS Raster Data Export Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.out.arc

r.out.arc help

r.out.arc [-h] [-1] map=name [dp=valu€]

DESCRIPTION

r.out.arc converts a user-specified raster map layer (map=name) into an ESRI ARCGRID ASCII file
suitable for export to other computer systems. The dg=value option (where value is a number of the user's
choice) can be used to request that numbers after decimal points are limited. However, to use this, the user
should know the maximum number of digits that will occur in the output file. The user can find the
maximum number of digits occurring in the output file by running r.out.arc without the dg=value option.

The GRASS program r.in.arc can be used to perform the reverse function, converting an ESRI ARCGRID
ASCII filein suitable format to GRASS raster file format. The order of cell valuesin fileis from lower left
to upper right (reverseto GRASS).

OPTIONS

Fags:

-h Suppress printing of header information.

-1 List one entry per line.

Parameters:

map=name Name of an existing raster map layer.

dg=value The minimum number of decimals (per cell) to be printed.

r.out.arc can be run either non-interactively or interactively. The program will be run non-interactively if
the user specifies the name of araster map layer and (optionally) a value for dg, using the form

r.out.arc map=name [dg=value]
where name is the name of a raster map layer to be converted to ARCGRID format, and value is the
minimum number of digits (per cell) to be printed to output. The user can aso the -h option to suppress

the output of file header information.

Alternately, the user can simply type r.out.arc on the command line, without program arguments. In this
case, the user will be prompted for parameter values using the standard GRASS parser interface.

NOTES
The output from r.out.arc may be placed into afile by using the UNIX redirection mechanism; e.g.:

r.out.arc map=soils> out.grd

186

The output file out.grd can then be copied onto a magnetic tape or floppy disk for export purposes.

SEE ALSO
r.in.arc, parser

AUTHOR

Markus Neteler, University of Hannover, Germany, based on r.out.ascii from
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

187

r.out.ascii

NAME
r.out.ascii - Converts araster map layer into an ASCII text file.
(GRASS Raster Data Export Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.out.ascii

r.out.ascii help

r.out.ascii [-hi] map=name [digits=value][dp=value] [null=string]

DESCRIPTION

r.out.ascii converts a user-specified raster map layer (map=name) into an ASCII text file suitable for
export to other computer systems. The digits=value option (where value is a number of the user's choice)
can be used to request that numbers in the output be equally-spaced (i.e., columnar output). Each category
value in the ASCII map layer will then take up value number of spaces. However, to use this, the user
should know the maximum number of digits that will occur in the output file, and add one to this number
(to leave a space between each column). The user can find the maximum number of digits occurring in
the output file by running r.out.ascii without the digits=value option.

The GRASS program r.in.ascii can be used to perform the reverse function, converting an ASCII file in
suitable format to GRASS raster file format.

OPTIONS
Flags:
-h Suppress printing of header information.

-i Output integer category values, not cell values.

Parameters:
map=name Name of an existing raster map layer.

digits=value The minimum number of digits (per cell) to be printed.
dp=value Number of decimal places.
null=string Character string to represent no data cell.

r.out.ascii can be run either non-interactively or interactively. The program will be run non-interactively
if the user specifies the name of araster map layer and (optionally) a value for digits, using the form

r.out.ascii map=name [digits=value]

where name is the name of a raster map layer to be converted to ASCII format, and value is the minimum
number of digits (per cell) to be printed to output. The user can also the -h option to suppress the output
of file header information.

Alternately, the user can simply type r.out.ascii on the command line, without program arguments. In

this case, the user will be prompted for parameter values using the standard GRASS parser interface
described in the manual entry for parser.

188

NOTES
The output from r.out.ascii may be placed into afile by using the UNIX redirection mechanism; e.g.:

r.out.ascii map=soils> out.file

The output file out.file can then be printed or copied onto a magnetic tape or floppy disk for export
purposes.

SEE ALSO
r.in.ascii, parser

AUTHOR
Michael Shapiro, U.S. Construction Engineering Research Laboratory

189

r.out.mpeg

NAME
r.out.mpeg - Raster File Seriesto MPEG Conversion Program

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.out.mpeg

r.out.mpeg help

r.out.mpeg [-qc]

viewl=name[,name,...][view2=name[,name,...]] [view3=name[,name,...]] [viewd=name[,name,...] |
[output=name] [qual=value]

DESCRIPTION

r.out.mpeg is atool for combining a series of GRASS raster files into a single MPEG-1 (Motion Pictures
Expert Group) format filee. MPEG-1 is a "lossy" video compression format, so the quality of each
resulting frame of the animation will be much diminished from the original raster image. The resulting
output file may then be viewed using your favorite mpeg-format viewing program.

The user may define up to four "views', or sub-windows, to animate ssimultaneoudly. e.g., View 1 could
berainfall, View 2 flooded areas, View 3 damage to bridges or levees, View 4 other economic damage, al
animated as a time series. A black border 2 pixels wide is drawn around each view. There is an arbitrary
limit of 100 files per view (100 animation frames). Temporary files are created in the conversion process,
s0 lack of adequate tmp space could also limit the number of frames you are able to convert.

The environment variable GMPEG_SIZE is checked for a value to use as the dimension, in pixels, of the
longest dimension of the animation image. If GMPEG_SIZE is not set, the animation size defaults to the
rows & columns in the current GRASS region, scaling if necessary to a default minimum size of 200 and
maximum of 500. These size defaults are overridden when using the -c flag (see below). The resolution
of the current GRASS region is maintained, independent of image size. Playback programs have to
decode the compressed data "on-the-fly", therefore smaller dimensioned animations will provide higher
frame rates and smoother animations.

UNIX - style wild cards may be used with the command line version in place of araster file name, but it
must be quoted.

Example:
r.out.mpeg viewl="rain[1-9]","rain1[0-2]" view2="temp*"

If the number of files differs for each view, the view with the fewest files will determine the number of
frames in the animation.

OPTIONS

Flags:

-q Quiet - suppress progress report

-C Convert "on the fly", uses less disk space by using r.out.ppm with stdout option to convert frames

as needed instead of converting all frames to ppm before encoding. Only use when encoding a single
view. Use of this option also overrides any size defaults, using the CURRENTLY DEFINED GRASS
REGION for the output size. So be careful to set region to areasonable size prior to encoding.

190

Parameters:
viewl Raster filg(s) for Viewl

view2 Raster file(s) for View2
view3 Raster file(s) for View3
viewd Raster file(s) for Viewd

output Name for MPEG output file
Default: gmovie.mpg

qual Quiality factor (1-5)
Default: 3

A quality value of qual=1 will yield higher quality images, but with less compression (larger MPEG file
size). Compression ratios will vary depending on the number of frames in the animation, but an MPEG
produced using qual=>5 will usually be about 60% the size of the MPEG produced using qual=1.

BUGS

MPEG images must be 16-pixel aligned for successful compression, so if the rows & columns of the
calculated image size (scaled, with borders added) are not evenly divisible by 16, a few rows/columns will
be cut off the bottom & right sides of the image. The MPEG format is optimized to recognize image
MOTION, so abrupt changes from one frame to another will cause a"noisy" encoding.

NOTES
This program requires the program mpeg_encode:

MPEG-1 Video Software Encoder
(Version 1.3; March 14, 1994)

Lawrence A. Rowe, Kevin Gong, Ketan Patel, and Dan Wallach Computer Science Division-EECS, Univ.
of Calif. at Berkeley

Available by anonymous ftp from: s2k-ftp.CS.Berkeley. EDU
Use of the -c flag a so requires the program r.out.ppm with the stdout option.

AUTHOR
Bill Brown, U.S. Army Construction Engineering Research Laboratories

191

r.out.pov

NAME
r.out.pov - Converts araster map layer into a height-field file for POVRAY..
(GRASS Raster Data Export Program)

GRASSVERSION
4.x

SYNOPSIS

r.out.pov

r.out.pov help

r.out.pov [-h] map=name tga=name [hftype=value] [bias=value] [scale=value]

DESCRIPTION

r.out.pov converts a user-specified raster map layer (map==name) into a height-field file for POVray
(tga==name). The hftype==value option (where value is either 0 or 1) specifies the height-field type.
When the user enters O the output will be actual heights. If entered 1 the cell-values will be normalized. If
hftype is O (actual heights) the bias==value can be used to add or subtract a value from heights. Use
scale==value to scale your heights by value. The GRASS program r.out.pov can be used to create height-
field files for Persistence of Vision (POV) raytracer. POV can use a height-field defined in Targa (.TGA)
image file format where the RGB pixel values are 24 bits (3 bytes). A 16 bit unsigned integer height-field
valueis assigned as follows: RED = high byte, GREEN = low byte, BLUE = empty.

Parameters:
map=name Name of an existing raster map layer.
tga=name Name of TARGA outputfile (one should add the extension .tga).

hftype=value O=actual heights, 1=normalized heights.
bias=value Bias which is added or subtracted to heights.
scale=value Value to stretch or shrink elevations.

r.out.pov can be run either non-interactively or interactively. The program will be run non-interactively if
the user specifies the name of araster map layer and a name for tga (output), using the form

r.out.pov map=inname tga=outname

where inname is the name of araster map layer to be converted to POV format, and outname is the name
of the outputfile. Further optional values can be entered.

Alternately, the user can simply type r.out.pov on the command line, without program arguments. In this
case, the user will be prompted for parameter values using the standard GRASS parser interface described
in the manual entry for parser.

r.out.pov map=elevation tga=out.tga

AUTHOR
Klaus Meyer, GEUM.tec GbR, eMail: GEUM.tec@geum.de

192

NOTICE
This program is part of the contrib section of the GRASS distribution. As such, it is externally contributed
code that has not been examined or tested by the Office of GRASS Integration.

193

r.out.ppm

NAME
r.out.ppm - Convert a GRASS raster fileto a PPM image file
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.out.ppm [-qG] input=name [output=name]

DESCRIPTION
This program converts a GRASS raster file to a PPM image file at the pixel resolution of the
CURRENTLY DEFINED REGION. eg., to get the resolution of the raster map, do:

g.region rast=[mapname]
before running r.out.ppm.
The PPM file created is 24bit color, rawbits storage by default. Using -G, you may force r.out.ppm to use
8hit greyscale instead. The greyscale conversion uses the NTSC conversion: Y = .30*Red + .59* Green +
11*Blue

One pixel is written for each cell value, so if ew_res and ns_res differ, the aspect ratio of the resulting
image will be off.

OPTIONS
Fags:
-q Run quietly

-G Output greyscale instead of color

Parameters:
input Raster file to be converted.

output Name for new PPM file. (use out=- for stdout) default: <rasterfilename>.ppm

NOTE

A few ppm file comments are written - the name of the GRASS raster file, resolution, etc. Although these
are perfectly legal, one PD image utility that chokes on them, so if you need a commentless ppm file, use
out=- > outfile.ppm. (When sending output to stdout, no comments are written.)

AUTHOR
Bill Brown, U.S. Army Construction Engineering Research Laboratories

194

r.out.tiff

NAME

r.out.tiff - Converts a GRASS raster file to a 8/24bit TIFF image file at the pixel resolution of the
CURRENTLY DEFINED REGION.

(GRASS Raster Data Export Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.out.tiff [-pcv] input=name output=name

DESCRIPTION
This program converts a TIFF raster file (8bit) to a GRASS raster file. Output is placed in the /cell
directory under the user's current GRASS mapset.

OPTIONS

Fags:

-p TIFF Palette output (8bit instead of 24bhit).
-C Compress with LZW routine.

-V Verbose mode

Parameters:

input=name Name of an existing GRASS raster file to be exported.

output=name Name of new TIFF imagefile.

The program prompts the user to enter the name of the TIFF raster file to be converted and the name to be
assigned to the GRASS raster file to contain the resultant image. Currently "TIFF/uncompressed”,
"TIFF/LZW-compression” and TIFF/PackBits-compression” formats are supported.

The user may adjust region and resolution before export using g.region.

SEE ALSO
g.region

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

195

r.param.scale

NAME
r.param.scale - GRASS module that extracts terrain parameters from a DEM. Uses a multi-scalar
approach by taking fitting quadratic parameters to any size window (vialeast squares).

GRASSVERSION
4.x

SYNOPSIS
r.paramscale [-c] in=name out=name [s tol=value] [c_tol=value] [size=value] [param=name]
[exp=value] [zscale=valug]

OPTIONS

Flags:

-C Constrain model through central window cell
Parameters:

in Raster surface layer to process

out Output raster layer containing morphometric parameter

s tol Slopetolerance that defines a “flat' surface (degrees)
Default: 1.0

c_tol Curvature tolerance that defines “planar' surface
Default: 1.0

size Size of processing window (odd number only)
Default: 3

param Morphometric parameter to calculate
Options. elev, dope, aspect, profc, planc, longc, crosc, minic, maxic, feature
Default: elev

exp Exponent for distance weighting (0.0-4.0)
Default: 0.0

zscale Vertical scaling factor
Default: 1.0

r.param.scale can calculate the following:

elev: Generalized elevation value.

slope: Maximum gradient at a point.

aspect: Direction of maximum gradient.

profc: Profile convexity (vertical in direction of steepest slope).

planc: Plan convexity (contour curvature).

196

crosc: Cross sectional convexity (tangent to contours, downslope).
longc: Longitudinal convexity (perpendicular to contours downsl ope).
minic: Minimum convexity.

maxic: Maximum convexity.

features: Morphometric features:
peaks, ridges, passes, channels, pits and planes.

AUTHOR & HISTORY
Modified to include constrained fitting.
Jo Wood, April, 1995

Modified to include weighting matrix and double precision arithmetic.
Jo Wood, 9th May, 1995.

Modified to include two separate tolerance values for feature detection.
Jo Wood, 23rd May, 1995.

Still to do

Fix bug when “constrain through central cell' option selected. Create color tables for al output files
(presently only on features).

SEE ALSO
d.param.scale

See also Java Code in LandSerf that implements the same procedure

197

r.patch

NAME

r.patch - Creates a composite raster map layer by using known category values from one (or more) map
layer(s) to fill in areas of "no data" in another map layer.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.patch

r.patch help

r.patch [-q] input=name[,name,...] output=name

DESCRIPTION

The GRASS program r.patch allows the user to assign known data values from other raster map layers to
the "no data" areas (those assigned category value 0) in another raster map layer. This program is useful
for making a composite raster map layer from two or more adjacent map layers, for filling in "holes’ in a
raster map layer's data (e.g., in digital elevation data), or for updating an older map layer with more
recent data.

The program will be run non-interactively if the user specifies program arguments on the command line,
using the form

r.patch [-q] input=name[,name,...] output=name

where each input name is the name of a raster map layer to be patched, the output name is the name
assigned to the new composite raster map layer containing the patched result, and the (optional) -q flag
directsr.patch to run quietly.

The first name listed in the string input=name,name,name, ... is the name of the base map whose zero
data values will be attempted to be filled by non-zero data values in the second through tenth input name
maps listed. The second through tenth input name maps will be used to supply remaining missing (zero)
data values for the first input map name, based on the order in which they are listed in the string
input=name,name,name,

Alternately, the user can simply type r.patch on the command line, without program arguments. In this
case, the user will be prompted for the flag setting and parameter values using the standard GRASS
parser interface described in the manual entry for parser.

Flag:

-q Directs that r.patch run quietly, suppressing output messages on program progress to standard
output.

Parameters:

input=name,name,... The name(s) of between one and ten existing raster map layers to be patched

together. The first of the ten maps listed will be used as a base map, and the second through tenth maps
listed will be used to supply missing (zero) category values for the first map.

output=name The name of the new raster map to contain the resultant patched output.

198

EXAMPLE
Below, the raster map layer on the far left is patched with the middle (patching) raster map layer, to
produce the composite raster map layer on the right.

11102200 00110000 11112200
11022200 00110000 11122200
33332200 00000O0O0O 33332200
33330000 4 4444444 3333444414
33300000 4 4444444 3334444414
00000O0O0O 4 4444444 4 4444444

Switching the patched and the patching raster map layers produces the following results:

00110000 11102200 11112200
00110000 11022200 11112200
00000O0O0O 33332200 33332200
4 4444444 33330000 4 4444444
4 4444444 33300000 4 4444444
4 4444444 00000O0O0O 4 4444444
NOTES

Frequently, this program is used to patch together adjacent map layers which have been digitized
separately. The programs v.mkquads and v.mkgrid can be used to make adjacent maps align neatly.

The user should check the current geographic region settings before running r.patch, to ensure that the
region boundaries encompass al of the data desired to be included in the composite map.

Use of r.patch is generally followed by use of the GRASS programs g.remove and g.rename; g.remove is
used to remove the original (un-patched) raster map layers, while g.rename is used to then assign to the
newly-created composite (patched) raster map layer the name of the original raster map layer.

r.patch creates support files for the patched, composite output map.

SEE ALSO
g.region, g.remove, g.rename, r.mapcalc, r.support, v.mkgrid, v.mkquads, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

199

r.plane

NAME
r.plane — Creates a tilted plane.

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.plane

r.plane help

r.plane [dip=value] [azimuth=val u€] [easting=val ue]

OPTIONS

Parameters:

dip=value Please give the value for the dip (inclination) in degrees. The value must be between -
90 and 90 from horizontal, with positive values pointing down. Real humbers are valid. No value results
in dip=0 and horizontal surface.

azimuth=value Please give the value for the azimuth in degrees counterclockwise from north. The
value must be between 0 and 360. Real numbers are valid.

easting=value Please enter easting, northing for one point on the plane. Real numbers are valid.

EXAMPLE

r.plane help - it gets the current region
n=5777911. 25
$=5773623. 75
w=3552072. 25
e=3557172. 25
nsres=12.5
ew es=12.5

200

r.poly

NAME
r.poly - Extracts area edges from araster map layer and converts datato GRASS vector format.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.poly

r.poly help

r.poly [-1] input=name output=name

DESCRIPTION
r.poly scans the named input raster map layer, extracts area edge features from it, converts datato GRASS
vector format, and smoothes vectors.

r.poly first traces the perimeter of each unique area in the raster map layer and creates vector data to
represent it. The cell category values for the raster map layer will be used to create attribute information
for the resultant vector area edge data.

A true vector tracing of the area edges might appear blocky, since the vectors outline the edges of raster
data that are stored in rectangular cells. To produce a better-looking vector map, r.poly smoothes the
corners of the vector data as they are being extracted. At each change in direction (i.e., each corner), the
two midpoints of the corner cell (half the cell's height and width) are taken, and the line segment
connecting them is used to outline this corner in the resultant vector file. (The cell's corner most node is
ignored.) Because vectors are smoothed by this program, the resulting vector map will not be "true” to the
raster map from which it was created. The user should check the resolution of the geographic region (and
the original data) to estimate the possible error introduced by smoothing.

OPTIONS

The user can run this program either non-interactively or interactively. The program will be run non-
interactively if the user specifies program arguments and flag settings on the command line using the
form:

r.poly [-1] input=name output=name
Alternately, the user can simply type r.poly on the command line without program arguments. In this

case, the user will be prompted for parameter values and flag settings using the standard GRASS par ser
interface described in the manual entry for parser.

Flag:
-l Smooth corners.

Parameters:
input=name Use the existing raster map name as input.

output=name Set the new vector output file name to name.
NOTES

r.poly extracts only area edges from the named raster input file. If the raster file contains other data (i.e.,
line edges, or point data) the output may be wrong.

201

The user must run v.support on the resultant file to build the needed topology information stored in the
dig_plusfile.

SEE ALSO
v.support, parser

AUTHOR

Original version of r.poly:

Jean Ezell, U.S. Army Construction Engineering Research Laboratory
Andrew Heekin, U.S. Army Construction Engineering Research Laboratory

Modified program for smoothed lines:
David Satnik, Central Washington University, WA

202

r.profile

NAME
r.profile - Outputs the raster map layer values lying on user-defined ling(s).
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.profile

r.profile help

r.profile map=name [result=type] [width=valu€] line=east,north,east,north[,east,north,east,north,...]

DESCRIPTION

This program outputs, in ASCII, the values assigned to those cells in a raster map layer that lie along one
or more lines ("profiles’). The lines are described by their starting and ending coordinates. The profiles
may be single-cell wide lines, or multiple-cell wide lines. The output, for each profile, may be the
category values assigned to each of the cells, or a single aggregate value (e.g., average or median value).

OPTIONS
Parameters:
map=name Raster map to be queried.

result=type Type of result to be output.
Options: raw, median, average
Default: raw

Raw results output each of the category values assigned to all cells along the profile. Median and average
output a single value per profile: average outputs the average category value of all cells under the profile;
median outputs the median cell category value.

line=east,north,east,north[,east,north,east,north,...]| The geographic coordinates of the starting and
ending points that define each profile line, given as easting and northing coordinate pairs. The user must
state the starting and ending coordinates of at least one line, and may optionaly include starting and
ending coordinates of additional lines.

width=value Profile width, in cells (odd number).
Default: 1

Wider profiles can be specified by setting the width to 3, 5, 7, etc. The profiles are then formed as
rectangles 3, 5, 7, etc., cellswide.

OUTPUT FORMAT

The output from this command is printed to the standard output in ASCII. The format of the output varies
dightly depending on the type of result. The first number printed is the number of cells associated with
the profile. For raw output, this number is followed by the individual cell values. For average and
median output, this number is followed by a single value (i.e., the average or the median value).

These examples are for the elevation.dem raster map layer in the spearfish sample data set distributed
with GRASS:

203

Single-cell profile:

r.profile map=elevation.dem line=593655,4917280,593726,491735
41540 1551 1557 1550

3-cell wide profile:
r.profile map=elevation.dem line=593655,4917280,593726,4917351 width=3

22 1556 1538 1525 1570 1555 1540 1528 1578 1565 1551 1536 1523 1569 1557 1546 1533 1559 1550
1542 1552 1543 1548

(Output appears as multiple lines here, but isreally one line)

3-cell wide profile average:

r.profile map=elevation.dem line=593655,4917280,593726,4917351 width=3 result=average
22 1548.363636

3-cell wide profile median:

r.profile map=elevation.dem line=593655,4917280,593726,4917351 width=3 result=median
22 1549.000000

SEE ALSO
d.profile, r.transect

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

204

r.proj

NAME
r.proj - projects raster maps between two projections
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.proj
r.proj help

r.proj input=name location=name [output=name] [mapset=name][dbase=name] [method=name]

[res=valug]

DESCRIPTION

r.proj projects a raster map in a specified mapset of a specified location from the projection of the input
location to araster map in the current location. The projection information is taken from the momentary

PROJ_INFO files.

OPTIONS
Parameters:
input=name Input raster map from source location.

location=name Source location of input map.

output=name Output raster map for current location.
Default: Same name as input map

mapset=name Mapset of input map.
Default: Same name as current mapset

dbase=name Database of input map.
Default: Current database

method=name Interpolation method to use.
Options: nearest, bilinear, cubic
Default: nearest

res=value Resolution of output map.
Default: Calculated from the number of colsin input map

NOTES
If output is not specified it is set to be the same as input map name.
If dbaseis not specified it is assumed to be the current database.

If mapset is not specified, its name is assumed to be the same as the current mapset's name.

r.proj uses three alternative resampling agorithms:
nearest - nearest neighbor
bilinear - bilinear interpolation
cubic - cubic convolution

205

DESCRIPTION
Introduction

Map projections

Map projections are a method of representing information from a curved surface (usually a spheroid) in
two dimensions, typicaly to alow indexing through Cartesian coordinates. There are a wide variety of
projections, with common ones divided into a number of classes, including cylindrical and pseudo-
cylindrical, conic and pseudo-conic, and azimuthal methods, each of which may be conformal, equal-area,
or neither.

The particular projection chosen depends on the purpose of the project, and the size, shape and location of
the area of interest. For example, normal cylindrical projections are good for maps that are of greater
extent east-west than north-south and in equatorial regions, while conic projections are better in mid-
latitudes; transverse cylindrical projections are used for maps that are of greater extent north-south than
east-west; azimuthal projections are used for polar regions. Oblique versions of any of these may also be
used. Conformal projections preserve angular relationships, and better preserve arc-length, while equal-
area projections are more appropriate for statistical studies and work in which the amount of material is
important.

Projections are defined by precise mathematical relations, so the method of projecting coordinates from a
geographic reference frame (latitude-longitude) into a projected Cartesian reference frame (e.g. meters) is
governed by these equations. Inverse projections can aso be achieved. The public domain Unix software
package proj [1] has been designed to perform these transformations, and the user's manual contains a
detailed description of over 100 useful projections. This also includes a programmer’s library of the
projection methods to support other software development.

Thus, converting a “vector” map - in which objects are located with arbitrary spatial precision - from one
projection into another is usually accomplished by a simple two-step process: first the location of al the
points in the map are converted from the source through an inverse projection into latitude-longitude, and
then through a forward projection into the target. (Of course the procedure will be one-step if either the
source or target is in geographic coordinates.)

Converting a “raster” map, or image, between different projections, however, involves additiona
considerations. A raster may be considered to represent a sampling of a process at aregular, ordered set of
locations. The set of locations that lie at the intersections of a Cartesian grid in one projection will not, in
general, coincide with the sample points in another projection. Thus, the conversion of raster maps
involves an interpolation step in which the values of points at intermediate |ocations relative to the source
grid are estimated.

Projecting maps within the GRASS GIS
GIS data capture, import and transfer often requires a projection step, since the source or client will
frequently be in a different projection to the working projection.

In some cases it is convenient to do the conversion outside the package, prior to import or after export,
using software such as proj [1]. Thisis certainly the easiest method for site-lists, since there is no topology
to be preserved, and proj can be used to process simple lists with a one-line command.

The format of files describing maps containing lines and arcs is generally more complex, as even in

ASCII parts of the files will describe topology, and not just locations. In the GRASS GIS package a
program v.proj is provided to convert "vector" maps, transferring topology and attributes as well as node

206

locations. This program uses the projection definition and parameters, which are stored in the
PROJ_INFO and PROJ_UNITSfilesin the PERMANENT mapset directory for every GRASS location.

However, although it is oriented mainly towards operations on raster maps, the standard GRASS
distribution includes this r.proj module to convert raster maps. That is the purpose of the program
described here.

Design of r.proj

As discussed briefly above, the fundamental step in re-projecting a raster is resampling the source grid at
locations corresponding to the intersections of a grid in the target projection. The basic procedure for
accomplishing this, therefore, is as follows:

1. r.proj converts amap to a new geographic projection.

2. It reads amap from a different location, projects it, and writes it out to the current location.

3. The projected data is resampled with one of three different methods: nearest neighbors, bilinear, or
cubic convolution.

Note that, following normal GRASS conventions, the coverage and resolution of the resulting grid is set
by the current region settings, which may be adjusted using g.region. The target raster will be relatively
unbiased for all casesif its grid has a similar resolution to the source, so that the resampling/interpolation
step is only a local operation. If the resolution is changed significantly, then the behavior of the
generalization or refinement will depend on the model of the process being represented. This will be very
different for categorical versus numerical data. Note that three methods for the local interpolation step are
provided.

