r3.gwflow
Numerical calculation program for transient, confined groundwater flow in three dimensions.
r3.gwflow [-mf] phead=name status=name hc_x=name hc_y=name hc_z=name [sink=name] yield=name [recharge=name] output=name [velocity_x=name] [velocity_y=name] [velocity_z=name] [budget=name] dtime=float [maxit=integer] [error=float] [solver=name] [--overwrite] [--verbose] [--quiet] [--qq] [--ui]
Example:
r3.gwflow phead=name status=name hc_x=name hc_y=name hc_z=name yield=name output=name dtime=86400
grass.script.run_command("r3.gwflow", phead, status, hc_x, hc_y, hc_z, sink=None, yield, recharge=None, output, velocity_x=None, velocity_y=None, velocity_z=None, budget=None, dtime=86400, maxit=10000, error=0.000001, solver="cg", flags=None, overwrite=False, verbose=False, quiet=False, superquiet=False)
Example:
gs.run_command("r3.gwflow", phead="name", status="name", hc_x="name", hc_y="name", hc_z="name", yield="name", output="name", dtime=86400)
Parameters
phead=name [required]
Input 3D raster map with initial piezometric heads in [m]
status=name [required]
Input 3D raster map providing the status for each cell, = 0 - inactive, 1 - active, 2 - dirichlet
hc_x=name [required]
Input 3D raster map with the x-part of the hydraulic conductivity tensor in [m/s]
hc_y=name [required]
Input 3D raster map with the y-part of the hydraulic conductivity tensor in [m/s]
hc_z=name [required]
Input 3D raster map with the z-part of the hydraulic conductivity tensor in [m/s]
sink=name
Input 3D raster map with sources and sinks in [m^3/s]
yield=name [required]
Specific yield [1/m] input 3D raster map
recharge=name
Recharge input 3D raster map in m^3/s
output=name [required]
Output 3D raster map storing the piezometric head result of the numerical calculation
velocity_x=name
Output 3D raster map storing the groundwater filter velocity vector part in x direction [m/s]
velocity_y=name
Output 3D raster map storing the groundwater filter velocity vector part in y direction [m/s]
velocity_z=name
Output 3D raster map storing the groundwater filter velocity vector part in z direction [m/s]
budget=name
Output 3D raster map storing the groundwater budget for each cell [m^3/s]
dtime=float [required]
The calculation time in seconds
Default: 86400
maxit=integer
Maximum number of iteration used to solve the linear equation system
Default: 10000
error=float
Error break criteria for iterative solver
Default: 0.000001
solver=name
The type of solver which should solve the symmetric linear equation system
Allowed values: cg, pcg, cholesky
Default: cg
-m
Use 3D raster mask (if exists)
-f
Use a full filled quadratic linear equation system, default is a sparse linear equation system.
--overwrite
Allow output files to overwrite existing files
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--qq
Very quiet module output
--ui
Force launching GUI dialog
phead : str, required
Input 3D raster map with initial piezometric heads in [m]
Used as: input, raster_3d, name
status : str, required
Input 3D raster map providing the status for each cell, = 0 - inactive, 1 - active, 2 - dirichlet
Used as: input, raster_3d, name
hc_x : str, required
Input 3D raster map with the x-part of the hydraulic conductivity tensor in [m/s]
Used as: input, raster_3d, name
hc_y : str, required
Input 3D raster map with the y-part of the hydraulic conductivity tensor in [m/s]
Used as: input, raster_3d, name
hc_z : str, required
Input 3D raster map with the z-part of the hydraulic conductivity tensor in [m/s]
Used as: input, raster_3d, name
sink : str, optional
Input 3D raster map with sources and sinks in [m^3/s]
Used as: input, raster_3d, name
yield : str, required
Specific yield [1/m] input 3D raster map
Used as: input, raster_3d, name
recharge : str, optional
Recharge input 3D raster map in m^3/s
Used as: input, raster_3d, name
output : str, required
Output 3D raster map storing the piezometric head result of the numerical calculation
Used as: output, raster_3d, name
velocity_x : str, optional
Output 3D raster map storing the groundwater filter velocity vector part in x direction [m/s]
Used as: output, raster_3d, name
velocity_y : str, optional
Output 3D raster map storing the groundwater filter velocity vector part in y direction [m/s]
Used as: output, raster_3d, name
velocity_z : str, optional
Output 3D raster map storing the groundwater filter velocity vector part in z direction [m/s]
Used as: output, raster_3d, name
budget : str, optional
Output 3D raster map storing the groundwater budget for each cell [m^3/s]
Used as: output, raster_3d, name
dtime : float, required
The calculation time in seconds
Default: 86400
maxit : int, optional
Maximum number of iteration used to solve the linear equation system
Default: 10000
error : float, optional
Error break criteria for iterative solver
Default: 0.000001
solver : str, optional
The type of solver which should solve the symmetric linear equation system
Used as: name
Allowed values: cg, pcg, cholesky
Default: cg
flags : str, optional
Allowed values: m, f
m
Use 3D raster mask (if exists)
f
Use a full filled quadratic linear equation system, default is a sparse linear equation system.
overwrite: bool, optional
Allow output files to overwrite existing files
Default: False
verbose: bool, optional
Verbose module output
Default: False
quiet: bool, optional
Quiet module output
Default: False
superquiet: bool, optional
Very quiet module output
Default: False
DESCRIPTION
This numerical module calculates implicit transient and steady state, confined groundwater flow in three dimensions based on volume maps and the current 3D region settings. All initial- and boundary-conditions must be provided as volume maps. The unit of the current coordinate reference system must be meters.
This module is sensitive to mask settings. All cells which are outside the mask are ignored and handled as no flow boundaries.
