GRASS GIS 8 Programmer's Manual  8.5.0dev(2024)-602118adcc
fft.c
Go to the documentation of this file.
1 /**
2  * \file fft.c
3  *
4  * \brief Fast Fourier Transformation of Two Dimensional Satellite Data
5  * functions.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  *
21  * \author GRASS GIS Development Team
22  *
23  * \date 2001-2006
24  */
25 
26 #include <grass/config.h>
27 
28 #if defined(HAVE_FFTW3_H) || defined(HAVE_FFTW_H) || defined(HAVE_DFFTW_H)
29 
30 #if defined(HAVE_FFTW3_H)
31 #include <fftw3.h>
32 #define c_re(c) ((c)[0])
33 #define c_im(c) ((c)[1])
34 #elif defined(HAVE_FFTW_H)
35 #include <fftw.h>
36 #elif defined(HAVE_DFFTW_H)
37 #include <dfftw.h>
38 #endif
39 
40 #include <stdlib.h>
41 #include <stdio.h>
42 #include <math.h>
43 #include <grass/gmath.h>
44 #include <grass/gis.h>
45 
46 /**
47  * \fn int fft2(int i_sign, double (*data)[2], int NN, int dimc, int dimr)
48  *
49  * \brief Fast Fourier Transform for two-dimensional array.
50  *
51  * Fast Fourier Transform for two-dimensional array.<br>
52  * <bNote:</b> If passing real data to fft() forward transform
53  * (especially when using fft() in a loop), explicitly (re-)initialize
54  * the imaginary part to zero (DATA[1][i] = 0.0). Returns 0.
55  *
56  * \param[in] i_sign Direction of transform -1 is normal, +1 is inverse
57  * \param[in,out] data Pointer to complex linear array in row major order
58  * containing data and result
59  * \param[in] NN Value of DATA dimension (dimc * dimr)
60  * \param[in] dimc Value of image column dimension (max power of 2)
61  * \param[in] dimr Value of image row dimension (max power of 2)
62  * \return int always returns 0
63  */
64 
65 int fft2(int i_sign, double (*data)[2], int NN, int dimc, int dimr)
66 {
67 #ifdef HAVE_FFTW3_H
68  fftw_plan plan;
69 #else
70  fftwnd_plan plan;
71 #endif
72  double norm;
73  int i;
74 
75  norm = 1.0 / sqrt(NN);
76 
77 #ifdef HAVE_FFTW3_H
78  plan = fftw_plan_dft_2d(dimr, dimc, data, data,
79  (i_sign < 0) ? FFTW_FORWARD : FFTW_BACKWARD,
80  FFTW_ESTIMATE);
81 
82  fftw_execute(plan);
83 
84  fftw_destroy_plan(plan);
85 #else
86  plan = fftw2d_create_plan(dimc, dimr,
87  (i_sign < 0) ? FFTW_FORWARD : FFTW_BACKWARD,
88  FFTW_ESTIMATE | FFTW_IN_PLACE);
89 
90  fftwnd_one(plan, data, data);
91 
92  fftwnd_destroy_plan(plan);
93 #endif
94 
95  for (i = 0; i < NN; i++) {
96  data[i][0] *= norm;
97  data[i][1] *= norm;
98  }
99 
100  return 0;
101 }
102 
103 /**
104  * \fn int fft(int i_sign, double *DATA[2], int NN, int dimc, int dimr)
105  *
106  * \brief Fast Fourier Transform for two-dimensional array.
107  *
108  * Fast Fourier Transform for two-dimensional array.<br>
109  * <bNote:</b> If passing real data to fft() forward transform
110  * (especially when using fft() in a loop), explicitly (re-)initialize
111  * the imaginary part to zero (DATA[1][i] = 0.0). Returns 0.
112  *
113  * \param[in] i_sign Direction of transform -1 is normal, +1 is inverse
114  * \param[in,out] DATA Pointer to complex linear array in row major order
115  * containing data and result
116  * \param[in] NN Value of DATA dimension (dimc * dimr)
117  * \param[in] dimc Value of image column dimension (max power of 2)
118  * \param[in] dimr Value of image row dimension (max power of 2)
119  * \return int always returns 0
120  */
121 
122 int fft(int i_sign, double *DATA[2], int NN, int dimc, int dimr)
123 {
124  fftw_complex *data;
125  int i;
126 
127  data = (fftw_complex *)G_malloc(NN * sizeof(fftw_complex));
128 
129  for (i = 0; i < NN; i++) {
130  c_re(data[i]) = DATA[0][i];
131  c_im(data[i]) = DATA[1][i];
132  }
133 
134  fft2(i_sign, data, NN, dimc, dimr);
135 
136  for (i = 0; i < NN; i++) {
137  DATA[0][i] = c_re(data[i]);
138  DATA[1][i] = c_im(data[i]);
139  }
140 
141  G_free(data);
142 
143  return 0;
144 }
145 
146 #endif /* HAVE_FFT */
void G_free(void *)
Free allocated memory.
Definition: gis/alloc.c:150
#define G_malloc(n)
Definition: defs/gis.h:94
#define c_re(c)
Definition: fft.c:32
int fft(int i_sign, double *DATA[2], int NN, int dimc, int dimr)
Fast Fourier Transform for two-dimensional array.
Definition: fft.c:122
#define c_im(c)
Definition: fft.c:33
int fft2(int i_sign, double(*data)[2], int NN, int dimc, int dimr)
Fast Fourier Transform for two-dimensional array.
Definition: fft.c:65