The nearest option, which performs a nearest neighbor assignment is the fastest of the three resampling
methods. It is primarily used for categorical data such as aland use classification, since it will not change
the values of the data cells. The bilinear option determines the new value of the cell based on a weighted
distance average of the 4 surrounding cells in the input map. The cubic option determines the new value
of the cell based on aweighted distance average of the 16 surrounding cells in the input map.

The bilinear and cubic interpolation methods are most appropriate for continuous data and cause some
smoothing. Both options shouldn't be used with categorical data, since the cell values will be altered.

If nearest neighbor assignment is used, the output map has the same raster format as the input map. If any
of the both interpolations is used, the output map is written as floating point.

BUGS

The entire input map is read into memory. This requires alarge amount of memory if large raster layers
where projected.

REFERENCES

[1]Evenden, G.I. (1990) Cartographic projection procedures for the UNIX environment - a user's manual.
USGS Open-File Report 90-284 (Also see Interim Report and 2nd Interim Report on Release 4, Evenden
1994).

Press, W.H. et al. (1992), Numerical Recipesin C, Cambridge University Press, Cambridge, 2nd edition.
Richards, John A. (1993), Remote Sensing Digital Image Analysis, Springer-Verlag, Berlin, 2nd edition.

SEE ALSO
r.support, r.stats, s.sample, s.surf.idw, s.surf.tps, v.proj, m.proj, r.bilinear, r.resample

207

AUTHOR
Martin Schroeder, University of Heidelberg, Dept. of Geography, emes@geo0.geog.uni-heidelberg.de

Some man page text from S.J.D. Cox, AGCRC, CSIRO Exploration & Mining, Nedlands, WA

208

r.quant
NAME
r.quant - This routine produces the quantization file for a floating-point map.
(GRASS 5 Raster Program)

GRASSVERSION
5.x

SYNOPSIS
r.quant
r.quant [-tr] input=name[,name...] [basemap=map] [fprange=dmin,dmax] [range=min,max]

DESCRIPTION
r.quant produces the quantization file for a floating-point map.

Flags:
-t Truncate floating point data.

-r Round floating point data.

Parameters:

map=name The map for which the rules be to be created. If more than one map is specified, then
this implies that the floating-point range is the minimum and maximum of all the maps together, unless
either basemap=map or fprange=min,max is specified.

basemap=map The quant rules of this map set the quantization.

fprange=min,max This sets the floating-point range for the quantization.

range=min,max This sets the integer range for the quantization. Otherwise a default of 1-255 is used.

Quant rules
The quant rules have to be entered interactively.

If rules are specified, the input has the form:
valuel:value2:catl:[cat?]

where valuel and value? are floating point values and catl and cat? are integers. If cat? is missing, it is
taken to be equal to catl. All values can be "*" which means infinity.

NOTE
It isan error for both basemap and fprange to be specified.

SEE ALSO
r.support, r.null

AUTHOR
Michael Shapiro, Olga Waupotitcsh, U.S. Army Construction Engineering Research Laboratory

209

r.random

NAME
r.random - Creates a raster map layer and site list file containing randomly located sites.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.random

r.random help

r.random [-qgZ] input=name nsites=number[%][raster_output=name] [sites_output=name]

DESCRIPTION

The program r.random allows the user to create a raster map layer and a site list file containing
geographic coordinates of points whose locations have been randomly determined. The program locates
these randomly generated sites within the current geographic region and mask (if any), on non-zero
category value data areas within a user-specified raster map layer. If the user sets the -z flag, sites will be
randomly generated across all cells (even those assigned category value 0).

The raster_output raster map layer is created in the user's current mapset. The category values and
corresponding category names already associated with the random site locations in the input map layer are
assigned to these sites in the raster_output map layer.

The site lists file created by r.random contains a listing of the sites geographic coordinates; these
coordinates are the center points of the randomly selected cells.

OPTIONS

The user may specify the quantity of random locations to be generated either as a positive integer (e.g.,
10), or as a percentage of the raster map layer's total area (e.g., 10%, or 3.05%). If unspecified, the
number of sitesis set to '0' by default. If stated as a percentage of the raster map's total size, the number
of random locations generated will be set equal to the number of cells contained within the stated
percentage of the raster map layer. Options are 0-100; percentages less than one percent may be stated as
decimals. The default percentage value used, if unspecified by the user, is'0. (Note that choosing 1% of
araster map's cells frequently produces an abundance of random locations.)

r.random can be run interactively or non-interactively. The user may provide program arguments on the
command line, specifying an input map layer name (input=name), output raster map layer name
(raster_output=name), output site list file name (sites_output=name), and (optionally) give the number of
sites to be randomly generated as a total number of sites (nsites=number) or as a percentage of the map's
size (nsitessnumber%). The user can also direct that r.random run quietly (using the -g) option, and/or
direct r.random to also generate random site locations against cells containing category zero (using the -z
option).

Alternately, the user can simply type r.random on the command line without program arguments. In this
case, the user will be prompted for needed inputs and option choices using the standard GRASS user
interface described in the manual entry for parser.

Flags:
-q Run quietly. r.random will normally print output messages to standard output as it runs. The -q
option will suppress the printing of these messages.

210

-Z Include areas assigned a category value of zero within the pool of areas within which r.random
will randomly generate site locations. If the -z option is specified, sites that fall in areas assigned a
category value of zero in the input map layer will be assigned to a newly-created category in the output
raster map layer. If the -zflag is not set, cells having category value O in the output layer will represent the
areas at which randomly- located sites were not placed.

Parameters:
input=name An existing raster map layer in the user's current mapset search path. r.random will
randomly generate sites on a user- specified portion of the cellsin thisinput raster map.

nsites=number or nsites=number% Allows the user to specify the quantity of sites to be randomly
generated as either a positive integer, or as a percentage value of the number of cells in the input map
layer. If stated as a positive integer, number is the number of sites (i.e., number of cells) to appear in the
raster_output layer and/or sites output file. Options: Non-percentage values should be given as positive
integer values less than or equal to the number of cells in the input map layer. Percentage values given
should be within the range 0.00 - 100.00 (decimal values are allowed).

raster_output=name The new raster map layer to hold program output. This map will contain the
sites randomly generated by r.random. If the -z flag isnot set, al sites will be assigned whatever category
values were assigned these cell locations in the input raster map layer. If the -zflag is set, all sites except
those falling on cells assigned category value 0 in the input value will be assigned the category values
assigned these cells in the input layer; sites falling on cells assigned category value 0 in the input layer
will be assigned to a newly created category in the raster_output layer.

sites_output=name The new GRASS site lists file to hold program output. If no sites_output file
name is given on the command line, no site lists file will be created by r.random. (See raster_output
parameter description, above.)

Note: Although the user need not request that r.random output both a raster map layer (raster_output)
and asitelist file (sites_output), the user must specify that at least one of these outputs be produced.

NOTES

To create random site locations within some, but not all, non-zero categories of the input raster map layer,
the user must first create a reclassified raster map layer of the original raster map layer (e.g., using the
GRASS program r.reclass) that contains only the desired categories, and then use the reclassed raster map
layer asinput to r.random.

SEE ALSO
g.region, r.mask, r.reclass, parser

AUTHOR
Dr. James Hinthorne, GIS Laboratory, Central Washington University

211

r.rational.regression

NAME
r.rational.regression - linear and nonlinear regression calculation (GRASS Image Processing Program)

GRASSVERSION
4.x

SYNOPSIS

r.rational.regression

r.rational.regression help

r.rational.regression input=name output=name [check="phrase"] [predict="phrase"] [plot="phrase"]
[calculat="phrase"]

DESCRIPTION

The r.rational.regression program calculates the linear or nonlinear regression model. If it is used as an
image processing tool, the multispectral space remote sensing data will be the regression variables (ASCI|
file) and the ground vegetation coverage measurements will be the response variables (also ASCII file)
and this command will be useful for obtaining linear or nonlinear regression models from the remote-
sensing data which have corresponding ground measurement and for predicting vegetation coverage using
other remote-sensing data which have no corresponding ground truth records. The input file has the
following format

regression valuables x1, x2, ... response variable y
channel 1 (x1) channel 2 (x2) ... coverage

For athree channel remote-sensing data the following is an example of input ASCII file

0. 4350 0. 2616 0.7016 0. 98
0.4140 0.2620 0. 6520 0. 99
0. 4940 0. 3500 0. 5580 0. 34
0. 5983 0. 5350 0. 5650 0.10
0. 4883 0. 3733 0. 5533 0. 88
0.4150 0.2916 0.5116 0. 60
0. 5566 0. 5250 0. 5466 0. 09
0. 4420 0.2820 0. 6800 0. 86
0.4220 0.2620 0. 6260 0. 88
0. 4766 0. 3666 0. 5933 0.61
0.5180 0. 4300 0.5140 0. 60
0.4416 0.2700 0.7383 0. 96
0. 4583 0. 3116 0.5133 0.76
0. 4300 0.2750 0.7233 0. 98
0. 4320 0.2760 0. 6460 1. 00
0.4733 0. 3566 0.5616 0. 53
0. 4200 0. 2450 0. 7966 1. 00

212

0. 4850 0. 3533 0.7216 0. 99

0. 4360 0.2620 0.7620 0. 99
0. 4283 0. 2650 0.6783 0.91
0. 4633 0. 3200 0. 6750 0. 94

The resulted regression model (coefficient numbers) and related information about the confidential test,
goodness or utility test (e.g., correlation coefficient r between observed and calculated coverage, F value
and t value) are put on the output file (ASCII file also).

Eight models can be chosen by user after prompted by the program. They are:

1) usua linear model:
y=2[0]x[0]+a[1],
y=2[0]x[0] +a[1]x[1] +a[2]
y=a[0]x[0]+a[1]x[1] +a[2]x[2] +a[4]

2) linear model with remote-sensing data normalized by the data in the first spectral band;
normalized by x1:
y=a[0]x[1]/x[0] + &[1]
y=a[0]x[1]/x[0] + a[1]x[2]/x[0] + &[2]

3) linear model with normalization by the second band; normalized by x2:
y=2a[0]x[O]/x[1] + &[1]
y=a[0]x[O]/x[1] + a[1]x[2]/x[1] + &[2]

4) NDVI (normalized differential vegetation index) model;
5) NDVI model for intensity instead of radiance;

6) NDVI model for reflectance;

7) semi-relaxation vegetation index model;

8) RVI (relaxation vegetation index) nonlinear model.

The user has three options for check: multx1, multx2, and multx3. These options check multi-colinearity
of the input data. multx1 calculates $R sup 2$ for channel x1 being replaced by coverage y. multx2 for
channel x2 if input data are composed of two remote-sensing channels. And multx3 for channel x3 if
input data are composed of at least three channels.

The program provides three methods to conduct the nonlinear regression calculation. These methods can
be invoked by the user as options of calculat. Thefirst oneisrationa fraction method. If no any option of
caculat is given by the user, the program will adopt the first method. If calculat = rvi_linear the
linearization method is taken to conduct the nonlinear relaxation index regression. If the user set calculat
= rvi_nonlinear the general nonlinear regression method is used. If calculat = all, the program will
conduct nonlinear regression first using the rational fraction method and then using the obtained
coefficients as initial values to conduct the second method calculation and finally using the third method
to improve the results. For nonlinear regression calculation there may exist multi-minimums. We can not
be in reliance on the existing usual algorithms which can find one minimum only. The computer will not
scan the possible minimums in order to save computer time. The user should judge and select a least
minimum during the iteration. The necessary parameters that will facilitate the judgment for each
iteration are displayed in the screen and also output to the output file.

213

For plots of relevant features of the regression calculation the user can set option for plot. There are four
options for the plot. If plot = radiance-coverage computer will send radiance data against coverage data
for further plotting radiance-coverage curves or figures to show the scatter of input data. This datawill be
stored in ASCII files named "curveradiance coverage x1y", “curveradiance coverage x2y" and
"curve.radiance_coverage x3y". If plot = vegetation-soil three ASCII data files will be generated by the
program for further figures. Their names are "curve.veget soil_x1x2", "curve.veget_soil_x1x3" and
"curve.veget_soil_x2x3". If the user set plot = adequacy the program will generate residual data files for
plotting figures of residuals against predictors and dependent variable to show the adequacy. These files
named "curve residual_x1", "curve _residual_x2", “curve residua_x3" and "curve residua_y". If plot =
all, the program will generate all these above mentioned data files for further plotting of different figures.

The program not only can calculate regression models but also can make prediction to new remote sensing
data using the obtained model. The user can set option of predict = same to calculate regression model
using part of one imagery data and predict vegetation coverage for another part of remote sensing datain
the same imagery. If predict = other the program will use one imagery to get regression model and
predict vegetation coverage for other imagery. If the user did not give any option for predict the program
calculates model based on the whole input data and not conduct any prediction. The program till
generate a set of "calculated vegetation coverage" using the obtained model and the same input data in
order for the user to check the utility, goodness and confidential status of the regression.
r.rational.regression will be run non-interactively if the user specifies program arguments on the
command line, using the form:

r.rational.regression input=name output=name [check="phrase'] [predict="phrase"]
[plot="phrase"] [calculat="phrase"]

But after run, the computer will prompt the user to select model number.
Alternately, the user can simply type:

r.rational.regression
on the command line without program arguments. In this case, the user will be prompted for parameter

values using the standard GRASS user interface described in the manual entry for parser.

OPTIONS

Parameters:

check="phrase” For check of multi-colinearity.
Options: multx1, multx2, multx3

calculat="phrase" Method of calculation for nonlinear regression.
Options: rvi_linear, rvi_nonlinear, all

plot="phrase” Name of datafiles generated by the program for further plotting.
Options: radiance-coverage, vegetation-soil, adequacy, all

predict= Fashion of prediction.
Options: same, other

SEE ALSO
i.rvi, i.ndvi

214

AUTHORS

Hong C. Zhuang, U.S. Army Construction Engineering Research Laboratory Department of Electrical
Computer Engineering, University of Illinois at Urbana-Champaign.

Michael Shapiro, U.S. Army Construction Engineering Research Laboratory.

215

r.reclass

NAME

r.reclass - Creates a new map layer whose category values mare based upon the user's reclassification of
categoriesin an existing raster map layer.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.reclass

r.reclass help

r.reclass input=name output=name [title= name]

DESCRIPTION

r.reclass creates an output map layer based on an input raster map layer. The output map layer will be a
reclassification of the input map layer based on reclass rules input to r.reclass, and can be treated in much
the same way that raster files are treated. A title for the output map layer may be (optionally) specified by
the user.

The reclass rules are read from standard input (i.e., from the keyboard, redirected from a file, or piped
through another program).

The program will be run non-interactively if the user specifies the name of the raster map layer to be
reclassified, the name of an output layer to hold reclass rules, and (optionally) the name of atitle for the
output map:

r.reclass input=name output=name [title= name]

After the user types in the above information on the command line, the program will (silently) prompt the
user for reclass rules to be applied to the input map layer categories. The form of these rules is described
in further detail in the sections on non-interactive program use reclass rules and examples, below.

Alternately, the user can simply type r.reclass on the command line, without program arguments. In this
case, the user will be prompted for all needed inputs.

Before using r.reclass one must know the following:

1 The new categories desired; and, which old categories
fit into which new categories.

2 The names of the new categories.

INTERACTIVE PROGRAM USE: EXAMPLE

Suppose we want to reclassify the raster map layer roads, consisting of five categories, into the three new
categories: paved roads, unpaved roads, and railroad tracks. The user is asked whether the reclass table is
to be established with each category value initially set to O, or with each category value initially set to its
own value. A screen like that shown below then appears, listing the categories of the roads raster map
layer to be reclassified and prompting the user for the new category values to be assigned them.

ENTER NEW CATEGORY NUMBERS FOR THESE CATEGORI ES

OLD CATEGORY NAME OLD NEW NUM NUM

216

no data 00__

Hard Surface, 2 |anes 10__
Loose Surface, 1 |lane 20__
Inproved Dirt 30__

Uni nproved Dirt Trail 40__
Rai l road, single track 50__

AFTER COWPLETI NG ALL ANSWERS, HI T <ESC> TO CONTI NUE
(OR <Ctrl-C> TO CANCEL)

In the following screen the new category values have been entered beside the appropriate old category
names. Cells assigned category values 2, 3, and 4 in the old raster map layer are now assigned the new
category value 2 in the reclassed map; cell data formerly assigned to category value 5 in the old raster map
are now assigned the new category value 3 in the reclassed map.

ENTER NEW CATEGORY NUMBERS FOR THESE CATEGORI ES

OLD CATEGORY NAME OLD NEW NUM NUM
no data 00__

Hard Surface, 2 |anes 11

Loose Surface, 1 |lane 22

Inproved Dirt 32__

Uni nproved Dirt Trail 42

Rai l road, single track 53__

AFTER COWPLETI NG ALL ANSWERS, HI T <ESC> TO CONTI NUE
(OR <Ctrl-C> TO CANCEL)

Hitting the escape key <ESC> will bring up the following screen, which prompts the user to enter a new
title and category label for the newly reclassed categories.

ENTER NEW CATEGORY NAMES FOR THESE CATEGORI ES

TITLE: Roads Recl assified
CATNEW CATEGORY NAME
NUM
0 no data
1 Paved Roads
2 Unpaved Roads
3 Railroad, single track

AFTER COWPLETI NG ALL ANSWERS, HI T <ESC> TO CONTI NUE
(OR <Ctrl-C> TO CANCEL)

Based upon the information supplied by the user in the above sample screens, the new output map,
supporting category, color, history, and header files are created.

NON-INTERACTIVE PROGRAM USE: RECLASS RULES

In non-interactive program use, the names of an input map, output map, and output map title are given on
the command line. However, the reclass rules are still read from standard input (i.e., from the keyboard,

redirected from afile, or piped through another program).

Once the user has specified an input raster map layer, output map layer name, and (optionally) output map
layer title by typing:

r.reclass input=name output=name [title=name]
Each line of input must have the following format:

input_categories=output_category [label]

217

where the input lines specify the category values in the input raster map layer to be reclassified to the new
output_category category value. Specification of a label to be associated with the new output map layer
category is optional. If specified, it is recorded as the category label for the new category value. The
equal sign = isrequired. The input_category(ies) may consist of single category values or a range of such
valuesin the format "low thru high." The word "thru" must be present.

A line containing only the word end terminates the input.

NON-INTERACTIVE PROGRAM USE: EXAMPLES
The following examples may help clarify the reclass rules.

1 This example reclassifies categories 1, 3 and 5 in the input raster map layer to category 1 with category
label "poor quality” in the output map layer, and reclassifies input raster map layer categories 2, 4, and 6
to category 2 with the label "good quality” in the output map layer.

135
246

1 poor quality
2 good quality

2 This example reclassifies input raster map layer categories 1 thru 10 to output map layer category 1,
input map layer categories 11 thru 20 to output map layer category 2, and input map layer categories 21
thru 30 to output map layer category 3, al without labels.

1thru 10
11 thru 20
21 thru 30

1
2
3

3 Subsequent rules override previous rules. Therefore, the below example reclassifies input raster map
layer categories 1 thru 19 and 51 thru 100 to category 1 in the output map layer, input raster map layer
categories 20 thru 24 and 26 thru 50 to the output map layer category 2, and input raster map layer
category 25 to the output category 3.

1 thru 100 1 poor quality
20 thru 50 2 medium quality
25 = 3 good quality

4 The previous example could also have been entered as:

1thru19 51thrul00 = 1 poor quality
20thru24 26thru50 = 2 medium quality
25 = 3 good quality

or as:

1thrul9 = 1 poor quality
51 thru 100
20 thru 24
26 thru 50 medium quality
25 = 3 good quality

1
2
2

218

The final example was given to show how the labels are handled. If a new category value appears in more
than onerule (as is the case with new category values 1 and 2), the last label which was specified becomes
the label for that category. In this case the labels are assigned exactly asin the two previous examples.

NOTES

In fact, the r.reclass program does not generate any new raster map layers (in the interests of disk space
conservation). Instead, a reclass table is stored which will be used to reclassify the original raster map
layer each time the new (reclassed) map name is requested. As far as the user (and programmer) is
concerned, that raster map has been created. Also note that although the user can generate a r.reclass
map which is based on another r.reclass map, the new r.reclass map will be stored in GRASS as areclass
of the original raster map on which the first reclassed map was based. Therefore, while GRASS alows
the user to provide r.reclass map layer information which is based on an already reclassified map (for the
user's convenience), no r.reclass map layer (i.e., reclass table) will ever be stored as a r.reclass of a
r.reclass.

To convert a reclass map to a regular raster map layer, set your geographic region settings to match the
settings in the header for the reclass map (an ASCII file found under the cellhd directory, or viewable by
running r.support) and then run r.resample.

r.mapcalc can also be used to convert areclass map to aregular raster map layer:
r.mapcalc raster_map=reclass_map

where raster_map is the name to be given to the new raster map, and reclass map is an existing reclass
map.

BEWARE

Because r.reclass generates a table referencing some original raster map layer rather than creating a
reclassed raster map layer, a r.reclass map layer will no longer be accessible if the original raster map
layer upon which it was based is later removed.

A r.reclass map is not a true raster map layer. Rather, it is a table of reclassification values which
reference the input raster map layer. Therefore, users who wish to retain reclassified map layers must also
save the original input raster map layers from which they were generated.

Category values which are not explicitly reclassified to a new value by the user will be reclassified to O.

SEE ALSO
r.resample, r.rescale

AUTHORS

James Westervelt, U.S. Army Construction Engineering Research Laboratory
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

219

r.reclass.scs

NAME
r.reclass.scs - Create a new raster map layer based on an existing raster map.
(SCS GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.reclass.scs
r.reclass.scs help

DESCRIPTION

r.reclass.scs is an interface to the GRASS r.reclass program. The program will reclassify the category
values in a raster map layer based on reclass instructions entered by the user. The user can enter map
reclassification rules to r.reclass.scs either from standard input or from afile. The program then issues
r.reclass commands to produce the new reclassified raster map layer.

Input to r.reclass.scs consists of alist of category names or category values that will be grouped into the
same category in the output (reclassified) map. Only one category name should appear on each line of
input. Input can be entered either interactively, or from afile.

A file containing these reclass rules can be created using a text editor, word-processor, DBMS, etc. Itis
no more than alist of category names which will have the same category value after the reclassification.

SEE ALSO
r.reclass, r.resample, r.rescale

AUTHOR
R. L. Glenn, USDA, SCS, NHQ-CGIS

220

r.report

NAME
r.report - Reports statistics for raster map layers.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.report

r.report help

r.report [-hmfqeznNCi] map=name],name,...][unitssname[,name,...]] [pl=value] [pw=valueg]
[output=name] [null=string] [nsteps=val ue]

DESCRIPTION

r.report alows the user to set up a series of report parameters to be applied to a raster map layer, and
creates a report. If invoked with command line arguments, the report will print out to the screen only.
However, output may be redirected to a file or another program using the UNIX redirection mechanism.
If invoked without command line arguments, the user is given the option of printing out each report
and/or saving output to afile.

The program will be run non-interactively, if the user specifies the names of raster map layers and any
desired options on the command line, using the form

r.report [-hmfqeznNCi] map=name[,name,...][units=name[,name,...]] [pl=value] [pw=valueg]
where each map name is the name of a raster map layer on which to report, each unit name is a unit of

measure in which results are to be reported, the pl value gives the page length, the pw value gives the
page width, and the (optional) flags -h, -e, -m, -f, -q, -z, -n, -N, -C, and -i have the meanings stated below.

OPTIONS

Flags:

-h Suppress the print-out of page headers.

-m Report on zero values, because a mask is being used.

-f Use formfeeds between pages when printing report output.

-q Run quietly, without printing program messages to standard output.

-e Use scientific format for the numbers that are too long to fit in the tab table field if their decimal
formis used.

-Z Report only non-zero data values. Zero data will not be reported. However, for multiple map

layers this means that if zero values occur in every map layer, they will not be reported; if non-zero
category values occur in any map layer (along with zeros in others), the non- zero values along with the
zero values will be reported.

-n Filter out al no data cells.

-N Filter out cells where all maps have no data.

221

-C Report for cats fp ranges (fp maps only).

-i Read fp map as integer (use map’s quant rules).

Parameters:
map=name,name, ... Names of raster map(s) on which to report.
units=name Units of measure in which results are to be reported. These units are based on the

number of cells in the user's area of interest (i.e., cells within the current geographic region definition,
and the current mask [if any]). These are established with the programs g.region and r.mask,
respectively.
Options: Possible units of measurement are:

mi (cover measured in square miles)

me (cover measured in square meters)

k (cover measured in square kilometers)

a (cover measured in acres)

h (cover measured in hectares)

¢ (the number of cellsin the area of interest)

p (the percent cover, excluding no data areas)

pl=value Page length, in lines, in which report will be output.
Default: 0 (lines)

pw=value Page width, in characters, in which report will be output.
Default: 79 (characters)

output=name The name of a file to store the report in. If not specified, the report is printed on the
terminal screen.

null=string String representing no data cell value.
nsteps=value Number of fp subrangesto collect stats from.

Alternately, the user can simply type r.report on the command line, without program arguments. In this
case, the user will be prompted for program flag settings and parameter values.

The report itself consists of two parts, a header section and the main body of the report.
The header section of the report identifies the raster map layer(s) (by map layer name and title), location,
mapset, report date, and the region of interest. The area of interest is described in two parts: the user's

current geographic region is presented, and the mask is presented (if any is used).

The main body of the report consists of from one to three tables, which present the statistics for each
category and the totals for each unit column.

Note that, unlike r.stats, r.report allows the user to select the specific units of measure in which statistics
will be reported.

Following is the result of a r.report run on the raster map layer geology (located in the Spearfish, SD
sample data base), with the units expressed in square miles and acres. Here, r.report output is directed
into the file report.file.

EXAMPLE

222

r.report map=geology units=miles,acres > report.file

RASTER MAP CATEGORY REPORT
LOCATI ON: spearfish Fri Sep 2 09:20:09

north: 4928000. 00 east : 609000. 00
REGQ ON: sout h: 4914000. 00 west : 590000. 00
res: 100. 00 res: 100.00
MASK: none

MAP: geol ogy i n PERVANENT

Cat egory Information | Acres | Squar e
description | | Ml es
| |
0 | no data | 415. 13| 0. 65
1 | metanorphic | 2597. 02] 0. 46
2 | transition | 32. 12| 0. 05
3 | igneous | 8117. 24| 12. 68
4 | sandstone | 16691. 60| 26. 08
5 | limestone | 13681. 93| 21. 38
6 | shale | 10304. 07| 16. 10
7 | sandy shale | 2517. 95| 3.93
8 | claysand | 3229. 60| 5. 05
9 | sand | 8141. 95| 12.72
| |
TOTAL | 65728. 60| 102. 70
| |
NOTES

If the user runs r.report interactively and saves the report output in afile, this file will be placed into the
user's current working directory.

If the user runs r.report non-interactively, report output can be saved by redirecting it to afile or a printer
using the UNIX redirection mechanism.