The module calculates the piezometric head and optionally the water balance for each cell and the groundwater velocity field in 3 dimensions. The vector components can be visualized with ParaView if they are exported with r3.out.vtk.
The groundwater flow will always be calculated transient. For steady state computation the user should set the timestep to a large number (billions of seconds) or set the specific yield raster map to zero.
NOTES
The groundwater flow calculation is based on Darcy's law and a numerical implicit finite volume discretization. The discretization results in a symmetric and positive definite linear equation system in form of Ax = b, which must be solved. The groundwater flow partial differential equation is of the following form:
(dh/dt)*S = div (K grad h) + q
In detail for 3 dimensions:
(dh/dt)*S = Kxx * (d^2h/dx^2) + Kyy * (d^2h/dy^2) + Kzz * (d^2h/dz^2) + q
- h -- the piezometric head im meters [m]
- dt -- the time step for transient calculation in seconds [s]
- S -- the specific yield [1/m]
- b -- the bottom surface of the aquifer meters [m]
- Kxx -- the hydraulic conductivity tensor part in x direction in meter per second [m/s]
- Kyy -- the hydraulic conductivity tensor part in y direction in meter per seconds [m/s]
- Kzz -- the hydraulic conductivity tensor part in z direction in meter per seconds [m/s]
- q - inner source/sinc in [1/s]
Two different boundary conditions are implemented, the Dirichlet and Neumann conditions. By default the calculation area is surrounded by homogeneous Neumann boundary conditions. The calculation and boundary status of single cells can be set with the status map, the following cell states are supported:
- 0 == inactive - the cell with status 0 will not be calculated, active cells will have a no flow boundary to an inactive cell
- 1 == active - this cell is used for groundwater calculation, inner sources can be defined for those cells
- 2 == Dirichlet - cells of this type will have a fixed piezometric head value which do not change over time
Note that all required raster maps are read into main memory. Additionally the linear equation system will be allocated, so the memory consumption of this module rapidely grow with the size of the input maps.
The resulting linear equation system Ax = b can be solved with several solvers. An iterative solvers with sparse and quadratic matrices support is implemented. The conjugate gradients method with (pcg) and without (cg) precondition. Additionally a direct Cholesky solver is available. This direct solver only work with normal quadratic matrices, so be careful using them with large maps (maps of size 10.000 cells will need more than one Gigabyte of RAM). The user should always prefer to use a sparse matrix solver.
EXAMPLE 1
This small script creates a working groundwater flow area and data. It cannot be run in a lat/lon project.
# set the region accordingly
g.region res=25 res3=25 t=100 b=0 n=1000 s=0 w=0 e=1000 -p3
#now create the input raster maps for a confined aquifer
r3.mapcalc expression="phead = if(row() == 1 && depth() == 4, 50, 40)"
r3.mapcalc expression="status = if(row() == 1 && depth() == 4, 2, 1)"
r3.mapcalc expression="well = if(row() == 20 && col() == 20 && depth() == 2, -0.25, 0)"
r3.mapcalc expression="hydcond = 0.00025"
r3.mapcalc expression="syield = 0.0001"
r.mapcalc expression="recharge = 0.0"
r3.gwflow solver=cg phead=phead statuyield=status hc_x=hydcond hc_y=hydcond \
hc_z=hydcond sink=well yield=syield r=recharge output=gwresult dt=8640000 vx=vx vy=vy vz=vz budget=budget
# The data can be visualized with ParaView when exported with r3.out.vtk
r3.out.vtk -p in=gwresult,status,budget vector=vx,vy,vz out=/tmp/gwdata3d.vtk
#now load the data into ParaView
paraview --data=/tmp/gwdata3d.vtk
EXAMPLE 2
This will create a nice 3D model with geological layer with different hydraulic conductivities. Make sure you are not in a lat/lon projection.
# set the region accordingly
g.region res=15 res3=15 t=500 b=0 n=1000 s=0 w=0 e=1000
#now create the input raster maps for a confined aquifer
r3.mapcalc expression="phead = if(col() == 1 && depth() == 33, 50, 40)"
r3.mapcalc expression="status = if(col() == 1 && depth() == 33, 2, 1)"
r3.mapcalc expression="well = if(row() == 20 && col() == 20 && depth() == 3, -0.25, 0)"
r3.mapcalc expression="well = if(row() == 50 && col() == 50 && depth() == 3, -0.25, well)"
r3.mapcalc expression="hydcond = 0.0025"
r3.mapcalc expression="hydcond = if(depth() < 30 && depth() > 23 && col() < 60, 0.000025, hydcond)"
r3.mapcalc expression="hydcond = if(depth() < 20 && depth() > 13 && col() > 7, 0.000025, hydcond)"
r3.mapcalc expression="hydcond = if(depth() < 10 && depth() > 7 && col() < 60, 0.000025, hydcond)"
r3.mapcalc expression="syield = 0.0001"
r3.gwflow solver=cg phead=phead statuyield=status hc_x=hydcond hc_y=hydcond \
hc_z=hydcond sink=well yield=syield output=gwresult dt=8640000 vx=vx vy=vy vz=vz budget=budget
# The data can be visualized with paraview when exported with r3.out.vtk
r3.out.vtk -p in=gwresult,status,budget,hydcond,well vector=vx,vy,vz out=/tmp/gwdata3d.vtk
#now load the data into paraview
paraview --data=/tmp/gwdata3d.vtk
SEE ALSO
r.gwflow, r.solute.transport, r3.out.vtk
AUTHOR
Sören Gebbert
This work is based on the Diploma Thesis of Sören Gebbert available here at Technical University Berlin, Germany.
SOURCE CODE
Available at: r3.gwflow source code
(history)
Latest change: Friday Mar 07 07:39:48 2025 in commit e1e37d8