SEE ALSO
g.region, r.coin, r.describe, r.info, r.mask, r.stats

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

223

r.resamp.rst

NAME

r.resamp.rst - reinterpolates and computes topographic analysis from input raster file to a new raster file
(possibly with different resolution) using regularized spline with tension and smoothing.

(GRASS Raster Program)

GRASSVERSION
5.x

SYNOPSIS

r.resamp.rst

r.resamp.rst help

r.resamp.rst [-rdt] input = name ew_res = val ns res = val elev = name [slope = name] [aspect = name]
[pcurv = name] [tcurv = name] [mcurv = name] [smooth = name] [maskmap = name] [overlap = val]
[zmult = val] [tension = val]

DESCRIPTION

r.resamp.tps

This program reinterpolates the values from a given raster file named input to a new raster file named
elev. If -r flag is specified, all zero elevations in input file are treated as elevations, otherwise they are
ignored. Reinterpolation (resampling) is done to higher, same, or lower resolution that is specified by
parameters ew_res and ns_res. All resulting raster files are created for the given region (which might be
different from the header of the input raster file). As an option, simultaneously with interpolation,
topographic parameters slope, aspect, profile curvature (measured in the direction of steepest slope),
tangential curvature (measured in the direction of a tangent to contour line) or mean curvature are
computed and saved as raster files as specified by the options slope, aspect, pcurv, tcurv, mcurv
respectively. If -d flag is set the program outputs partial derivatives fx, fy, fxx, fxy, fyy instead of sope,
aspect and curvatures.

For noisy data, it is possible to define spatially variable smoothing by providing a raster file smooth
containing smoothing parameters. With the smoothing parameter set to zero (smooth is not given or
contains zero data), the resulting surface passes exactly through the data points. User can define a raster
file named maskmap, which will be used as a mask. The interpolation is skipped for cells that have zero
value in mask. Zero values will be assigned to these cellsin all output raster files. Parameter zmult allows
the user to rescale the z-values (useful, e.g., for transformation of elevations given in feet to meters, so
that the proper values of slopes and curvatures can be computed).

Regularized spline with tension is used for the interpolation. The tension parameter tunes the character of
the resulting surface from thin plate to membrane. Higher values of tension parameter reduce the
overshoots that can appear in surfaces with rapid change of gradient. The flag -t can be set to use "dnorm
independent tension". The interpolation is performed for overlapping rectangular segments. The user can
define the width of overlap (in number of cells) by option overlap.

OPTIONS

The user can run this program either interactively or non-interactively. The program will be run non-
interactively if the user specifies program arguments and flag settings on the command line using the
form:

r.resamp.rst [-r] [-d] [-t] input = name ew_res= val ns_res= val elev = name [slope = name] [aspect =

name] [pcurv = name] [tcurv = name] [mcurv = name] [smooth = name] [maskmap = name] [overlap
= val] [zmult = val] [tension = val]

224

Alternatively, the user can simply type r.resamp.rst on the command line without program arguments. In
this case, the user will be prompted for parameter values and flag settings using the standard GRASS
parser interface described in the manual entry for parser.

Flags:

-r Indicates that zeroes in input map represent elevation.

-d Output partial derivatives instead of aspect, slope and curvatures.
Parameters:

input =name Use the existing site file name as input.

ew_res= val Set desired east-west resolution to val.

ns res= val Set desired north-south resolution to val.

elev = name Output elevation values to raster file named name.
dope=name Output slope or fx values to raster file named name.

aspect = name Output aspect or fy values to raster file named name.

pcurv = name Output profile curvature or fxx values to raster file named name.
tcurv=name Output tangential curvature values or fyy to raster file named name.
mcurv=name Output mean curvature values or fxy to raster file named name.
smooth=name 18 Set smoothing parameter from file name.

maskmap=name Use the existing raster file name as a mask.

overlap =val Use overlap val cellsto get additional points for interpolation for a given segment.
Default valueis 3.

zmult =val Convert z-values using conversion factor val.
Default valueis 1.

tension = val Set tension to val.

NOTES

r.resamp.rst uses regularized spline with tension for interpolation (as described in Mitasova and Mitas,
1993). Region is temporarily changed while writing output files with desired resolution. Topographic
parameters are computed the same way asin s.surf.rst. (See also Mitasova and Hofierka, 1993) Raster file
smooth should contain variable smoothing parameters that can be derived from errors, slope, etc. using
r.mapcalc. The program gives warning when significant overshoots appear and higher tension should be
used. However, with tension too high the resulting surface changes its behavior to membrane (rubber sheet
stretched over the data points resulting in a peak or pit in each given point and everywhere else the
surface goes rapidly to trend). Smoothing can aso be used to reduce the overshoots. When overshoots
occur the resulting elev file will have white color in the locations of overshoots since the color table for the
output file is the same as colortable for raster input file. The program checks the numerical stability of the
algorithm by computation of values in given points, and prints the maximum difference found into the
history file of raster map elev. Increase in tension is suggested if the difference is unacceptable. For
computation with smoothing set to O this difference should be 0. With smoothing parameter greater than

225

zero the surface will not pass through the data points and the higher the parameter the closer the surface
will be to the trend.

The program writes the values of parameters used in computation into the comment part of the history file
elev as well as the following values which help to evaluate the results and choose the suitable parameters:
minimum and maximum z values in the data file (zmin_data, zmax_data) and in the interpolated raster
map (zmin_int, zmax_int), maximum difference between the given and interpolated z value in a given
point (errtotal), rescaling parameter used for normalization (dnorm), which influences the tension. The
program gives warning when the user wants to interpolate outside the region given by the header of the
input raster file, zooming into the area where the points are is suggested in this case. When a mask is
used, the program takes all points in the given region for interpolation, including those in the area that is
masked out, to ensure proper interpolation along the border of the mask. It therefore does not mask out the
data points; if thisis desirable, it must be done outside r.resamp.rst.

SEE ALSO
g.region, r.resample, r.surf.contour, s.surf.rst

AUTHORS

Original version of program (in FORTRAN):

Lubos Mitas, NCSA, University of Illinois at Urbana Champaign, Illinois
Helena Mitasova, US Army CERL, Champaign, Illinois

Modified program (translated to C, adapted for GRASS, segmentation procedure):
Irina Kosinovsky, US Army CERL
Dave Gerdes, US Army CERL

REFERENCES

Mitas, L., Mitasova, H., 1999, Spatial Interpolation. In: P. Longley, M.F. Goodchild, D.J. Maguire, D. W.
Rhind (Eds.), Geographical Information Systems: Principles, Techniques, Management and
Applications, Wiley, 481-492.

Mitasova, H. and Mitas, L., 1993. Interpolation by regularized spline with tension: 1. Theory and
implementation, Mathematical Geology No.25 p.641-656.

Mitasova, H. and Hofierka, L., 1993. Interpolation by regularized spline with tension: 1. Application to
terrain modeling and surface geometry analysis, Mathematical Geology No.25 p.657.

Talmi, A. and Gilat, G., 1977. Method for smooth approximation of data, Journal of Computational
Physics, 23, pp 93-123.

Wahba, G., 1990. Spline models for observational data, CNMS-NSF Regiona Conference series in
applied mathematics, 59, SIAM, Philadelphia, Pennsylvania.

226

r.resample

NAME
r.resample - GRASS raster map layer data resampling capability.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.resample

r.resample help

r.resample [-q] input=name output=name

DESCRIPTION

r.resample resamples the data values in a user-specified raster input map layer name (bounded by the
current geographic region and masked by the current mask), and produces a new raster output map layer
name containing the results of the resampling. The category values in the new raster output map layer
will be the same as those in the original, except that the resolution and extent of the new raster output
map layer will match those of the current geographic region settings (see g.region).

The program will be run non-interactively if the user specifies program arguments on the command line,
using the form

r.resample [-q] input=name output=name

where the input name is the name of the raster map layer whose data are to be resampled, the output name
is the name of the raster map layer to store program output, and the -g option, if present, directs that
r.resample run quietly (suppressing the printing of program messages to standard output).

Alternately, the user can simply type r.resample on the command line, without program arguments. In
this case, the user will be prompted for needed inputs and option choices using the standard GRASS
parser interface described in the manual entry for parser.

NOTES
The method by which resampling is conducted is "nearest neighbor” (see r.neighbors). The resulting
raster map layer will have the same resolution as the resolution of the current geographic region (set using

g.region).

The resulting raster map layer may be identical to the original raster map layer. The r.resample program
will copy the color table and history file associated with the original raster map layer for the resulting
raster map layer and will create a modified category file which contains description of only those
categories which appear in resampled file.

When the user resamples a GRASS reclass file, atrue raster file is created by r.resample.

SEE ALSO
g.region, r.mapcalc, r.mask, r.mfilter, r.neighbors, r.rescale, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

227

r.rescale

NAME
r.rescale - Rescales the range of category valuesin a
raster map layer.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.rescale

r.rescale help

r.rescale[-q] input=name [from=min,max] output=name [to=min,max] \ [title="phrase"]

DESCRIPTION

The r.rescale program rescales the range of category values appearing in araster map layer. A new raster
map layer, and an appropriate category file and color table based upon the original raster map layer, are
generated with category labels that reflect the original category values that produced each category. This
command is useful for producing representations with a reduced number of categories from a raster map
layer with a large range of category values (e.g., elevation). Rescaled map layers are appropriate for use in
such GRASS programs asr.stats, r.report, and r.coin.

r.rescale will be run non-interactively if the user specifies program arguments on the command line,
using the form:

r.rescale [-q] input=name [from=min,max] output=name [to=min,max] \ [title="phrase"]
Alternately, the user can simply type:
r.rescale

on the command line without program arguments. In this case, the user will be prompted for parameter
values using the standard GRASS user interface described in the manual entry for parser.

Flag:
-q Run quietly, without printing messages on program progress to the user's terminal.
Parameters:

input=name The name of the raster map layer whose category values are to be rescaled.

from=minjmax The input map range to be rescaled.
Default: The full range of the input map layer.

output=name The name of the new, rescaled raster map layer.

to=min,max The output map range (after rescaling).
Default: 1,255

titte="phrase" Title for new output raster map layer.

228

EXAMPLE
To rescale an elevation raster map layer with category values ranging from 1090 meters to 1800 meters
into the range 1-255, the following command line could be used:

r.rescale input=elevation from=1090,1800 output=elevation.255 to=1,255

NOTES
The rescaled category value range is actually unlimited, but the category value range 1 to 255 is frequently
used due to limitations of color graphics monitors.

Category values that fall beyond the input range will become zero. This allows the user to select a subset
of the full category value range for rescaling if desired. This aso means that the user should know the
category value range for the input raster map layer. The user can request the r.rescale program to
determine this range, or can obtain it using the r.describe command. If the category value range is
determined using r.rescale, the input raster map layer is examined, and the minimum and maximum non-
zero category values are selected as the input range.

SEE ALSO
r.coin, r.describe, r.mapcalc, r.reclass, r.report, r.resample, r.stats, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

229

r.rescale.inf

NAME

r.rescale.inf - Generate a raster map layer in which the categories represent values in a database column
which have been divided into equal interval units.

(GRASS-RDBMS Raster Interface Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.rescale.inf

r.rescale.inf help

r.rescale.inf tab=name key=name col=name catsshame input=name output=name
[join=tab,tabkey,pkey]

DESCRIPTION

r.rescale.inf creates a reclassed raster map layer by dividing the values in a numeric column in the
currently selected database into equal interval units. The number of resulting categories is determined by
the user via the command line parameter [cats=]. r.rescale.inf evaluates the range of values for the
database column and subsets these values into equal interval groups of records returned by the query. For
example, if the database column contains values which range from 1-1000 and the [cats] value is equal to
10 the resulting raster map layer will contain the 10 categories:1=1-100, 2=101-200 etc. In other words,
each category in the new raster map layer will represent a range of 100 values from the database column
used in the rescale operation. The database column being evaluated must be numeric in type. To identify
the data types of columns in a database table use the g.column.inf command with the [-v] flag.
r.rescale.inf does not take outlying data values into account. Therefore, if the range of values for a
database column contains a limited number of extreme values the resulting rescale operation will be
skewed in the direction of these values.

OPTIONS

Parameters:

tab=database table name Table containing a column linked to category values in an
existing raster map.

key=database_column_name Column corresponding to category values in an existing raster map.
col=database_column_name Column to base rescale operation on which is numeric in type.

cats=value Number of categories to define in the resulting reclass map.

input=map Name of an existing raster file with category values linked to a column in the currently
selected database.

output=map Name of new raster map.

join=tab,tabkey,pkey Tab is the table used to develop the current SQL query. Tabkey is the database
column used to relate information in this table with data in the table linked to the GRASS category file.
Pkey is the associated column in the table linked to the GRASS category file which is related to tabkey in
the current table.

For instance, assume that stf1_main is a table containing column values associated with category valuesin
athe GRASS raster file blkgrp.ids. In addition, assume that stf1_main is a table containing attribute data

230

on age in the column popl00. In this example stf1 main is the table associated with the GRASS raster
map and tract_blck is the column linking stf1_main to the GRASS category file. The column pop100 in
stf1_main will be the basis for the rescale effort. To specify the rescale:

r.rescale.inf tab=stf1_main key=tract_blck
col=pop100
cats=5 input=blkgrp.ids output=pop100.rescale

Specifying these conditions would insure that all rows from table stf1 main which satisfy the query
criteriawould be related to the spatial features in the GRASS data layer viathe GRASS category values.

BUGS
None known.

NOTE
This program requires the Informix database software.

SEE ALSO
g.column.inf, g.select.inf, g.stats.inf, g.table.inf, d.rast.inf, d.site.inf, d.vect.inf, d.what.r.inf, d.what.s.inf,
d.what.v.inf, r.reclass.inf, v.reclass.inf

AUTHOR
James A. Farley, Wang Song and W. Fredrick Limp University of Arkansas, CAST

231

r.ros

NAME

r.ros (for wildfire spread simulation) - Generates three, or four raster map layers showing 1) the base
perpendicular) rate of spread (ROS), 2) the maximum (forward) ROS, 3) the direction of the maximum
ROS, and optionaly 4) the maximum potential spotting distance.

(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.ros

r.ros help

rros [-vs] model=name [moisture lh=name] [moisture 10h=name] [moisture_100h=name]
moisture_live=name [velocity=name] [direction=name] [slope=name] [aspect=name]
[elevation=name] output=name

DESCRIPTION
r.ros generates the base ROS value, maximum ROS value, direction of the maximum ROS, and optionally
the maximum potential spotting distance of awildfire for each raster cell in the current geographic region.

The calculation of the two ROS values for each raster cell is based on the Fortran code by Pat Andrews
(1983 of the Northern Forest Fire Laboratory, USDA Forest Service.

The direction of the maximum ROS results from the vector addition of the forward ROS in wind direction
and that in upslope direction.

The spotting distance, if required, will be calculated by a separate function spot_dist(), which is based on
Lathrop and Xu (in preparation), Chase (1984) and Rothermel (1991).

These three or four raster map layers serve as inputs for another GRASS raster program r.spread. More
information on r.ros and r.spread can be found in Xu (1994).

Flags:

-v Run verbosely, printing information about program progress to standard outpuit.
-S Calculate the maximum potential spotting distance.

Parameters:

model=name Name of an existing raster map layer in the user's current mapset search path containing
the standard fuel models defined by the USDA Forest Service. Valid values are 1-13; other numbers are
recognized as barriers by r.ros.

moisture_lh=name Name of an existing raster map layer in the user's current mapset search path
containing the 1-hour (<.25") fuel moisture (percentage content multiplied by 100).

moisture_10h=name Name of an existing raster map layer in the user's current mapset search path
containing the 10-hour (.25-1") fuel moisture (percentage content multiplied by 100).

moisture_100h=name Name of an existing raster map layer in the user's current mapset search path
containing the 100-hour (1-3") fuel moisture (percentage content multiplied by 100).

232

moisture_live=name Name of an existing raster map layer in the user's current mapset search path
containing live (herbaceous) fuel moisture (percentage content multiplied by 100).

velocity=name Name of an existing raster map layer in the user's current mapset search path containing
wind velocities at half of the average flame height (feet/minute).

direction=name Name of an existing raster map layer in the user's current mapset search path containing
wind direction, clockwise from north (degree).

dope=name Name of an existing raster map layer in the user's current mapset search path containing
topographic slope (degree).

aspect=name Name of an existing raster map layer in the user's current mapset search path containing
topographic aspect, counter- clockwise from east (GRASS convention) (degree).

elevation=name Name of an existing raster map layer in the user's current mapset search path containing
elevation (meters).

output=name Prefix of new raster map layers in the user's current mapset to contain 1) the base
(perpendicular) ROS (cm/minute); 2) the maximum (forward) ROS (cm/minute), 3) the direction of the
maximum ROS, clockwise from north (degree), and optionally 4) the maximum potential spotting
distance (meters).

If 'my_ros is given as the output name, then r.ros automatically assigns 'my_ros.base, 'my_ros.max’,
'my_ros.maxdir’, and optionally, 'my_ros.spotdist’ as the names for the actual output map layers.

OPTIONS

r.ros can be run either non-interactively or interactively. The program is run interactively if the user types
r.ros without specifying flag settings and parameter values on the command line. In this case, the user
will be prompted for input.

The program will be run non-interactively if the user specifies the names of raster map layers and any
desired options on the command line, using the form:

r.ros [-vs] model=name [moisture_lh=name] [moisture_10h=name] [moisture_100h=name]
moisture_live=name [velocity=name] [direction=name] [slope=name] [aspect=name]
[€elevation=name] output=name
If the options moisture_1h=name, moisture_10h=name, and moisture_100h=name are partially given, the
program will assign values to the missing option using the formula: moisture_100h = moisture 10h+ 1 =
moisture 1h + 2.
However at least one of them should be given.

Options velocity=name and direction=name must be in pair, whether given or not. If none is given, the
program will assume a no-wind condition.

Options slope=name and aspect=name must be in pair, whether given or not. If none is given, the
program will assume a topographically flat condition.

Option elevation=name must be given if the -s option is used.
EXAMPLE

Assume we have inputs, the following generates ROSes and spotting distances:

233

rros -vs model=fire model moisture 1h=21hour_moisture moisture live=live moisture
velocity=wind_speed direction=wind_direction slope=slope aspect=aspect elevation=elevation
output=my_ros

NOTES
1. r.rosis supposed to be run before running another GRASS program r.spread. The combination of the
two forms a simulation of the spread of wildfires.

2. Theinputsto r.ros should be in proper units.

3. The output units for the base and maximum ROSes are in cm/minute rather than ft/minute, which is
due to that a possible zero ft/minute base ROS value and a positive integer ft/minute maximum ROS
would result in calculation failure in the r.spread program.

4. The user needs to provide only ONE output name even the program actually generates THREE or
FOUR map layers.

5. The rules for optional parameters must be followed.

SEE ALSO
g.region r.mask r.slope.aspect, r.spread.

REFERENCES

Albini, F. A., 1976, Computer-based models of wildland fire behavior: a user's manual, USDA Forest
Service, Intermountain Forest and Range Experiment Station, Ogden, Utah.

Andrews, P. L., 1986, BEHAVE: fire behavior prediction and fuel modeling system -- BURN subsystem,
Part 1, USDA Forest Service, Intermountain Research Station, Gen. Tech. Rep. INT-194, Ogden,
Utah.

Chase, Carolyn, H., 1984, Spotting distance from wind-driven surface fires -- extensions of equations for
pocket calculators, US Forest Service, Res. Note INT-346, Ogden, Utah.

Lathrop, Richard G. and Jianping Xu, A geographic information system-based approach for calculating
spotting distance. (in preparation)

Rothermel, R. E., 1972, A mathematical model for predicting fire spread in wildland fuels, USDA Forest
Service, Intermountain Forest and Range Experiment Station, Res. Pap. INT-115, Ogden, Utah.

Rothermel, Richard, 1991, Predicting behavior and size of crown fires in the northern Rocky Mountains,
US Forest Service, Res. Paper INT-438, Ogden, Utah.

Xu, Jianping, 1994, Simulating the spread of wildfires using a geographic information system and remote
sensing, Ph. D. Dissertation, Rutgers University, New Brunswick, New Jersey.

AUTHOR
Jianping Xu, Center for Remote Sensing and Spatial Analysis, Rutgers University.

234

r.runoff
NAME
r.runoff (G-language) Generates an SCS curve number runoff map layer. It is a command-line interface
for generating the runoff map by the SCS method.

GRASSVERSION
4.x

SYNOPSIS
r.runoff rf=rainfall_map cn=cn_map ro=runoff_map

OPTIONS
Parameters:
rf=map rainfall map namein mm
cn=map CN map name
ro=map output runoff map namein *100 mm
The command-line ordering can be in any form but all key words must be there to run the program.
EXAMPLE
r.runoff rf=rainfall_map cn=cn_map ro=runoff_map
will create a runoff map runoff_map
NOTE
The r.runoff program is sensitive to the current window setting. Thus the program can be used to generate

arunoff map of any sub-area within the full map layer. Also, r.runoff is sensitive to any mask in effect.

AUTHORS
Raghavan Srinivasan and Dr. Bernie A. Engel, Agricultural Engineering Department, Purdue University

235

r.slope.aspect

NAME

r.sope.aspect - Generates raster map layers of slope, aspect, curvatures, and partial derivatives from a
raster map layer of true elevation values.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.slope.aspect

r.slope.aspect help

r.sope.aspect [-agqz] elevation=name [slope=name] [aspect=name] [format=name] [zfactor=value]
[prec=name] [pcurv=name] [tcurv=name] [dx=name] [dy=name] [dxx=name] [dyy=name]
[dxy=name] [min_slp_allowed=value]

DESCRIPTION

r.slope.aspect generates raster map layers of slope, aspect, curvatures, and first and second order partia
derivatives from a raster map layer of true elevation values. The user must specify the input elevation file
name and at least one output file name to contain the slope or aspect data. The user can also specify the
format for slope (degrees, percent; default=degrees), and zfactor: multiplicative factor to convert elevation
units to meters; (default 1.0).

OPTIONS

The program will be run non-interactively if the user specifies program inputs and any desired options on
the command line, using the form

r.sope.aspect [-ag] elevation=name [slope=name] [aspect=name] [format=name] [zfactor=value]
[prec=name] [pcurv=name] [tcurv=name] [dx=name] [dy=name] [dxx=name] [dyy=name]
[dxy=name] [min_slp=value]

If the user runs:
r.slope.aspect

without command line arguments, the program will prompt the user for flag settings and parameter
values.

Flags:

-a Do not align the settings of the current geographic region (to which the output slope and aspect
map layers will be set) to those of the elevation layer. See NOTES.

-q Run quietly, and suppress the printing of information on program operations during execution.

-Z Assume that zero values in the elevation map layer represent true elevation values, not areas of
"no data'.

Parameters:
elevation=name Name of the raster map layer of true elevation values to be used as input.

sope=name Name of araster map layer of slope values created from the elevation map.

aspect=name Name of araster map layer of aspect values created from the elevation map.

236

format=name Format for reporting the slope.
Options: degrees, percent
Default: degrees

Aactor=value Multiplicative factor to convert elevation units to meters.
Default: 1.0

pcurv=name Output profile curvature filename.

tcurv =name Output tangentia curvature filename.

dx=name Output E-W dope filename.

dy=name Output N-S slope filename.

dxx=name Output partial derivative dxx filename.
dyy=name Output partial derivative dyy filename.
dxy =name Output partial derivative dxy filename.

min_slp =value Minimum slope value (in percent) for which aspect is computed.
Default: 0.0

prec=name Type of output aspect and slope maps.
Options: default, double, float, int

Resulting raster map layers of slope and aspect are named by the user and placed in the current mapset.

ELEVATION RASTER MAP
The raster elevation map layer specified by the user must contain true elevation values, not rescaled or
categorized data.

ASPECT RASTER MAP

The raster aspect map layer which is created indicates the direction that slopes are facing. The aspect
categories represent the number degrees of east and they increase in the counterclockwise direction: 90 =
North, 180 = West, 270 = South, and 360 = East. Category and color table files are a'so generated for the

aspect map layer.

SLOPE RASTER MAP

The resulting raster slope map layer will contain slope values, stated in degrees of inclination from the
horizontal if format=degrees option (which is also default) is chosen, and in percent rise if format=percent
option is chosen. The category file, but not the color table, is generated by r.slope.aspect for the raster
slope map layer. Profile and tangential curvatures are the curvatures in the direction of steepest slope and
in the direction of the contour tangent respectively.

For most applications, the user will wish to use a reclassified map layer of slope that groups slope values
into ranges of slope. This can be done using r.reclass. An example of a useful reclassification is given
below:

cat egory range category | abels
(in degrees) (in percent)
1 0-1 0- 2%

237

2 2-3 3-5%

3 4-5 6-10%

4 6-8 11-15%

5 9-11 16-20%

6 12-14 21-25%

7 15-90 26% and hi gher

The following color table works well with the above reclassification.

cat egory red green bl ue
0 179 179 179
1 0 102 0
2 0 153 0
3 128 153 0
4 204 179 0
5 128 51 51
6 255 0 0
7 0 0 0

NOTES

To ensure that the raster elevation map layer is not inappropriately resampled, the settings for the current
region are modified dlightly (for the execution of the program only): the resolution is set to match the
resolution of the elevation map and the edges of the region (i.e. the north, south, east and west) are
shifted, if necessary, to line up along edges of the nearest cells in the elevation map. If the user really
wants the elevation map resampled to the current region resolution, the -a flag should be specified.

The current mask, if set, isignored.

The algorithm used to determine slope and aspect uses a 3x3 neighborhood around each cell in the
elevation file. Thus, it is not possible to determine slope and aspect for the cells adjacent to the edges in
the elevation map layer. These cells are assigned a "no data’ value (category 0) in both the slope and
aspect raster map layers.

Because Horn's formula is used to find the derivatives in x and y directions, the aspect is biased in 0, 45,
90, 180, 225, 270, 315, and 360 directions; i.e., the distribution of aspect categories is very uneven, with
peaks at 0, 45,..., 360 categories. Helena Mitasova of USACERL observed that most cells with a very
small slope end up having category 0, 45,..., 360 it is sometimes possible to reduce bias in these directions
by filtering out computation of aspect in areas where terrain is amost flat. The new option

min_slp=value

was added (minimum slope for which aspect is computed). The aspect for all cellswith lope<min_slpis
set to O (no value).

WARNING
The following may not be true anymore because of introduction of NULL, but it has not been tested.

Elevations of zero (as well as below sea level elevations) are valid. This means that areas assigned
category value 0 may have one of two possible meanings: they may either be areas of "no data' or areas
having O elevation. If the user wishes r.slope.aspect to assume that cells assigned category value zero in
the elevation map layer represent true elevation values, not areas of "no data’, the user should set the -z
flag when running this program.

If the -z flag is not set and the raster map layer of true elevation contains areas of "no data" that are

assigned to category O, either at its edges or in its interior, incorrect (and usually quite large) slopes will
result.

238

SEE ALSO
r.mapcalc, r.neighbors, r.reclass, r.rescale

AUTHORS
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

Olga Waupotitsch, U.S. Army Construction Engineering Research Laboratory

239

r.spread

NAME

r.spread - Simulates elliptically anisotropic spread on a graphics window and generates a raster map of
the cumulative time of spread, given raster maps containing the rates of spread (ROS), the ROS directions
and the spread origins.

(GRASS Raster/Display Program)

GRASSVERSION
4.x

SYNOPSIS

r.spread

r.spread help

r.spread [-vds] max=name dir=name base=name start=name [spot_dist=name] [w_speed=name]
[f_mois=name] [least_size=odds int] [comp_dens=decimal] [init_time=int (>=0)] [lag=int (>= 0)]
[backdrop=name] output=name [X_output=name] [y_output=name]

DESCRIPTION

Spread phenomena usually show uneven movement over space. Such unevenness is due to two reasons:

1) the uneven conditions from location to location, which can be called SPATIAL HETEROGENEITY,
and 2) the uneven conditions in different directions, which can be called ANISOTROPY . The anisotropy
of spread occurs when any of the determining factors have directional components. For example, wind
and topography cause anisotropic spread of wildfires.

One of the ssimplest spatial heterogeneous and anisotropic spread is elliptical spread, in which, each local
spread shape can be thought as an ellipse. In a raster setting, cell centers are foci of the spread ellipses,
and the spread phenomenon moves fastest toward apogees and slowest to perigees. The sizes and shapes
of spread ellipses may vary cell by cell. So the overall spread shape is commonly not an ellipse.

r.spread simulates elliptically anisotropic spread phenomena given three raster map layers about ROS
base ROS, maximum ROS and direction of the maximum ROS plus a raster map layer showing the
starting sources. These ROS layers define unique ellipses for all cell locations in the current geographic
region as if each cell center was a potential spread origin. For some wildfire spread, these ROS layers can
be generated by another GRASS raster program r.ros. The actual locations reached by a spread event are
constrained by the actual spread origins and the elapsed spread time.

r.spread optionally produces raster maps to contain backlink UTM coordinates for each raster cell of the
spread time map. The spread paths can be accurately traced based on the backlink information by another
GRASS raster program r.spreadpath.

Part of the spotting function in r.spread is based on Chase (1984) and Rothermel (1983). More
information on r.spread, r.ros and r.spreadpath can be found in Xu (1994).

Flags:
-v Run verbosely, printing information about program progress to standard output.
-d Display the "live" simulation on screen. A graphics window must be opened and selected before

using this option.

-S For wildfires, also consider spotting.

240

Parameters:
max=name Name of an existing raster map layer in the user's current mapset search path containing
the maximum ROS values (cm/minute).

dir=name Name of an existing raster map layer in the user's current mapset search path containing
directions of the maximum ROSes, clockwise from north (degree).

base=name Name of an existing raster map layer in the user's current mapset search path
containing the ROS values in the directions perpendicular to maximum ROSes (cm/minute). These
ROSes are a so the ones without the effect of directional factors.

start=name Name of an existing raster map layer in the user's current mapset search path containing
starting locations of the spread phenomenon. Any positive integers in this map are recognized as starting
sources.

spot_dist=name Name of an existing raster map layer in the user's current mapset search path containing
the maximum potential spotting distances (meters).

w_speed=name Name of an existing raster map layer in the user's current mapset search path containing
wind velocities at half of the average flame height (feet/minute).

f moissname Name of an existing raster map layer in the user's current mapset search path containing
the 1-hour (<.25") fuel moisture (percentage content multiplied by 100).

least_size=odd int An odd integer ranging 3 - 15 indicating the basic sampling window size
within which all cells will be considered to see whether they will be reached by the current spread cell.
The default number is 3 which means a 3x3 window.

comp_dens=decimal A decima number ranging 0.0 - 1.0 indicating additional sampling cells will
be considered to see whether they will be reached by the current spread cell. The closer to 1.0 the decimal
number is, the longer the program will run and the higher the simulation accuracy will be. The default
number is 0.5.

init_time=int A non-negative number specifying the initial time for the current spread simulation
(minutes). Thisis useful when multiple phase simulation is conducted. The default timeis 0.

lag=int A non-negative integer specifying the simulating duration time lag (minutes). The
default is infinite, but the program will terminate when the current geographic region/mask has been
filled. It also controls the computational time, the shorter the time lag, the faster the program will run.

backdrop=name Name of an existing raster map layer in the user's current mapset search path to be used
as the background on which the "live" movement will be shown.

output=name Name of the new raster map layer to contain the results of the cumulative spread time
needed for a phenomenon to reach each cell from the starting sources (minutes).

x_output=name Name of the new raster map layer to contain the results of backlink informationin UTM
easting coordinates for each cell.

y_output=name Name of the new raster map layer to contain the results of backlink information in UTM
northing coordinates for each cell.

241

OPTIONS

The user can run r.spread either interactively or non-interactively. The program is run interactively if the
user types r.spread without specifying flag settings and parameter values on the command line. In this
case, the user will be prompted for input.

Alternately, the user can run r.spread non-interactively, by specifying the names of raster map layers and
desired options on the command line, using the form:

rspread [-vds] max=name dir=name base=name start=name [spot_dist=name]
[w_speed=name] [f_mois=name] [least_size=odds int] [comp_dens=decimal] [init_time=int
(>=0)] [lag=int (>= 0)] [backdrop=name] output=name [X_output=name] [y_output=name]

The -d option can only be used after a graphics window is opened and selected.
Options spot_dist=name, w_speed=name and f_mois=name must all be given if the -s option is used.

EXAMPLE
Assume we have inputs, the following simulates a spotting-involved wildfire on the graphics window and
generates three raster maps to contain spread time, backlink information in UTM northing and easting
coordinates:

rspread -ds max=my ros.max dir=my ros.maxdir base=my rosbase start=fire origin
spot_dist=my_ros.spotdist w_speed=wind_speed f_mois=1hour_moisture
backdrop=image_burned output=my_spread x_output=my_spread.x y_output=my_spread.y

NOTES

1. r.spread is a specific implementation of the shortest path algorithm. r.cost GRASS program served as
the starting point for the development of r.spread. One of the major differences between the two programs
is that r.cost only simulates ISOTROPIC spread while r.spread can simulate ELLIPTICALLY
ANISOTROPIC spread, including isotropic spread as a special case.

2. Before running r.spread, the user should prepare the ROS (base, max and direction) maps using
appropriate models. For some wildfire spread, a separate GRASS program r.ros based on Rothermel's fire
equation does such work. The combination of the two forms a simulation of wildfire spread.

3. The relationship of the start map and ROS maps should be logically correct, i.e. a starting source (a
positive value in the start map) should not be located in a spread BARRIER (zero value in the ROS maps).
Otherwise the program refuses to run.

4. r.spread uses the current geographic region settings. The output map layer will not go outside the
boundaries set in the region, and will not be influenced by starting sources outside. So any change of the
current region may influence the output. The recommendation is to use dightly larger region than
needed. Refer to g.region to set an appropriate geographic region.

5. Theinputsto r.spread should be in proper units.

6. r.spread is a computationally intensive program. The user may need to choose appropriate size of the
geographic region and resolution.

7. A low and medium (i.e. <= 0.5) sampling density can improve accuracy for elliptical simulation

significantly, without adding significantly extra running time. Further increasing the sample density will
not gain much accuracy while requiring greatly additional running time.

242

SEE ALSO
g.region, r.cost, r.mask, r.spreadpath, r.ros.

REFERENCES

Chase, Carolyn, H., 1984, Spotting distance from wind-driven surface fires -- extensions of equations for
pocket calculators, US Forest Service, Res. Note INT-346, Ogden, Utah.

Rothermel, R. C., 1983, How to predict the spread and intensity of forest and range fires. US Forest
Service, Gen. Tech. Rep. INT-143. Ogden, Utah.

Xu, Janping, 1994, Simulating the spread of wildfires using a geographic information system and remote
sensing, Ph. D. Dissertation, Rutgers University, New Brunswick, New Jersey.

AUTHOR

Jianping Xu and Richard G. Lathrop, Jr., Center for Remote Sensing and Spatial Analysis, Rutgers
University.

243

r.spreadpath

NAME

r.spreadpath - Recursively traces the least cost path backwards to cells from which the cumulative cost
was determined.

(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.spreadpath

r.spreadpath help

r.spreadpath [-v] x_input=namey_output=name [coordinate=x,y[X,y,...]] output=name

DESCRIPTION

r.spreadpath recursively traces the least cost path backwards to the origin, given backlink information
input map layers and target locations from where paths are to be traced. The backlink information map
layers record each cell's backlink UTM northing (the y_input) and easting (the x_input) coordinates from
which the cell's cumulative cost was determined.

The backlink inputs can be generated from another GRASS raster program r.spread. One of the major
applications of r.spreadpath along with r.spread is to accurately find the least cost corridors and/or paths
on araster setting. More information on r.spread and r.spreadpath can be found in Xu (1994).

Flags:
-v Run verbosely.
Parameters:

X_input=name Name of input raster map layer containing backlink UTM easting coordinates.
y_input=name Name of input raster map layer containing backlink UTM northing coordinates.
coordinate=x,y[,X,Y,X,y, --.] Each x, y coordinate pair gives the easting and northing (respectively)
geographic coordinates of a target point from which to backwards trace the least cost path. As many

points as desired can be entered by the user.

output=name Name of raster map layer to contain output. Also can be used as the map layer of the
input target points. If so used the input target point map will be overwritten by the output.

OPTIONS

The user can run r.spread either interactively or non- interactively. The program is run interactively if
the user types r.spreadpath without specifying flag setting and parameter values on the command line. In
this case, the user will be prompted for input.

Alternately, the user can run r.spreadpath non-interactively, by specifying the names of raster map layers
and desired options on the command line, using the form:

r.spreadpath [-v] x_input=namey_output=name [coordinate=x,y[X,y,...]] output=name

SEE ALSO
r.spread.

244

REFERENCE
Xu, Jianping, 1994, Simulating the spread of wildfires using a geographic information system and remote
sensing, Ph. D. Dissertation, Rutgers University, New Brunswick, New Jersey.

AUTHOR
Jianping Xu and Richard G. Lathrop, Jr., Center for Remote Sensing and Spatial Analysis, Rutgers

University.

245

r.stage3

NAME
r.stage3 - NEXRAD weather radar input tool
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS
r.stage3 [-v] input=name [output=name]

DESCRIPTION

A Stage 1l precipitation product is a mosaic of al the Stage Il precipitation estimates within the RFC
(River Forecast Center) area. The Stage Il products are produced by merging radar precipitation
estimates (Stage 1) with ground truth data provided by rain gages. In the Arkansas-red River Forecast
Center (ABRFC) this includes 15 88-D radars and approximately 500 rain gages. The 13 RFC's within
the United States will eventually produce Stage 111 products. As of 4-94 the ABRFC is the only RFC
currently producing Stage 111 products. As more radars come on line other RFC's will begin producing
this product as well. The 88-D radars have difficulty detecting precipitation when the raindrops are very
small or when the precipitation is in the form of snow. Under these conditions precipitation estimates
tend to be under estimated. Large Hail within a storm causes the radar to over estimate precipitation
amounts. The grid cell size is approximately 4 km by 4 km. The NetCDF files containing the
precipitation values in the units of 1/100 of mm can be obtained from ABRFC's gopher server. r.stage3
program generates the GRASS raster map layers only in the Lat/Lon coordinate system. UTM is not
utilized because the area being referenced is too large for a UTM zone. The region settings for the
ABRFC's coverage areaiis:

projection: 3 (Latitude-Longitude)
zone: O

north: 41:16: 06N

sout h: 32:48: 28N

east: 90:53: 28W

west: 107:08: 03W

You may use the clark66 spheroid and use any resolution that may be suitable as far as your other data
reguirements are concerned. (start with esres= nsres = 0:00:30).

This version of r.stage3 will work only on NetCDF files created after the 6th of April 1994.

Y ou will need the NetCDF libraries created by the Unidata Program Center. The NetCDF libraries can be
obtained via anonymous ftp from unidata.ucar.edu under pub/netcdf/netcdf.tar.Z. You will the need to
compile the libraries. r.stage3 can be only run within GRASS. r.stage3 needs both the NetCDF libraries
as well as the GRASS libraries. If you have all the libraries then r.stage3 can be compiled smply by
running "gmake" (For GRASS 4.2 it is gmake4.2) in this directory.

In the above, if the output parameter is not specified then a mapname with the same name as that of the
input parameter is created. The rainbow colortable is created for the resultant map. The resulting maps
have a resolution of 0:02:59.

A few sample NetCDF files and the corresponding GIF files are provided in the sample directory. The
vector directory contains the vector boundary output from the command v.out.ascii of the ABRFC basin.

246

To run r.stage3 on the sample files just go into the sample directory and type:
r.stage3 -v in=04059418.nc

This will create a raster map by the name 04059418.nc. Similarly r.stage3 can be run on other sample
files. You can use the corresponding GIF files to compare them. Since the GIF files are in a different
projection system, there is some distortion in between the raster maps and the GIF file. However the
values in the raster are properly georeferenced.

OPTIONS
Flags:
-V Verbose

Parameters:
input = name Name of the netcdf file to be converted

output = name Name of the resultant raster map
AUTHORS

Nalneesh Gaur, Arkansas Red Basin River Forecast Center
Norman L. Bingham, Arkansas Red Basin River Forecast Center

247

r.stats

NAME
r.stats - Generates area statistics for raster map layers.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.stats

r.stats help

r.stats [-1aclmgzgxnNCri] input=name ,name,...] [fs=character|space] [output=name]

DESCRIPTION

r.stats calculates the area present in each of the categories of user-selected raster map layer(s). Area
statistics are given in units of square meters and/or cell counts. This analysis uses the current geographic
region and mask settings. Output can be sent to afile in the user's current working directory.

The program will be run non-interactively if the user specifies the program arguments and desired options
on the command line, using the form

r.stats [-1aclmgzgxnNCri] input=name[,name,...] [fs=character|space] [output=name]

where each input name is the name of araster map layer on which area/cell statistics are to be generated,
the (optional) output name is the name of a file to contain program output (sent to the user's current
working directory), the fs character or space is the field separator to be used to separate data fields in the
output file (default is a space if unspecified), and the (optiona) flags -1, -a, -c, -I, -m, -q, -z, -g, -X, -n, -N,
-C, -r, and -i have the meanings described in the OPTIONS section.

Alternately, the user can simply type r.stats on the command line, without program arguments. In this
case, the user will be prompted for needed inputs and option choices using the standard GRASS parser
interface described in the manual entry for parser.

OPTIONS
Flags:
-1 The data for each cell in the current geographic region will be output, one cell per line, rather

than the totals for each distinct combination.

-a Print area totals in square meters.
-C Print total cell counts.
-m Report all zero values present in the input map layer(s), whether or not they fall inside or outside

the current mask (see r.mask). When a mask is present, r.stats will only report zero values falling within
the mask area unless the user runs r.stats with the -m option. When the user runs r.stats with the -m
option, r.stats will report zero values falling outside the mask area, in addition to those within the mask.

-l Prints the category label(s) as well as the category number(s).

-q Run quietly, and suppress printing of percent complete messages to standard output.

248

-Z Report only non-zero data values. Zero data will not be reported. However, for multiple map
layers this means that if zero values occur in every map layer, they will not be reported; if non-zero
category values occur in any map layer (along with zeros in others), the non-zero values along with the
zero values will be reported.

-g Print the grid coordinates (easting and northing), for each cell. This option works only if the -1
option is also specified.

-X Print the x and y (column and row) values, for each cell. This option works only if the -1 option
is aso specified.

-n Suppress reporting of any nulls.

-N Suppress reporting of nulls when all values are null.

-C Report for cats fp ranges (fp maps only).
-r Print raw indexes of fp ranges (fp maps only).
-i Read fp map asinteger (use map’s quant rule).

Parameters:
input=name The name(s) of one or more existing raster map layer(s) whose cell counts or area
statistics are to be calculated.

fs=character or fs=space The field separator (fs) to be used to separate data fields in
the output file.

Options: acharacter or space

Default: aspace

output=name The name to be assigned to the ASCII output file.

NON-INTERACTIVE PROGRAM USE

If users invoke program options on the command line, r.stats will print out area statistics for the user-
specified raster map layers in a columnar format suitable for input to UNIX programs like awk and sed.
Output can be saved by specifying the name of an output file on the command line.

If a single map layer is specified on the command line, a list of areas in square meters (assuming the
map's coordinate system is in meters) for each category in the raster map layer will be printed. (If the -c
option is chosen, areas will be stated in number of cells). If multiple raster map layers are specified on the
command line, a cross-tabulation table of areas for each combination of categories in the map layers will
be printed.

For example, if one raster map layer were specified, the output would look like:

1: 1350000. 00
2:4940000. 00
3:8870000. 00

If three raster map layers a, b, and c, were specified, the output would look like:

0: 0: 0: 8027500. 00
0:1:0:1152500. 00
1: 0: 0: 164227500. 00
1:0:1:2177500. 00
1:1:0:140092500. 00

249

1 3355000. 00
1 31277500. 00
1 2490000. 00
1 24207500. 00
:1752500. 00
:17140000. 00
:11270000. 00
1 2500. 00

WWWNNNN
PRoRRQOR
RrOOROROPR

Within each grouping, the first field represents the category value of map layer a, the second represents
the category values associated with map layer b, the third represents category values for map layer ¢, and
the last field gives the area in square meters for the particular combination of these three map layers
categories. For example, above, combination 3,1,1 covered 2500 sgquare meters. Fields are separated by
colons.

NOTES
r.stats works in the current geographic region with the current mask.

If anicely formatted output is desired, pipe the output into a command which can create columnar output.
For example, the command:

r.statsinput=a,b,c| pr -3 | cat -s

will create a three-column output

1:4:4:10000. 00 2:1:5:290000. 00 2:4:5:2090000. 00
1:4:5:1340000. 00 2:2:5:350000. 00 3:1: 2: 450000. 00
2:1:1:1090000. 00 2:4:1:700000. 00 3:1:3:5280000. 00
2:1:3:410000. 00 2:4:3:10000. 00 3:1:5:3140000. 00

The output from r.stats on more than one map layer is sorted.

Note that the user has only the option of printing out cell statistics in terms of cell counts and/or area
totals. Users wishing to use different units than are available here should use the GRASS program
r.report.

SEE ALSO
g.region, r.coin, r.describe, r.mask, r.report, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

250

r.sun

NAME

r.sun - computes solar rays incidence angle raster maps for given time and latitude, and amount of direct
solar energy raster maps for given day and latitude from elevation, slope and aspect raster files. The
shading effect of surrounding terrain is incorporated.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.sun

r.sun help

r.sun [-s] elevin = name [zmul=valt] aspin = name slopein = name [incidout =name] [energyout =
name] latitude dej [lum_time]

DESCRIPTION

The r.sun program computes solar rays incidence angle raster map incidout for given day dgj, time
lum_time and latitude and amount of direct solar energy energyout for a given day dej and latitude from
elevation elevin, slope slopein and aspect aspin raster files. If elevations in the raster elevation map
elevin are in different units than the mapset coordinate system, a multiplier zmult must be used. For
instance, if elevations are in centimeters and X, y coordinates in meters, you should use zmult = 100.
Specified day dgj is the number where January 1 is day no.1 and December 31 is 365 (366). Time
lum_time must be alocal time in decimal system, e.g. 7.5 (i.e. 7h 30m). Latitude must be also in decimal
system and has positive values for northern hemisphere and negative for southern one. Incidence angle is
angle between normal vector of given surface and solar ray vector. Output incidence angles are in
degrees. Amount of direct solar energy for given day is computed integrating the incidence angle between
sunrise and sunset times. Ouput isin kW per squared meter. The incidence angle and amount of direct
solar energy can be computed without shading influence of surrounding terrain by default, they can be
computed incorporating this influence using the flag -s. In hilly areas this can lead to very different
results! A declination is computed internally using Cooper's approximation for each day and energy input
using solar constant 1370 kW per squared meter. It is possible to compute an amount of direct solar
energy for some time interval during the year (e.g. a vegetation period). This can be done using a shell
script. Elevation, aspect and slope input values should not be reclassified into coarser categories. This
could lead to incorrect results.

OPTIONS

The user can run this program either interactively or non-interactively. The program will be run non-
interactively if the user specifies program arguments and flag settings on the command line using the
form:

r.sun [-s] elevin = name [zmult = val] aspin = name slopein = name [incidout = name]
[energyout = name] latitude = val dgj = val [lum_time= val]

Alternately, the user can simply type r.sun on the command line without program arguments. In this case,
the user will be prompted for parameter values using the standard GRASS parser interface.

Flags:
[-9] Incorporates shading effect of terrain (default not)
Parameters:

elevin=name Use the existing raster file with elevationsname as input.

251

zmult=val Set amultiplier for elevationsto val.
aspin=name Use the existing raster file with aspectname as input.

dopein=name Usethe existing raster file with slopename as input.

incidout=name Output solar rays incidence angle values to raster file named name.

energyout=name Output direct solar energy values to raster file named name.
latitude=val Set the value of latitude of given region to val.

dej=val Set the serial number of day to val.

lum time=val Set the decimal value of timeto val.

NOTES

Solar energy is important input parameter in different models concerning landscape, vegetation,
evapotranspiration, snowmelt or remote sensing. Solar rays incidence angle can be effectively used in
radiometric corrections in hilly terrain where very precise investigations are performed. Incidence angle
multiplied by solar constant (here is used 1370 kW per squared meter) gives irradiance which can be

computed using r.mapcalc.

SEE ALSO
s.surf.tps, r.slope.aspect

REFERENCES

Mitasova, H. and Hofierka, J. (1993): Interpolation by Regularized Spline with Tension: 1. Application to

Terrain Modeling and Surface Geometry Anaysis. Mathematical Geology (in press).

Jenco, M. (1992): Distribution of direct solar radiation on georelief and its modelling by means of

complex digital model of terrain. Geograficky casopis 44, 1992, pp.342-355.(in Slovak)

AUTHOR
Original version of the program :
Jaroslav Hofierka and Maros Zlocha, Comenius University, Bratislava, Slovakia,

Modified program (adapted for GRASS):
Jaroslav Hofierka, Comenius University, Slovakia

252

r.support

NAME
r.support - Allows the user to create and/or modify raster map layer support files.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.support

DESCRIPTION
The GRASS program r.support alows the user to create and/or modify raster map layer support files. It
may be run only on raster map layers in the user's current mapset.

No non-interactive version of this program currently exists; the user runs the program by typing r.support,
and will be queried for inputs.

Various GRASS programs depend on one or more of the following GRASS support files:

cellhd The cell header file contains information on a map's projection, zone, regiona boundaries, row
and column totals, cell resolution, storage format, and compression. It describes where and how this
map's raster (cell) data fits in with reference to other raster map layers' data. Without it, the raster map
layer could not be displayed or analyzed properly. Using r.support, the user can change the # of columns,
of bytes per cell, and default geographic region settings. Generally, users would not change this
information. Cell header files are stored under the cellhd directory under the user's current mapset.

stats Raster map layer statistics are saved in the form of a histogram and range of the category values
which occur in the map layer. Statistics files are stored in subdirectories of the cell_misc directory under
the user's current mapset.

catls A category file associates each category value in the raster map layer with a category description
(label). The user may add or edit the category descriptions, alter the number of categories, and add or
alter the map'stitle. Category files associated with raster map layers are stored under the cats directory in
the user's current mapset.

colr A color file associates each category value in the raster map layer with a color. Using r.support, the
user may assign one of eight color table types to the raster map layer. Map color table files are stored
under the colr and colr2 directories under the user's current mapset.

hist Historical information about the raster map layer is stored in a history file. The user may add or
edit the raster map's title, data type, data source, data description, and include comments. (Note that the
specification of map data type here is somewhat archaic, and should always be set to raster.) Map history
files are stored under the hist directory under the user's current mapset.

NOTES

The r.support program attempts to verify that the information in the cell header is reasonable. The data
format specified in the header is verified against the raster map layer itself. This includes checking that
files which the header indicates are compressed are really compressed, and that the number of rows and
columns specified in the header correspond to the actual file size.

253

The r.support program can also be used to determine the number of columns and rows of data in a raster
map layer, in the event that no cell header is available. Thisis useful, for example, for importing raster
map layers created by software other than GRASS.

If the file is not compressed, the file size should be the product of the number of rows and columns. If the
file is compressed, this test cannot be performed since the file size will bear no relation to the product.
The number of rows can still be verified, but the number of columns cannot.

To compute or correct the stats, the cell header must be correct, since the raster map layer is read to
determine the stats.

If anew cats or colr (or colr2) fileis required, the stats must be correct.

The user is allowed to change the number of categories specified in the category file. This should only be
done if the user knows that the maximum category value in the raster map layer is different than that
which is recorded in the category file. Changing the category value in the cats file allows the user to add
more category labels, or to remove labels. It does NOT change the category values in the raster map layer
itself.

The color file is unique among GRASS support files. Whileit is necessary to protect a user's original data
from being modified by users working under other mapsets, these users need to be able to create color
tables for maps that are stored under mapsets other than their own. Color table files meet both these
objectives.

Color table files get stored in one of two directories, both under the user's current mapset. The color files
created by a user for raster maps stored under that user's current mapset get stored in the directory
$LOCATION/colr and cannot be modified or removed by other users. The color table files that the user
modifies/creates for raster map layers not stored under the user's current mapset get stored in a secondary
color file wunder the wuser's mapset. This secondary color table is stored under
$LOCATION/colr2/<mapset> where <mapset> is the name of the mapset under which the raster map
data are stored. In versions of GRASS prior to 3.0, this was also the case for color tables in the user's own
mapset. Now, however, if a user modifies a color table associated with a raster map layer in his own
current mapset, these changes will be made to the user's original color file (i.e., the user's color changes
will overwrite whatever previous color table file existed for this map under the user's $LOCATION/colr
directory). No secondary color files are created for raster map layers stored in the users own mapset.

WARNING

In order to modify the cell header, the raster (cell) map layer under consideration must not be a reclass
file. This is because the reclass file's header does not contain positional information, but rather a
reference to another raster map layer. Thus it shares a cell header with the referenced raster map layer.
In order to change the cell header, r.support must be run on the true raster file referenced.

SEE ALSO
For more information regarding the location and function of GRASS support files consult the GRASS
Programmer's Manual chapter on GRASS Database Structure

d.colors, r.colors, r.reclass

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

254

r.surf.contour

NAME
r.surf.contour - Surface generation program.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.surf.contour

r.surf.contour help

r.surf.contour [-f] input=name output=name

DESCRIPTION

r.surf.contour creates a raster elevation map from a rasterized contour map. Elevation values are
determined using procedures similar to a manual methods. To determine the elevation of a point on a
contour map, an individual might interpolate its value from those of the two nearest contour lines (uphill
and downhill).

r.surf.contour works in a similar way. Initially, a vector map of the contour lines is made with the
elevation of each line as its label (see v.digit). When the program v.to.rast is run on the vector map,
continuous "lines' of rasters containing the contour line values will be the input for r.surf.contour. For
each cell in the input map, either the cell is a contour line cell (which is given that value), or aflood fill is
generated from that spot until the fill comes to two unique values. The flood fill is not alowed to cross
over the rasterized contour lines, thus ensuring that an uphill and downhill contour value will be the two
values chosen. r.surf.contour interpolates from the uphill and downhill values by the true distance.

The program will be run non-interactively if the user specifies the program parameter values and desired
flag settings on the command line, using the form:

r.surf.contour [-f] input=name output=name
Alternately, the user can simply type r.surf.contour on the command line, without program arguments. In

this case, the user will be prompted for needed inputs and option choices using the standard GRASS user
interface described in the manual entry for parser.

Flag:
-f Invoke fast, but memory-intensive program operation.
Parameters:

input=name Name of an existing raster map layer that contains a set of initial category values (i.e.,
some cells contain known category values (denoting contours) while the rest contain zeros (0)).

output=name Name to be assigned to new output raster map layer that represents a smooth (e.g.,
elevation) surface generated from the known category valuesin the input raster map layer.

NOTES

r.surf.contour works well under the following circumstances:1) the contour lines extend to the edge of the
current region, 2) the program is run at the same resolution as that of the input map, 3) there are no
digointed contour lines, and 4) no spot elevation data BETWEEN contour lines exist. Spot elevations at
the tops of hills and the bottoms of depressions, on the other hand, improve the output greatly. Violating

255

these constraints will cause non-intuitive anomalies to appear in the output map. Run r.slope.aspect on
r.surf.contour results to locate potential anomalies.

The running of r.surf.contour is very sensitive to the resolution of rasterized vector map. If multiple
contour lines go through the same raster, slight anomalies may occur. The speed of r.surf.contour is
dependent on how far "apart" the contour lines are from each other (as measured in rasters). Since a flood
fill agorithm is used, the program's running time will grow exponentially with the distance between
contour lines.

SEE ALSO
r.surf.idw, r.surf.idw2, s.surf.idw, v.digit, v.to.rast, r.slope.aspect, parser

AUTHOR
Chuck Ehlschlaeger, U.S. Army Construction Engineering Research Laboratory

256

r.surf.fractal

NAME

r.surf.fractal - GRASS module to create a fractal surface of a given fractal dimension. Uses spectral
synthesis method. Can create intermediate layers showing the build up of different spectral coefficients
(see Saupe, pp.106-107 for an example of this).

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.surf.fractal out=name [d=value] [n=value]

OPTIONS
Parameters:
out Name of fractal surface raster layer to be produced

d Fractal Dimension of surface (2 <D < 3)
Default: 2.05

n Number of intermediate images to produce
Default: 0

SEE ALSO
r.mask, r.surf.contour, r.surfidw, s.surfidw, ssurfitps, r.surf.gauss, r.surfrandom, r.surfidw?2,
v.surf.spline, parser

REFERENCE
Saupe, D. (1988) Algorithms for random fractals, in Barnsley M., Devaney R., Mandelbrot B., Peitgen, H-
0., Saupe D., and Voss R. (1988) The Science of Fractal Images, Ch. 2, pp.71-136. London:

Springer-Verlag.

AUTHOR
Jo Wood

257

r.surf.gauss

NAME

r.surf.gauss - GRASS module to produce a raster map layer of gaussian deviates whose mean and
standard deviation can be expressed by the user. It uses a gaussian random number generator from Press,
Flannery, Teukolsky and Vetterling (1988) - Numerical Recipesin C.

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.surf.gauss out=name [mean=value] [sigma=value]

Parameters:
out Name of fractal surface raster layer

mean Distribution mean
Default: 0.0

sigma Standard deviation
Default: 1.0

SEE ALSO
r.mask, r.surf.contour, r.surfidw, s.surfidw, ssurf.tps, r.surf.fractal, r.surf.random, r.surf.idw?2,
v.surf.spline, parser

AUTHOR
Jo Wood

258

r.surf.idw

NAME
r.surf.idw - Surface interpolation utility for raster map layers.

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.surf.idw [-€] input=name output=name [npoints=value]

DESCRIPTION

r.surf.idw fills a grid cell (raster) matrix with interpolated values generated from a set of input layer data
points. It uses a numerical approximation technique based on distance squared weighting of the values of
nearest data points. The number of nearest data points used to determine the interpolated value of a cell
can be specified by the user (default: 12 nearest data points).

If there is a current working mask, it applies to the output raster file. Only those cells falling within the
mask will be assigned interpolated values. The search procedure for the selection of nearest neighboring
points will consider all input data, without regard to the mask.

The command line input is as follows:

Fag:
-e Error analysis option that interpolates values only for those cells of the input raster map which
have non-zero values and outputs the difference (see NOTES below).

Parameters:
input=name Name of an input raster map layer containing an incomplete set of data values. (i.e,
some grid cells contain known data values while the rest contain zero (0)).

output=name Name to be assigned to new output raster map that represents the surface generated from
the known data valuesin the input layer.

npointssvalue Number of nearest data points used to determine the interpolated value of an output
raster cell.
Default: 12

NOTES

r.surf.idw is a surface generation utility which uses inverse distance squared weighting (as described in
Applied Geostatistics by E. H. Isaaks and R. M. Srivastava, Oxford University Press, 1989) to assign
interpolated values. The implementation includes a customized data structure somewhat akin to a sparse
matrix which enhances the efficiency with which nearest data points are selected. For latitude/longitude
projections, distances are calculated from point to point along a geodesic.

Unlike r.surf.idw2, which processes all input data points in each interpolation cycle, r.surf.idw attempts to
minimize the number of input data for which distances must be calculated. Execution speed is therefore a
function of the search effort, and does not increase appreciably with the number of input data points.

r.surf.idw will generaly outperform r.surf.idw2 except when the input data layer contains few non-zero
data, i.e. when the cost of the search exceeds the cost of the additional distance calculations performed by
r.surf.idw2. The relative performance of these utilities will depend on the comparative speed of boolean,
integer and floating point operations on a particular platform.

259

Worst case search performance by r.surf.idw occurs when the interpolated cell is located outside of the
region in which input data are distributed. It therefore behooves the user to employ a mask when
geographic region boundaries include large areas outside the general extent of the input data.

The degree of smoothing produced by the interpolation will increase relative to the number of nearest data
points considered. The utility may be used with regularly or irregularly spaced input data. However, the
output result for the former may include unacceptable nonconformities in the surface pattern.

The -e flag option provides a standard surface-generation error analysis facility. It produces an output
raster map of the difference of interpolated values minus input values for those cells whose input data are
non-zero. For each interpolation cycle, the known value of the cell under consideration is ignored, and
the remaining input values are used to interpolate aresult. The output raster map may be compared to the
input raster map to analyze the distribution of interpolation error. This procedure may be helpful in
choosing the number of nearest neighbors considered for surface generation.

SEE ALSO
r.surf.contour, r.surf.idw2, s.surf.idw, parser

AUTHOR

Greg Koerper (Oregon State University)
Global Climate Research Project

U.S. EPA Environmental Research Laboratory
200 S.W. 35th Street, JSB

Corvallis, OR 97333

koerper@cs.orst.edu

260

r.surf.idw?2

NAME
r.surf.idw?2 - Surface generation program.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.surf.idw2 input=name output=name [hpoints=count]

DESCRIPTION

r.surf.idw?2 fills a raster matrix with interpolated values generated from a set of irregularly spaced data
points using numerical approximation (weighted averaging) techniques. The interpolated value of acell is
determined by values of nearby data points and the distance of the cell from those input points. In
comparison with other methods, numerical approximation allows representation of more complex surfaces
(particularly those with anomalous features), restricts the spatial influence of any errors, and generates the
interpolated surface from the data points. It isthe most appropriate method to apply to most spatial data.

The program will be run non-interactively if the user specifies the values of needed program parameters
and any desired optional parameter values on the command line, using the form:

r.surf.idw2 input=name output=name [hpoints=count]

Alternately, the user can simply type r.surf.idw2 on the command line, without program arguments. In
this case, the user will be prompted for parameter values using the standard GRASS user interface
described in the manual entry for parser.

Parameters:
input=name Name of an input raster map layer that contains a set of irregularly spaced data values;
i.e.,, some cells contain known data values while the rest contain zero (0).

output=name Name to be assigned to the new output raster map layer containing a smooth surface
generated from the known data values in the input map layer.

npoints=count The number of points to use for interpolation. The default isto use the 12 nearest points
when interpolating the value for a particular cell.
Default: 12

NOTES

The amount of memory used by this program is related to the number of non-zero data values in the input
map layer. If the input raster map layer is very dense (i.e., contains many non-zero data points), the
program may not be able to get all the memory it needs from the system. The time required to execute
increases with the number of input data points.

If the user has a mask set, then interpolation is only done for those cells that fall within the mask.
However, al non-zero data points in the input layer are used even if they fall outside the mask.

This program does not work with latitude/longitude data bases. Another surface generation program,
named r.surf.idw, should be used with latitude/longitude data bases.

261

The user should refer to the manual entries for r.surf.idw, r.surf.contour, and s.surf.idw to compare this
surface generation program with others available in GRASS.

SEE ALSO
r.mask, r.surf.contour, r.surf.idw, s.surf.idw, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

262

r.surf.random

NAME

r.surf.random - GRASS module to produce a raster map layer of uniform random deviates whose range
can be expressed by the user. It uses the random number generator described in Press, Flannery,
Teukolsky and Vetterling (1988) - Numerical Recipesin C.

GRASSVERSION
4.x,5.x

SYNOPSIS
r.surf.random out=name [min=value] [max=value]

OPTIONS
Parameters:
out Name of random surface raster layer to be produced

min Minimum random value
Default: O

max Maximum random value
Default: 100

SEE ALSO

r.mask, r.surf.contour, r.surf.idw, ssurf.idw, ssurftps, r.surf.gauss, r.surffractal, r.surfidw2,
v.surf.spline, parser

263

r.surf.xy

NAME
r.surf.xy - GRASS module to produce two raster maps for use with r.mapcalc. One file contains the x-
coordinates of each raster map cell, the other, the y-coordinates.

GRASSVERSION
4.x

SYNOPSIS
r.surf.xy x=name y=name

OPTIONS

Parameters:

X Name of the new raster map layer to hold x coordinate values

y Name of the new raster map layer to hold y coordinate values

These two cell files can be used to produce mathematical functions in the form:

z=1n(x,y)

This is required as r.mapcalc does not provide variables that hold the current x and y coordinates of the
moving window. Use these maps in cal culations that are coordinate dependent.

NOTE
x and y values are in RELATIVE coordinates to an origin of (0,0) a the bottom left corner. To transform
back to georeferenced coordinates use r.mapcalc to add the relative offset to the origin.

SEE ALSO
r.mapcalc

264

r.thin

NAME
r.thin - Thins non-zero cells that denote linear features in araster map layer.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.thin

r.thin help

r.thin input=name output=name

DESCRIPTION

r.thin scans the named input raster map layer and thins non-zero cells that denote linear features into
linear features having a single cell width.

r.thin will thin only the non-zero cells of the named input raster map layer within the current geographic
region settings. The cell width of the thinned output raster map layer will be equal to the cell resolution
of the currently set geographic region. All of the thinned linear features will have the width of a single
cell.

r.thin will create a new output raster data file containing the thinned linear features. r.thin assumes that
linear features are encoded with positive values on a background of 0'sin the input raster datafile.

Parameters:
input=name Name of araster map layer containing data to be thinned.

output=name Name of the new raster map layer to hold thinned program output.

The user can run this program either non-interactively or interactively. The program will be run non-
interactively if the user specifies program arguments on the command line, using the form:

r.thin input=name output=name
Alternately, the user can simply type:
r.thin

on the command line, without program arguments. In this case, the user will be prompted for needed
parameter values using the standard GRASS parser interface described in the manual entry for parser.

NOTE
r.thin only creates raster map layers. You will need to run r.line on the resultant raster file to create a
vector (v.digit) map layer.

r.thin may create small spurs or "dangling lines' during the thinning process. These spurs may be
removed (after creating a vector map layer) by v.trim.

r.thin creates a 0/1 output map.

265

NOTE

This code implements the thinning algorithm described in "Analysis of Thinning Algorithms Using
Mathematical Morphology” by Ben-Kwei Jang and Ronlad T. Chin in Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, No. 6, June 1990. The definition Jang and Chin give of the thinning
process is "successive removal of outer layers of pixels from an object while retaining any pixels whose
removal would alter the connectivity or shorten the legs of the sceleton.”

The sceleton is finally thinned when the thinning process converges; i.e.,, "no further pixels can be
removed without altering the connectivity or shortening the sceleton legs' (p. 541). The authors prove
that the thinning process described always converges and produces one-pixel thick sceletons. The number
of iterations depends on the original thickness of the object. Each iteration peels off the outside pixels
from the object. Therefore, if the object is <= n pixels thick, the algorithm should converge in <=
iterations.

SEE ALSO
g.region, r.line, v.digit, v.support, v.trim, parser

AUTHOR
Olga Waupotitsch, U. S. Army Construction Engineering Research Laboratory

The code for finding the bounding box as well as input/output code was written by Mike Baba (DBA
Systems, 1990) and Jean Ezell (USACERL, 1988).

266

r.timestamp

NAME
r.timestamp - print/add/remove atimestamp for a raster map
(GRASS Raster Program)

GRASSVERSION
5.x

SYNOPSIS

r.timestamp

r.timestamp help

r.timestamp map=name [date=timestamp] ,timestamp]

DESCRIPTION

This command has 2 modes of operation. If no date argument is supplied, then the current timestamp for
the raster map is printed. If a date argument is specified, then the timestamp for the raster map is set to
the specified date(s). See EXAMPLES below.

EXAMPLES

r.timestamp map=soils

Prints the timestamp for the "soils" raster map. If there is no timestamp for soils, nothing is printed. If
there is a timestamp, one or two lines are printed, depending on if the timestamp for the map consists of a
single date or two dates (i.e. start and end dates).

r.timestamp map=soils date="15 sep 1987
Sets the timestamp for "soils" to the single date " 15 sep 1987"

r.timestamp map=soils date="15 sep 1987,20 feb 1988
Sets the timestamp for "soils" to have the start date "15 sep 1987" and the end date "20 feb 1988"

r.timestamp map=soils date=none
Removes the timestamp for the "soils" raster map

COMMAND LINE OPTIONS
Parameters:
map Raster map name

date Date/time stamp or datel,date? range

TIMESTAMP FORMAT

The timestamp values must use the format as described in the GRASS datetime library. The source tree
for this library should have a description of the format. For convenience, the formats as of Feb, 1996 are
reproduced here:

There are two types of datetime values: absolute and relative. Absolute values specify exact dates and/or
times. Relative values specify a span of time. Some examples will help clarify:

Absolute
The general format for absolute valuesis

day nmonth year [bc] hour: m nute: seconds tinezone

day is 1-31

267

month is jan,feb,..., dec

year is 4 digit year

[bc] if present, indicates dates is BC

hour is 0-23 (24 hour clock)

mnute is 0-59

second is 0-59.9999 (fractions of second all owed)
timezone is +hhmmor -hhmm (e.g., -0600)

parts can be missing

1994 [bc]

Jan 1994 [bc]

15 jan 1000 [bc]

15 jan 1994 [bc] 10 [+0000]

15 jan 1994 [bc] 10:00 [+0100]

15 jan 1994 [bc] 10:00:23.34 [-0500]

Relative
There are two types of relative datetime values, year- month and day-second. The formats are:

[-] # years # nonths
[-] # days # hours # minutes # seconds

The words years, months, days, hours, minutes, seconds are literal words, and the # are the numeric
values.
Examples:

2 years

5 nont hs

2 years 5 nonths

100 days

15 hours 25 ninutes 35.34 seconds
100 days 25 minutes

1000 hours 35. 34 seconds

The following are illegal because it mixes year-month and day-second (because the number of daysin a
month or in ayear vary):

3 nonths 15 days
3 years 10 days

BUGS
Spaces in the timestamp value are required.

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

268

r.to.gnuplot
NAME
r.to.gnuplot - outputs a raster map in GNUPLOT format
(GRASS shell Script)

GRASSVERSION
4.x

SYNOPSIS

r.to.gnuplot help

r.to.gnuplot name

DESCRIPTION

r.to.gnuplot is a Bourne shell script that converts a raster map into a format suitable for plotting with
g.gnuplot.html and writes the results to standard output.

OPTIONS
This program runs non-interactively; the user must state all parameter values on the command line.

Parameter:
name Name of araster map layer.

EXAMPLE
Typing the following at the command line:

r.to.gnuplot elevation > elev.dat

will write the raster datato elev.dat. After staring the GRASS graphics monitor, the following dialogue:

g.gnuplot

gnuplot> set parametric

gnuplot> set contour base

gnuplot> set nosurface

gnuplot> set view 180,0

gnuplot> splot 'elev.dat’ notitle with lines
will plot a contour map of elevation.

NOTES
Similar procedures may be used to plot wire-mesh surfaces.

g.gnuplot may be used to simultaneously plot surfaces and contours from multiple raster maps.
Output may be saved as PostScript, FrameMaker, TeX, etc (approximately 2 dozen output formats).
FILES

$GI SBA SE/scripts/r.to.gnuplot.

SEE ALSO
r.stats, v.to.gnuplot, g.gnuplot

269

AUTHOR
James Darrell McCauley, Agricultural Engineering, Purdue University

270

r.traj

NAME
r.traj - Balistic trgjectory modeling program.
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.traj

r.traj help

r.traj input=name output=name weapon=name coordinate=x,y elevation=value ammunition=name
| eft.azimuth=name right.azimuth=name

DESCRIPTION
r.traj generates a raster map layer showing cells that can be hit from afiring point by shells from a user-
specified weapon. Cells are marked with integer values that represent the muzzle firing angles required to
hit them.
OPTIONS
Parameters:
input=name Name of the elevation raster map.
output=name Name of new raster map containing results.
weapon=name Type of weapon used for firing. A list of weapon types and their associated attributes
are kept inthefile
$GISBASE/weapon_data/weapons.

coordinate=x,y The coordinates of the firing point (east, north).
elevation=value Maximum weapon muzzle elevation.
ammunition=name Type of ammunition. A list of ammunition types and their associated attributes
are kept inthefile

$GI SBA SE/weapon_data/ammunition.
left.azimuth=name Far left edge of alowable firing azimuth. The angle will be in the form of:

[NS]0-90[EW]
For example, S60E indicates the angle is 60 degrees East of true South.
right.azimuth=name Far right edge of allowable firing azimuth, stated in same form as |eft.azimuth.
Category values in the output raster map layer will program results. Category values between -89 and 89
indicate the gun elevation angle in degrees needed to hit that cell. A category value of 90 is assigned to
the weapon's firing point. A category value of -90 is assigned to those points unhittable by the weapon.
EXAMPLE

ritraj input=elevation output=name weapon=M1 coordinate=600000.0,4920000.0 elevation=2.5
ammunition=M392 left.azimuth=S30E right.azimuth=S25W

271

WEAPON AND AMMUNITION TYPES
Weapon types and their attribute types are listed below. These can be listed by running the program
r.traj.data.

| Weapon Type|
[|
| w48 19 -9
| ML 20 -9
| MLO166 -5
| MLO275 -5
|

Ammunition types and their attributes are listed below. These can be displayed by running the program
r.traj.data.

SEE ALSO

See $GISBA SE/etc/weapon_data/weapons for a list of weapon types. See, $GI SBA SE/etc/weapon_data/
ammunition, for alist of ammunition types.

d.rast.arrow, r.los, r.slope.aspect, r.surf.contour, r.surf.idw r.surf.idw2, r.traj.data, range.place, parser

AUTHORS

Chuck Ehlschlaeger, U.S. Army Construction Engineering Research Laboratory
Kewan Q. Khawaja, Intelligent Engineering Systems Laboratory, M.I.T.

272

r.traj.data

NAME
r.traj.data - Reviews the ammunition and weapon data base used by r.traj.
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS
r.traj.data
r.traj.data help
r.traj.data [-aw]

DESCRIPTION

r.traj uses ammunition and weapon information that can be displayed with this program. Program flags
are listed below.

Flags:
-a Prints list of ammunition types usable by r.traj.

-w Prints list of weapons usable by r.traj.

SEE ALSO
r.traj, parser

AUTHOR
James Westervelt, Construction Engineering Research Laboratory

273

r.transect

NAME
r.transect - Outputs raster map layer values lying along user defined transect line(s).
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.transect

r.transect help

r.transect map=name [result=type] [width=value] line=east,north,azimuth,distance] ,east,
north,azimuth,distance,...]

DESCRIPTION

This program outputs, in ASCII, the values in a raster map which lie along one or more user-defined
transect lines. The transects are described by their starting coordinates, azimuth, and distance. The
transects may be single-cell wide lines, or multiple-cell wide lines. The output, for each transect, may be
the values at each of the cells, or a single aggregate value (e.g., average or median value).

OPTIONS
Parameters:
map=name Name of an existing raster map layer to be queried.
result=type Type of resultsto be output.
Options: raw, median, average
Default: raw

If raw results are output, each of the category values assigned to cells falling along the transect are output.
Median and average results output a single value per transect: average outputs the average category value
of all cells aong the transect; median outputs the median category value of these cells.

line=east,north,azimuth,distance] ,east,north,azimuth,distance,...] A definition of (each) transect line,
specified by the geographic coordinates of its starting point (easting, northing), the angle and direction of
itstravel (azimuth), and its distance (distance).

The azimuth is an angle, in degrees, measured to the east of north. The distance is in map units (meters
for a metered database, like UTM).

width=value Profile width, in cells (odd number).
Default: 1

Wider transects can be specified by setting the width to 3, 5, 7, etc. The transects are then formed as
rectangles 3, 5, 7, etc., cellswide.

OUTPUT FORMAT

The output from this command is printed to standard output in ASCII. The format of the output varies
dightly depending on the type of result requested. The first number printed is the number of cells
associated with the transect. For raw output, this number is followed by the individual cell values. For
average and median output, this number is followed by a single value (i.e., the average or the median
value).

274

The following examples use the elevation.dem raster map layer in the spearfish sample data set distributed
with GRASS 4.0. (To reproduce these examples, first set the geographic region as shown:

g.region rast=elevation.dem

Single-cell transect:

r.transect map=elevation.dem
line=593655,4917280,45,100

4 1540 1551 1557 1550

3-cdll wide transect:

r.transect map=elevation.dem
line=593655,4917280,45,100 width=3

22 1556 1538 1525 1570 1555 1540 1528 1578 1565
1551 1536 1523 1569 1557 1546 1533 1559 1550 1542
1552 1543 1548

(Output appears as multiple lines here, but isreally one line)

3-cell wide transect average:
r.transect map=elevation.dem line=593655,4917280,45,100 width=3 result=average

22 1548.363636
3-cell wide transect median:

r.transect map=elevation.dem
line=593655,4917280,45,100 width=3 result=median

22 1549.000000

NOTES
This program is a front-end to the r.profile program. It simply converts the azimuth and distance to an
ending coordinate and then runs r.profile.

SEE ALSO
r.profile, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

275

r.tribs

NAME
r.tribs- A GRASS program for determining the topology of stream networks.

GRASSVERSION
4.x

SYNOPSIS
r.tribs
r.tribs st=name ac=name dr=name

DESCRIPTION

This paper presents a GRASS (geographical resource analysis support system; Shapiro et al., 1992; United
States Army Corps of Engineers, 1993) program for determining the topology of stream networks. The
program inputs raster files generated by the GRASS program r.watershed. Because it determines the
relationships of tributary streams, it is called r.tribs. The input files required are:

Parameters:
st=name A raster map of stream segments; stream segments are labeled using integer values
greater than or equal to 2. Stream file from r.water shed.

ac=name A raster map of the number of cells that drain through each cell; absolute values is the
amount of overland flow that is routed through a pixel. Accumulation file from r.water shed.

dr=name Drainage file from r.watershed. A raster map of drainage directions; if there is no flow
direction, a value of -1 is assigned. Otherwise, the integers 1 through 8 are assigned to the compass
directions shown below:

567
4-18
321

For example, a value of 2 means that the pixel drains south, a value of 5 means the pixel drains to the
northwest. Two tables are output by r.tribs. The first table lists the tributaries associated with each stream
segment. The second table lists streams and tributaries in an order such that a stream and its tributaries
are printed only if the tributaries have been previously listed. That is, first order streams are listed first,
streams with tributaries that are first order streams are listed second, and so on. The program can also be
run in debugging mode, in which more detailed information is printed.

The program r.tribs was written so that GRASS can be used to generate input for a runoff and erosion
model called KINEROS (Smith et al., in press; Woolhiser et al., 1990). KINEROS represents a watershed
as a set of related elements. Elements may be hillslopes, channels or ponds. A computational order must
be specified so that boundary conditions for an element, such as the amount of water contributed by lateral
hillslopes and upstream tributaries, are available. The program r.tribs provides KINEROS with that
computational order. We are developing a program called r.kineros which will output a file that can be
read by KINEROS.

Input Files

We assume that the program r.watershed has been run and that the input files: stream, accumulation and
drainage, are available. Assume these files are called stream.0, accum.0 and drain.0, respectively. The
command-line version of r.tribsis:

GRASS 4.1 > r.tribs st=stream 0 ac=accum O dr=drain.0

276

Alternately, the command r.tribs can be entered on the command line:

GRASS 4.1 > r.tribs
and the user will be prompted for these files.

M ethodology and Example of Output
Output of r.tribsis alisting of the tributaries associated with each stream. The tributaries of a stream are
determined by using the following methodology.

a. The stream and accumulation files are scanned to determine the locations of pixels that are stream
segments and have the lowest accumulation of runoff for that segment. These points mark the locations of
the heads of the stream segments. L ocations of the head of a stream are stored for the next step.

b. Points within one pixel of the head are scanned to determine if they are part of a different stream
segment and if they drain into the head of this stream. The drainage raster file is used to determine the
drainage direction. Any point meeting this criteria are listed as tributary streams.

c. All points with no tributaries are first order. Tributary values are set to zero.
d. Thelabel of the stream and its tributaries are stored and printed to the screen.

We have used r.tribs to generate output for a small watershed (17.5 km2) in Idaho (Horse Creek) in which
we used r.watershed to define atotal of 50 stream segments. Note that stream segments and tributaries are
labeled using even integers ranging from 2 to 102. Stream segment 2 is located at the mouth of the
watershed.

The r.tribs program first outputs the number of rows (nrows) and columns (ncols) in the raster files. Then
the maximum and minimum labels of stream segments are printed. This is followed by two tables. The
first table lists streams and their tributaries. An example of thistable is given below.

nrows: 138

ncol s: 273

Max streamindex = 102

Mn streamindex = 2

Stream 2 Tributary 0: 6 Tributary 1: 4
Stream 4 Tributary 0: O Tributary 1: 0
Stream 6 Tributary 0: 14 Tributary 1: 8
Stream 8 Tributary 0: 12 Tributary 1: 10
Stream 10 Tributary 0: O Tributary 1: 0O
Stream 12 Tributary O Tributary 1: 0O
Stream 14 Tributary 22 Tributary 1: 16
Stream 16 Tributary 20 Tributary 1: 18
Stream 18 Tributary O Tributary 1: 0O
Stream 20 Tributary O Tributary 1: 0O
Stream 22 Tributary 102 Tributary 1: 24
Stream 24 Tributary 36 Tributary 1: 26
Stream 26 Tributary 30 Tributary 1: 28
Stream 28 Tributary O Tributary 1: 0O
Stream 30 Tributary 34 Tributary 1: 32
Stream 32 Tributary O Tributary 1: 0O
Stream 34 Tributary O Tributary 1: 0O
Stream 36 Tributary 100 Tributary 1: 38
Stream 38 Tributary 42 Tributary 1: 40
Stream 40 Tributary O Tributary 1: O
Stream 42 Tributary 98 Tributary 1: 44
Stream 44 Tributary 96 Tributary 1: 46
Stream 46 Tributary 50 Tributary 1: 48
Stream 48 Tributary O Tributary 1: 0
Stream 50 Tributary 58 Tributary 1: 52
Stream 52 Tributary 56 Tributary 1: 54

PRI

277

Stream 54 Tributary
Stream 56 Tributary
Stream 58 Tributary
Stream 60 Tributary
Stream 62 Tributary
Stream 64 Tributary
Stream 66 Tributary
Stream 68 Tributary
Stream 70 Tributary
Stream 72 Tributary
Stream 74 Tributary
Stream 76 Tributary
Stream 78 Tributary
Stream 80 Tributary
Stream 82 Tributary
Stream 84 Tributary
Stream 86 Tributary
Stream 88 Tributary
Stream 90 Tributary
Stream 92 Tributary
Stream 94 Tributary
Stream 96 Tributary O Tributary 1: O

Stream 98 Tributary O Tributary 1: 0

Stream 100 Trlbutary O O Tributary 1: O
Stream 102 Tributary O0: O Tributary 1: 0

O Tributary 1: 0O
O Tributary 1: 0O
90 Tributary 1: 60
88 Tributary 1: 62
66 Tributary 1: 64
O Tributary 1: 0O
74 Tributary 1: 68
72 Tributary 1: 70
O Tributary 1: 0O
O Tributary 1: O
82 Tributary 1: 76
80 Tributary 1: 78
O Tributary 1: O
O Tributary 1: 0O
86 Tributary 1: 84
O Tributary 1: 0O
O Tributary 1: O
O Tributary 1: 0
94 Tributary 1: 92
O Tributary 1: 0
O Tributary 1: O

09999999999999999999999

If the program is run in debugging mode, then the values of stream, accumulation and direction of the
head of the stream and the surrounding 8 pixels are also printed. Set the value of DB_FIND_TRIBS
(defined in the beginning of the routine find_tribs) to a value of 1 and recompile the program to activate
debugging mode.

The second table that is output by r.tribs list the streams and their associated tributaries in their proper
computational order. The program loops through the data listed above several times. First streams with no
tributaries are listed (LOOP 1). Then streams with only first-order streams as tributaries are listed (LOOP
2). Then, streams with tributaries listed in previous loops are listed. The program continues until all
streams have been listed. The variable Order is also listed, which can be interpreted as the computational
order. Thisisthe order in which programs, such as KINEROS, must consider streams in the network such
that data for tributaries will be available when considering the listed stream. An example listing of the
computational order of streamsis given below.

Comput ati onal Order of Stream Segnents:

LOOP: 1

Oder: 0 Stream 4 Tributary 0: O Tributary 1: 0
Oder: 1 Stream 10 Tributary 0: O Tributary 1: 0
Oder: 2 Stream 12 Tributary 0: O Tributary 1: 0
Order: 3 Stream 18 Tributary 0: O Tributary 1: 0
Oder: 4 Stream 20 Tributary 0: O Tributary 1: 0
Oder: 5 Stream 28 Tributary 0: O Tributary 1: 0
Oder: 6 Stream 32 Tributary 0: O Tributary 1: 0
Oder: 7 Stream 34 Tributary 0: O Tributary 1: 0
Order: 8 Stream 40 Tributary 0: O Tributary 1: 0
Oder: 9 Stream 48 Tributary 0: O Tributary 1: 0
Order: 10 Stream 54 Tributary 0: 0 Tributary 1: O
Order: 11 Stream 56 Tributary 0: 0 Tributary 1: O
Order: 12 Stream 64 Tributary 0: 0 Tributary 1: O
Order: 13 Stream 70 Tributary 0: 0 Tributary 1: O
Order: 14 Stream 72 Tributary 0: 0 Tributary 1: O
Order: 15 Stream 78 Tributary 0: 0 Tributary 1: O
Order: 16 Stream 80 Tributary 0: 0 Tributary 1: O
Order: 17 Stream 84 Tributary 0: 0 Tributary 1: O
Order: 18 Stream 86 Tributary 0: 0 Tributary 1: O
Order: 19 Stream 88 Tributary 0: 0 Tributary 1: O
Order: 20 Stream 92 Tributary 0: 0 Tributary 1: O
Order: 21 Stream 94 Tributary 0: 0 Tributary 1: O
Order: 22 Stream 96 Tributary 0: 0 Tributary 1: O
Order: 23 Stream 98 Tributary 0: 0 Tributary 1: O

Order: 24 Stream 100 Tributary 0: O Tributary 1: O
Order: 25 Stream 102 Tributary 0: O Tributary 1: O

278

Order: 26 Stream 8 Tributary 0: 12 Tributary 1: 10
Order: 27 Stream 16 Tributary 0: 20 Tributary 1:
Order: 28 Stream 30 Tributary 34 Tributary 1
Order: 29 Stream 52 Tributary 56 Tributary 1:
Order: 30 Stream 68 Tributary Tributary 1: 70
Order: 31 Stream 76 Tributary 80 Tributary 1:
Order: 32 Stream 82 Tributary 86 Tributary 1
Order: 33 Stream 90 Tributary 94 Tributary 1

eeeeeee
~
N

Order: 34 Stream 26 Tributary 30 Tributary 1: 28
Order: 35 Stream 74 Tributary 82 Tributary 1: 76

Order: 50 Stream 2 Tributary 0: 6 Tributary 1: 4

Obtaining r.tribsvia FTP or email

The C programs that are required to generate r.tribs are available via anonymous ftp to
moon.cecer.army.mil. | have printed out the main segment of the r.tribs program in Appendix I. This was
done to illustrate how routines in the GRASS library are used to read in raster data. Routines from the
GRASS library begin with G_. Two utility programs are also used: imatrix and ivector. These are
discussed by Press and others (1989), and are used to allocate space for arrays. Comments in the code
discuss the details of each routine. Appendix Il lists the makefile used to compile r.tribs. Note that the
variable GIS must be edited so that the proper path to the grass directory is specified.

279

As previously mentioned, the program can be obtained by anonymous ftp to moon.cecer.army.mil. Change
to the incoming/r.tribs directly to get the files. The program can also be obtained by contacting the author
via email (jfsS@po.cwru.edu). The code has been commented to help the user to understand the program
structure. Also, a developmental version of r.kineros is in the incoming/r.kineros directory on
moon.cecer.army.mil.

REFERENCES
Press, W.H., Flannery, B.P., Teukolsky, S.AA., and Vetterling, W.T., 1989, Numerical Recipesin C: The
Art of Scientific Computing, Cambridge University Press, 735 pp.

Shapiro, M., Westervelt, J,, Gerdes, D., Larson, M., and Brownfield, K.R., 1992, GRASS 4.0
Programmers Manual, U.S. Army Construction Engineering Research Laboratory, Champaign,
[llinois, 292 pp.

Smith, R.E., Goodrich, D.C., Woolhiser, D.A., and Unkrich, C.L., in press, A KINematic Runoff and
EROSion Model, in: V.P. Singh (Ed.), Computer Models of Watershed Hydrology, Water
Resources Pub., Highlands Ranch, Colorado

United States Army Corps of Engineers, 1993, GRASS4.1 Users Reference Manua, U.S. Army
Construction Engineering Research Laboratories, Champaign, Illinois, 556 pp.

Woolhiser, D.A., Smith, R.E., Goodrich, D.C., 1990, KINEROS, A Kinematic Runoff and Erosion
Model: Documentation and Users Manual, U.S. Department of Agriculture, Agricultural
Research Service, ARS-77, 130 pp.

Appendix |: main.c code for r.tribs

#include "/GRASSA4.1/src/include/gis.h”

#include <stdio.h>

int **imatrix();

int *ivector();

/*

* Program to determing the topology of a stream network. A
* table is generated that reports the tributaries that are
* at the head of each stream segement. The computational order
* of streamsis also determinted.

*

* Written by:

* Dr. John F. Stamm

* Department of Geological Sciences

* Case Western Reserve University

* Cleveland, OH 44106-7216

* email: jfsS@po.cwru.edu

*/

main(argc,argv)

int argc;

char *argv[];

{

/*

* Matricies

*/

int **accum;

int **chann;

int ** aspect;

CELL *cdl;

280

char *chann_name;

char *accum_name;

char *aspect_name;

char * mapset;

int col;

int fd_accum;

int fd_chann;

int fd_aspect;

int ncols,

int nrows;

int row;

struct {

struct Option *accum ;

struct Option *chann ;

struct Option * aspect ;

} parm;

/*

* Allocate memory for the Option structure and return a
* pointer to this structure. Do this for the structured
* variables parm.accum and parm.chann.

*

* Set values for parm.accum

*/

parm.accum = G_define_option() ;
parm.accum->key = "accumulation”;
parm.accum->type = TYPE_STRING,;
parm.accum->required = YES;
parm.accum->gisprompt = "old,cell raster” ;
parm.accum->description= "Name of the ACCUMULATION map" ;
/*

* Set values for parm.chann

*/

parm.chann = G_define_option() ;
parm.chann->key = "stream";

parm.chann->type = TYPE_STRING;
parm.chann->required = YES;
parm.chann->gisprompt = "old,cell raster" ;
parm.chann->description= "Name of the STREAM map" ;
/*

* Set values for parm.aspect

*/

parm.aspect = G_define_option() ;
parm.aspect->key = "drainage”;

parm.aspect->type = TYPE_STRING,;
parm.aspect->required = YES;
parm.aspect->gisprompt = "old,cell raster" ;
parm.aspect->description= "Name of the DRAINAGE DIRECTION map";
/*

* Initailize GISlibrary for this program

*/

G_gisinit(argv[Q]);

/*

* Parse values from the command line. If thisis not
* successful, then display a usage statement and exit.

281

*/

if (G_parser(argc, argv))

exit (-1);

accum_name = parm.accum->answer;
chann_name = parm.chann->answer;
aspect_name = parm.aspect->answer;

/*

* Find the name of mapset that we are going to use.
*/

mapset = G_find_cell2 (accum_name, "");

if (mapset == NULL) {

char msg[100];

sprintf (msg, "%s. <%s> cellfile not found\n”,
G_program_name(), accum_name);
G_fatal_error (msg);

exit(1);

}

/*

* Open the cell filesin "mapset".

*/

fd_accum = G_open_cell_old (accum_name, mapset);
if (fd_accum < 0)

exit(1);

fd_chann = G_open_cell_old (chann_name, mapset);
if (fd_chann < Q)

exit(1);

fd_aspect = G_open_cell_old (aspect_name, mapset);
if (fd_aspect <0)

exit(1);

/*

* Open up avector that isjust long enough to hold one
* row of data.

*/

cell = G_allocate cell_buf();

/*

* Determine the number of rows and columns.
*/

nrows = G_window_rows();

ncols = G_window_cols();

printf ("\n", nrows);

printf ("nrows: %d\n", nrows);

printf ("ncols: %d\n", ncols);

/*

* Allocate memory for matricies.

*/

accum = imatrix(0,nrows,0,ncols);

chann = imatrix(0,nrows,0,ncols);

aspect = imatrix(0,nrows,0,ncols);

/*

* Process DEM and Channel files.

*/

for (row=(nrows-1); row>=0; row--) {
if(G_get_map_row (fd_accum, cell, row) < 0)
exit(1);

282

for (col = 0; cal < ncals; col++) {
accum[row][col] = (int)cell[col];

if(G_get_map_row (fd_chann, cell, row) < 0)
exit(1);

for (col = 0; col < ncoals; col++) {
chann[row][col] = (int)cell[cal];

}

if(G_get_map_row (fd_aspect, cell, row) < 0)
exit(1);

for (col = 0; col < ncols; col++) {
aspect[row][col] = (int)cell[col];

}

}

/*

* Compute the topology of the network.

*/

(void)find_tribs(nrows, ncols, accum, chann, aspect);
exit(0);

}

Appendix 11: makefile

PGM =r.tribs

GIS=/GRAS#.1

HOME =.

SRC = $(GIS)/src

LIBDIR = $(SRC)/libes/LIB

GISLIB = $(LIBDIR)/libgis.a

OFILES = debug.o\

find_tribs.o\

imatrix.o \

ivector.o\

main.o \

neighbors.o\

stream_order.o

$(HOME)/S(PGM): $(OFILES) $(GISLIB)
$(CC) $(LDFLAGS) $(OFILES) $(GISLIB) -0 $(PGM)
$(GISLIB): #

AUTHOR

John F. Stamm, Department of Geological Sciences, Case Western Reserve University, Cleveland, OH
44106-7216, email: jfsb@po.cwru.edu

283

r.univar

NAME
r.univar - Univariate statistics for a GRASS raster map.
(GRASS Script)

GRASSVERSION
5.x

SYNOPSIS
r.univar
r.univar help
r.univar name

DESCRIPTION

r.univar calculates univariate statistics of a raster map. This includes the number of cells counted,
minimum and maximum cell values, range, arithmetic mean, variance, standard deviation and coefficient

of variation.

Parameter:
name Name of an existing raster map.

SEE ALSO
s.univar

AUTHOR
Markus Neteler
neteler @geog.uni-hannover.de

284

r.volume

NAME

r.volume - Calculates the volume of data "clumps', and (optionally) produces a GRASS site lists file
containing the calculated centroids of these clumps.

(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.volume

r.volume help

r.volume [-fq] data=name [clump=name] [site_list=name]

DESCRIPTION
This program computes the cubic volume of data contained in user-defined clumps. r.volume outputs:

(1) The category value assigned to each clump formed by the clump map layer. Thisvalueis stored under
the "Cat Number" column (field 1) in the output table.

(2) The average category value of the cells found in a data map that fall within the boundaries of each
clump in aclump map. The table stores this value under the "Average in Clump" column (field 2).

(3) The summed total value of the category values assigned to the cells falling within each of these
clumps. Thisvalueis output under the "Data Total" column (field 3).

(4) The number of cells from the data map that fall within the boundaries of each clump formed by the
clump map layer. This cell count is stored under the "# Cells in Clump" column (field 4) in the output
table.

(5,6) The centroid (easting and northing) of each clump. These values are output under the "Centroid
Easting" and "Centroid Northing" columns (fields 5 and 6) in the outpui.

(7) Thetotal "volume" of each clump. For each clump, the volume is calculated by multiplying the area of
each cell by its category value, and taking the sum of this value for al cells within the clump. Since, in
GRASS, each cell in the data map will have the same cell dimensions (i.e., the same area), this is
equivalent to multiplying the area of one cell by the "Data Total" column (field 3). (The area of each cell
isequal to the product of its east-west resolution by its north-south resolution. See g.region.)

Results are sent to standard output in the form of a table. If the user sets the -f flag, this table will be
output in a form suitable for input to such UNIX programs as awk and sed; the table's columns are stored
as colon-separated fields. The user can also (optionally) elect to store clump centroids in a GRASS
site listsfile. A sample output report is shown below.

r.volume works with the current geographic region definitions and respects the current MASK.
The user can run r.volume non-interactively by specifying parameter values on the command line. If the

user omits parameter values from the command line, the program will prompt the user for input using the
standard interface described in the manual entry for parser.

OPTIONS
Flags:
-f Generate unformatted output. Output isin aform suitable for input to UNIX programs like awk;

each column in the output is separated by a colon. Results are sent to standard output.

-q Run quietly, suppressing the printing of debugging messages to standard outpuit.

285

Parameters:
data Name of an existing raster map layer containing the category values to be summed. The cell
resolution (area) of the data map will also be used.

clump Name of an existing raster map layer that defines the boundaries of each clump. Preferably, this
map should be the output of r.clump. If the user has imposed a mask, the program uses this mask as the
clump map layer if no other clump layer is specified by the user.

site list The name to be assigned to a new GRASS site lists file, in which clump centroids can be
stored.

EXAMPLE OF REPORT
The following report might be generated by the command:

r.volume d=elevation c=fields.only s=field.centers

Cat Aver age Dat a # Cells Centroid Tot al
Number in clunp Tot al in clunp Easti ng Nor t hi ng Vol unme
1 1181.09 75590 64 595500.00 4927700.00 755900000. 00
2 1163.50 69810 60 597100.00 4927700.00 698100000. 00
3 1146.83 34405 30 598300.00 4927700.00 344050000. 00
4 1193.20 366311307 599400.00 4927300.00 3663110000.00
60 1260. 08 351563279 603100.00 4921000.00 3515630000.00
61 1213.93 35204 29 603700.00 4921500.00 352040000. 00
62 1207.71 33816 28 604100.00 4921500.00 338160000. 00

Total Volume = 67226740000. 00

For ease of example, it is assumed that each clump in the fields.only map layer isafield, that cell category
values in the elevation map layer represent actual elevation values in meters, and that the data base is a
UTM data base (in meters). This means that field #1 (clump #1) contains 64 cells; the average elevation
in field #1 is 1181.09 meters. The sum of al of the elevation values assigned to cells within field #1 is
75590 meters. The volume (x*y*z) of spacein field #1 is equal to 755900000 cubic meters.

The "Data Total" column is the sum of the cell category values appearing in the elevation map layer,
within each field of the fields.only map layer. The Total Volume is the sum multiplied by the ew
resolution times the n-s resolution.

CENTROIDS

The coordinates of the clump centroids are the same as those stored in the GRASS site lists file (if one
was requested). They are guaranteed to fall on a cell of the appropriate category; thus, they are not
always the true, mathematical centroids. However, they will awaysfall at a cell center.

FORMAT OF SITELIST
For each line of above table the GRASS site listsfile reads:

easting|northing|#cat v=volume a=average t=sum n=count

This can be converted directly to araster map layer in which each point is assigned to a separate category.
APPLICATIONS

By preprocessing the elevation map layer with r.mapcalc and using suitable masking or clump maps, very
interesting applications can be done with r.volume. For instance, one can calculate: the volume of rock in

a potential quarry; cut/fill volumes for roads; and, water volumes in potential reservoirs. Data layers of
other measures of real values can also be used.

286

NOTES

The output is sent to the terminal screen. The user can capture the output in a file using the UNIX
redirection mechanism, asin the following example:

r.volume d=data_map c=clump_map s=site_list > table.out

Output can also be sent directly to the printer, as shown
below:

r.volume d=data_map c=clump_map s=site list | Ipr
The user should be aware of what units of measurement the cell e-w and n-sresolution are in, and in what
units the data map's cell category values are stated (since these three values will be multiplied together to

produce the volume).

This program respects the current mask, and uses this mask as the clump map layer if none is specified by
the user.

SEE ALSO
g.region, r.clump, r.mapcalc, r.mask, s.db.rim, s.menu, parser

AUTHOR
Dr. James Hinthorne, Central Washington University GIS Laboratory

287

r.water.fea

NAME
r.water.fea - Finite element analysis program for hydrologic simulations.
(GRASS Raster Program)

GRASSVERSION
4.x,5.x

SYNOPSIS
r.water.fea

OVERVIEW

r.water.fea is an interactive program that allows the user to simulate storm water runoff analysis using the
finite element numerical technique. Infiltration is calculated using the Green and Ampt formulation.
r.water.fea computes and draws hydrographs for every basin as well as at stream junctions in an analysis
area. It also draws animation maps at the basin level.

DATA REQUIREMENTS
The maps required by r.water.fea are:

1) Basin map

2) Stream map

3) Drainage map

4) Accumulation map
5) Slope map

The other data requirements of r.water.fea are the parameters needed to calculate infiltration and the
channel roughness parameter. Model parameters may be provided either in the form of maps or as values:

1) Manning roughness coefficient map or basin value
2) Saturated hydraulic conductivity map or basin value
3) Suction head at wetting front map or basin value

4) Effective porosity map or basin value

5) Degree of saturation basin value

DESCRIPTION

On running r.water.fea for the first time, the directory "r.water.fea" is created under $LOCATION.
When the user runs r.water.fea, the program will prompt the user for the project name. The project name
refers to the directory that is created under the " r.water.fea" directory. All files (not maps) related to the
analysis carried out by r.water.fea are stored under this directory. If the project does not exist then the
user is further requested for the input maps. If the project already exists, then the program looks for the
proper project related files to proceed with stopped work.

Configuration
The user is asked for the following configuration modes:
I) Rainfall mode:

The rainfall mode is defined as follows:

1 = gpatially uniform and constant in time
2 = gpatially uniform but varying in time

288

If the user decides to use mode 2, then a mechanism is provided to allow creation of a rainfal rate file
(described in step 4).

I1) Basin-level hydrographs: This configuration mode allows the user to view intermediate hydrographs
for every basin. The hydrographs will be displayed on the graphics monitor. Each basin is considered to
be independent of every other basin in the analysis area.

[11) Basin-level animation maps: This configuration mode allows the user to create time-series maps for
later animation of flow depth for all the basins that have been analyzed. All animation maps use a
multiplication factor of 1000. The map cell value divided by the multiplication factor yields the actual
value of flow depth in meters. The user will require enough file space in the GRASS database for this
configuration. All animation map names have the following naming scheme:

fea.<project_name> .#

Here '# represents the time step. One time step refers to 1/40th of the total monitoring time. Twenty
maps are created at every other time step.

Program flow

The basin and stream maps are displayed on the monitor when the user starts working on a project. The
entire analysis is divided into a number of steps. The user is presented with a menu to proceed through
the set of steps to facilitate easy changes to the simulation for a given analysis area or to stop analysis
between menu steps and continue at a more convenient time.

The main menu is shown below:

Choose from the menu:

Process steps wi thout breaks.
2. Select basins for sinulation.
Extract topographi cal data.
Sel ect hydraulic parameters and simulation tinmne.
Basin sinulation.
Simul ate any particul ar basin.
Channel routing of basin hydrographs.
St op.

* ok

EXX XXX
NGO ~OVE

Y ou are starting from the beginning.

Choice:

The"X","*" and "*->" above have the following meaning.

* The user can select this part from the menu.

*-> Thisisthe step that the user must select in order to proceed in a sequence.

X The user can not select these parts of the menu (until previous steps have been executed).

Throughout the program the symbols described above change as the user moves from step to step. The
message just above the Choice prompt signals the status of the program, and guides the user as to what
should be the next step.

"1. Process steps without breaks.” 8

This part of the menu will not prompt for steps 2-5, 7 and will carry out all the analysis. The user will
find it advantageous to use this step when analyzing a small area or afew basins.

289

"2. Select basins for simulation.” 8

This part of the menu draws the basin and stream maps for the user to select the area of analysis. The
mouse is then activated to provide a point and click environment for the user to select basinsin the area of
analysis. Upon successfully selecting the basins the user is given the choice of deleting basins from the
selected area. The basin topology is then determined and information on basin statistics is gathered. The
information on connectivity between basins is stored in the "input.basin” file and the information on basin
statistics is stored in the "basin_info" file. Two reclass maps describing the analysis area are also created.
The maps have the following naming scheme:

"fea.stream.<project_name>"
"fea.basin.<project_name>"

The user should avoid using these names to create other maps. Once these maps are created the user
should not destroy them, if the user wishes to continue working on the project.

"3. Extract topographical data." 8

This part of the menu generates information about the connectivity between cells and boundary
conditions. This information is stored in the "input.file" file in the project directory. If the animation
configuration has been set then another file called "coordinates’ is created in the project directory. This
file contains information on the coordinates of every cell in the analysis area.

"4. Select hydraulic parameters and simulation time.” 8

This part of the menu carries out two tasks. The first task involves querying the user for simulation
parameters. The simulation parameters include duration of rainfall, maximum intensity, time step for
simulation, monitoring time and names of simulation maps if any. The second task involves querying
channel characteristics assuming the channels as trapezoidal cross-sections. The user is required to
provide channel side slope, channel bottom width and the channel roughness coefficient values for every
stream category.

The program creates a file "timedata’ in the project directory to store information from this part of the
menu. If the user has selected the "Spatialy uniform and time varying rainfall* mode (mode = 2), then
the user is queried for the name of atime file. If the file does not exist then a screen like the one shown

below appears:

[The time colum nust be filled in increasing order.]

Ti me[m nut es] Intensity[cm hr]

©CoOoO~NOUAWNPE

—wn un

|
FTER COVPLETI NG ALL ANSWERS, HI T <ESC> TO CONTI NUE
(OR <Ctrl-C> TO CANCEL)

290

It is important to note that the values in the time column should be in an increasing order. It is also not
necessary to fill al the rows and the user can stop after filling only a few rows. The number of lines are
limited to fifteen. If more than fifteen lines are required then the user will have to create the file using an
editor. In that case the user should just type the time since commencement of rainfall (minutes) in the
first column followed by the rainfall intensity (cm/hr) in the second column as shown below:

[
I c.
10 2.54
30 4.52
60 5.62

"5. Basin simulation.” 8

This part of the menu carries out the simulation for each basin in the area of analysis. Every basin is
analyzed as independent of every other basin. The user is shown the independent basin hydrograph for
every basin on the graphics monitor. The file "disch.basin” is created towards the end of simulation of al
the basins. This file contains columns of discharge for each basin. The column number corresponds to the
basin category value in the legend. If the animation configuration mode was set then afile is created in
the project directory called "disch_file". This file holds basin discharge values at every point in every
basin of the analysis area.

"6. Smulate any particular basin." 8

This part of the menu provides the facility of changing basin characteristics such as the Manning
roughness coefficient and other infiltration parameters. This choice can be used only after the successful
completion of choice 5. If the user has provided maps for the parameters then the user should select
"stop" from the menu to make changes to the parameter maps provided to the model.

"7. Channel routing of basin hydrographs.” 8

This part of the menu connects the basins that were considered independent in the previous step. Routing
of the basin-level hydrographs is done based on the connectivity between basins. This can generate
hydrographs only for seven stream junctions. If there are more than seven stream junctions then the first
seven stream junction hydrographs are shown. The process of drawing individual basin animation maps
follows the drawing of the hydrographs at stream junctions. After completing this choice a file
"disch.junction" is created. Thisfile contains discharge values at different steps for every stream junction.

"8. Sop." 8

This part of the menu is available to the user at any time between the different choices described in the
menu and exits the user out of the program.

LIMITATIONS

1.) Negative values of drainage direction inside basins maps cannot be accepted. Negative values are
generated as a result of incomplete information regarding the basin drainage pattern (e.g., r.watershed
produces negative values as aresult of outflowing drainage basins).

2.) The drainage map should route the water and not form pits, lakes, or ponds. Note that this does not
imply that the DEM by itself should not have any pits.

3) Interstorm modeling, interflow, or baseflow are not considered.

4) Backwater effects are not considered.

2901

5) The kinematic wave analogy is appropriate where the land surface slope and channel slope are large.
This may not be true in flat, marshy terrain and in slow, meandering river channels.

OUTPUT FILESOF INTEREST
These are ASCI| files that can be found in the "$LOCATION/ r.water.fea/<project_name>" directory. The
files have aformat such that it can be imported to various analysis packages.

disch.basin 8
This file contains multiple columns which contain the individual basin discharge values in order of first
column containing the discharge values for basin one and the second for basin two and so on.

disch.junction 8

This file contains the results of the discharge values at stream junctions specified by the icons. The first
column in this file shows the time step in minutes. The remaining columns specify the discharge values.
The first row specifies the stream junction icon numbers.

NOTES
1. r.water.fea alters the region in the WIND file. This is done by making a systems call to g.region
align=name just when the program r.water.fea is run.

2. A small watershed can be analyzed by providing values of model parameters. However it is advisable
to provide maps of various model parameters if there are many basins in the watershed. In the former
case the value provided by the user shall be constant for the entire basin for which the value is queried.
The user shall create the infiltration maps using the following set of rules. The map value divided by the
multiplication factor yields the actual value in the described units:

Parameter:
Multiplication factor

Soil saturated hydraulic conductivity map (meters/sec):10,000,000
Manning roughness coefficient:1000

Soil suction at wetting front (m):1000

Soil porosity map (m3/m3):1000

3. If the user has provided a slope map that has zero slope value anywhere in the map, then a slope value
of 5% is assumed for that cell.

4. It is preferred that none of the basins in the analysis area has more than 750 cells, as this will increase
the computation time drastically. The number of cellsin a basin can be controlled by setting the threshold
value to small values when running r.water shed.

5. Using larger cells can speed up the analysis process significantly. It is important to note that
r.watershed should be run for the resolution at which the user desiresto run the r.water.fea analysis.

FILES
All the files listed below are ASCII files. None of these files should be
deleted if the user wishes to continue working on the same project.

SLOCATION/ r.water.fea/<project_name>/input.basin 8
Thisfile contains information on connectivity between different basinsin the analysis area.

292

$LOCATION/ r.water.fea/<project_name>/input.file 8
Thisfile contains information on connectivity between different cells for every basin in the analysis area.

$LOCATION/ r.water.fea/<project_name>/disch.basin 8
Thisfile contains discharge values for every basin in the analysis area.

$LOCATION/ r.water.fea/<project_name>/disch.junction 8
Thisfile contains discharge values at every stream junction in the analysis area.

$LOCATION/ r.water.fea/<project_name>/timedata 8
Thisfile contains the response queried from the user in choice 4 of the menu.

SLOCATION/ r.water.fea/<project_name>/basin_info 8
Thisfile contains information on statistics of the basinsin the analysis area.

$LOCATION/ r.water.fea/<project_name>/coordinates 8
Thisfile contains information on coordinates of every cell in the analysis area.

$LOCATIONY/ r.water.feal<project_name>/control 8
This file contains information on map names, configuration modes, and stopped choice in the menu.

$LOCATION/ r.water.fea/<project_name>/disch file 8
Thisfile contains the discharge values at every point in the analysis area.

$LOCATIONY/ r.water.feal<project_name>/timefiles/<file_name> 8
Thisfile contains the spatially constant and time variant rainfall mode file.

SEE ALSO
r.slope.aspect, r.watershed, r.mask, r.reclass, r.stats, r.colors

REFERENCES

Vieux, B. E., Brdlts, V. F., Segerlind, L. J.,, Wallace, R. B., (1990), "FINITE ELEMENT WATERSHED
MODELING: ONE-DIMENSIONAL ELEMENTS', J. of Water Resources Planning and
Management, VVol. 116, No. 6, p803-819.

AUTHORS

Baxter E. Vieux, University of Oklahoma, Norman
Nalneesh Gaur, University of Oklahoma, Norman

293

r.water.outlet

NAME
r.water.outlet - Watershed basin creation program.
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.water.outlet

r.water.outlet help

r.water.outlet drainage=name basin=name easting=value northing=value

DESCRIPTION
r.water.outlet generates a watershed basin from a drainage direction map (from r.watershed or
r.water.aspect) and a set of coordinates representing the outlet point of watershed.

OPTIONS

Parameters:

drainage Input map: drainage direction. Indicates the "aspect” for each cell. Multiplying positive
values by 45 will give the direction in degrees that the surface runoff will travel from that cell. The value
-1 indicates that the cell is a depression area. Other negative values indicate that surface runoff isleaving
the boundaries of the current geographic region. The absolute value of these negative cells indicates the
direction of flow. Thismap is generated from either r.watershed or r.water.aspect.

basin Output map: Values of one (1) indicate the watershed basin. Values of zero are not in the
watershed basin.

easting Input value: Easting value of outlet point.
northing Input value: Northing value of outlet point.

NOTES

In the context of this program, a watershed basin is the region upstream of an outlet point. Thus, if the
user chooses an outlet point on a hill slope, the resulting map will be athin silver of land representing the
overland slope uphill of the point.

It is usually a good idea for the user to "find" the stream channel of the desired basin. If the user runs
r.water.accum, r.water.swale with a small swale threshold, and d.where on the resulting map, the user can
pinpoint the exact location of the outlet point with ease.

SEE ALSO
r.water shed, r.water.aspect, r.water.accum, r.water.swale, r.water.basin, d.where

AUTHOR
Charles Ehlschlaeger, U.S. Army Construction Engineering Research Laboratory

294

r.watershed

NAME
r.watershed - Watershed basin analysis program.
(GRASS Raster Program)

GRASSVERSION
4.x,5.x

SYNOPSIS

r.watershed

r.watershed help

r.watershed [-md4] elevation=name [depression=name] [flow=name] [disturbed.land=name|val ue]

[blocking=name] [threshold=value] [max.slope.length=value] [accumulation=name] [drainage=name]
[basin=name] [stream=name] [half.basin=name] [visual=name] [length.slope=name]

[slope.steepness=name]

DESCRIPTION
r.watershed generates a set of maps indicating: 1) the location of watershed basins, and 2) the LS and S
factors of the Revised Universal Soil Loss Equation (RUSLE).

r.watershed can be run either interactively or non-interactively. If the user types
r.watershed

on the command line without program arguments, the program will prompt the user with a verbose
description of the input maps. The interactive version of r.watershed can prepare inputs to lumped-
parameter hydrologic models. After a verbose interactive session, r.watershed will query the user for a
number of map layers. Each map layer's values will be tabulated by watershed basin and sent to an output
file. This output file is organized to ease data entry into a lumped-parameter hydrologic model program.
The non- interactive version of r.watershed cannot create thisfile.

The user can run the program non-interactively, by specifying input map names on the command line.
Parameter names may be specified by their full names, or by any initial string that distinguish them from
other parameter names. In r.watershed's case, the first two letters of each name sufficiently distinguishes
parameter names. For example, the two expressions below are equivalent inputs to r.water shed:

r.watershed el=elev.map th=100 st=stream.map ba=basin.map
r.watershed elevation=elev.map threshold=100 stream=stream.map basin=basin.map

OPTIONS

Flags:

-m Without this flag set, the entire analysis is run in memory maintained by the operating system.
This can be limiting, but is relatively fast. Setting the flag causes the program to manage memory on disk
which allows larger maps to be processes but is considerably slower.

-4 Allow only horizontal and vertical flow of water. Stream and slope lengths are approximately
the same as outputs from default surface flow (allows horizontal, vertical, and diagona flow of water).
This flag will also make the drainage basins ook more homogeneous.

Parameters:
elevation Input map: Elevation on which entire analysisis based.

295

depression Input map: Map layer of actual depressions in the landscape that are large enough to
dow and store surface runoff from a storm event. Any non-zero values indicate depressions.

flow Input map: amount of overland flow per cell. This map indicates the amount of overland flow
units that each cell will contribute to the watershed basin model. Overland flow units represent the
amount of overland flow each cell contributes to surface flow. If omitted, a value of one (1) is assumed.

disturbed.land Raster map input layer or value containing the percent of disturbed land (i.e., croplands,
and construction sites) where the raster or input value of 17 equals 17%. If no map or value is given,
r.watershed assumes no disturbed land. Thisinput is used for the RUSLE calculations.

blocking Input map: terrain that will block overland surface flow. Terrain that will block
overland surface flow and restart the slope length for the RUSLE. Any non-zero values indicate blocking
terrain.

threshold The minimum size of an exterior watershed basin in cells, or overland flow units.

max.slope.length Input value indicating the maximum length of overland surface flow in meters. If
overland flow travels greater than the maximum length, the program assumes the maximum length (it
assumes that landscape characteristics not discernible in the digital elevation model exist that maximize
the slope length). Thisinput is used for the RUSLE calculations and is a sensitive parameter.

accumulation Output map: number of cells that drain through each cell. The absolute value of each
cell in this output map layer is the amount of overland flow that traverses the cell. This value will be the
number of upland cells plus one if no overland flow map is given. If the overland flow map is given, the
value will be in overland flow units. Negative numbers indicate that those cells possibly have surface
runoff from outside of the current geographic region. Thus, any cells with negative values cannot have
their surface runoff and sedimentation yields calculated accurately.

drainage Output map: drainage direction. Provides the "aspect” for each cell. Multiplying
positive values by 45 will give the direction in degrees that the surface runoff will travel from that cell.
The value -1 indicates that the cell is a depression area (defined by the depression input map). Other
negative values indicate that surface runoff is leaving the boundaries of the current geographic region.
The absolute value of these negative cells indicates the direction of flow.

basin Output map: Unique label for each watershed basin. Each basin will be given a unique positive
even integer. Areas along edges may not be large enough to create an exterior watershed basin. 0 values
indicate that the cell is not part of a complete watershed basin in the current geographic region.

stream Output map: stream segments. Values correspond to the watershed basin values.

half.basin Output map: each half-basin is given a unique value. Watershed basins are divided into
left and right sides. The right-hand side cell of the watershed basin (looking upstream) are given even
values corresponding to the watershed basin values. The left-hand side cells of the watershed basin are
given odd values which are one less than the value of the watershed basin.

visual Output map: useful for visua display of results. Surface runoff accumulation with the values
modified to provide for easy display. All negative accumulation values are changed to zero. All positive
values above the basin threshold are given the value of the basin threshold.

length.slope Output map: slope length and steepness (LS) factor. Contains the LS factor for the
Revised Universal Soil Loss Equation. Equations taken from Revised Universal Soil Loss Equation for

296

Western Rangelands (see SEE AL SO section). Since the LS factor is a small number, it is multiplied by
100 for the GRASS output map.

slope.steepness Output map: slope steepness (S) factor for RUSLE. Contains the revised S factor for the
Universal Soil Loss Equation. Equations taken from article entitled Revised Slope Steepness Factor for
the Universal Soil Loss Equation (see SEE AL SO section). Since the S factor is a small number (usualy
less than one), it is multiplied by 100 for the GRASS output map layer.

NOTES

There are two versions of this program: ram and seg. Which is run by r.watershed depends on whether
the -m flag is set. ram uses virtual memory managed by the operating system to store all the data
structures and is faster than seg; seg uses the GRASS segment library which manages data in disk files.
seg alows other processes to operate on the same CPU, even when the current geographic region is huge.
Due to memory requirements of both programs, it will be quite easy to run out of memory. If ram runs out
of memory and the resolution size of the current geographic region cannot be increased, either more
memory heeds to be added to the computer, or the swap space size needs to be increased. If seg runs out
of memory, additional disk space needs to be freed up for the program to run.

seg uses the AT least-cost search algorithm to determine the flow of water over the landscape (see SEE
AL SO section). The algorithm produces results similar to those obtained when running r.cost and r.drain
on every cell on the map.

In many situations, the elevation data will be too finely detailed for the amount of time or memory
available. Running r.watershed will require use of a coarser resolution. To make the results more closely
resemble the finer terrain data, create a map layer containing the lowest elevation values at the coarser
resolution. Thisis done by: 1) Setting the current geographic region equal to the elevation map layer, and
2) Using the neighborhood command to find the lowest value for an area equal in size to the desired
resolution. For example, if the resolution of the elevation data is 30 meters and the resolution of the
geographic region for r.watershed will be 90 meters: use the minimum function for a 3 by 3
neighborhood. After going to the resolution at which r.watershed will be run, r.watershed will be taking
values from the neighborhood output map layer that represents the minimum elevation within the region
of the coarser cell.

The minimum size of drainage basins is only relevant for those basins that have no basins draining into
them (they are called exterior basins). An interior drainage basin has the area that flows into an interior
stream segment. Thus, interior drainage basins can be of any size.

The r.watershed program does not require the user to have the current geographic region filled with
elevation values. Areas without elevation data MUST be masked out using the r.mask command. Areas
masked out will be treated as if they are off the edge of the region. Masks will reduce the memory
necessary to run the program. Masking out unimportant areas can significantly reduce processing time if
the watersheds of interest occupies a small percentage of the overall area.

Zero data values will be treated as elevation data (not no_data). If there are zero data along the edges of
the current region, that edge will not be able to propagate negative accumulation data to the rest of the
map. This might give users afalse sense of security about the quality of their data. If there are incomplete
data in the elevation map layer, users should mask out those aress.

SEE ALSO

The AT least-cost search algorithm used by r.watershed is described in Using the AT Search Algorithm to
Develop Hydrologic Modelsfrom Digital Elevation Data, in Proceedings of International Geographic
Information Systems Symposium '89. pp, 275-281, (Baltimore, MD, 18-19, March 1989 by, Charles
Ehlschlaeger, U.S. Army Construction Engineering, Research Laboratory.

297

Length dope and steepness (length.slope) factor equations were taken from Revised Universal Soil Loss
Equation for Western Rangelands, presented at the U.S.A./Mexico Symposium of Strategies for
Classification and Management of Native Vegetation for Food Production In Arid Zones (Tucson, AZ, 12-
16 Oct 1987), by M. A. Weltz, K. G. Renard, and J. R. Simanton.

The slope steepness (slope.steepness) factor contains the revised slope steegpness factor for the Universal
Soil Loss Equation. Equations were taken from article entitled Revised Slope Steepness Factor for the
Universal Soil Loss Equation, in Transactions of the ASAE (Vol 30(5), Sept-Oct 1987), by McCool et al.
r.cost, r.drain, r.mask

AUTHOR
Charles Ehlschlaeger, U.S. Army Construction Engineering Research Laboratory

298

r.watershed4.0

NAME
r.watershed4.0 - Watershed basin analysis program.
(GRASS 4.0 Raster Program)

GRASSVERSION
4.x

SYNOPSIS

r.watershed4.0

r.watershed4.0 help

r.watershed4.0 [-md] elevation=name [depression=name] [flow=name] [disturbed.land=name|value]

[blocking=name] [threshold=value] [max.slope.length=value] [accumulation=name] [drainage=name]
[basin=name] [stream=name] [half.basin=name] [visual=name] [length.slope=name]

[slope.steepness=name] [armsed=name]

DESCRIPTION
Thisis the GRASS 4.0 version of this program; the GRASS 4.1 version is available as r.watershed. Note
also that the armsed sedimentation calculation facility is not available.

r.watershed4.0 generates a set of maps indicating: 1) the location of watershed basins, 2) information to
interface with ARMSED, a storm-water runoff and sedimentation yield model, and 3) the LS and S factors
of the Revised Universal Soil Loss Equation (RUSLE).

r.watershed4.0 can be run either interactively or non-interactively. If the user types
r.watershed4.0

on the command line without program arguments, the program will prompt the user with a verbose
description of the input maps. The interactive version of r.watershed4.0 can prepare inputs to lumped-
parameter hydrologic models. After a verbose interactive session, r.watershed4.0 will query the user for a
number of map layers. Each map layer's values will be tabulated by watershed basin and sent to an output
file. This output file is organized to ease data entry into a lumped-parameter hydrologic model program.
The non- interactive version of r.watershed4.0 cannot create this

file.

The user can run the program non-interactively, by specifying input map names on the command line.
Parameter names may be specified by their full names, or by any initial string that distinguish them from
other parameter names. In r.watershed4.0's case, the first two letters of each name sufficiently
distinguishes parameter names. For example, the two expressions below are equivalent inputs to
r.watershed4.0:

r.watershed4.0 el=elev.map th=100 st=stream.map
ba=basin.map

r.water shed4.0 elevation=elev.map threshold=100
stream= stream.map basin=basin.map

OPTIONS

Flags:

-m Without this flag set, the entire analysis is run in memory maintained by the operating system.
This can be limiting, but is relatively fast. Setting the flag causes the program to manage memory on disk
which allows larger maps to be processes but is considerably slower.

299

-4 Allow only horizontal and vertical flow of water. Stream and slope lengths are approximately the
same as outputs from default surface flow (allows horizontal, vertical, and diagonal flow of water). This
flag will also make the drainage basins ook more homogeneous.

Parameters:
elevation Input map: Elevation on which entire analysis is based.
depression Input map: Map layer of actual depressions in the landscape that are large enough to

dlow and store surface runoff from a storm event. Any non-zero values indicate depressions.

flow Input map: amount of overland flow per cell. This map indicates the amount of overland flow
units that each cell will contribute to the watershed basin model. Overland flow units represent the
amount of overland flow each cell contributes to surface flow. If omitted, a value of one (1) is assumed.

disturbed.land Raster map input layer or value containing the percent of disturbed land (i.e., croplands,
and construction sites) where the raster or input value of 17 equals 17%. If no map or value is given,
r.water shed4.0 assumes no disturbed land. Thisinput is used for the RUSLE calculations.

blocking Input map: terrain that will block overland surface flow. Terrain that will block
overland surface flow and restart the slope length for the RUSLE. Any non-zero values indicate blocking
terrain.

threshold The minimum size of an exterior watershed basin in cells, or overland flow units.

max.slope.length Input value indicating the maximum length of overland surface flow in meters. If
overland flow travels greater than the maximum length, the program assumes the maximum length (it
assumes that landscape characteristics not discernable in the digital elevation model exist that maximize
the slope length). Thisinput is used for the RUSLE calculations and is a sensitive parameter.

accumulation Output map: number of cells that drain through each cell. The absolute value of each
cell in this output map layer is the amount of overland flow that traverses the cell. This value will be the
number of upland cells plus one if no overland flow map is given. If the overland flow map is given, the
value will be in overland flow units. Negative numbers indicate that those cells possibly have surface
runoff from outside of the current geographic region. Thus, any cells with negative values cannot have
their surface runoff and sedimentation yields calculated accurately.

drainage Output map: drainage direction. Provides the "aspect” for each cell. Multiplying
positive values by 45 will give the direction in degrees that the surface runoff will travel from that cell.
The value -1 indicates that the cell is a depression area (defined by the depression input map). Other
negative values indicate that surface runoff is leaving the boundaries of the current geographic region.
The absolute value of these negative cells indicates the direction of flow.

basin Output map: Unique label for each watershed basin. Each basin will be given a unique positive
even integer. Areas along edges may not be large enough to create an exterior watershed basin. 0 values
indicate that the cell is not part of a complete watershed basin in the current geographic region.

stream Output map: stream segments. Values correspond to the watershed basin values.
half.basin Output map: each half-basin is given a unique value. Watershed basins are divided into
left and right sides. The right-hand side cell of the watershed basin (looking upstream) are given even

values corresponding to the watershed basin values. The left-hand side cells of the watershed basin are
given odd values which are one less than the value of the watershed basin.

300

visual Output map: useful for visua display of results. Surface runoff accumulation with the values
modified to provide for easy display. All negative accumulation values are changed to zero. All positive
values above the basin threshold are given the value of the basin threshold.

length.slope Output map: slope length and steepness (LS) factor. Contains the LS factor for the
Revised Universal Soil Loss Equation. Equations taken from Revised Universal Soil Loss Equation for
Western Rangelands (see SEE AL SO section). Since the LS factor is a small number, it is multiplied by
100 for the GRASS output map.

slope.steepness Output map: slope steepness (S) factor for RUSLE. Contains the revised S factor for the
Universal Soil Loss Equation. Equations taken from article entitled Revised Slope Steepness Factor for
the Universal Soil Loss Equation (see SEE AL SO section). Since the S factor is a small number (usualy
less than one), it is multiplied by 100 for the GRASS output map layer.

NOTES

There are two versions of this program: ram and seg. Which is run by r.watershed4.0 depends on whether
the -m flag is set. ram uses virtual memory managed by the operating system to store all the data
structures and is faster than seg; seg uses the GRASS segment library which manages data in disk files.
seg alows other processes to operate on the same CPU, even when the current geographic region is huge.
Due to memory requirements of both programs, it will be quite easy to run out of memory. If ram runs out
of memory and the resolution size of the current geographic region cannot be increased, either more
memory nheeds to be added to the computer, or the swap space size needs to be increased. If seg runs out
of memory, additional disk space needs to be freed up for the program to run.

seg uses the AT least-cost search algorithm to determine the flow of water over the landscape (see SEE
AL SO section). The agorithm produces results similar to those obtained when running r.cost and r.drain
on every cell on the map.

In many situations, the elevation data will be too finely detailed for the amount of time or memory
available. Running r.watershed4.0 will require use of a coarser resolution. To make the results more
closely resemble the finer terrain data, create a map layer containing the lowest elevation values at the
coarser resolution. This is done by: 1) Setting the current geographic region equal to the elevation map
layer, and 2) Using the neighborhood command to find the lowest value for an area equal in size to the
desired resolution. For example, if the resolution of the elevation data is 30 meters and the resolution of
the geographic region for r.watershed4.0 will be 90 meters: use the minimum function for a 3 by 3
neighborhood. After going to the resolution at which r.watershed4.0 will be run, r.watershed4.0 will be
taking values from the neighborhood output map layer that represents the minimum elevation within the
region of the coarser cell.

The minimum size of drainage basins is only relevant for those basins that have no basins draining into
them (they are called exterior basins). An interior drainage basin has the area that flows into an interior
stream segment. Thus, interior drainage basins can be of any size.

The r.watershed4.0 program does not require the user to have the current geographic region filled with
elevation values. Areas without elevation data MUST be masked out using the r.mask command. Areas
masked out will be treated as if they are off the edge of the region. Masks will reduce the memory
necessary to run the program. Masking out unimportant areas can significantly reduce processing time if
the watersheds of interest occupies a small percentage of the overall area.

Zero data values will be treated as elevation data (not no_data). If there are zero data along the edges of
the current region, that edge will not be able to propagate negative accumulation data to the rest of the
map. This might give users a false sense of security about the quality of their data. If there are incomplete
data in the elevation map layer, users should mask out those aress.

301

SEE ALSO

The AT least-cost search algorithm used by r.watershed4.0, is described in Using AT Search Algorithm to
Develop Hydrologic Models from Digital Elevation Data. in Proceedings of International Information
Systems (IGIS) Symposium, ‘89, pp, 275-281, (Batimore, MD, 18-19 1989), by Charles Ehlschlaeger
U.S. Army Construction Engineering Research Laboratory.

Length slope and steepness (length.slope) factor equations were taken from Revised Universal Soil Loss
Equation for Western Rangelands, presented at the U.S.A./Mexico Symposium of Strategies for
Classification and Management of Native Vegetation for Food Production In Arid Zones (Tucson, AZ, 12-
16 Oct 1987), by M. A. Weltz, K. G. Renard, and J. R. Simanton.

The slope steepness (slope.steepness) factor contains the revised slope steegpness factor for the Universal
Soil Loss Equation. Equations were taken from the article entitled Revised Slope Steepness Factor for the
Universal Soil Loss Equation, in Transactions of the ASAE (Vol 30(5), Sept-Oct 1987), by McCool et al.
r.cost, r.drain, r.grass.armsed, r.mask

AUTHOR
Charles Ehlschlaeger, U.S. Army Construction Engineering Research Laboratory

302

r.weight
NAME
r.weight - Raster map overlay program.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS
r.weight

DESCRIPTION

rweight is a language driven raster map overlay program. It provides a means for performing
geographical analyses using several raster maps. r.weight asks the user to weight (assign numeric values
to) the raster map categories of interest. The assignment of weighted values requires that the user
intimately understand the analysis being undertaken. How important is the slope of the land in
comparison with the current land use, or the depth to bedrock? The assignment of values to the land's
characteristics allows r.weight to mix and compare apples and oranges, such as slopes and land uses, and
soil types and vegetation.

r.weight is a language-driven analysis tool. It responds to worded commands typed at the terminal. Help
is always available via the one word command: help. Commands available in r.weight are listed below.

Note that raster map names appear in parentheses. The use of parenthesesis now optional in r.weight.
list maps List available raster maps

list categories (name) List categories for raster map (name)

list save List saved analyses

list analysis Display current analysis request

print analysis Send current analysis request to printer

choose (name) Choose raster map (name) for analysis

assign (name) Interactive way to assign weights for raster map (name)

assign (name) (cat) (val) Assign weight (val) to category (cat) for raster map (name) assign (name) (cat)
(cat) (val) Assign weight (val) to categories (cat) (cat) for raster map (name)

save Savethe current anaysis

recover Recover old analysis

add Request that weights be added (this is the default)
mult Request that weights be multiplied

execute Run analysis

303

erase Erasethe screen

color grey Set the graphics monitor colorsto agrey scale (this is the default)
color wave Set the graphics monitor colors to a color wave.
color ramp Set the graphics monitor colors to a color ramp.

quit Leave r.weight
A more detailed explanation of a command can be obtained by typing:

help (command)

SUGGESTED APPROACH

In order for r.weight to generate raster maps useful for analysis, the user must make a reasonable and
defensible request. While much more powerful than r.combine, r.weight is also more dangerous. The
user provides the necessary value judgments which are registered as weights. Only well-conceived value
judgments will result in defensible results. We suggest the following approach to a weighted overlay
analysis:

B

a) Define the question to be answered. e.g., "Locate sites suitable for building apartments.”

b) Determine what mapped information is useful for answering the question. e.g., geology, soils,
land_use, flood_potential.

c) Based on professional judgement, statistical inference, and engineering principals, assign weights to
the categories in the chosen raster maps.
STEP 2: CHOOSE CELL MAPS

In r.weight, use the command choose to identify up to six raster maps of interest.
STEP 3: ASSIGN WEIGHTS

Using the r.weight command assign, assign specific weights to raster map categories.
STEP 4: SAVE ANALYSIS

Use the save command to save a copy of the analysis requested for later use.
STEP5: RUN ANALYSIS

Use execute to run the analysis.
STEP 6: EVALUATE RESULTS

To modify an existing analysis request, use the recover command to retrieve the analysis and then go to
STEP 3.

SEE ALSO
GRASS Tutorial: r.weight, r.infer, r.combine, r.mapcalc

AUTHOR
James Westervelt, U.S. Army Construction Engineering Research Laboratory

304

r.weight2

NAME
r.weight? - Weighted overlay raster map layer analysis program.
(GRASS Raster Program)

GRASSVERSION
4.x

SYNOPSIS
r.weight2 [output] [action] [color]
r.weight2 [output=option] [action=option] [color=option]

DESCRIPTION

r.weight? is the non-interactive version of r.weight. Both programs allow the user to assign numeric
values (i.e., "weights’) to individual category values within raster map layers. These weights are then
distributed locationally throughout a raster map layer based on the distribution of the categories with
which they are associated. The user can weight the categories of several raster map layers in a data base.
Such weighted raster map layers can then be overlain. r.weight2 will combine weights in the overlain map
layers by cell location.

A resulting output raster map layer depicts the combination of map layer weights across a landscape.
These values represent a hierarchy of suitability for some user-defined purpose. To obtain a more detailed
description, see the manual entry for r.weight.

Output raster map must be specified (no default) Action must be either (add or mult) (default: add)
Color table for the new raster map (grey | wave | ramp) (default: grey)

Once the r.weight2 command line is entered, the user will need to enter a raster map layer name and
assign numeric values to its categories. Values can be assigned to the categories of up to six raster map
layers within r.weight2 in asingle analysis. Help is available to the user by typing r.weight2 help.

EXAMPLE

The following is the format in which data should be entered to r.weight2:
Raster layerl

[Reclassrule 14]

[Reclassrule 1b]

Raster layer2

[Reclass rule 24]

etc.

end

Raster_layer: raster_map OR "raster_map in mapset"”
Reclass rule: (example) 1 =5 OR 20 thru 50 = 10 (must |eave spaces between the category, =, and value
entries)

Example: (the prompts are shown in bold)
> r.weight2 sites add wave
> soils

soils> 1thru20=5

soils> 21 thru30=10
s0ils> landcover

305

landcover> 1=2
landcover> 2=4
landcover> 3thru8=6
landcover> end

NOTES

The user must be knowledgeable about r.weight to run r.weight2. r.weight2 does not provide the user with
a listing of raster map layers or map layer categories. Users unsure about raster map layer names should
run the GRASS program g.list. To obtain alisting of the categories for araster map layer run r.report.

The user can create an input file containing the data needed to run r.weight2. Thisfile must list the raster
map layer and reclass rules in the format shown in the above example. The prompts must not be included
in the file. Thisfile can be directed into r.weight2 at the command line by typing r.weight2 output action
color < input_file

BUGS
When entering data for the reclass rules, if the user does not include spaces between the category, =, and
value, the program will assume that the entry is araster map layer.

SEE ALSO
g.list, r.combine, r.infer, r.report, r.weight

AUTHOR
David Gerdes, U.S. Army Construction Engineering Research Laboratory

306

r.weighted.cn

NAME
r.weighted.cn(G-language) - Generates a weighted SCS curve number map layer

GRASSVERSION

4.x

SYNOPSIS

r.weighted.cn input=cn_map output=weighted_cn_map
Parameters:

input=map curve number map name

output=map weighted curve number map name

The command-line ordering can be in any form but all key words must be there to run the program.
NOTE

The r.weighted.cn program is sensitive to the current window settings. Thus the program can be used to
generate a weighted CN map of any sub-area within the full map layer. Also, r.weighted.cn is sensitive to
any mask in effect.

AUTHORS
Raghavan Srinivasan and Dr. Bernie A. Engel, Agricultural Engineering Department, Purdue University

307

r.what

NAME
r.what - Queries raster map layers on their category values and category |abels.
(GRASS Raster Program)

GRASSVERSION
4.x, 5.x

SYNOPSIS

r.what

r.what help

r.what [-fci] input=name[,name,...][cache=value] [null=string]

r.what [-fci] input=name[,name,...] [< inputfile][cache=valu€] [null=string]

DESCRIPTION

r.what outputs the category values and (optionally) the category labels associated with user-specified
locations on raster input map(s). Locations are specified as geographic X, y coordinate pairs (i.e., pair of
eastings and northings); the user can also (optionally) associate a label with each location.

The program will be run non-interactively if the user specifies the program parameter values and
(optionally) the flag setting on the command line, using the form:

r.what [-f] input=name],name,...]

where each input name is the name of a raster map layer whose category values are to be queried, and the
(optional) flag -f directs r.what to also output category labels. The user can also redirect a user-created
ASCII input file containing a list of geographic coordinate pairs and (optionally) user-named labels, into
r.what using the form:

r.what [-f] input=name] ,name,...] [< inputfile]

If the user does not redirect an input file containing these coordinates into the program, the program will
query the user for point locations and labels.

Alternately, the user can simply type:
r.what
on the command line, without program arguments. In this case, the user will be prompted for the flag

setting and parameter values using the standard GRASS parser interface described in the manual entry for
parser.

Flags:
-f Also output the category label(s) associated with the cell(s) at the user-specified location(s).

-C Turn on cache reporting.
-i Output integer category values, not cell values.

Parameters:
input=name[,name,name,...] The name(s) of one or more existing raster map layers to be queried.

308

cache=value Size of point cache.
null=string Character string to represent no data cell.

EXAMPLES

The contents of the ASCII inputfile to r.what can be typed in at the keyboard, redirected from a file, or
piped from another program (like d.where). Each line of the input consists of an easting, a northing, and
an optional label, which are separated by spaces. The word end is typed to end input of coordinates to
r.what. For example:

635342.21 7654321.09 site 1
653324.88 7563412.42 site 2
end

r.what output consists of the input geographic location and label, and, for each user-named raster map
layer, the category value, and (if -f is specified) the category label associated with the cell(s) at this
geographic location. Sample input (in Times text) to and output (in plain text) from r.what are given
below.

r.what input=soils,aspect
635342.21 7654321.09 site 1
653324.88 7563412.42 site 2
end

635342. 21| 7654321. 09| site 1| 45|21
653324. 88| 7563412. 42| site 2| 44|20

r.what -f input=soils,aspect
635342.21 7654321.09 site 1
653324.88 7563412.42 site 2
end

635342, 21| 7654321. 09| site 1| 45| NaC] 21| 30 degrees NW
653324. 88| 7563412. 42| site 2| 44| NdC| 20| 15 degrees NW

NOTES
The maximum number of raster map layers that can be queried at onetimeis 14.

SEE ALSO
d.sites, d.where, r.cats, r.report, r.stats, sites, parser

AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

309

r.wrat

NAME
r.wrat - Water Resource Assessment Tool

GRASSVERSION
4.x

USAGE
This module must be used interactively.

INPUT MAP CODES
€levation meters, as well as cell resolution

rainfall maps 100ths of an inch
K factor K factor times 100K of .35=35

Introduction

The Water Resource Assessment Tool is a collection of programs run within the GRASS GIS. These
programs are an aid in understanding the nature of runoff in a study area based on information typically
available for a GIS. The programs anayze the terrain to define drainage direction and areas, simulate
runoff and peak runoff and model nonpoint source pollution and map contaminant source areas and
contaminant pathways. This users guide outlines the typical analytical sequence, describes input data
reguirements and possible output. Some suggestions for interpreting output are included. It is assumed the
user is familiar with the basics of GRASS.

I nput

Map layers required: digital elevation model, land cover, soil maps of hydrologic soil group, soil texture,
and erodibility factor (K factor). Optional maps describe best management practices for sediment,
nitrogen phosphorous and chemical oxygen demand (COD).

Typical Analysis

Three interrelated areas of analysis are available: terrain analysis, hydrology and pollution (see figure
X1). Because these areas are not distinct, analysis should proceed in a logical order since some portions
build on previous results. Terrain analysis and runoff generation must proceed routing peak discharge,
which in turn must proceed contaminant routing. The following steps provide a natural sequence of
analysis through al of the tools. However, a great deal of valuable information may be gained executing
only a portion of the available programs. Thisis atool kit, not a prescription for studying every area.

Accunul ati on

Terrain Anal ysis Hydr ol ogy Pol | ution

I I I I I I

| Elevation | | Land Cover | | Land Cover |

| Model I I I I I

-------- LR | Hydrol ogic | | Soils |
| | Soil Group | | K factor |
Ve LR | Texture |

| | e SRR

| Idealized | | |

| Elevation | | |

| Model I I I

I I I I

| Drainage | | |

| Direction | | |

I I I I

| Drai nage | \% |

I I I

I I I

| Runoff Map |

310

-------- R e B SRR R
I I V.
| <---+ | I I I
| | Contam nant | | Best |
| | Source Areas | | Managenent |
[Feooemmme - | Practices |
\% I Feooemmme -

I I I I

| Peak I AR

| Discharge | |

| Contam nant |
| Routing |

figure XI1.

Defining the study area

GRASS looks at the world through a rectangular "window". The window should be set to include the
entire area of interest with several cellsto spare in all directions. Because of difficulty interpreting terrain
at the edge of the window, the analysis moves in from the window edge. The extra area is particularly
important if the top of awatershed of interest is not marked by a steep decline into the adjacent watershed.

Routing routines assume that the entire watershed is within the current window. This is not always true or
even practical. For instance, an analysis along the side of along river will provide valuable information
about local contributions to the larger resource. However, calculations in the long river itself can not take
into account upstream effects outside the current window and are thus invalid. Yet those loca
contributions may be of considerable interest. Great care must be taken interpreting results of watersheds
only partially contained within the operating window.

Cell resolution, the size of each cell, should be set as large as is appropriate for your purposes. In no case
should the resolution be smaller than the spatial resolution of your best input layer. Doubling the cell
length and width will cut computation times by 3/4s! The east-west resolution need not match the north-
south resolution. However, large deviations from square cells will distort some of the neighbor concepts
used by some algorithms to "feel their way" across the terrain.

Once the analysis is begun, the same window, including cell resolution, must be maintained throughout
the project. The interface program tries to insure this. Changing the boundaries invalidates the drainage
accumulation maps. Changing the cell resolution can have disastrous effects on the drainage direction
map, such as creating dead end and circular drainages. The idealized elevation model will lose its "ideal"
character if resampled. If the window must be changed, start the analysis from the beginning.

Some of the output maps may be resampled to a smaller window or different cell size after the analysisis
finished. Contaminant source area maps are produced in units of mass per unit area and may be
resampled. This may be useful for presentation of results or incorporation within another GIS analysis.

Temporal scale
Hydrologic simulations are based on single storms, presumably one day events. Actual or design storms
may be employed.

Terrain analysis

The actual analysis may begin using the digital elevation model to produce an idealized elevation model.
Real data has, for a number of reasons, sections that are difficult to drain. The idealized elevation model
has no cells that can not drain to the edge of the window. This assumes complete surface drainage is

311

possible. This condition is never completely true and in some regions, such as those with karst
topography, so far from the case asto invalidate the peak discharge and contaminant routing results.

The idealized elevation model is used to determine the direction in which each cell will drain. This is
done by searching the edge of the window for the lowest point and draining the watershed that |eads there.
Then the next lowest outlet is found and its watershed drained, and so on until the entire areais drained.

The drainage direction map is used to produce a drainage accumulation map. The values in a drainage
accumulation map are the total number of cells including that cell, which drains through that cell. If
multiplied by the area of a cell, the drainage accumulation map will yield the area of the watershed above
and including each cell.

Hydrology

Two programs contribute to the hydrology section: runoff and peak discharge. The runoff section is based
on the Soil Conservation Services Curve number method (Soil Conservation Service, USDA, 1971). Curve
numbers, from 0 to 100, describe the potential for runoff. Curve numbers are inferred from the land cover
map and the map of hydrologic soil groups. A depth of precipitation for a design storm or a rainfall map
is required to produce a runoff map.

To this point the terrain analysis and the hydrology could progress independently. From this point on the
distinctions between terrain analysis, hydrology and pollution, as separate lines of analysis begin to fade.
Actualy pollution analysis will always be dependent to some extent on hydrology but that will be dealt
with in alater section. Peak discharge combines the results of the terrain analysis and runoff sections.

Peak discharge, the volume of water passing out of a cell per unit time, is calculated with an empirical
relationship developed by Smith and Williams (1980) and employed in CREAMS and AGNPS.
Watershed characteristics are interpreted from several al of the results from the terrain analysis. The
resulting map of peak discharge, significant by itself, is also used in the routing of contaminants.

Pollution

Contaminant sources are mapped as the contaminant originating per unit area. Sediment, nitrogen,
phosphorous and COD may be modeled. The algorithms used to predict contaminant mobilization depend
on the landcover of the cell involved. The universal soil loss equation and adaptations from AGNPS and
CREAMS are employed for rural, agricultural and open lands. An agorithm from SWMM is adopted for
urban areas. Land cover, soil texture and erodibility factors, rainfall, runoff and peak discharge maps are
the required inputs for this section.

The final part of the analysis routes contaminants. It requires the results of the preceding sections.
Sediment, nitrogen and phosphorous nutrients and COD may be modeled. The routing is done as a mass
balance accounting for imports of contaminants into a cell, contaminants originating within the cell,
losses to infiltration and deposition and exports to the next cell. Figure X2 is a schematic representation.

rainfall with
cont am nants

inmports from / / Surface exports

up gradi ent - / /- down gradi ent

losses to infiltration
and deposition

figure X2

312

Some practical considerations:

GRASS only stores integers, assuming values less then one to be equal to zero. Therefore small units of
measure have been employed. Rainfall and runoff are described in hundredths of inches, while quantities
of sediment are in kilograms with nutrients in grams. Flows are measured in cubic feet per second. The
mixing of English and metric units employs those units in common usage in the U.S. Maps may be
converted to any appropriate set of units using r.mapcalc to multiply the map by the appropriate
conversion factor.

Preparing map layers

GRASS associates numeric values with cells as their attributes. Sometimes these numbers have real
meanings, as in an elevation model in which the cell's value is its elevation. Some are more arbitrary
codes representing qualitative categories, such as landcover. The following tables provide guides to units
and codes used in the water resource assessment tools. The GRASS tool r.reclass allows speedy recoding
of map layersto these codes.

Input layersand data

Elevation
Valuesin the digital elevation model represent the altitude above mean sea level expressed in meters.

Rainfall

Rainfall maps should be rainfall for a single day, measured in hundredths of an inch. Thus a one and a
quarter inch rainfall would be represented as 125. The GRASS command "Gsurface" can be used to
interpolate a rainfall map between observation stations, however, Gsurface does not understand the effects
of terrain on rainfall and will make significant mistakes in hilly country and for thunderstorms passing
through a widely scattered set of observation points. A design storm may be preferable for assessment
purposes.

Soil, texture
Values are a code for the dominant texture.

clay soils
silt soils
sandy soils
peat

wat er

A WNE
W mwmnn

Soil, hydrologic soil group
Hydrologic soil group is primarily dependent on the soil texture. However depth to bed rock and depth to
water table may strongly influence a soil's classification.

hydrol ogi ¢ soil group A
hydrol ogi ¢ soil group B
hydrol ogi ¢ soil group C
hydrol ogi ¢ soil group D
wat er

A WNE
W mwmnn

Soil, erodibility K factor

K factors are a decimal value greater then zero and typically less then .5. Formally they represent the soil
loss rate per unit of per erosion index unit for a specified test plot. (Agriculture Handbook Number 537
"Predicting Rainfall Erosion Losses’, USDA 1978) Information about local soils should be available from
your local Soil Conservation Service office. Because GRASS uses only integer values, multiply K factors
by 100. Thus aK factor of .37 would be coded as 37. Use a code of 100 for water.

313

Landcover

The landcover map must be coded so the water resource assessment tools can recognize the landcovers
indicated. The following table illustrates the 15 landcover category codes expected. When attempting to
make the best fit of available data to this encoding scheme, remember to think of the areas both in terms
of their ability to slow runoff and their contributions to water quality. Some creative lies may be useful for
special purposes. For instance, a development built to the performance standard that peak discharge is not
to exceed a field in good condition could be coded as an old field for hydrologic analysis and built up for
pollution analysis.

1 = corn

2 =rye

3 = oats

4 = soybeans

5 = hay

6 = grass

7 =old field (grass)
8 = old field (shrub)
9 = pasture

10 = forest

11 = wetl ands

12 = fens

13 = water

14 = built up

15 = barren

Output Map layers

Many maps can be produced with the water resource assessment tools. The following sections outline how
these maps are prepared, the units of measure and codes employed along with some notes as to how they
should and should not be used. More complete information is available in the model documentation. The
source code is aso provided and contains a great deal of internal documentation. Output maps are
presented in the approximate order in which they would be produced.

The idealized elevation file is a digital elevation file. Cell values represent elevation in meters. This
elevation model will differ from the input DEM provided by the user, in that depressions in the data are
filled in so that water landing anywhere on the idealized surface can flow to the edge. Although useful for
analyzing terrain, and employed for slope measurements, the idealized elevation model is probably further
removed from reality then the original data upon which it is based. The idealized elevation data may not
be resampled to a different cell resolution and retain its desired "idealized" characteristics.

Drainage Direction
Cellsin the drainage direction map are coded to indicate the neighboring cell into which they drain. The
eight nearest neighbors are represented by the integers 1 through 8 as depicted in figure X3.

3

oo bh
[eo BNl \V]

7

figure X3

Drainage direction is similar to aspect. However they are not exactly the same thing. In an aspect map, the
cells at the bottom of aV shaped valley may face each other without draining into each other. Thismap is
produced by searching the border of the window for the lowest cell and draining all cellsin that drainage.
The algorithm moves up through the drainage one unit of elevation at atime until all adjacent cells of that
elevation are drained, trying to assign the most direct drainage direction. Then the next lowest undrained
border cell is found and that watershed is drained until the entire map is drained. The routine sometimes
has difficulty at the top of watersheds if the next valley does not clearly drop away.

314

Drainage Accumulation

Values in the drainage accumulation map represent the number of cells, including the cell with the value
that drains through the cell. Thus the minimum drainage accumulation is one, while the maximum is the
number of cellsin the largest watershed in the study area. The drainage accumulation map is used to find
the watershed area for each cell in the study area and to guide a search up the watershed to find the length
of the longest stream. The drainage accumulation map can be used to define the stream networks by
reclassifying the cells below a minimum accumulated drainage to zero. The remainder represents the
streams. Drainage accumulation is drainage area represented in cells. Multiplying a drainage
accumulation by the area of a cell yields the drainage area above that cell.

Runoff

The values in the runoff map represent the depth of water expected to run off that cell, from the input
rainfall, based on the soil and landcover maps specified. Vaues could range between zero and the amount
of rain that fell on that cell. Runoff, like rainfall, is measured in hundredths of inches. A value of 75
represents .75 inches of runoff. Runoff values can be multiplied by the area of each cell to give a volume
of runoff. However, care should be taken when converting units because cell sizesin GRASS are defined
in meters. Upgradient values in the runoff map are summed during the peak discharge calculations and
used in the contaminant source area and routing calculations.

Peak Discharge

Peak discharge is the maximum rate at which water passes through a cell measured in cubic feet per
second. These estimates are based on an empirical relationship that describes the entire upstream portion
of the watershed. If the entire upstream portion of the watershed is not within the current window, the
model assumes the upstream edge is the top of the watershed. This is wrong and estimates of peak
discharge in streams which enter the window are meaningless as are routings of contaminants based on
peak discharge. The calculations are retained so that local contributions from side streams and slopes may
be modeled. These local effects may be of substantial importance to those involved in the local area
regardless of distant conditions.

Contaminant Sour ce Areas

Sediment, nitrogen and phosphorus nutrients and COD can be simulated. The algorithms used to predict
contaminant mobilization are dependent on the contaminant and the landcover class. In non urban areas
sediment production is based on the universal soil loss equation. Nitrogen and phosphorous are modeled
both in solution and associated with sediment in rural areas and only as a function of sediment in urban
areas. COD is assumed to be soluble and is calculated by loading factors.

Sediment loadings are expressed as kilograms per hectare. Nutrients and COD loadings are expressed as
grams per hectare.

These loadings are a function of the rainfall, the soil, slope and landcover. They do not represent the
natural scatter found in natural events. Results may be used as a relative indicator of contaminant
generation. As such these maps may highlight those areas in a watershed that would benefit most from
conservation efforts. Subtracting two source area maps generated for different scenarios would help locate
the areas of greatest change.

Routing of Contaminants

Contaminants are routed down stream assuming total conservation unless a best management practice
map for the particular contaminant is used. If a best management practice map is used contaminants flux
across a BMP is reduced by the percentage indicated.

The output maps indicate the total mass of contaminant passing through a cell. These maps can be used as
indicators of the contaminants delivered to any point down stream. Similar analysis for varying land cover
regimes could be subtracted with r.mapcalc to find areas of greatest positive and negative change resulting
from the changes in scenarios. Again these numbers represent relative indicators.

315

I nterface Program

The Water resources assessment tool is run through an interface program invoked from the grass
environment at any GRASS prompt by typing wrat. Work is organized in projects, which should represent
the investigation of a geographic area. The user interface is a series of menus that guide the user through
the program. A project file is created which keeps track of the options used and input and output map
names. The project file also creates a database window based on the active window at the time a project is
started. The active window is returned to this active window for subsequent work sessions on the project.

First Menu
At this menu the user can:

1 start a new project

2 start a project based on an existing project
3 work on an existing project

4 remove project files

5 exit

The user is prompted for needed information such as the name of the project to work on with the option of
listing project filesif needed. Once a project is selected the second menu is offered. The User may do:

1 Terrain Analysis

2 Runoff Analysis

3 Contaminant Analysis
4 return to main menu

Choices 1, 2 or 3 lead to menus for each of those analysis.
In the Terrain Analysis the options are:

1 Create an idealized elevation model
2 Create a drainage direction map

3 Create a drainage accumulation map
4 Create a dlope map

5 Return to the previous menu

In each case except option 5 the user is prompted for needed information. where appropriate the likely
choices are supplied if not insisted upon. The drainage direction map must be based on the idealized
elevation map. The drainage accumulation map needs a drainage direction map, which should be the
output map from option 2. In this way the user is guided along.

In the runoff analysis section there are only three options:

1 Create a runoff map
2 Simulate peak discharge
3 Return to the previous menu

In this section the options are not as straight forward and the user is coached along. The user must provide
the names of several input maps and can aobtain a listing by entering list instead of a map name where
requested. The user must also choose between a design storm and rainfall map. The most difficult
information requested of the user is the antecedent moisture condition. This is a number between 1 and 3
inclusively which describes the amount of moisture aready in the soil, which effects the amount of rain
that can be absorbed during the current storm. 1 represents extremely dry conditions and 3 extremely wet
conditions. The concept comes from the Soil Conservation Service curve number method of predicting

316

runoff. The basic guidance from the SCS is offered with the request and a value of 2 neither wet or dry is
the default. Peak discharge is quite sensitive to thee antecedent moisture condition so some care should be
taken here.

The contaminant section has only three options as well:

1 Model Contaminant source areas
2 Rout contaminants through the watershed
3 Return to the previous menu

When modeling contaminant source areas the user may model just sediment or sediment and any
combination of nitrogen, phosphorus and COD. Because nutrients are associated with sediment
predictions are required for nutrient modeling. Most input for this section is straight forward except the
number of days since the last significant rain. The amount of dirt available to wash off of urban areas
accumulates between rainstorms. Rain storms wash urban areas clean. a default of 7 days is suggested
because this puts urban and rural areas on roughly even footings for comparison. To complicate the issue
street sweeping also removes contaminants from road ways and so if the study area has a regular street
cleaning program that should be reflected by entering fewer dry days. Several minor rain storms,
especially short hard rains will accomplish the same cleaning as along large rain. SWMM assumes that a
half inch of rain removes half of the available dirt and the next half inch removes half of what isleft an so
on. A worst case for urban areas is a rain after an extended dry period. However the goal is to compare
watersheds or source areas. Agricultural areas contribute the most pollution with an antecedent moisture
condition of 3 since that is when the most runoff and erosion takes place.

Summary

The tools presented here run within the GRASS GIS. A flow chart of input and analysis (figure X1) can
be used as a guide for the order of analysis. The system of units and means for encoding qualitative
information are supplied for both input and output map layers. Careful preparation of input maps is
strongly encouraged since this effort will likely save time and trouble later in the analysis.

The ultimate utility of analyses performed with these water resource assessment tools is dependent on the
interpretation of the user. Always keep in mind that these results are based on empirical relationships that
represent expectations over a long term average. For this reason numerical results should be used only for
comparison of areas and scenarios. Employing the entire set of tools from the tool kit may be
inappropriate, and or redundant information.

You can't hurt the model by running it! So feel free to experiment!

AUTHOR
Brian R. Brodeur Cook College Remote Sensing Center

317

Xganim

NAME
xganim - Raster File Animation Program

GRASSVERSION
4.x, 5.x

SYNOPSIS

Xganim

xganim help

Xganim viewl=name[,name,...] [view2=name[,name,...] [view3=name[,name,...]]
[viewd=name[,name,...]]

DESCRIPTION

xganim is atool for animating a series of GRASS raster files. At startup, a graphics window is opened
containing V CR-like button controls for: rewind, reverse play, step back, stop, step forward, forward play,
loop, swing, slower, faster, show filenames, current frame no., and Exit. The image is displayed above or
to the left of the controls. Each raster file is read into memory, then the animation is played once
beginning to end. The user may then replay the series or play continuous animation by using the buttons.

The user may define up to four "views', or sub-windows, to animate ssmultaneoudly. e.g., View 1 could
be rainfall, View 2 flooded areas, View 3 damage to bridges or levees, View 4 other economic damage, al
animated as atime series. Thereisan arbitrary limit of 100 files per view (100 animation frames), but the
practical limit may be less depending on the window size and amount of available RAM.

The environment variable XGANIM_SIZE is checked for a value to use as the dimension, in pixels, of the
longest dimension of the animation window. If XGANIM_SIZE is not set, the animation size defaults to
the rows & columns in the current GRASS region, scaling if necessary to a default minimum size of 600
and maximum of 900. The resolution of the current GRASS region is maintained, independent of window
size. Resizing the window after the program is running will have no effect on the animation size. UNIX -
style wild cards may be used in the command line version in place of araster name, but it must be quoted.

Example:
xganim viewl="rain[1-9]","rain1[0-2]" view2="temp*"

If the number of files differs for each view, the view with the fewest files will determine the number of
frames in the animation.

OPTIONS
Parameters:
viewl Raster filg(s) for Viewl
view2 Raster filg(s) for View2
view3 Raster file(s) for View3
viewd Raster file(s) for Viewd

BUGS
On some displays that need to use private color maps, the interface buttons may become difficult to see.

AUTHOR
Bill Brown, U.S. Army Construction Engineering Research Laboratories

318

